
oneAPI Specification
Release 1.1-rev-1

Intel

Nov 11, 2021

CONTENTS

1 Introduction 2
1.1 Target Audience . 2
1.2 Goals of the Specification . 3
1.3 Definitions . 3
1.4 Contribution Guidelines . 3

1.4.1 Sign your work . 3

2 Software Architecture 4
2.1 oneAPI Platform . 4
2.2 API Programming Example . 6
2.3 Direct Programming Example . 6

3 DPC++ 8
3.1 Overview . 8
3.2 Detailed API and Language Descriptions . 9
3.3 Open Source Implementation . 10
3.4 Testing . 10
3.5 Acknowledgment . 10

4 oneDPL 11
4.1 Namespaces . 11
4.2 Supported C++ Standard Library APIs and Algorithms . 11
4.3 Extensions to Parallel STL . 12

4.3.1 DPC++ Execution Policy . 12
4.3.2 Buffer wrappers . 14

4.4 Specific API of oneDPL . 15
4.4.1 Function Objects . 15
4.4.2 Iterators . 15
4.4.3 Parallel Algorithms . 20

5 oneDNN 23
5.1 Introduction . 24

5.1.1 General API notes . 25
5.1.2 Error Handling . 26
5.1.3 Namespaces . 26

5.2 Conventions . 26
5.2.1 Variable (Tensor) Names . 26
5.2.2 RNN-Specific Notation . 27

5.3 Execution Model . 28
5.3.1 Engine . 28

i

5.3.2 Stream . 30
5.4 Data model . 31

5.4.1 Data types . 31
5.4.2 Memory . 33

5.5 Primitives . 51
5.5.1 Common Definitions . 52
5.5.2 Attributes . 68
5.5.3 Batch Normalization . 83
5.5.4 Binary . 90
5.5.5 Concat . 93
5.5.6 Convolution and Deconvolution . 96
5.5.7 Elementwise . 120
5.5.8 Inner Product . 127
5.5.9 Layer normalization . 135
5.5.10 LogSoftmax . 142
5.5.11 Local Response Normalization . 146
5.5.12 Matrix Multiplication . 151
5.5.13 Pooling . 154
5.5.14 Reorder . 160
5.5.15 Resampling . 163
5.5.16 RNN . 169
5.5.17 Shuffle . 201
5.5.18 Softmax . 205
5.5.19 Sum . 210

5.6 Open Source Implementation . 212
5.7 Implementation Notes . 212
5.8 Testing . 212

6 oneCCL 213
6.1 Introduction . 213
6.2 Namespaces . 213

6.2.1 oneapi::ccl namespace . 213
6.2.2 ccl namespace . 214

6.3 Current Version of this oneCCL Specification . 214
6.4 Definitions . 214

6.4.1 oneCCL Concepts . 214
6.4.2 Communication Operations . 219
6.4.3 Error handling . 230

6.5 Programming Model . 231
6.5.1 Generic Workflow . 231

7 Level Zero 233
7.1 Detailed API Descriptions . 233

8 oneDAL 234
8.1 Introduction . 234
8.2 Glossary . 236

8.2.1 Machine learning terms . 236
8.2.2 oneDAL terms . 237
8.2.3 Common oneAPI terms . 239

8.3 Mathematical Notations . 239
8.4 Programming model . 240

8.4.1 End-to-end example . 240
8.4.2 Descriptors . 241

ii

8.4.3 Operations . 244
8.4.4 Computational modes . 248

8.5 Common Interface . 249
8.5.1 Current Version of this oneDAL Specification . 249
8.5.2 Header files . 249
8.5.3 Namespaces . 250
8.5.4 Error handling . 250
8.5.5 Common type definitions . 252

8.6 Data management . 254
8.6.1 Key concepts . 255
8.6.2 Details . 259

8.7 Algorithms . 287
8.7.1 Clustering . 287
8.7.2 Nearest Neighbors (kNN) . 300
8.7.3 Decomposition . 308

8.8 Appendix . 317
8.8.1 k-d Tree . 317

8.9 Bibliography . 318

9 oneTBB 319
9.1 General Information . 319

9.1.1 Introduction . 319
9.1.2 Notational Conventions . 319
9.1.3 Identifiers . 321
9.1.4 Named Requirements . 321
9.1.5 Thread Safety . 339

9.2 oneTBB Interfaces . 339
9.2.1 Configuration . 339
9.2.2 Algorithms . 343
9.2.3 Flow Graph . 375
9.2.4 Task Scheduler . 428
9.2.5 Containers . 448
9.2.6 Thread Local Storage . 691

9.3 oneTBB Auxiliary Interfaces . 701
9.3.1 Memory Allocation . 701
9.3.2 Mutual Exclusion . 710
9.3.3 Timing . 722
9.3.4 info Namespace . 724

9.4 oneTBB Deprecated Interfaces . 725
9.4.1 task_arena::attach . 725

10 oneVPL 726
10.1 oneVPL for Intel® Media Software Development Kit Users . 726

10.1.1 oneVPL Ease of Use Enhancements . 726
10.1.2 New APIs in oneVPL . 727
10.1.3 Intel® Media Software Development Kit Feature Removals 727
10.1.4 Intel® Media Software Development Kit API Removals . 728
10.1.5 Intel® Media Software Development Kit Legacy API . 729

10.2 Architecture . 730
10.2.1 Video Decoding . 731
10.2.2 Video Encoding . 731
10.2.3 Video Processing . 732
10.2.4 Video Decoding with multiple video processing . 732

10.3 Programming Guide . 733

iii

10.3.1 Status Codes . 733
10.3.2 oneVPL Session . 733
10.3.3 Frame and Fields . 751
10.3.4 Decoding Procedures . 752
10.3.5 Encoding Procedures . 760
10.3.6 Video Processing Procedures . 772
10.3.7 Transcoding Procedures . 780
10.3.8 Hardware Acceleration . 782
10.3.9 Memory Allocation and External Allocators . 789
10.3.10 Hardware Device Error Handling . 791

10.4 Mandatory APIs and Functions . 793
10.4.1 Disclaimer . 793
10.4.2 Exported Functions . 793
10.4.3 Mandatory APIs . 794

10.5 oneVPL API Reference . 796
10.5.1 Function Reference . 796
10.5.2 Structure Reference . 833
10.5.3 Enumerator Reference . 950
10.5.4 Define Reference . 1002
10.5.5 Type Reference . 1003
10.5.6 Dispatcher API . 1005
10.5.7 GUIDs Reference . 1023

10.6 oneVPL API Versioning . 1024
10.7 Appendices . 1024

10.7.1 Configuration Parameter Constraints . 1024
10.7.2 Multiple-segment Encoding . 1029
10.7.3 Streaming and Video Conferencing Features . 1031
10.7.4 Switchable Graphics and Multiple Monitors . 1034
10.7.5 Working Directly with VA API for Linux* . 1036
10.7.6 CQP HRD Mode Encoding . 1038

10.8 Glossary . 1039
10.8.1 Acronyms and Terms . 1039
10.8.2 Video Formats . 1040
10.8.3 Color Formats . 1040

10.9 Deprecated API . 1040
10.10 Change Log . 1041

10.10.1 Version 2.5 . 1041
10.10.2 Version 2.4 . 1042
10.10.3 Version 2.3 . 1042

11 oneMKL 1043
11.1 oneMKL Architecture . 1043

11.1.1 Execution Model . 1044
11.1.2 Memory Model . 1046
11.1.3 API Design . 1046
11.1.4 Exceptions and Error Handling . 1050
11.1.5 Other Features . 1052

11.2 oneMKL Domains . 1052
11.2.1 Dense Linear Algebra . 1052
11.2.2 Sparse Linear Algebra . 1505
11.2.3 Discrete Fourier Transforms . 1534
11.2.4 Random Number Generators . 1561
11.2.5 Summary Statistics . 1667
11.2.6 Vector Math . 1710

iv

11.3 oneMKL Appendix . 1904
11.3.1 Future considerations . 1904
11.3.2 Acknowledgment . 1905

12 Ray Tracing 1906
12.1 Overview . 1906

12.1.1 Component Libraries . 1906
12.1.2 Appendices . 2185

13 Legal Notices and Disclaimers 2187

Bibliography 2188

Index 2189

v

oneAPI Specification, Release 1.1-rev-1

oneAPI is an open, free, and standards-based programming system that provides portability and performance across
accelerators and generations of hardware. oneAPI consists of a language and libraries for creating parallel applications:

• DPC++: oneAPI’s core language for programming accelerators and multiprocessors. DPCPP allows developers
to reuse code across hardware targets (CPUs and accelerators such as GPUs and FPGAs) and tune for a specific
architecture

• oneDPL: A companion to the DPC++ Compiler for programming oneAPI devices with APIs from C++ standard
library, Parallel STL, and extensions.

• oneDNN : High performance implementations of primitives for deep learning frameworks

• oneCCL: Communication primitives for scaling deep learning frameworks across multiple devices

• Level Zero: System interface for oneAPI languages and libraries

• oneDAL: Algorithms for accelerated data science

• oneTBB: Library for adding thread-based parallelism to complex applications on multiprocessors

• oneVPL: Algorithms for accelerated video processing

• oneMKL: High performance math routines for science, engineering, and financial applications

• Ray Tracing: A set of advanced ray tracing and high-fidelity rendering and computation routines for use in a wide
variety of 3D graphics uses including, film and television photorealistic visual effects and animation rendering,
scientific visualization, high-performance computing computations, gaming, and more.

CONTENTS 1

CHAPTER

ONE

INTRODUCTION

oneAPI simplifies software development by providing the same languages and programming models across accelerator
architectures. In this section, we introduce the programming model.

Parallel application development is a combination of API programming, where the parallel algorithm is hidden be-
hind an API provided by the system, and direct programming, where the application programmer writes the parallel
algorithm.

When using API programming, a developer implements performance critical sections of the program with library calls.
Well-defined and mature problem domains have high-performance solutions packaged as libraries. oneAPI defines a
set of APIs for the most used data parallel domains, and oneAPI platforms provide library implementations across
a variety of accelerators. Where possible, the API is based on established standards like BLAS. API programming
enables a programmer to attain high performance across a diverse set of accelerators with minimal coding & tuning.

Some problem domains are not well suited to API programming because no standard solution exists or because so-
lutions require a level of customization that cannot be easily implemented in a library. In this case, a developer uses
direct programming and must explicitly code the parallel algorithm. oneAPI’s programming model is based on data
parallelism, where the same computation is performed on each data element, and parallelism of the application scales
as the data scales. By allowing the programmer to directly express parallelism, data parallel algorithms make it possible
to productively create highly efficient algorithms for parallel architectures.

Data parallel algorithms are used for many of the most computationally demanding problems including scientific com-
puting, artificial intelligence, and visualization. Data parallel algorithms can be efficiently mapped to a diverse set of
architectures: multi-core CPUs, GPUs, systolic arrays, and FPGAs.

1.1 Target Audience

The expected audience for this specification includes: application developers, middleware developers, system software
providers, and hardware providers. As a contributor to this specification, you will shape the accelerator software
ecosystem. A productive and high performing system must take into account the constraints at all levels of the software
stack. As a user of this document, you can ensure that your components will inter-operate with applications and system
software for the oneAPI platform.

2

oneAPI Specification, Release 1.1-rev-1

1.2 Goals of the Specification

oneAPI seeks to provide:

• Source-level compatibility: oneAPI applications and middleware port to a conformant oneAPI platform through
recompilation and re-tuning.

• Performance transparency: API’s and language construct allow the programmer enough control over the map-
ping to hardware to create an efficient solution

• Software stack portability: Platform providers can port a oneAPI software stack by implementing the oneAPI
Level Zero interface.

1.3 Definitions

This specification uses the definition of must, must not, required, and so on specified in RFC 2119.

1.4 Contribution Guidelines

This specification is a continuation of Intel’s decades-long history of working with standards groups and indus-
try/academia initiatives such as The Khronos Group, to create and define specifications in an open and fair process
to achieve interoperability and interchangeability. oneAPI is intended to be an open specification and we encourage
you to help us make it better. Your feedback is optional, but to enable Intel to incorporate any feedback you may
provide to this specification, and to further upstream your feedback to other standards bodies, including The Khronos
Group SYCL specification, please submit your feedback under the terms and conditions below. Any contribution of
your feedback to the oneAPI Specification does not prohibit you from also contributing your feedback directly to other
standard bodies, including The Khronos Group under their respective submission policies.

Contribute to the oneAPI Specification by opening issues in the oneAPI Specification GitHub repository.

1.4.1 Sign your work

Please include a signed-off-by tag in every contribution of your feedback. By including a signed-off-by tag, you agree
that: (a) you have a right to license your feedback to Intel; (b) Intel will be free to use, disclose, reproduce, modify,
license, or otherwise distribute your feedback at its sole discretion without any obligations or restrictions of any kind,
including without limitation, intellectual property rights or licensing obligations; and (c) your feedback will be public
and that a record of your feedback may be maintained indefinitely.

If you agree to the above, every contribution of your feedback must include the following line using your real name and
email address: Signed-off-by: Joe Smith joe.smith@email.com

1.2. Goals of the Specification 3

https://tools.ietf.org/html/rfc2119
https://github.com/oneapi-src/oneapi-spec
mailto:joe.smith@email.com

CHAPTER

TWO

SOFTWARE ARCHITECTURE

oneAPI provides a common developer interface across a range of data parallel accelerators (see the figure below).
Programmers use DPC++ for both API programming and direct programming. The capabilities of a oneAPI platform
are determined by the Level Zero interface, which provides system software a common abstraction for a oneAPI device.

2.1 oneAPI Platform

A oneAPI platform is comprised of a host and a collection of devices. The host is typically a multi-core CPU, and the
devices are one or more GPUs, FPGAs, and other accelerators. The processor serving as the host can also be targeted
as a device by the software.

Each device has an associated command queue. A application that employs oneAPI runs on the host, following standard
C++ execution semantics. To run a function object on a device, the application submits a command group containing
the function object to the device’s queue. A function object contains a function definition together with associated
variables. A function object submitted to a queue is also referred to as a data parallel kernel or simply a kernel.

4

oneAPI Specification, Release 1.1-rev-1

The application running on the host and the functions running on the devices communicate through memory. oneAPI
defines several mechanisms for sharing memory across the platform, depending on the capabilities of the devices:

Memory Sharing Mechanism Description
Buffer objects

An application can create buffer objects
to pass data to devices. A buffer is an
array of data. A command group will define
accessor objects to identify which
buffers are accessed in this call to the
device. The oneAPI runtime will ensure the
data in the buffer is accessible to the
function running on the device. The
buffer-accessor mechanism is available on
all oneAPI platforms

Unified addressing

Unified addressing guarantees that the host and
all devices will share a unified address space.
Pointer values in the unified address space will
always refer to the same location in memory.

Unified shared memory

Unified shared memory enables data to be shared
through pointers without using buffers and
accessors. There are several levels of support
for this feature, depending on the capabilities
of the underlying device.

The scheduler determines when a command group is run on a device. The following mechanisms are used to determine
when a command group is ready to run.

• If the buffer-accessor method is used, the command group is ready when the buffers are defined and copied to
the device as necessary.

• If an ordered queue is used for a device, the command group is ready as soon as the prior command groups in
the queue are finished.

• If unified shared memory is used, you must specify a set of event objects which the command group depends on,
and the command group is ready when all of the events are completed.

The application on the host and the functions on the devices can synchronize through events, which are objects that
can coordinate execution. If the buffer-accessor mechanism is used, the application and device can also synchronize
through a host accessor, through the destruction of a buffer object, or through other more advanced mechanisms.

2.1. oneAPI Platform 5

oneAPI Specification, Release 1.1-rev-1

2.2 API Programming Example

API programming requires the programmer to specify the target device and the memory communication strategy. In
the following example, we call the oneMKL matrix multiply routine, GEMM. We are writing in DPC++ and omitting
irrelevant details.

We create a queue initialized with a gpu_selector to specify that we want the computation performed on a GPU, and we
define buffers to hold the arrays allocated on the host. Compared to a standard C++ GEMM call, we add a parameter
to specify the queue, and we replace the references to the arrays with references to the buffers that contain the arrays.
Otherwise this is the standard GEMM C++ interface.

using namespace cl::sycl;

// declare host arrays
double *A = new double[M*N];
double *B = new double[N*P];
double *C = new double[M*P];

{
// Initializing the devices queue with a gpu_selector
queue q{gpu_selector()};

// Creating 1D buffers for matrices which are bound to host arrays
buffer<double, 1> a{A, range<1>{M*N}};
buffer<double, 1> b{B, range<1>{N*P}};
buffer<double, 1> c{C, range<1>{M*P}};

mkl::transpose nT = mkl::transpose::nontrans;
// Syntax
// void gemm(queue &exec_queue, transpose transa, transpose transb,
// int64_t m, int64_t n, int64_t k, T alpha,
// buffer<T,1> &a, int64_t lda,
// buffer<T,1> &b, int64_t ldb, T beta,
// buffer<T,1> &c, int64_t ldc);
// call gemm
mkl::blas::gemm(q, nT, nT, M, P, N, 1.0, a, M, b, N, 0.0, c, M);

}
// when we exit the block, the buffer destructor will write result back to C.

2.3 Direct Programming Example

With direct programming, we specify the target device and the memory communication strategy, as we do for API
programming. In addition, we must define and submit a command group to perform the computation. In the following
example, we write a simple data parallel matrix multiply. We are writing in DPC++ and omitting irrelevant details.

We create a queue initialized with a gpu_selector to specify that the command group should run on the GPU, and we
define buffers to hold the arrays allocated on the host. We then submit the command group to the queue to perform the
computation. The command group defines accessors to specify we are reading arrays A and B and writing to C. We
then write a C++ lambda to create a function object that computes one element of the resulting matrix multiply. We
specify this function object as a parameter to a parallel_for which maps the function across the arrays A and B in
parallel. When we leave the scope, the destructor for the buffer object holding C writes the data back to the host array.

2.2. API Programming Example 6

oneAPI Specification, Release 1.1-rev-1

#include <CL/sycl.hpp>
using namespace sycl;

int main() {
// declare host arrays
double *Ahost = new double[M*N];
double *Bhost = new double[N*P];
double *Chost = new double[M*P];

{
// Initializing the devices queue with a gpu_selector
queue q{gpu_selector()};

// Creating 2D buffers for matrices which are bound to host arrays
buffer<double, 2> a{Ahost, range<2>{M,N}};
buffer<double, 2> b{Bhost, range<2>{N,P}};
buffer<double, 2> c{Chost, range<2>{M,P}};

// Submitting command group to queue to compute matrix c=a*b
q.submit([&](handler &h){

// Read from a and b, write to c
auto A = a.get_access<access::mode::read>(h);
auto B = b.get_access<access::mode::read>(h);
auto C = c.get_access<access::mode::write>(h);

int WidthA = a.get_range()[1];

// Executing kernel
h.parallel_for(range<2>{M, P},

[=](id<2> index){
int row = index[0];
int col = index[1];

// Compute the result of one element in c
double sum = 0.0;
for (int i = 0; i < WidthA; i++) {
sum += A[row][i] * B[i][col];

}
C[index] = sum;

});
});

}
// when we exit the block, the buffer destructor will write result back to C.

}

2.3. Direct Programming Example 7

CHAPTER

THREE

DPC++

3.1 Overview

oneAPI Data Parallel C++ (DPC++) is the direct programming language and associated direct programming APIs of
oneAPI. It provides the features needed to define data parallel functions and to launch them on devices. The language
is comprised of the following components:

• C++. Every DPC++ program is also a C++ program. A compliant DPC++ implementation must support the
C++17 Core Language (as specified in Sections 1-19 of ISO/IEC 14882:2017) or newer. See the C++ Standard.

• SYCL. DPC++ builds on the SYCL specification from The Khronos Group. The SYCL language enables the
definition of data parallel functions that can be offloaded to devices and defines runtime APIs and classes that
are used to orchestrate the offloaded functions.

• DPC++ Language extensions. A compliant DPC++ implementation must support the specified language features.
Some extensions are required only when the DPC++ implementation supports a specific class of device, as
summarized in the Extensions Table. An implementation supports a class of device if it can target hardware that
responds “true” for a DPC++ device type query, either through explicit support built into the implementation,
or by using a lower layer that can support those device classes such as the oneAPI Level Zero (Level Zero). A
DPC++ implementation must pass the conformance tests for all extensions that are required (Extensions Table)
for the classes of devices that the implementation can support. (See SYCL Extensions.)

This specification requires a minimum of C++17 Core Language support and DPC++ extensions. These version and
feature coverage requirements will evolve over time, with specific versions of C++ and SYCL being required, some
additional extensions being required, and some DPC++ extensions no longer required if covered by newer C++ or
SYCL versions directly.

8

https://isocpp.org/std/the-standard
https://github.com/intel/llvm/tree/sycl/sycl/doc/extensions

oneAPI Specification, Release 1.1-rev-1

Table 1: DPC++ Extensions Table: Support requirements for DPC++
implementations above SYCL 2020

Feature CPU GPU FPGA TestPage 9, 1

Accessor properties Required Required Required NA2

CXX standard library Required Required Not required3 NA?

Data flow pipes Not required Not required Required fpga_tests
Enqueued barriers Required Required Required NA?

Extended atomics Required Required Required NA?

Filter selector Required Required Required NA?

FPGA LSU controls Not required Not required Required NA?

FPGA memory channel Not required Not required Required NA?

FPGA register Not required Not required Required NA?

FPGA selector Required Required Required NA?

GPU device info Required Required Required NA?

Level zero backend Required4 Required? Required? NA?

Local memory allocations Required Required Required NA?

Pinned memory property Required Required Required NA?

Platform context Required Required Required NA?

Restrict all arguments Required Required Required NA?

Sub-group mask Required Required Required NA?

3.2 Detailed API and Language Descriptions

The SYCL 2020 Specification describes the SYCL APIs and language. DPC++ extensions on top of SYCL are described
in the SYCL Extensions repository.

A brief summary of the extensions is as follows:

• Accessor properties - compile-time accessor properties that are visible to the compiler.

• CXX standard library - enable subset of the C and C++ standard libraries in device code.

• Data flow pipes - enable efficient First-In, First-Out (FIFO) communication in DPC++, a mechanism commonly
used when describing algorithms for spatial architectures such as FPGAs.

• Enqueued barriers - simplifies dependence creation and tracking for some common programming patterns by
allowing coarser grained synchronization within a queue without manual creation of fine grained dependencies.

• Extended atomics - adds atomic_accessor on top of SYCL 2020 atomics.

• Filter selector - adds a device selector which consumes a string of filter definitions, and that can be used to easily
restrict the set of devices which are passed to the usual device selection mechanisms.

• FPGA LSU controls - tuning controls for FPGA load/store operations.

• FPGA memory channel - placement controls for data with external memory banks (e.g. DDR channel) for tuning
FPGA designs.

• FPGA register - tuning control for FPGA high performance pipelining.

• FPGA selector - adds a set of device selectors that make it easy to acquire an FPGA hardware or emulation
device.

1 Test directory within extension tests
2 Not yet available.
3 Likely to be required in the future
4 Required if the device backend is Level Zero.

3.2. Detailed API and Language Descriptions 9

https://github.com/intel/llvm/tree/sycl/sycl/doc/extensions/accessor_properties/SYCL_ONEAPI_accessor_properties.asciidoc
https://github.com/intel/llvm/tree/sycl/sycl/doc/extensions/C-CXX-StandardLibrary/C-CXX-StandardLibrary.rst
https://github.com/intel/llvm/tree/sycl/sycl/doc/extensions/DataFlowPipes/data_flow_pipes.asciidoc
https://github.com/intel/llvm/tree/sycl/sycl/test/fpga_tests
https://github.com/intel/llvm/tree/sycl/sycl/doc/extensions/EnqueueBarrier/enqueue_barrier.asciidoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/ExtendedAtomics/SYCL_INTEL_extended_atomics.asciidoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/FilterSelector/FilterSelector.adoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/IntelFPGA/FPGALsu.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/MemChannel/MemChannel.asciidoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/IntelFPGA/FPGAReg.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/IntelFPGA/FPGASelector.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/IntelGPU/IntelGPUDeviceInfo.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/LevelZeroBackend/LevelZeroBackend.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/LocalMemory/LocalMemory.asciidoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/UsePinnedMemoryProperty/UsePinnedMemoryPropery.adoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/PlatformContext/PlatformContext.adoc
https://github.com/intel/llvm/tree/sycl/sycl/doc/extensions/KernelRestrictAll/SYCL_INTEL_kernel_restrict_all.asciidoc
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/SubGroupMask/SubGroupMask.asciidoc
https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html
https://github.com/intel/llvm/tree/sycl/sycl/doc/extensions
https://github.com/intel/llvm/tree/sycl/sycl/test

oneAPI Specification, Release 1.1-rev-1

• GPU device info - adds GPU-specific queries around SIMD width, memory bandwidth, unique identifiers, and
topology of the compute structures.

• Level zero backend - defines interoperability with Level Zero as a backend to SYCL.

• Local memory allocations - adds ability for local memory allocations to be declared within a kernel, as opposed
to through an accessor that is passed to a kernel. Makes kernels more self contained and easier to read and
optimize.

• Pinned memory property - optimization indicating that a buffer should use a specific memory resource if possible,
to accelerate movement of data between host and devices in some implementations.

• Platform context - adds a default context per SYCL platform, which simplifies and improves performance in
common coding patterns.

• Restrict all arguments - defines an attribute that can be applied to kernels (including lambda definitions of kernels)
which signals that there will be no memory aliasing between any pointer arguments that are passed to or captured
by a kernel. This is an optimization attribute that can have large impact when the developer knows more about
the kernel arguments than a compiler can infer or safely assume.

• Sub-group mask - adds a new opaque type and operations on it, which can be used to represent and manage sets
of work-items within a sub-group.

3.3 Open Source Implementation

An open source implementation is available under an LLVM license. Details on incomplete features and known issues
are available in the Release Notes (and the Getting Started Guide until the release notes are available).

3.4 Testing

A DPC++ implementation must pass the extension tests for any extension implemented from the Extensions Table.
Each extension in the Extensions Table lists the name of the directory that contains corresponding tests, within the
extension tests tree.

3.5 Acknowledgment

We thank the DPC++ and oneDPL Technical Advisory Board for their valuable feedback, and the Khronos SYCL
working group for their efforts defining and evolving the SYCL specification.

3.3. Open Source Implementation 10

https://github.com/intel/llvm/tree/sycl/
https://github.com/intel/llvm/tree/sycl/sycl/ReleaseNotes.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md#known-issues-and-limitations
https://github.com/intel/llvm/tree/sycl/sycl/test
https://github.com/intel/llvm/tree/sycl/sycl/test
https://github.com/oneapi-src/oneAPI-tab

CHAPTER

FOUR

ONEDPL

The oneAPI DPC++ Library (oneDPL) provides the functionality specified in the C++ standard, with extensions to
support data parallelism and offloading to devices, and with extensions to simplify its usage for implementing data
parallel algorithms.

The library is comprised of the following components:

• A subset of the C++ standard library which you can use with buffers and data parallel kernels.

• Parallel STL algorithms, complemented with execution policies and companion APIs for running on oneAPI
devices. (See Extensions to Parallel STL.)

• Extensions: an additional set of library classes and functions that are known to be useful in practice but are not
yet included into C++ or SYCL specifications. (See Specific API of oneDPL.)

4.1 Namespaces

oneDPL uses namespace oneapi::dpl for all its functionality including Parallel STL algorithms, oneDPL execution
policies, etc. For the subset of the standard C++ library for kernels, the standard class and function names are also
aliased in namespace oneapi::dpl.

4.2 Supported C++ Standard Library APIs and Algorithms

oneDPL defines a subset of the C++ standard library APIs for use in DPC++ kernels. These APIs can be employed in
the kernels similarly to how they are employed in code for a typical CPU-based platform.

For all C++ algorithms accepting execution policies (as defined by C++ Standard), oneDPL provides an implemen-
tation for oneAPI devices via oneapi::dpl::execution::device_policy. These algorithms must be capable of
processing data in SYCL buffers (passed via oneapi::dpl::begin/end) and in unified shared memory (USM). (See
Extensions to Parallel STL.)

11

https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard
https://isocpp.org/std/the-standard

oneAPI Specification, Release 1.1-rev-1

4.3 Extensions to Parallel STL

oneDPL extends Parallel STL with the following APIs.

4.3.1 DPC++ Execution Policy

A DPC++ execution policy specifies where and how an algorithm runs.

// Defined in <oneapi/dpl/execution>

namespace oneapi {
namespace dpl {
namespace execution {

template <typename KernelName = /*unspecified*/>
class device_policy;

device_policy<> dpcpp_default;

template <typename KernelName = /*unspecified*/>
device_policy<KernelName>
make_device_policy(sycl::queue);

template <typename KernelName = /*unspecified*/>
device_policy<KernelName>
make_device_policy(sycl::device);

template <typename NewKernelName, typename OldKernelName>
device_policy<NewKernelName>
make_device_policy(const device_policy<OldKernelName>& = dpcpp_default);

}
}

}

dpcpp_default is a predefined execution policy object to run algorithms on the default DPC++ device.

device_policy class

template <typename KernelName = /*unspecified*/>
class device_policy
{
public:

using kernel_name = KernelName;

device_policy();
template <typename OtherName>
device_policy(const device_policy<OtherName>&);
explicit device_policy(sycl::queue);
explicit device_policy(sycl::device);

sycl::queue queue() const;
(continues on next page)

4.3. Extensions to Parallel STL 12

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

operator sycl::queue() const;
};

An object of the device_policy type is associated with a sycl::queue that is used to run algorithms on a DPC++
compliant device.

The KernelName template parameter, also aliased as kernel_name within the class template, is to explicitly provide
a name for DPC++ kernels executed by an algorithm the policy is passed to.

device_policy()

Construct a policy object associated with a queue created with the default device selector.

template <typename OtherName>
device_policy(const device_policy<OtherName>& policy)

Construct a policy object associated with the same queue as policy, by changing the kernel name of the given policy
to kernel_name defined for the new policy.

explicit device_policy(sycl::queue queue)

Construct a policy object associated with the given queue.

explicit device_policy(sycl::device device)

Construct a policy object associated with a queue created for the given device.

sycl::queue queue() const

Return the queue the policy is associated with.

operator sycl::queue() const

Allow implicit conversion of the policy to a sycl::queue object.

make_device_policy function

The make_device_policy function templates simplify device_policy creation.

template <typename KernelName = /*unspecified*/>
device_policy<KernelName>
make_device_policy(sycl::queue queue)

Return a policy object associated with queue, with a kernel name possibly provided as the template argument, otherwise
unspecified.

template <typename KernelName = /*unspecified*/>
device_policy<KernelName>
make_device_policy(sycl::device device)

Return a policy object to run algorithms on device, with a kernel name possibly provided as the template argument,
otherwise unspecified.

4.3. Extensions to Parallel STL 13

oneAPI Specification, Release 1.1-rev-1

template <typename NewKernelName, typename OldKernelName>
device_policy<NewKernelName>
make_device_policy(const device_policy<OldKernelName>& policy = dpcpp_default)

Return a policy object constructed from policy, with a new kernel name provided as the template argument. If no
policy object is provided, the new policy is constructed from dpcpp_default.

4.3.2 Buffer wrappers

// Defined in <oneapi/dpl/iterator>

namespace oneapi {
namespace dpl {

template < typename T, typename AllocatorT, sycl::access::mode Mode >
/*unspecified*/ begin(sycl::buffer<T, /*dim=*/1, AllocatorT> buf,

sycl::mode_tag_t<Mode> tag = sycl::read_write);

template < typename T, typename AllocatorT, sycl::access::mode Mode >
/*unspecified*/ begin(sycl::buffer<T, /*dim=*/1, AllocatorT> buf,

sycl::mode_tag_t<Mode> tag, sycl::property::noinit);

template < typename T, typename AllocatorT >
/*unspecified*/ begin(sycl::buffer<T, /*dim=*/1, AllocatorT> buf,

sycl::property::noinit);

template < typename T, typename AllocatorT, sycl::access::mode Mode >
/*unspecified*/ end(sycl::buffer<T, /*dim=*/1, AllocatorT> buf,

sycl::mode_tag_t<Mode> tag = sycl::read_write);

template < typename T, typename AllocatorT, sycl::access::mode Mode >
/*unspecified*/ end(sycl::buffer<T, /*dim=*/1, AllocatorT> buf,

sycl::mode_tag_t<Mode> tag, sycl::property::noinit);

template < typename T, typename AllocatorT >
/*unspecified*/ end(sycl::buffer<T, /*dim=*/1, AllocatorT> buf,

sycl::property::noinit);

}
}

oneapi::dpl::begin and oneapi::dpl::end are helper functions for passing DPC++ buffers to oneDPL algo-
rithms. These functions accept a buffer and return an object of an unspecified type that satisfies the following require-
ments:

• it is CopyConstructible, CopyAssignable, and comparable with operators == and !=;

• the following expressions are valid: a + n, a - n, a - b, where a and b are objects of the type, and n is an
integer value;

• it provides the get_buffer() method that returns the buffer passed to the begin or end function.

4.3. Extensions to Parallel STL 14

oneAPI Specification, Release 1.1-rev-1

When invoking an algorithm, the buffer passed to begin should be the same as the buffer passed to end. Otherwise,
the behavior is undefined.

sycl::mode_tag_t and sycl::property::noinit parameters allow to specify an access mode to be used for ac-
cessing the buffer by algorithms. The mode serves as a hint, and can be overridden depending on semantics of the
algorithm. When invoking an algorithm, the same access mode arguments should be used for begin and end. Other-
wise, the behavior is undefined.

using namespace oneapi;
auto buf_begin = dpl::begin(buf, sycl::write_only);
auto buf_end_1 = dpl::end(buf, sycl::write_only);
auto buf_end_2 = dpl::end(buf, sycl::write_only, sycl::noinit);
dpl::fill(dpl::dpcpp_default, buf_begin, buf_end_1, 42); // allowed
dpl::fill(dpl::dpcpp_default, buf_begin, buf_end_2, 42); // not allowed

4.4 Specific API of oneDPL

The oneDPL extensions include iterators, function objects, and parallel algorithms.

4.4.1 Function Objects

The oneDPL function objects are defined in the <oneapi/dpl/functional> header, in namespace oneapi::dpl.

namespace oneapi {
namespace dpl {

struct identity
{

template <typename T>
constexpr T&&
operator()(T&& t) const noexcept;

};
}
}

The oneapi::dpl::identity class implements an identity operation. Its function operator receives an instance of a
type and returns the argument unchanged.

4.4.2 Iterators

The oneDPL iterators are defined in the <oneapi/dpl/iterator> header, in namespace oneapi::dpl.

template <typename Integral>
class counting_iterator
{
public:
using difference_type = /* a signed integer type of the same size as Integral */;
using value_type = Integral;
using reference = Integral;

counting_iterator();
(continues on next page)

4.4. Specific API of oneDPL 15

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

explicit counting_iterator(Integral init);

reference operator*() const;
reference operator[](difference_type i) const;

difference_type operator-(const counting_iterator& it) const;

counting_iterator operator+(difference_type forward) const;
counting_iterator operator-(difference_type backward) const;

counting_iterator& operator+=(difference_type forward);
counting_iterator& operator-=(difference_type backward);

counting_iterator& operator++();
counting_iterator& operator--();
counting_iterator& operator++(int);
counting_iterator& operator--(int);

bool operator==(const counting_iterator& it) const;
bool operator!=(const counting_iterator& it) const;
bool operator<(const counting_iterator& it) const;
bool operator>(const counting_iterator& it) const;
bool operator<=(const counting_iterator& it) const;
bool operator>=(const counting_iterator& it) const;

};

counting_iterator is a random access iterator-like type that represents an integer counter. When dereferenced,
counting_iterator provides an Integral rvalue equal to the value of the counter; dereference operations cannot be
used to modify the counter. The arithmetic and comparison operators of counting_iterator behave as if applied to
the values of Integral type representing the counters of the iterator instances passed to the operators.

class discard_iterator
{
public:
using difference_type = std::ptrdiff_t;
using value_type = /* unspecified */;
using reference = /* unspecified */;

discard_iterator();
explicit discard_iterator(difference_type init);

reference operator*() const;
reference operator[](difference_type) const;

difference_type operator-(const discard_iterator& it) const;

discard_iterator operator+(difference_type forward) const;
discard_iterator operator-(difference_type backward) const;

discard_iterator& operator+=(difference_type forward);
discard_iterator& operator-=(difference_type backward);

(continues on next page)

4.4. Specific API of oneDPL 16

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

discard_iterator& operator++();
discard_iterator& operator--();
discard_iterator operator++(int);
discard_iterator operator--(int);

bool operator==(const discard_iterator& it) const;
bool operator!=(const discard_iterator& it) const;
bool operator<(const discard_iterator& it) const;
bool operator>(const discard_iterator& it) const;

};

discard_iterator is a random access iterator-like type that, when dereferenced, provides an lvalue that may be as-
signed an arbitrary value. The assignment has no effect on the discard_iterator instance; the write is discarded.
The arithmetic and comparison operators of discard_iterator behave as if applied to integer counter values main-
tained by the iterator instances to determine their position relative to each other.

template <typename SourceIterator, typename IndexMap>
class permutation_iterator
{
public:
using difference_type =

typename std::iterator_traits<SourceIterator>::difference_type;
using value_type = typename std::iterator_traits<SourceIterator>::value_type;
using pointer = typename std::iterator_traits<SourceIterator>::pointer;
using reference = typename std::iterator_traits<SourceIterator>::reference;

permutation_iterator(const SourceIterator& input1, const IndexMap& input2,
std::size_t index = 0);

reference operator*() const;
reference operator[](difference_type i) const;

difference_type operator-(const permutation_iterator& it) const;

permutation_iterator operator+(difference_type forward) const;
permutation_iterator operator-(difference_type backward) const;

permutation_iterator& operator+=(difference_type forward);
permutation_iterator& operator-=(difference_type forward);

permutation_iterator& operator++();
permutation_iterator& operator--();
permutation_iterator operator++(int);
permutation_iterator operator--(int);

bool operator==(const permutation_iterator& it) const;
bool operator!=(const permutation_iterator& it) const;
bool operator<(const permutation_iterator& it) const;
bool operator>(const permutation_iterator& it) const;
bool operator<=(const permutation_iterator& it) const;
bool operator>=(const permutation_iterator& it) const;

};

4.4. Specific API of oneDPL 17

oneAPI Specification, Release 1.1-rev-1

permutation_iterator is a random access iterator-like type whose dereferenced value set is defined by the source
iterator provided, and whose iteration order over the dereferenced value set is defined by either another iterator or a
functor that maps the permutation_iterator index to the index of the source iterator. The arithmetic and compar-
ison operators of permutation_iterator behave as if applied to integer counter values maintained by the iterator
instances to determine their position in the index map.

permutation_iterator::operator* uses the counter value of the instance on which it is invoked to index into the
index map. The corresponding value in the map is then used to index into the value set defined by the source iterator.
The resulting lvalue is returned as the result of the operator.

permutation_iterator::operator[] uses the parameter i to index into the index map. The corresponding value
in the map is then used to index into the value set defined by the source iterator. The resulting lvalue is returned as the
result of the operator.

template <typename SourceIterator, typename IndexMap>
permutation_iterator<SourceIterator, IndexMap>
make_permutation_iterator(SourceIterator source, IndexMap map);

make_permutation_iterator constructs and returns an instance of permutation_iterator using the source it-
erator and index map provided.

template <typename Iterator, typename UnaryFunc>
class transform_iterator
{
public:
using difference_type = typename std::iterator_traits<Iterator>::difference_type;
using reference = typename std::invoke_result<UnaryFunc,

typename std::iterator_traits<Iterator>::reference>::type;
using value_type = typename std::remove_reference<reference>::type;
using pointer = typename std::iterator_traits<Iterator>::pointer;

transform_iterator(Iterator it, UnaryFunc unary_func);
transform_iterator(const transform_iterator& input);
transform_iterator& operator=(const transform_iterator& input);

reference operator*() const;
reference operator[](difference_type i) const;

difference_type operator-(const transform_iterator& it) const

transform_iterator operator+(difference_type forward) const;
transform_iterator operator-(difference_type backward) const;

transform_iterator& operator+=(difference_type forward);
transform_iterator& operator-=(difference_type backward);

transform_iterator& operator++();
transform_iterator& operator--();
transform_iterator operator++(int);
transform_iterator operator--(int);

bool operator==(const transform_iterator& it) const;
bool operator!=(const transform_iterator& it) const;
bool operator<(const transform_iterator& it) const;
bool operator>(const transform_iterator& it) const;

(continues on next page)

4.4. Specific API of oneDPL 18

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

bool operator<=(const transform_iterator& it) const;
bool operator>=(const transform_iterator& it) const;

};

transform_iterator is a random access iterator-like type whose dereferenced value set is defined by the unary
function and source iterator provided. When dereferenced, transform_iterator provides the result of the unary
function applied to the corresponding element of the source iterator; dereference operations cannot be used to modify
the elements of the source iterator unless the unary function result includes a reference to the element. The arithmetic
and comparison operators of transform_iterator behave as if applied to the source iterator itself.

template <typename UnaryFunc, typename Iterator>
transform_iterator<UnaryFunc, Iterator>
make_transform_iterator(Iterator, UnaryFunc);

make_transform_iterator constructs and returns an instance of transform_iterator using the source iterator
and unary function object provided.

template <typename... Iterators>
class zip_iterator
{
public:
using difference_type = typename std::make_signed<std::size_t>::type;
using value_type =

std::tuple<typename std::iterator_traits<Iterators>::value_type...>;
using reference = /* unspecified tuple of reference types */;
using pointer =

std::tuple<typename std::iterator_traits<Iterators>::pointer...>;

zip_iterator();
explicit zip_iterator(Iterators... args);
zip_iterator(const zip_iterator& input);
zip_iterator& operator=(const zip_iterator& input);

reference operator*() const;
reference operator[](difference_type i) const;

difference_type operator-(const zip_iterator& it) const;
zip_iterator operator-(difference_type backward) const;
zip_iterator operator+(difference_type forward) const;

zip_iterator& operator+=(difference_type forward);
zip_iterator& operator-=(difference_type backward);

zip_iterator& operator++();
zip_iterator& operator--();
zip_iterator operator++(int);
zip_iterator operator--(int);

bool operator==(const zip_iterator& it) const;
bool operator!=(const zip_iterator& it) const;
bool operator<(const zip_iterator& it) const;
bool operator>(const zip_iterator& it) const;

(continues on next page)

4.4. Specific API of oneDPL 19

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

bool operator<=(const zip_iterator& it) const;
bool operator>=(const zip_iterator& it) const;

};

zip_iterator is an iterator-like type defined over one or more iterators. When dereferenced, the value returned from
zip_iterator is a tuple of the values returned by dereferencing the source iterators over which the zip_iterator
is defined. The arithmetic operators of zip_iterator update the source iterators of a zip_iterator instance as
though the operation were applied to each of these iterators.

template <typename... Iterators>
zip_iterator<Iterators...>
make_zip_iterator(Iterators...);

make_zip_iterator constructs and returns an instance of zip_iterator using the set of source iterators provided.

4.4.3 Parallel Algorithms

The parallel algorithms are defined in the <oneapi/dpl/algorithm> header, in namespace oneapi::dpl.

template<typename Policy, typename InputKeyIt, typename InputValueIt,
typename OutputValueIt,
typename T = typename std::iterator_traits<InputValueIt>::value_type,
typename BinaryPred =

std::equal_to<typename std::iterator_traits<InputKeyIt>::value_type>,
typename BinaryOp =

std::plus<typename std::iterator_traits<InputValueIt>::value_type>>
OutputValueIt
exclusive_scan_by_segment(Policy&& policy, InputKeyIt keys_first,

InputKeyIt keys_last, InputValueIt values_first, OutputValueIt values_result,
T initial_value = 0,
BinaryPred binary_pred =

std::equal_to<typename std::iterator_traits<InputKeyIt>::value_type>(),
BinaryOp binary_op =

std::plus<typename std::iterator_traits<InputValueIt>::value_type>());

oneapi::dpl::exclusive_scan_by_segment performs partial prefix scans by applying the binary_op operation
to a sequence of values. Each partial scan applies to a contiguous subsequence determined by the keys associated with
the values being equal according to the binary_pred predicate, and the first element of each scan is the initial value
provided. The return value is an iterator targeting the end of the result sequence.

The initial value used if one is not provided is an instance of the value_type of the InputValueIt iterator type
initialized to 0. If no binary predicate is provided for the comparison of keys an instance of std::equal_to with
the value_type of the InputKeyIt iterator type is used. Finally, an instance of std::plus with the value_type
of the InputValueIt iterator type is used if no binary operator is provided to combine the elements of the value
subsequences.

template<typename Policy, typename InputKeyIt, typename InputValueIt,
typename OutputValueIt,
typename BinaryPredcate =

std::equal_to<typename std::iterator_traits<InputKeyIt>::value_type,
typename BinaryOp =

std::plus<typename std::iterator_traits<InputValueIt>::value_type>>
(continues on next page)

4.4. Specific API of oneDPL 20

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

OutputValueIt
inclusive_scan_by_segment(Policy&& policy, InputKeyIt keys_first,

InputKeyIt keys_last, InputValueIt values_first, OutputValueIt values_result
BinaryPred binary_pred =

std::equal_to<typename std::iterator_traits<InputKeyIt>::value_type>(),
BinaryOp binary_op =

std::plus<typename std::iterator_traits<InputValueIt>::value_type>());

oneapi::dpl::inclusive_scan_by_segment performs partial prefix scans by applying the binary_op operation
to a sequence of values. Each partial scan applies to a contiguous subsequence determined by the keys associated with
the values being equal according to the binary_pred predicate. The return value is an iterator targeting the end of the
result sequence.

If no binary predicate is provided for the comparison of keys an instance of std::equal_to with the value_type of
the InputKeyIt iterator type is used. An instance of std::plus with the value_type of the InputValueIt iterator
type is used if no binary operator is provided to combine the elements of the value subsequences.

template<typename Policy, typename InputKeyIt, typename InputValueIt,
typename OutputKeyIt, typename OutputValueIt,
typename BinaryPredcate =

std::equal_to<typename std::iterator_traits<InputKeyIt>::value_type,
typename BinaryOp =

std::plus<typename std::iterator_traits<InputValueIt>::value_type>>
std::pair<OutputKeyIt,OutputValueIt>
reduce_by_segment(Policy&& policy, InputKeyIt keys_first, InputKeyIt keys_last,

InputValueIt values_first, OutputKeyIt keys_result,
OutputValueIt values_result,
BinaryPred binary_pred =

std::equal_to<typename std::iterator_traits<InputKeyIt>::value_type>(),
BinaryOp binary_op =

std::plus<typename std::iterator_traits<InputValueIt>::value_type>());

oneapi::dpl::reduce_by_segment performs partial reductions on a sequence of values. Each reduction is com-
puted with the binary_op operation for a contiguous subsequence of values determined by the associated keys be-
ing equal according to the binary_pred predicate. For each subsequence the first of the equal keys is stored into
keys_result and the computed reduction is stored into values_result. The return value is a pair of iterators hold-
ing the end of the resulting sequences.

If no binary predicate is provided for the comparison of keys an instance of std::equal_to with the value_type of
the InputKeyIt iterator type is used. An instance of std::plus with the value_type of the InputValueIt iterator
type is used to combine the values in each subsequence identified if a binary operator is not provided.

template<typename Policy, typename InputIt1, typename InputIt2, typename OutputIt,
typename Comparator =

std::less<typename std::iterator_traits<InputIt>::value_type>>
OutputIt
binary_search(Policy&& policy, InputIt1 start, InputIt1 end,

InputIt2 value_first, InputIt2 value_last, OutputIterator result,
Comparator comp =

std::less<typename std::iterator_traits<InputIt1>::value_type>());

oneapi::dpl::binary_search performs a binary search over the data in [start, end) for each value in
[value_first, value_last). If the value exists in the data searched then the corresponding element in [result,
result + distance(value_first, value_last)) is set to true, otherwise it is set to false.

4.4. Specific API of oneDPL 21

oneAPI Specification, Release 1.1-rev-1

If no comparator is provided, operator< is used to determine when the search value is less than an element in the
range being searched.

The elements e of [start, end) must be partitioned with respect to the comparator used. For all elements e in [start, end)
and a given search value v in [value_first, value_last) comp(e, v) implies !comp(v, e).

template<typename Policy, typename InputIt1, typename InputIt2, typename OutputIt,
typename Comparator =

std::less<typename std::iterator_traits<InputIt>::value_type>>
OutputIt
lower_bound(Policy&& policy, InputIt1 start, InputIt1 end,

InputIt2 value_first, InputIt2 value_last, OutputIterator result,
Comparator comp =

std::less<typename std::iterator_traits<InputIt1>::value_type>());

oneapi::dpl::lower_bound performs a binary search over the data in [start, end) for each value in
[value_first, value_last) to find the lowest index at which the search value could be inserted in [start,
end) without violating the ordering defined by the comparator provided. That lowest index is then assigned to the
corresponding element in [result, result + distance(value_first, value_last)).

If no comparator is provided, operator< is used to determine when the search value is less than an element in the
range being searched.

The elements e of [start, end) must be partitioned with respect to the comparator used.

template<typename Policy, typename InputIt1, typename InputIt2, typename OutputIt,
typename Comparator =

std::less<typename std::iterator_traits<InputIt>::value_type>>
OutputIt
upper_bound(Policy&& policy, InputIt1 start, InputIt1 end,

InputIt2 value_first, InputIt2 value_last, OutputIterator result,
Comparator comp =

std::less<typename std::iterator_traits<InputIt1>::value_type>());

oneapi::dpl::upper_bound performs a binary search over the data in [start, end) for each value in
[value_first, value_last) to find the highest index at which the search value could be inserted in [start,
end) without violating the ordering defined by the comparator provided. That highest index is then assigned to the
corresponding element in [result, result + distance(value_first, value_last)).

If no comparator is provided, operator< is used to determine when the search value is less than an element in the
range being searched.

The elements e of [start, end) must be partitioned with respect to the comparator used.

4.4. Specific API of oneDPL 22

CHAPTER

FIVE

ONEDNN

oneAPI Deep Neural Network Library (oneDNN) is a performance library containing building blocks for for deep
learning applications and frameworks. oneDNN supports:

• CNN primitives (Convolutions, Inner product, Pooling, etc.)

• RNN primitives (LSTM, Vanilla, RNN, GRU)

• Normalizations (LRN, Batch, Layer)

• Elementwise operations (ReLU, Tanh, ELU, Abs, etc.)

• Softmax, Sum, Concat, Shuffle

• Reorders from/to optimized data layouts

• 8-bit integer, 16-, 32-bit, and bfloat16 floating point data types

// Tensor dimensions
int N, C, H, W;

// User-owned DPC++ objects
sycl::device dev {sycl::gpu_selector {}}; // Device
sycl::context ctx {dev}; // Context
sycl::queue queue {dev}; // Queue
std::vector<sycl::event> dependencies; // Input events dependencies
// Source
float *buf_src = static_cast<float *>(

sycl::malloc_device((N * C * H * W) * sizeof(float), dev, ctx));
// Results
float *buf_dst = static_cast<float *>(

sycl::malloc_device((N * C * H * W) * sizeof(float), dev, ctx));

// Create an engine encapsulating users' DPC++ GPU device and context
dnnl::engine engine = dnnl::sycl_interop::make_engine(dev, ctx);
// Create a stream encapsulating users' DPC++ GPU queue
dnnl::stream stream = dnnl::sycl_interop::make_stream(engine, queue);
// Create memory objects that use buf_src and buf_dst as the underlying storage
dnnl::memory mem_src({{N, C, H, W}, dnnl::memory::data_type::f32,

dnnl::memory::format_tag::nhwc},
engine, buf_src);

dnnl::memory mem_dst({{N, C, H, W}, dnnl::memory::data_type::f32,
dnnl::memory::format_tag::nhwc},

engine, buf_dst);
// Create a ReLU elementwise primitive

(continues on next page)

23

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

dnnl::eltwise_forward relu {
{{dnnl::prop_kind::forward_inference, dnnl::algorithm::eltwise_relu,

mem_src.get_desc(), 0.f, 0.f},
engine}};

// Execute the ReLU primitive in the stream passing input dependencies and
// retrieving the output dependency
sycl::event event = dnnl::sycl_interop::execute(relu, stream,

{{DNNL_ARG_SRC, mem_src}, {DNNL_ARG_DST, mem_dst}}, dependencies);

5.1 Introduction

Although the origins of this specification are in the existing open source implementation, its goal is to define a portable
set of APIs. To this end, for example, it intentionally omits implementation-specific details like tiled or blocked mem-
ory formats (layouts), and instead describes plain multi-dimensional memory formats and defines opaque optimized
memory format that can be implementation specific.

oneDNN main concepts are primitives, engines, streams, and memory objects.

A primitive (dnnl::primitive) is a functor object that encapsulates a particular computation such as forward convo-
lution, backward LSTM computations, or a data transformation operation. A single primitive can sometimes represent
more complex fused computations such as a forward convolution followed by a ReLU. Fusion, among other things, is
controlled via the primitive attributes mechanism.

The most important difference between a primitive and a pure function is that a primitive can be specialized for a subset
of input parameters.

For example, a convolution primitive stores parameters like tensor shapes and can pre-compute other dependent pa-
rameters like cache blocking. This approach allows oneDNN primitives to pre-generate code specifically tailored for
the requested operation to be performed. The oneDNN programming model assumes that the time it takes to perform
the pre-computations is amortized by reusing the same primitive to perform computations multiple times.

A primitive may also need a mutable memory buffer that it may use for temporary storage only during computations.
Such buffer is called a scratchpad. It can either be owned by a primitive object (which makes that object non-thread
safe) or be an execution-time parameter.

Primitive creation is a potentially expensive operation. Users are expected to create primitives once and reuse them
multiple times. Alternatively, implementations may reduce the primitive creation cost by caching primitives that have
the same parameters. This optimization falls outside of the scope of this specification.

Engines (dnnl::engine) are an abstraction of a computational device: a CPU, a specific GPU card in the system, etc.

5.1. Introduction 24

https://github.com/oneapi-src/oneDNN

oneAPI Specification, Release 1.1-rev-1

Most primitives are created to execute computations on one specific engine. The only exceptions are reorder primitives
that may transfer data between two different engines.

Streams (dnnl::stream) encapsulate execution context tied to a particular engine. For example, they can correspond
to DPC++ command queues.

Memory objects (dnnl::memory) encapsulate handles to memory allocated on a specific engine, tensor dimensions,
data type, and memory format – the way tensor indices map to offsets in linear memory space. Memory objects are
passed to primitives during execution.

Levels of Abstraction

oneDNN has multiple levels of abstractions for primitives and memory objects in order to expose maximum flexibility
to its users.

On the logical level, the library provides the following abstractions:

• Memory descriptors (dnnl::memory::desc) define the logical dimensions of a tensor, data type, and the format
in which the data is laid out in memory. The special format any (dnnl::memory::format_tag::any) indicates
that the actual format will be defined later.

• Operation descriptors (one for each supported primitive) describe the most basic properties of an operation with-
out specifying, for example, which engine will be used to compute them. For example, convolution descriptor
describes shapes of source, destination, and weights tensors, propagation kind (forward, backward with respect
to data or weights), and other implementation-independent parameters.

• Primitive descriptors (dnnl::primitive_desc_base is the base class and each of the supported primitives
have their own version) are at an abstraction level in between operation descriptors and primitives and can be used
to inspect details of a specific primitive implementation like expected memory formats via queries to implement
memory format propagation (see Memory format propagation) without having to fully instantiate a primitive.

Abstraction level Memory object Primitive objects
Logical description Memory descriptor Operation descriptor
Intermediate description N/A Primitive descriptor
Implementation Memory object Primitive

5.1.1 General API notes

There are certain assumptions on how oneDNN objects behave:

• Memory and operation descriptors behave similarly to trivial types.

• All other objects behave like shared pointers. Copying is always shallow.

oneDNN objects can be empty in which case they are not valid for any use. Memory descriptors are special in this
regard, as their empty versions are regarded as zero memory descriptors that can be used to indicate absence of a
memory descriptor. Empty objects are usually created using default constructors, but also may be a result of an error
during object construction (see the next section).

5.1. Introduction 25

oneAPI Specification, Release 1.1-rev-1

5.1.2 Error Handling

All oneDNN functions throw the following exception in case of error.

struct error : public exception
The exception class.

Additionally, many oneDNN functions that construct or return oneDNN objects have a boolean allow_empty param-
eter that defaults to false and that makes the library to return an empty object (a zero object in case of memory
descriptors) when an object cannot be constructed instead of throwing an error.

5.1.3 Namespaces

All oneDNN functions and classes reside in ::dnnl namespace. The functions that accept or return DPC++ objects
such as command queues or buffers reside in ::dnnl::sycl_interop namespace.

Furthermore, oneDNN defines ::oneapi::dnnl namespace, that is an alias for the ::dnnl namespace.

5.2 Conventions

oneDNN specification relies on a set of standard naming conventions for variables. This section describes these con-
ventions.

5.2.1 Variable (Tensor) Names

Neural network models consist of operations of the following form:

dst = 𝑓(src,weights),

where dst and src are activation tensors, and weights are learnable tensors.

The backward propagation therefore consists in computing the gradients with respect to the srcweights` respectively:

diff_src = d𝑓src(diff_dst, src,weights,dst),

and

diff_weights = d𝑓weights(diff_dst, src,weights,dst).

While oneDNN uses src, dst, and weights as generic names for the activations and learnable tensors, for a specific oper-
ation there might be commonly used and widely known specific names for these tensors. For instance, the convolution
operation has a learnable tensor called bias. For usability reasons, oneDNN primitives use such names in initialization
and other functions.

oneDNN uses the following commonly used notations for tensors:

5.2. Conventions 26

oneAPI Specification, Release 1.1-rev-1

Name Meaning
src Source tensor
dst Destination tensor
weights Weights tensor
bias Bias tensor (used in convolution, inner product and other primitives)
scale_shift Scale and shift tensors (used in Batch Normalization and Layer normalization primitives)
workspace Workspace tensor that carries additional information from the forward propagation to the back-

ward propagation
scratchpad Temporary tensor that is required to store the intermediate results
diff_src Gradient tensor with respect to the source
diff_dst Gradient tensor with respect to the destination
diff_weights Gradient tensor with respect to the weights
diff_bias Gradient tensor with respect to the bias
diff_scale_shiftGradient tensor with respect to the scale and shift
*_layer RNN layer data or weights tensors
*_iter RNN recurrent data or weights tensors

5.2.2 RNN-Specific Notation

The following notations are used when describing RNN primitives.

Name Semantics
· matrix multiply operator
* elementwise multiplication operator
W input weights
U recurrent weights
�𝑇 transposition
B bias
h hidden state
a intermediate value
x input
�𝑡 timestamp index
�𝑙 layer index
activation tanh, relu, logistic
c cell state
𝑐 candidate state
i input gate
f forget gate
o output gate
u update gate
r reset gate

5.2. Conventions 27

oneAPI Specification, Release 1.1-rev-1

5.3 Execution Model

To execute a primitive, a user needs to pass memory arguments and a stream to the dnnl::primitive::execute()
member function.

The primitive’s computations are executed on the computational device corresponding to the engine on which the
primitive (and memory arguments) were created and happens within the context of the stream.

5.3.1 Engine

Engine is abstraction of a computational device: a CPU, a specific GPU card in the system, etc. Most primitives are
created to execute computations on one specific engine. The only exceptions are reorder primitives that transfer data
between two different engines.

Engines correspond to and can be constructed from pairs of the DPC++ sycl::device and sycl::context objects.
Alternatively, oneDNN itself can create and own the corresponding objects.

struct dnnl::engine
An execution engine.

Public Types

enum kind
Kinds of engines.

Values:

enumerator any
An unspecified engine.

enumerator cpu
CPU engine.

enumerator gpu
GPU engine.

5.3. Execution Model 28

oneAPI Specification, Release 1.1-rev-1

Public Functions

engine()
Constructs an empty engine. An empty engine cannot be used in any operations.

engine(kind akind, size_t index)
Constructs an engine.

Parameters
• akind – The kind of engine to construct.

• index – The index of the engine. Must be less than the value returned by get_count() for
this particular kind of engine.

kind get_kind() const
Returns the kind of the engine.

Returns The kind of the engine.

Public Static Functions

static size_t get_count(kind akind)
Returns the number of engines of a certain kind.

Parameters akind – The kind of engines to count.

Returns The number of engines of the specified kind.

engine dnnl::sycl_interop::make_engine(const cl::sycl::device &adevice, const cl::sycl::context &acontext)
Creates an engine object using a specified SYCL device and SYCL context objects.

Parameters
• adevice – SYCL device.

• acontext – SYCL context.

Returns Engine object for the adevice SYCL device, within the specified acontext SYCL context.

cl::sycl::device dnnl::sycl_interop::get_device(const engine &aengine)
Returns the SYCL device underlying a specified engine object.

Parameters aengine – Engine object.

Returns SYCL device object underlying the aengine engine object.

cl::sycl::context dnnl::sycl_interop::get_context(const engine &aengine)
Returns the SYCL context underlying a specified engine object.

Parameters aengine – Engine object.

Returns SYCL context object underlying the aengine engine object.

5.3. Execution Model 29

oneAPI Specification, Release 1.1-rev-1

5.3.2 Stream

A stream is an encapsulation of execution context tied to a particular engine. They are passed to
dnnl::primitive::execute() when executing a primitive.

Streams correspond to and can be constructed from DPC++ sycl::queue objects. Alternatively, oneDNN itself can
create and own the corresponding objects. Streams are considered to be ephemeral and can be created / destroyed as
long these operation do not violate DPC++ synchronization requirements.

Similar to DPC++ queues, streams can be in-order and out-of-order (see the relevant portion of the DPC++ specification
for the explanation). The desired behavior can be specified using dnnl::stream::flags value. A stream created from
a DPC++ queue inherits its behavior.

struct dnnl::stream
An execution stream.

Public Types

enum flags
Stream flags. Can be combined using the bitwise OR operator.

Values:

enumerator in_order
In-order execution.

enumerator out_of_order
Out-of-order execution.

enumerator default_flags
Default stream configuration.

Public Functions

stream()
Constructs an empty stream. An empty stream cannot be used in any operations.

stream(const engine &aengine, flags aflags = flags::default_flags)
Constructs a stream for the specified engine and with behavior controlled by the specified flags.

Parameters
• aengine – Engine to create the stream on.

• aflags – Flags controlling stream behavior.

stream &wait()
Waits for all primitives executing in the stream to finish.

Returns The stream itself.

stream dnnl::sycl_interop::make_stream(const engine &aengine, cl::sycl::queue &aqueue)
Creates a stream for a specified engine and SYCL queue objects.

Parameters
• aengine – Engine object to use for the stream.

5.3. Execution Model 30

oneAPI Specification, Release 1.1-rev-1

• aqueue – SYCL queue to use for the stream.

Returns Stream object for the aengine engine object, which holds the aqueue SYCL queue object.

cl::sycl::queue dnnl::sycl_interop::get_queue(const stream &astream)
Returns the SYCL queue underlying a specified stream object.

Parameters astream – Stream object.

Returns SYCL queue underlying the astream stream object.

5.4 Data model

Data in oneDNN is stored in memory objects that both store and describe data that can be of various types and be stored
in different formats (layouts).

5.4.1 Data types

oneDNN supports multiple data types. However, the 32-bit IEEE single-precision floating-point data type is the fun-
damental type in oneDNN. It is the only data type that must be supported by an implementation. All the other types
discussed below are optional.

Primitives operating on the single-precision floating-point data type consume data, produce, and store intermediate
results using the same data type.

Moreover, single-precision floating-point data type is often used for intermediate results in the mixed precision compu-
tations because it provides better accuracy. For example, the elementwise primitive and elementwise post-ops always
use it internally.

oneDNN uses the following enumeration to refer to data types it supports:

enum dnnl::memory::data_type
Data type specification.

Values:

enumerator undef
Undefined data type (used for empty memory descriptors).

enumerator f16
16-bit/half-precision floating point.

enumerator bf16
non-standard 16-bit floating point with 7-bit mantissa.

enumerator f32
32-bit/single-precision floating point.

enumerator s32
32-bit signed integer.

enumerator s8
8-bit signed integer.

5.4. Data model 31

https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
https://en.wikipedia.org/wiki/Single-precision_floating-point_format

oneAPI Specification, Release 1.1-rev-1

enumerator u8
8-bit unsigned integer.

oneDNN supports training and inference with the following data types:

Usage
mode

Data types

infer-
ence

dnnl::memory::data_type::f32, dnnl::memory::data_type::bf16,
dnnl::memory::data_type::f16, dnnl::memory::data_type::s8/dnnl::memory::data_type::u8

training dnnl::memory::data_type::f32, dnnl::memory::data_type::bf16

Note: Using lower precision arithmetic may require changes in the deep learning model implementation.

Individual primitives may have additional limitations with respect to data type support based on the precision require-
ments. The list of data types supported by each primitive is included in the corresponding sections of the specification
guide.

Bfloat16

Note: In this section we abbreviate data types names for readability. For example,
dnnl::memory::data_type::f32 is abbreviated to f32.

Bfloat16 (bf16) is a 16-bit floating point data type based on the IEEE 32-bit single-precision floating point data type
(f32).

Both bf16 and f32 have an 8-bit exponent. However, while f32 has a 23-bit mantissa, bf16 has only a 7-bit one,
keeping only the most significant bits. As a result, while these data types support a very close numerical range of
values, bf16 has a significantly reduced precision. Therefore, bf16 occupies a spot between f32 and the IEEE 16-
bit half-precision floating point data type, f16. Compared directly to f16, which has a 5-bit exponent and a 10-bit
mantissa, bf16 trades increased range for reduced precision.

More details of the bfloat16 data type can be found here.

One of the advantages of using bf16 versus f32 is reduced memory footprint and, hence, increased memory access
throughput.

5.4. Data model 32

https://en.wikipedia.org/wiki/Bfloat16_floating-point_format

oneAPI Specification, Release 1.1-rev-1

Workflow

The main difference between implementing training with the f32 data type and with the bf16 data type is the way
the weights updates are treated. With the f32 data type, the weights gradients have the same data type as the weights
themselves. This is not necessarily the case with the bf16 data type as oneDNN allows some flexibility here. For
example, one could maintain a master copy of all the weights, computing weights gradients in f32 and converting the
result to bf16 afterwards.

Support

Most of the primitives can support the bf16 data type for source and weights tensors. Destination tensors can be
specified to have either the bf16 or f32 data type. The latter is intended for cases in which the output is to be fed to
operations that do not support bfloat16 or require higher precision.

Int8

To push higher performance during inference computations, recent work has focused on computations that use activa-
tions and weights stored at lower precision to achieve higher throughput. Int8 computations offer improved performance
over higher-precision types because they enable packing more computations into a single instruction, at the cost of re-
duced (but acceptable) accuracy.

Workflow

The Quantization describes what kind of quantization model oneDNN supports.

Support

oneDNN supports int8 computations for inference by allowing to specify that primitives input and output memory
objects use int8 data types.

5.4.2 Memory

There are two levels of abstraction for memory in oneDNN.

1. Memory descriptor – engine-agnostic logical description of data (number of dimensions, dimension sizes, data
type, and format.

2. Memory object – an engine-specific object combines memory descriptor with storage.

oneDNN defines the following convenience aliases to denote tensor dimensions

using dnnl::memory::dim = int64_t
Integer type for representing dimension sizes and indices.

using dnnl::memory::dims = std::vector<dim>
Vector of dimensions. Implementations are free to force a limit on the vector’s length.

5.4. Data model 33

oneAPI Specification, Release 1.1-rev-1

Memory Formats

In oneDNN memory format is how a multidimensional tensor is stored in 1-dimensional linear memory address space.
oneDNN specifies two kinds of memory formats: plain which correspond to traditional multidimensional arrays, and
optimized which are completely opaque.

Plain Memory Formats

Plain memory formats describe how multidimensional tensors are laid out in memory using an array of dimensions
and an array of strides both of which have length equal to the rank of the tensor. In oneDNN the order of dimensions is
fixed and different dimensions can have certain canonical interpretation depending on the primitive. For example, for
CNN primitives the order for activation tensors is {𝑁,𝐶, ...,𝐷,𝐻,𝑊}, where 𝑁 stands for minibatch (or batch size),
𝐶 stands for channels, and 𝐷, 𝐻 , and 𝑊 stand for image spatial dimensions: depth, height and width respectively.
Spatial dimensions may be omitted in the order from outermost to innermost; for example, it is not possible to omit
𝐻 when 𝐷 is present and it is never possible to omit 𝑊 . Canonical interpretation is documented for each primitive.
However, this means that the strides array plays an important role defining the order in which different dimension are
laid out in memory. Moreover, the strides need to agree with dimensions.

More precisely, let 𝑇 be a tensor of rank 𝑛 and let 𝜎 be the permutation of the strides array that sorts it, i.e. strides[𝑖] ≥
strides[𝑗] if 𝜎(𝑖) < 𝜎(𝑗) for all 0 ≤ 𝑖, 𝑗 < 𝑛. Then the following must hold:

strides[𝑖] ≥ strides[𝑗] * dimensions[𝑗] if 𝜎(𝑖) < 𝜎(𝑗) for all 0 ≤ 𝑖, 𝑗 < 𝑛.

For an element with coordinates (𝑖0, . . . , 𝑖𝑛−1) such that 0 ≤ 𝑖𝑗 < dimensions[𝑗] for 0 ≤ 𝑗 < 𝑛, its offset in memory
is computed as:

offset(𝑖0, . . . , 𝑖𝑛−1) = offset0 +

𝑛−1∑︁
𝑗=0

𝑖𝑗 * strides[𝑗].

Here offset0 is the offset from the parent memory and is non-zero only for submemory memory descriptors created
using dnnl::memory::desc::submemory_desc(). Submemory memory descriptors inherit strides from the parent
memory descriptor. Their main purpose is to express in-place concat operations.

As an example, consider an𝑀×𝑁 matrix𝐴 (𝑀 rows times𝑁 columns). Regardless of whether𝐴 is stored transposed
or not, dimensions𝐴 = {𝑀,𝑁}. However, strides𝐴 = {𝐿𝐷𝐴, 1} if it is not transposed and strides𝐴 = {1, 𝐿𝐷𝐴} if
it is, where 𝐿𝐷𝐴 is such that 𝐿𝐷𝐴 ≥ 𝑁 if 𝐴 is not transposed, and 𝐿𝐷𝐴 ≥ 𝑀 if it is. This also shows that 𝐴 does
not have to be stored densly in memory.

Note: The example above shows that oneDNN assumes data to be stored in row-major order.

Code example:

int M, N;
dnnl::memory::dims dims {M, N}; // Dimensions always stay the same

// Non-transposed matrix
dnnl::memory::dims strides_non_transposed {N, 1};
dnnl::memory::desc A_non_transposed {dims, dnnl::memory::data_type::f32,

strides_non_transposed};

// Transposed matrix
dnnl::memory::dims strides_transposed {1, M};
dnnl::memory::desc A_transposed {dims, dnnl::memory::data_type::f32,

strides_transposed};

5.4. Data model 34

oneAPI Specification, Release 1.1-rev-1

Format Tags

In addition to strides, oneDNN provides named format tags via the dnnl::memory::format_tag enum type. The
enumerators of this type can be used instead of strides for dense plain layouts.

The format tag names for 𝑁 -dimensional memory formats use first 𝑁 letters of the English alphabet which can be
arbitrarily permuted. This permutation is used to compute strides for tensors with up to 6 dimensions. The resulting
strides specify dense storage, in other words, using the nomenclature from the previous section, the following equality
holds:

strides[𝑖] = strides[𝑗] * dimensions[𝑗] if 𝜎(𝑖) + 1 = 𝜎(𝑗) for all 0 ≤ 𝑖, 𝑗 < 𝑛− 1.

In the matrix example, we could have used dnnl::memory::format_tag::ab for the non-transposed matrix above,
and dnnl::memory::format_tag::ba for the transposed:

int M, N;
dnnl::memory::dims dims {M, N}; // Dimensions always stay the same

// Non-transposed matrix
dnnl::memory::desc A_non_transposed {dims, dnnl::memory::data_type::f32,

dnnl::memory::format_tag::ab};

// Transposed matrix
dnnl::memory::desc A_transposed {dims, dnnl::memory::data_type::f32,

dnnl::memory::format_tag::ba};

Note: In what follows in this section we abbreviate memory format tag names for readability. For example,
dnnl::memory::format_tag::abcd is abbreviated to abcd .

In addition to abstract format tag names, oneDNN also provides convenience aliases. Some examples for CNNs and
RNNs:

• nchw is an alias for abcd (see the canonical order order of dimensions for CNNs discussed above).

• oihw is an alias for abcd .

• nhwc is an alias for acdb.

• tnc is an alias for abc.

• ldio is an alias for abcd .

• ldoi is an alias for abdc.

Optimized Format ‘any’

Another kind of format that oneDNN supports is an opaque optimized memory format that cannot be created directly
from strides and dimensions arrays. A memory descriptor for an optimized memory format can only be created by
passing any when creating certain operation descriptors, using them to create corresponding primitive descriptors and
then querying them for memory descriptors. Data in plain memory format should then be reordered into the data in
optimized data format before computations. Since reorders are expensive, the optimized memory format needs to be
propagated through computations graph.

Optimized formats can employ padding, blocking and other data transformations to keep data in layout optimal for
a certain architecture. This means that it in general operations like dnnl::memory::desc::permute_axes() or

5.4. Data model 35

oneAPI Specification, Release 1.1-rev-1

dnnl::memory::desc::submemory_desc() may fail. It is in general incorrect to use product of dimension sizes to
calculate amount of memory required to store data: dnnl::memory::desc::get_size() must be used instead.

Memory Format Propagation

Memory format propagation is one of the central notions that needs to be well-understood to use oneDNN correctly.

Convolution and inner product primitives choose the memory format when you create them with the placeholder mem-
ory format any for input or output. The memory format chosen is based on different circumstances such as hardware
and convolution parameters. Using the placeholder any memory format is the recommended practice for convolutions,
since they are the most compute-intensive operations in most topologies where they are present.

Other primitives, such as Elementwise, LRN, batch normalization and other, on forward propagation should use the
same memory format as the preceding layer thus propagating the memory format through multiple oneDNN primitives.
This avoids unnecessary reorders which may be expensive and should be avoided unless a compute-intensive primitive
requires a different format. For performance reasons, backward computations of such primitives requires consistent
memory format with the corresponding forward computations. Hence, when initializing there primitives for backward
computations you should use dnnl::memory::format_tag::any memory format tag as well.

Below is the short summary when to use and not to use memory format any during operation description initialization:

Primitive Kinds Forward Propagation Backward Propa-
gation

No Propagation

Compute intensive: (De-
)convolution, Inner product, RNN

Use any Use any N/A

Memory-bandwidth limited: Pool-
ing, Layer and Batch Normalization,
Local Response Normalization, Ele-
mentwise, Shuffle, Softmax

Use memory format
from preceding layer for
source tensors, and any
for destination tensors

Use any for gra-
dient tensors, and
actual memory for-
mats for data ten-
sors

N/A

Memory-bandwidth limited: Re-
order, Concat, Sum, Binary

N/A N/A Use memory format
from preceding layer for
source tensors, and any
for destination tensors

Additional format synchronization is required between forward and backward propagation when running training work-
loads. This is achieved via the hint_pd arguments of primitive descriptor constructors for primitives that implement
backward propagation.

API

enum dnnl::memory::format_tag
Memory format tag specification.

Memory format tags can be further divided into two categories:

• Domain-agnostic names, i.e. names that do not depend on the tensor usage in the specific primitive. These
names use letters from a to f to denote logical dimensions and form the order in which the dimensions
are laid in memory. For example, dnnl::memory::format_tag::ab is used to denote a 2D tensor where
the second logical dimension (denoted as b) is the innermost, i.e. has stride = 1, and the first logical
dimension (a) is laid out in memory with stride equal to the size of the second dimension. On the other

5.4. Data model 36

oneAPI Specification, Release 1.1-rev-1

hand, dnnl::memory::format_tag::ba is the transposed version of the same tensor: the outermost dimension
(a) becomes the innermost one.

• Domain-specific names, i.e. names that make sense only in the context of a certain domain, such as CNN.
These names are aliases to the corresponding domain-agnostic tags and used mostly for convenience. For
example, dnnl::memory::format_tag::nc is used to denote 2D CNN activations tensor memory format,
where the channels dimension is the innermost one and the batch dimension is the outermost one. Moreover,
dnnl::memory::format_tag::nc is an alias for dnnl::memory::format_tag::ab, because for CNN primitives
the logical dimensions of activations tensors come in order: batch, channels, spatial. In other words, batch
corresponds to the first logical dimension (a), and channels correspond to the second one (b).

The following domain-specific notation applies to memory format tags:

• 'n' denotes the mini-batch dimension

• 'c' denotes a channels dimension

• When there are multiple channel dimensions (for example, in convolution weights tensor), 'i' and 'o'
denote dimensions of input and output channels

• 'g' denotes a groups dimension for convolution weights

• 'd', 'h', and 'w' denote spatial depth, height, and width respectively

Values:

enumerator undef
Undefined memory format tag.

enumerator any
Placeholder memory format tag. Used to instruct the primitive to select a format automatically.

enumerator a
plain 1D tensor

enumerator ab
plain 2D tensor

enumerator ba
permuted 2D tensor

enumerator abc
plain 3D tensor

enumerator acb
permuted 3D tensor

enumerator bac
permuted 3D tensor

enumerator bca
permuted 3D tensor

enumerator cba
permuted 3D tensor

5.4. Data model 37

oneAPI Specification, Release 1.1-rev-1

enumerator abcd
plain 4D tensor

enumerator abdc
permuted 4D tensor

enumerator acdb
permuted 4D tensor

enumerator bacd
permuted 4D tensor

enumerator bcda
permuted 4D tensor

enumerator cdba
permuted 4D tensor

enumerator dcab
permuted 4D tensor

enumerator abcde
plain 5D tensor

enumerator abdec
permuted 5D tensor

enumerator acbde
permuted 5D tensor

enumerator acdeb
permuted 5D tensor

enumerator bacde
permuted 5D tensor

enumerator bcdea
permuted 5D tensor

enumerator cdeba
permuted 5D tensor

enumerator decab
permuted 5D tensor

enumerator abcdef
plain 6D tensor

enumerator acbdef
plain 6D tensor

5.4. Data model 38

oneAPI Specification, Release 1.1-rev-1

enumerator defcab
plain 6D tensor

enumerator x
1D tensor; an alias for dnnl::memory::format_tag::a

enumerator nc
2D CNN activations tensor; an alias for dnnl::memory::format_tag::ab

enumerator cn
2D CNN activations tensor; an alias for dnnl::memory::format_tag::ba

enumerator tn
2D RNN statistics tensor; an alias for dnnl::memory::format_tag::ab

enumerator nt
2D RNN statistics tensor; an alias for dnnl::memory::format_tag::ba

enumerator ncw
3D CNN activations tensor; an alias for dnnl::memory::format_tag::abc

enumerator nwc
3D CNN activations tensor; an alias for dnnl::memory::format_tag::acb

enumerator nchw
4D CNN activations tensor; an alias for dnnl::memory::format_tag::abcd

enumerator nhwc
4D CNN activations tensor; an alias for dnnl::memory::format_tag::acdb

enumerator chwn
4D CNN activations tensor; an alias for dnnl::memory::format_tag::bcda

enumerator ncdhw
5D CNN activations tensor; an alias for dnnl::memory::format_tag::abcde

enumerator ndhwc
5D CNN activations tensor; an alias for dnnl::memory::format_tag::acdeb

enumerator oi
2D CNN weights tensor; an alias for dnnl::memory::format_tag::ab

enumerator io
2D CNN weights tensor; an alias for dnnl::memory::format_tag::ba

enumerator oiw
3D CNN weights tensor; an alias for dnnl::memory::format_tag::abc

enumerator owi
3D CNN weights tensor; an alias for dnnl::memory::format_tag::acb

5.4. Data model 39

oneAPI Specification, Release 1.1-rev-1

enumerator wio
3D CNN weights tensor; an alias for dnnl::memory::format_tag::cba

enumerator iwo
3D CNN weights tensor; an alias for dnnl::memory::format_tag::bca

enumerator oihw
4D CNN weights tensor; an alias for dnnl::memory::format_tag::abcd

enumerator hwio
4D CNN weights tensor; an alias for dnnl::memory::format_tag::cdba

enumerator ohwi
4D CNN weights tensor; an alias for dnnl::memory::format_tag::acdb

enumerator ihwo
4D CNN weights tensor; an alias for dnnl::memory::format_tag::bcda

enumerator iohw
4D CNN weights tensor; an alias for dnnl::memory::format_tag::bacd

enumerator oidhw
5D CNN weights tensor; an alias for dnnl::memory::format_tag::abcde

enumerator dhwio
5D CNN weights tensor; an alias for dnnl::memory::format_tag::cdeba

enumerator odhwi
5D CNN weights tensor; an alias for dnnl::memory::format_tag::acdeb

enumerator iodhw
5D CNN weights tensor; an alias for dnnl::memory::format_tag::bacde

enumerator idhwo
5D CNN weights tensor; an alias for dnnl::memory::format_tag::bcdea

enumerator goiw
4D CNN weights tensor with groups; an alias for dnnl::memory::format_tag::abcd

enumerator wigo
4D CNN weights tensor with groups; an alias for dnnl::memory::format_tag::dcab

enumerator goihw
5D CNN weights tensor with groups; an alias for dnnl::memory::format_tag::abcde

enumerator hwigo
5D CNN weights tensor with groups; an alias for dnnl::memory::format_tag::decab

enumerator giohw
5D CNN weights tensor with groups; an alias for dnnl::memory::format_tag::acbde

5.4. Data model 40

oneAPI Specification, Release 1.1-rev-1

enumerator goidhw
6D CNN weights tensor with groups; an alias for dnnl::memory::format_tag::abcdef

enumerator giodhw
6D CNN weights tensor with groups; an alias for dnnl::memory::format_tag::abcdef

enumerator dhwigo
6D CNN weights tensor with groups; an alias for dnnl::memory::format_tag::defcab

enumerator tnc
3D RNN data tensor in the format (seq_length, batch, input channels).

enumerator ntc
3D RNN data tensor in the format (batch, seq_length, input channels).

enumerator ldnc
4D RNN states tensor in the format (num_layers, num_directions, batch, state channels).

enumerator ldigo
5D RNN weights tensor in the format (num_layers, num_directions, input_channels, num_gates, out-
put_channels).

• For LSTM cells, the gates order is input, forget, candidate and output gate.

• For GRU cells, the gates order is update, reset and output gate.

enumerator ldgoi
5D RNN weights tensor in the format (num_layers, num_directions, num_gates, output_channels, in-
put_channels).

• For LSTM cells, the gates order is input, forget, candidate and output gate.

• For GRU cells, the gates order is update, reset and output gate.

enumerator ldio
4D LSTM projection tensor in the format (num_layers, num_directions, num_channels_in_hidden_state,
num_channels_in_recurrent_projection).

enumerator ldoi
4D LSTM projection tensor in the format (num_layers, num_directions,
num_channels_in_recurrent_projection, num_channels_in_hidden_state).

enumerator ldgo
4D RNN bias tensor in the format (num_layers, num_directions, num_gates, output_channels).

• For LSTM cells, the gates order is input, forget, candidate and output gate.

• For GRU cells, the gates order is update, reset and output gate.

5.4. Data model 41

oneAPI Specification, Release 1.1-rev-1

Memory Descriptors and Objects

Descriptors

Memory descriptor is an engine-agnostic logical description of data (number of dimensions, dimension sizes, and data
type), and, optionally, the information about the physical format of data in memory. If this information is not known
yet, a memory descriptor can be created with format tag set to dnnl::memory::format_tag::any. This allows
compute-intensive primitives to chose the most appropriate format for the computations. The user is then responsible
for reordering their data into the new format if the formats do not match. See Memory Format Propagation.

A memory descriptor can be initialized either by specifying dimensions, and memory format tag or strides for each of
them.

User can query amount of memory required by a memory descriptor using the dnnl::memory::desc::get_size()
function. The size of data in general cannot be computed as the product of dimensions multiplied by the size of the
data type. So users are required to use this function for better code portability.

Two memory descriptors can be compared using the equality and inequality operators. The comparison is especially
useful when checking whether it is necessary to reorder data from the user’s data format to a primitive’s format.

Along with ordinary memory descriptors with all dimensions being positive, oneDNN supports zero-volume memory
descriptors with one or more dimensions set to zero. This is used to support the NumPy* convention. If a zero-volume
memory is passed to a primitive, the primitive typically does not perform any computations with this memory. For
example:

• The concatenation primitive would ignore all memory object with zeroes in the concatenation dimension / axis.

• A forward convolution with a source memory object with zero in the minibatch dimension would always produce
a destination memory object with a zero in the minibatch dimension and perform no computations.

• However, a forward convolution with a zero in one of the weights dimensions is ill-defined and is considered to
be an error by the library because there is no clear definition on what the output values should be.

Data handle of a zero-volume memory is never accessed.

API

struct dnnl::memory::desc
A memory descriptor.

Public Functions

desc()
Constructs a zero (empty) memory descriptor. Such a memory descriptor can be used to indicate absence
of an argument.

desc(const dims &adims, data_type adata_type, format_tag aformat_tag, bool allow_empty = false)
Constructs a memory descriptor.

Note: The logical order of dimensions corresponds to the abc... format tag, and the physical meaning of
the dimensions depends both on the primitive that would operate on this memory and the operation context.

Parameters
• adims – Tensor dimensions.

5.4. Data model 42

oneAPI Specification, Release 1.1-rev-1

• adata_type – Data precision/type.

• aformat_tag – Memory format tag.

• allow_empty – A flag signifying whether construction is allowed to fail without throw-
ing an exception. In this case a zero memory descriptor will be constructed. This flag is
optional and defaults to false.

desc(const dims &adims, data_type adata_type, const dims &strides, bool allow_empty = false)
Constructs a memory descriptor by strides.

Note: The logical order of dimensions corresponds to the abc... format tag, and the physical meaning of
the dimensions depends both on the primitive that would operate on this memory and the operation context.

Parameters
• adims – Tensor dimensions.

• adata_type – Data precision/type.

• strides – Strides for each dimension.

• allow_empty – A flag signifying whether construction is allowed to fail without throw-
ing an exception. In this case a zero memory descriptor will be constructed. This flag is
optional and defaults to false.

desc submemory_desc(const dims &adims, const dims &offsets, bool allow_empty = false) const
Constructs a memory descriptor for a region inside an area described by this memory descriptor.

Parameters
• adims – Sizes of the region.

• offsets – Offsets to the region from the encompassing memory object in each dimension.

• allow_empty – A flag signifying whether construction is allowed to fail without throwing
an exception. In this case a zero memory descriptor will be returned. This flag is optional
and defaults to false.

Returns A memory descriptor for the region.

desc reshape(const dims &adims, bool allow_empty = false) const
Constructs a memory descriptor by reshaping an existing one. The new memory descriptor inherits the
data type.

The operation ensures that the transformation of the physical memory format corresponds to the trans-
formation of the logical dimensions. If such transformation is impossible, the function either throws an
exception (default) or returns a zero memory descriptor depending on the allow_empty flag.

The reshape operation can be described as a combination of the following basic operations:

i. Add a dimension of size 1. This is always possible.

ii. Remove a dimension of size 1.

iii. Split a dimension into multiple ones. This is possible only if the product of all tensor dimensions stays
constant.

iv. Join multiple consecutive dimensions into a single one. This requires that the dimensions are dense in
memory and have the same order as their logical counterparts.

5.4. Data model 43

oneAPI Specification, Release 1.1-rev-1

• Here, ‘dense’ means: stride for dim[i] == (stride for dim[i + 1]) * dim[i +
1];

• And ‘same order’ means: i < j if and only if stride for dim[j] <= stride for dim[i].

Note: Reshape may fail for optimized memory formats.

Parameters
• adims – New dimensions. The product of dimensions must remain constant.

• allow_empty – A flag signifying whether construction is allowed to fail without throwing
an exception. In this case a zero memory descriptor will be returned. This flag is optional
and defaults to false.

Returns A new memory descriptor with new dimensions.

desc permute_axes(const std::vector<int> &permutation, bool allow_empty = false) const
Constructs a memory descriptor by permuting axes in an existing one.

The physical memory layout representation is adjusted accordingly to maintain the consistency between the
logical and physical parts of the memory descriptor. The new memory descriptor inherits the data type.

The logical axes will be permuted in the following manner:

for (i = 0; i < ndims(); i++)
new_desc.dims()[permutation[i]] = dims()[i];

Example:

std::vector<int> permutation = {1, 0}; // swap the first and
// the second axes

dnnl::memory::desc in_md(
{2, 3}, data_type, memory::format_tag::ab);

dnnl::memory::desc expect_out_md(
{3, 2}, data_type, memory::format_tag::ba);

assert(in_md.permute_axes(permutation) == expect_out_md);

Parameters
• permutation – Axes permutation.

• allow_empty – A flag signifying whether construction is allowed to fail without throwing
an exception. In this case a zero memory descriptor will be returned. This flag is optional
and defaults to false.

Returns A new memory descriptor with new dimensions.

memory::dims dims() const
Returns dimensions of the memory descriptor.

Potentially expensive due to the data copy involved.

Returns A copy of the dimensions vector.

memory::data_type data_type() const
Returns the data type of the memory descriptor.

5.4. Data model 44

oneAPI Specification, Release 1.1-rev-1

Returns The data type.

size_t get_size() const
Returns size of the memory descriptor in bytes.

Returns The number of bytes required to allocate a memory buffer for the memory object de-
scribed by this memory descriptor.

bool is_zero() const
Checks whether the memory descriptor is zero (empty).

Returns true if the memory descriptor describes an empty memory and false otherwise.

bool operator==(const desc &other) const
An equality operator.

Parameters other – Another memory descriptor.

Returns Whether this and the other memory descriptors have the same format tag, dimensions,
strides, etc.

bool operator!=(const desc &other) const
An inequality operator.

Parameters other – Another memory descriptor.

Returns Whether this and the other memory descriptors describe different memory.

Objects

Memory objects combine memory descriptors with storage for data (a data handle). With USM, the data handle
is simply a pointer to void. The data handle can be queried using dnnl::memory::get_data_handle() and
set using dnnl::memory::set_data_handle(). The underlying SYCL buffer, when used, can be queried using
dnnl::sycl_interop::get_buffer() and set using dnnl::sycl_interop::set_buffer(). In addition, the
memory descriptor and the engine underlying a memory object can be queried using dnnl::memory::get_desc()
and dnnl::memory::get_engine() respectively.

API

struct dnnl::memory
Memory object.

A memory object encapsulates a handle to a memory buffer allocated on a specific engine, tensor dimensions,
data type, and memory format, which is the way tensor indices map to offsets in linear memory space. Memory
objects are passed to primitives during execution.

Public Functions

memory()
Default constructor.

Constructs an empty memory object, which can be used to indicate absence of a parameter.

memory(const desc &md, const engine &aengine, void *handle)
Constructs a memory object.

5.4. Data model 45

oneAPI Specification, Release 1.1-rev-1

Unless handle is equal to DNNL_MEMORY_NONE, the constructed memory object will have the under-
lying buffer set. In this case, the buffer will be initialized as if dnnl::memory::set_data_handle() has been
called.

See memory::set_data_handle()

Parameters
• md – Memory descriptor.

• aengine – Engine to store the data on.

• handle – Handle of the memory buffer to use.

– A pointer to the user-allocated buffer. In this case the library doesn’t own the buffer.

– The DNNL_MEMORY_ALLOCATE special value. Instructs the library to allocate the
buffer for the memory object. In this case the library owns the buffer and the memory
allocation kind of the underlying buffer is dnnl::sycl_interop::memory_kind::usm.

– DNNL_MEMORY_NONE to create dnnl::memory without an underlying buffer.

memory(const desc &md, const engine &aengine)
Constructs a memory object.

The underlying buffer for the memory will be allocated by the library. The memory allocation kind of the
underlying buffer is dnnl::sycl_interop::memory_kind::usm.

Parameters
• md – Memory descriptor.

• aengine – Engine to store the data on.

desc get_desc() const
Returns the associated memory descriptor.

engine get_engine() const
Returns the associated engine.

void *get_data_handle() const
Returns the underlying memory buffer.

On the CPU engine, or when using USM, this is a pointer to the allocated memory.

void set_data_handle(void *handle, const stream &astream) const
Sets the underlying memory buffer.

This function may write zero values to the memory specified by the handle if the memory object has a zero
padding area. This may be time consuming and happens each time this function is called. The operation is
always blocking and the stream parameter is a hint.

Note: Even when the memory object is used to hold values that stay constant during the execution of
the program (pre-packed weights during inference, for example), the function will still write zeroes to the
padding area if it exists. Hence, the handle parameter cannot and does not have a const qualifier.

Parameters

5.4. Data model 46

oneAPI Specification, Release 1.1-rev-1

• handle – Memory buffer to use. On the CPU engine or when USM is used, the memory
buffer is a pointer to the actual data. It must have at least dnnl::memory::desc::get_size()
bytes allocated.

• astream – Stream to use to execute padding in.

void set_data_handle(void *handle) const
Sets the underlying memory buffer.

See documentation for dnnl::memory::set_data_handle(void *, const stream &) const for more information.

Parameters handle – Memory buffer to use. For the CPU engine, the memory buffer is a pointer
to the actual data. It must have at least dnnl::memory::desc::get_size() bytes allocated.

template<typename T = void>
T *map_data() const

Maps a memory object and returns a host-side pointer to a memory buffer with a copy of its contents.

Mapping enables read/write directly from/to the memory contents for engines that do not support direct
memory access.

Mapping is an exclusive operation - a memory object cannot be used in other operations until it is unmapped
via dnnl::memory::unmap_data() call.

Note: Any primitives working with the memory should be completed before the memory is mapped. Use
dnnl::stream::wait() to synchronize the corresponding execution stream.

Note: The map_data and unmap_data functions are provided mainly for debug and testing purposes and
their performance may be suboptimal.

Template Parameters T – Data type to return a pointer to.

Returns Pointer to the mapped memory.

void unmap_data(void *mapped_ptr) const
Unmaps a memory object and writes back any changes made to the previously mapped memory buffer.

Note: The map_data and unmap_data functions are provided mainly for debug and testing purposes and
their performance may be suboptimal.

Parameters mapped_ptr – A pointer previously returned by dnnl::memory::map_data().

enum dnnl::sycl_interop::memory_kind
Memory allocation kinds.

Values:

enumerator usm
USM memory allocation kind.

enumerator buffer
Buffer memory allocation kind.

5.4. Data model 47

oneAPI Specification, Release 1.1-rev-1

memory dnnl::sycl_interop::make_memory(const memory::desc &adesc, const engine &aengine,
memory_kind akind, void *ahandle =
DNNL_MEMORY_ALLOCATE)

Creates a memory object of a specified description and of a specified memory allocation kind, for a specified
engine.

Note: If akind is dnnl::sycl_interop::memory_kind::buffer, and ahandle is not
DNNL_MEMORY_ALLOCATE or DNNL_MEMORY_NONE, an exception is thrown.

Parameters
• adesc – Memory descriptor that describes the data.

• aengine – Engine to store the data on.

• akind – Memory allocation kind.

• ahandle – Handle of the memory data to use. This parameter is optional. By de-
fault, the underlying memory buffer is allocated internally, its memory allocation kind is
dnnl::sycl_interop::memory_kind::usm, and the library owns the buffer. If handle is pro-
vided, the library does not own the buffer.

Returns Memory object described by adesc memory descriptor, which has akind memory alloca-
tion kind, and is attached to the aengine engine.

memory dnnl::sycl_interop::make_memory(const memory::desc &adesc, const stream &astream,
memory_kind akind, void *ahandle =
DNNL_MEMORY_ALLOCATE)

Creates a memory object of a specified description and of a specified memory allocation kind, for a specified
stream.

Note: If akind is dnnl::sycl_interop::memory_kind::buffer, and ahandle is not
DNNL_MEMORY_ALLOCATE or DNNL_MEMORY_NONE, an exception is thrown.

Parameters
• adesc – Memory descriptor that describes the data.

• astream – Stream object where the data is used.

• akind – Memory allocation kind.

• ahandle – Handle of the memory data to use. This parameter is optional. By de-
fault, the underlying memory buffer is allocated internally, its memory allocation kind is
dnnl::sycl_interop::memory_kind::usm, and the library owns the buffer. If handle is pro-
vided, the library does not own the buffer.

Returns Memory object described by adesc memory descriptor, which has akind memory alloca-
tion kind, and used withing the astream stream.

template<typename T, int ndims>
memory dnnl::sycl_interop::make_memory(const memory::desc &adesc, const engine &aengine,

cl::sycl::buffer<T , ndims> abuffer)
Creates a memory object using a specified SYCL buffer.

5.4. Data model 48

oneAPI Specification, Release 1.1-rev-1

Note: When such memory object is created, it is implied that its memory allocation kind is
dnnl::sycl_interop::memory_kind::buffer.

Template Parameters
• T – Data type of the specified SYCL buffer.

• ndims – Number of dimensions of the specified SYCL buffer.

Parameters
• adesc – Memory descriptor that describes the data within the specified buffer.

• aengine – Engine to store the data on.

• abuffer – SYCL buffer.

Returns Memory object which holds a abuffer SYCL buffer described by the adesc memory de-
scriptor and attached to the aengine engine.

template<typename T, int ndims>
memory dnnl::sycl_interop::make_memory(const memory::desc &adesc, const stream &astream,

cl::sycl::buffer<T , ndims> abuffer)
Creates a memory object using a specified SYCL buffer.

Note: When such memory object is created, it is implied that its memory allocation kind is
dnnl::sycl_interop::memory_kind::buffer.

Template Parameters
• T – Data type of the specified SYCL buffer.

• ndims – Number of dimensions of the specified SYCL buffer.

Parameters
• adesc – Memory descriptor that describes the data within the specified buffer.

• astream – Stream object where the data is used.

• abuffer – SYCL buffer.

Returns Memory object which holds a abuffer SYCL buffer described by the adesc memory de-
scriptor and used within the astream stream.

memory_kind dnnl::sycl_interop::get_memory_kind(const memory &amemory)
Returns the memory allocation kind of a specified memory object.

Note: The memory allocation kind of a memory object could be changed during its lifetime, by setting the USM
handle or SYCL buffer of said memory object.

Parameters amemory – Memory object.

Returns Memory allocation kind of the amemory memory object.

template<typename T, int ndims>

5.4. Data model 49

oneAPI Specification, Release 1.1-rev-1

void dnnl::sycl_interop::set_buffer(memory &amemory, cl::sycl::buffer<T , ndims> abuffer)
Sets the SYCL buffer underlying a specified memory object.

Note: By setting the SYCL buffer of a memory object its memory allocation kind will be changed to
dnnl::sycl_interop::memory_kind::buffer.

Template Parameters
• T – Data type of the specified SYCL buffer.

• ndims – Number of dimensions of the specified SYCL buffer.

Parameters
• amemory – Memory object that will store the abuffer SYCL buffer.

• abuffer – SYCL buffer to be stored in the amemory memory object.

template<typename T, int ndims>
void dnnl::sycl_interop::set_buffer(memory &amemory, cl::sycl::buffer<T , ndims> abuffer, stream

&astream)
Sets the SYCL buffer underlying a specified memory object in a specified stream.

Template Parameters
• T – Data type of the specified SYCL buffer.

• ndims – Number of dimensions of the specified SYCL buffer.

Parameters
• amemory – Memory object that will store the abuffer SYCL buffer.

• abuffer – SYCL buffer to be stored in the amemorymemory object and used in the astream
stream.

• astream – Stream object within which the amemory memory object is used.

template<typename T, int ndims = 1>
cl::sycl::buffer<T , ndims> dnnl::sycl_interop::get_buffer(const memory &amemory)

Returns the SYCL buffer underlying a specified memory object.

Template Parameters
• T – Data type of the specified SYCL buffer.

• ndims – Number of dimensions of the specified buffer.

Parameters amemory – Memory object.

Returns SYCL buffer of type T with ndims dimensions, underlying the amemory memory object.

DNNL_MEMORY_NONE
Special pointer value that indicates that a memory object should not have an underlying buffer.

DNNL_MEMORY_ALLOCATE
Special pointer value that indicates that the library needs to allocate an underlying buffer for a memory object.

5.4. Data model 50

oneAPI Specification, Release 1.1-rev-1

5.5 Primitives

Primitives are functor objects that encapsulate a particular computation such as forward convolution, backward LSTM
computations, or a data transformation operation. A single primitive can sometimes represent more complex fused
computations such as a forward convolution followed by a ReLU.

The most important difference between a primitive and a pure function is that a primitive can store state.

One part of the primitive’s state is immutable. For example, convolution primitives store parameters like tensor shapes
and can pre-compute other dependent parameters like cache blocking. This approach allows oneDNN primitives to pre-
generate code specifically tailored for the operation to be performed. The oneDNN programming model assumes that
the time it takes to perform the pre-computations is amortized by reusing the same primitive to perform computations
multiple times.

The mutable part of the primitive’s state is referred to as a scratchpad. It is a memory buffer that a primitive may use for
temporary storage only during computations. The scratchpad can either be owned by a primitive object (which makes
that object non-thread safe) or be an execution-time parameter.

Conceptually, oneDNN establishes several layers of how to describe a computation from more abstract to more concrete:

• Operation descriptors (one for each supported primitive) describe an operation’s most basic properties without
specifying, for example, which engine will be used to compute them. For example, convolution descriptor de-
scribes shapes of source, destination, and weights tensors, propagation kind (forward, backward with respect
to data or weights), and other implementation-independent parameters. The shapes are usually described as
memory descriptors (dnnl::memory::desc).

• Primitive descriptors are at the abstraction level in between operation descriptors and primitives. They combine
both an operation descriptor and primitive attributes. Primitive descriptors can be used to query various primi-
tive implementation details and, for example, to implement memory format propagation by inspecting expected
memory formats via queries without having to fully instantiate a primitive. oneDNN may contain multiple im-
plementations for the same primitive that can be used to perform the same particular computation. Primitive
descriptors allow one-way iteration which allows inspecting multiple implementations. The library is expected
to order the implementations from most to least preferred, so it should always be safe to use the one that is chosen
by default.

• Primitives, which are the most concrete, embody actual computations that can be executed.

On the API level:

• Primitives are represented as a class on the top level of the dnnl namespace that have dnnl::primitive as
their base class, for example dnnl::convolution_forward

• Operation descriptors are represented as classes named desc and nested within the corresponding primitives
classes, for example dnnl::convolution_forward::desc. The dnnl::primitive_desc::next_impl()
member function provides a way to iterate over implementations.

5.5. Primitives 51

oneAPI Specification, Release 1.1-rev-1

• Primitive descriptors are represented as classes named primitive_desc and nested within the
corresponding primitive classes that have dnnl::primitive_desc_base as their base class (ex-
cept for RNN primitives that derive from dnnl::rnn_primitive_desc_base), for example
dnnl::convolution_forward::primitive_desc

namespace dnnl {
struct something_forward : public primitive {
struct desc {
// Primitive-specific constructors.

}
struct primitive_desc : public primitive_desc_base {
// Constructors and primitive-specific memory descriptor queries.

}
};

}

The sequence of actions to create a primitive is:

1. Create an operation descriptor via, for example, dnnl::convolution_forward::desc. The operation de-
scriptor can contain memory descriptors with placeholder dnnl::memory::format_tag::any memory for-
mats if the primitive supports it.

2. Create a primitive descriptor based on the operation descriptor, engine and attributes.

3. Create a primitive based on the primitive descriptor obtained in step 2.

Note: Strictly speaking, not all the primitives follow this sequence. For example, the reorder primitive does not have
an operation descriptor and thus does not require step 1 above.

5.5.1 Common Definitions

This section lists common types and definitions used by all or multiple primitives.

Base Class for Primitives

struct dnnl::primitive
Base class for all computational primitives.

Subclassed by dnnl::batch_normalization_backward, dnnl::batch_normalization_forward,
dnnl::binary, dnnl::concat, dnnl::convolution_backward_data, dnnl::convolution_backward_weights,
dnnl::convolution_forward, dnnl::deconvolution_backward_data, dnnl::deconvolution_backward_weights,
dnnl::deconvolution_forward, dnnl::eltwise_backward, dnnl::eltwise_forward, dnnl::gru_backward,
dnnl::gru_forward, dnnl::inner_product_backward_data, dnnl::inner_product_backward_weights,
dnnl::inner_product_forward, dnnl::layer_normalization_backward, dnnl::layer_normalization_forward,
dnnl::lbr_gru_backward, dnnl::lbr_gru_forward, dnnl::logsoftmax_backward, dnnl::logsoftmax_forward,
dnnl::lrn_backward, dnnl::lrn_forward, dnnl::lstm_backward, dnnl::lstm_forward, dnnl::matmul,
dnnl::pooling_backward, dnnl::pooling_forward, dnnl::reorder, dnnl::resampling_backward,
dnnl::resampling_forward, dnnl::shuffle_backward, dnnl::shuffle_forward, dnnl::softmax_backward,
dnnl::softmax_forward, dnnl::sum, dnnl::vanilla_rnn_backward, dnnl::vanilla_rnn_forward

5.5. Primitives 52

oneAPI Specification, Release 1.1-rev-1

Public Types

enum kind
Kinds of primitives supported by the library.

Values:

enumerator undef
Undefined primitive.

enumerator reorder
A reorder primitive.

enumerator shuffle
A shuffle primitive.

enumerator concat
A (out-of-place) tensor concatenation primitive.

enumerator sum
A summation primitive.

enumerator convolution
A convolution primitive.

enumerator deconvolution
A deconvolution primitive.

enumerator eltwise
An element-wise primitive.

enumerator softmax
A softmax primitive.

enumerator pooling
A pooling primitive.

enumerator lrn
An LRN primitive.

enumerator batch_normalization
A batch normalization primitive.

enumerator layer_normalization
A layer normalization primitive.

enumerator inner_product
An inner product primitive.

enumerator rnn
An RNN primitive.

5.5. Primitives 53

oneAPI Specification, Release 1.1-rev-1

enumerator binary
A binary primitive.

enumerator logsoftmax
A logsoftmax primitive.

enumerator matmul
A matmul (matrix multiplication) primitive.

enumerator resampling
A resampling primitive.

Public Functions

primitive()
Default constructor. Constructs an empty object.

primitive(const primitive_desc_base &pd)
Constructs a primitive from a primitive descriptor.

Parameters pd – Primitive descriptor.

inline kind get_kind() const
Returns the kind of the primitive.

Returns The primitive kind.

void execute(const stream &astream, const std::unordered_map<int, memory> &args) const
Executes computations specified by the primitive in a specified stream.

Arguments are passed via an arguments map containing <index, memory object> pairs. The index must be
one of the DNNL_ARG_* values such as DNNL_ARG_SRC, and the memory must have a memory descriptor
matching the one returned by dnnl::primitive_desc_base::query_md(query::exec_arg_md, index) unless
using dynamic shapes (see DNNL_RUNTIME_DIM_VAL).

Parameters
• astream – Stream object. The stream must belong to the same engine as the primitive.

• args – Arguments map.

primitive &operator=(const primitive &rhs)
Assignment operator.

cl::sycl::event dnnl::sycl_interop::execute(const primitive &aprimitive, const stream &astream, const
std::unordered_map<int, memory> &args, const
std::vector<cl::sycl::event> &dependencies = {})

Executes computations using a specified primitive object in a specified stream.

Arguments are passed via an arguments map containing <index, memory object> pairs. The index must be one
of the DNNL_ARG_* values such as DNNL_ARG_SRC, and the memory must have a memory descriptor matching
the one returned by dnnl::primitive_desc_base::query_md(query::exec_arg_md, index) unless using dynamic
shapes (see DNNL_RUNTIME_DIM_VAL).

Parameters
• aprimitive – Primitive to be executed.

• astream – Stream object. The stream must belong to the same engine as the primitive.

5.5. Primitives 54

oneAPI Specification, Release 1.1-rev-1

• args – Arguments map.

• dependencies – Vector of SYCL events that the execution depends on.

Returns SYCL event object for the specified primitive execution.

Base Class for Primitives Descriptors

There is no common base class for operation descriptors because they are very different between different primitives.
However, there is a common base class for primitive descriptors.

struct dnnl::primitive_desc_base
Base class for all primitive descriptors.

Subclassed by dnnl::concat::primitive_desc, dnnl::primitive_desc, dnnl::reorder::primitive_desc,
dnnl::sum::primitive_desc

Public Functions

primitive_desc_base()
Default constructor. Produces an empty object.

engine get_engine() const
Returns the engine of the primitive descriptor.

Returns The engine of the primitive descriptor.

const char *impl_info_str() const
Returns implementation name.

Returns The implementation name.

memory::dim query_s64(query what) const
Returns a memory::dim value (same as int64_t).

Parameters what – The value to query.

Returns The result of the query.

memory::desc query_md(query what, int idx = 0) const
Returns a memory descriptor.

Note: There are also convenience methods dnnl::primitive_desc_base::src_desc(),
dnnl::primitive_desc_base::dst_desc(), and others.

Parameters
• what – The kind of parameter to query; can be dnnl::query::src_md, dnnl::query::dst_md,

etc.

• idx – Index of the parameter. For example, convolution bias can be queried with what =
dnnl::query::weights_md and idx = 1.

Returns The requested memory descriptor.

Returns A zero memory descriptor if the primitive does not have a parameter of the specified
kind or index.

5.5. Primitives 55

oneAPI Specification, Release 1.1-rev-1

memory::desc src_desc(int idx) const
Returns a source memory descriptor.

Parameters idx – Source index.

Returns Source memory descriptor.

Returns A zero memory descriptor if the primitive does not have a source parameter with index
pdx.

memory::desc dst_desc(int idx) const
Returns a destination memory descriptor.

Parameters idx – Destination index.

Returns Destination memory descriptor.

Returns A zero memory descriptor if the primitive does not have a destination parameter with
index pdx.

memory::desc weights_desc(int idx) const
Returns a weights memory descriptor.

Parameters idx – Weights index.

Returns Weights memory descriptor.

Returns A zero memory descriptor if the primitive does not have a weights parameter with index
pdx.

memory::desc diff_src_desc(int idx) const
Returns a diff source memory descriptor.

Parameters idx – Diff source index.

Returns Diff source memory descriptor.

Returns A zero memory descriptor if the primitive does not have a diff source parameter with
index pdx.

memory::desc diff_dst_desc(int idx) const
Returns a diff destination memory descriptor.

Parameters idx – Diff destination index.

Returns Diff destination memory descriptor.

Returns A zero memory descriptor if the primitive does not have a diff destination parameter
with index pdx.

memory::desc diff_weights_desc(int idx) const
Returns a diff weights memory descriptor.

Parameters idx – Diff weights index.

Returns Diff weights memory descriptor.

Returns A zero memory descriptor if the primitive does not have a diff weights parameter with
index pdx.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.

Returns A zero memory descriptor if the primitive does not have a source parameter.

5.5. Primitives 56

oneAPI Specification, Release 1.1-rev-1

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.

Returns A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns Weights memory descriptor.

Returns A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns Diff source memory descriptor.

Returns A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns Diff destination memory descriptor.

Returns A zero memory descriptor if the primitive does not have a diff destination parameter.

memory::desc diff_weights_desc() const
Returns a diff weights memory descriptor.

Returns Diff weights memory descriptor.

Returns A zero memory descriptor if the primitive does not have a diff weights parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns Workspace memory descriptor.

Returns A zero memory descriptor if the primitive does not require workspace parameter.

memory::desc scratchpad_desc() const
Returns the scratchpad memory descriptor.

Returns scratchpad memory descriptor.

Returns A zero memory descriptor if the primitive does not require scratchpad parameter.

engine scratchpad_engine() const
Returns the engine on which the scratchpad memory is located.

Returns The engine on which the scratchpad memory is located.

primitive_attr get_primitive_attr() const
Returns the primitive attributes.

Returns The primitive attributes.

dnnl::primitive::kind get_kind() const
Returns the kind of the primitive descriptor.

Returns The kind of the primitive descriptor.

It is further derived from to provide base class for all primitives that have operation descriptors.

5.5. Primitives 57

oneAPI Specification, Release 1.1-rev-1

struct dnnl::primitive_desc : public dnnl::primitive_desc_base
A base class for descriptors of all primitives that have an operation descriptor and that support iteration over
multiple implementations.

Subclassed by dnnl::batch_normalization_backward::primitive_desc, dnnl::batch_normalization_forward::primitive_desc,
dnnl::binary::primitive_desc, dnnl::convolution_backward_data::primitive_desc,
dnnl::convolution_backward_weights::primitive_desc, dnnl::convolution_forward::primitive_desc,
dnnl::deconvolution_backward_data::primitive_desc, dnnl::deconvolution_backward_weights::primitive_desc,
dnnl::deconvolution_forward::primitive_desc, dnnl::eltwise_backward::primitive_desc,
dnnl::eltwise_forward::primitive_desc, dnnl::inner_product_backward_data::primitive_desc,
dnnl::inner_product_backward_weights::primitive_desc, dnnl::inner_product_forward::primitive_desc,
dnnl::layer_normalization_backward::primitive_desc, dnnl::layer_normalization_forward::primitive_desc,
dnnl::logsoftmax_backward::primitive_desc, dnnl::logsoftmax_forward::primitive_desc,
dnnl::lrn_backward::primitive_desc, dnnl::lrn_forward::primitive_desc, dnnl::matmul::primitive_desc,
dnnl::pooling_backward::primitive_desc, dnnl::pooling_forward::primitive_desc,
dnnl::resampling_backward::primitive_desc, dnnl::resampling_forward::primitive_desc,
dnnl::rnn_primitive_desc_base, dnnl::shuffle_backward::primitive_desc, dnnl::shuffle_forward::primitive_desc,
dnnl::softmax_backward::primitive_desc, dnnl::softmax_forward::primitive_desc

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

bool next_impl()
Advances the primitive descriptor iterator to the next implementation.

Returns true on success, and false if the last implementation reached, in which case primitive
descriptor is not modified.

The dnnl::reorder, dnnl::sum and dnnl::concat primitives also subclass dnnl::primitive_desc to imple-
ment their primitive descriptors.

RNN primitives further subclass the dnnl::primitive_desc_base to provide utility functions for frequently queried
memory descriptors.

struct dnnl::rnn_primitive_desc_base : public dnnl::primitive_desc
Base class for primitive descriptors for RNN primitives.

Subclassed by dnnl::gru_backward::primitive_desc, dnnl::gru_forward::primitive_desc,
dnnl::lbr_gru_backward::primitive_desc, dnnl::lbr_gru_forward::primitive_desc,
dnnl::lstm_backward::primitive_desc, dnnl::lstm_forward::primitive_desc, dnnl::vanilla_rnn_backward::primitive_desc,
dnnl::vanilla_rnn_forward::primitive_desc

Public Functions

rnn_primitive_desc_base()
Default constructor. Produces an empty object.

memory::desc src_layer_desc() const
Returns source layer memory descriptor.

Returns Source layer memory descriptor.

memory::desc src_iter_desc() const
Returns source iteration memory descriptor.

5.5. Primitives 58

oneAPI Specification, Release 1.1-rev-1

Returns Source iteration memory descriptor.

Returns A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc src_iter_c_desc() const
Returns source recurrent cell state memory descriptor.

Returns Source recurrent cell state memory descriptor.

memory::desc weights_layer_desc() const
Returns weights layer memory descriptor.

Returns Weights layer memory descriptor.

memory::desc weights_iter_desc() const
Returns weights iteration memory descriptor.

Returns Weights iteration memory descriptor.

memory::desc weights_peephole_desc() const
Returns weights peephole memory descriptor.

Returns Weights peephole memory descriptor.

memory::desc weights_projection_desc() const
Returns weights projection memory descriptor.

Returns Weights projection memory descriptor.

memory::desc bias_desc() const
Returns bias memory descriptor.

Returns Bias memory descriptor.

Returns A zero memory descriptor if the primitive does not have a bias parameter.

memory::desc dst_layer_desc() const
Returns destination layer memory descriptor.

Returns Destination layer memory descriptor.

memory::desc dst_iter_desc() const
Returns destination iteration memory descriptor.

Returns Destination iteration memory descriptor.

Returns A zero memory descriptor if the primitive does not have a destination iteration param-
eter.

memory::desc dst_iter_c_desc() const
Returns destination recurrent cell state memory descriptor.

Returns Destination recurrent cell state memory descriptor.

memory::desc diff_src_layer_desc() const
Returns diff source layer memory descriptor.

Returns Diff source layer memory descriptor.

memory::desc diff_src_iter_desc() const
Returns diff source iteration memory descriptor.

Returns Diff source iteration memory descriptor.

Returns A zero memory descriptor if the primitive does not have a diff source iteration parameter.

5.5. Primitives 59

oneAPI Specification, Release 1.1-rev-1

memory::desc diff_src_iter_c_desc() const
Returns diff source recurrent cell state memory descriptor.

Returns Diff source recurrent cell state memory descriptor.

memory::desc diff_weights_layer_desc() const
Returns diff weights layer memory descriptor.

Returns Diff weights layer memory descriptor.

memory::desc diff_weights_iter_desc() const
Returns diff weights iteration memory descriptor.

Returns Diff weights iteration memory descriptor.

memory::desc diff_weights_peephole_desc() const
Returns diff weights peephole memory descriptor.

Returns Diff weights peephole memory descriptor.

memory::desc diff_weights_projection_desc() const
Returns diff weights projection memory descriptor.

Returns Diff weights projection memory descriptor.

memory::desc diff_bias_desc() const
Returns diff bias memory descriptor.

Returns Diff bias memory descriptor.

Returns A zero memory descriptor if the primitive does not have a diff bias parameter.

memory::desc diff_dst_layer_desc() const
Returns diff destination layer memory descriptor.

Returns Diff destination layer memory descriptor.

memory::desc diff_dst_iter_desc() const
Returns diff destination iteration memory descriptor.

Returns Diff destination iteration memory descriptor.

Returns A zero memory descriptor if the primitive does not have a diff destination iteration
parameter.

memory::desc diff_dst_iter_c_desc() const
Returns diff destination recurrent cell state memory descriptor.

Returns Diff destination recurrent cell state memory descriptor.

Common Enumerations

enum dnnl::prop_kind
Propagation kind.

Values:

enumerator undef
Undefined propagation kind.

5.5. Primitives 60

oneAPI Specification, Release 1.1-rev-1

enumerator forward_training
Forward data propagation (training mode). In this mode, primitives perform computations necessary for
subsequent backward propagation.

enumerator forward_inference
Forward data propagation (inference mode). In this mode, primitives perform only computations that are
necessary for inference and omit computations that are necessary only for backward propagation.

enumerator forward_scoring
Forward data propagation, alias for dnnl::prop_kind::forward_inference.

enumerator forward
Forward data propagation, alias for dnnl::prop_kind::forward_training.

enumerator backward
Backward propagation (with respect to all parameters).

enumerator backward_data
Backward data propagation.

enumerator backward_weights
Backward weights propagation.

enumerator backward_bias
Backward bias propagation.

enum dnnl::algorithm
Kinds of algorithms.

Values:

enumerator undef
Undefined algorithm.

enumerator convolution_auto
Convolution algorithm that is chosen to be either direct or Winograd automatically

enumerator convolution_direct
Direct convolution.

enumerator convolution_winograd
Winograd convolution.

enumerator deconvolution_direct
Direct deconvolution.

enumerator deconvolution_winograd
Winograd deconvolution.

enumerator eltwise_relu
Elementwise: rectified linear unit (ReLU)

5.5. Primitives 61

oneAPI Specification, Release 1.1-rev-1

enumerator eltwise_tanh
Elementwise: hyperbolic tangent non-linearity (tanh)

enumerator eltwise_elu
Elementwise: exponential linear unit (ELU)

enumerator eltwise_square
Elementwise: square.

enumerator eltwise_abs
Elementwise: abs.

enumerator eltwise_sqrt
Elementwise: square root.

enumerator eltwise_swish
Elementwise: swish (𝑥 · 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑎 · 𝑥))

enumerator eltwise_linear
Elementwise: linear.

enumerator eltwise_bounded_relu
Elementwise: bounded_relu.

enumerator eltwise_soft_relu
Elementwise: soft_relu.

enumerator eltwise_logistic
Elementwise: logistic.

enumerator eltwise_exp
Elementwise: exponent.

enumerator eltwise_gelu
Elementwise: gelu alias for dnnl::algorithm::eltwise_gelu_tanh

enumerator eltwise_gelu_tanh
Elementwise: tanh-based gelu.

enumerator eltwise_gelu_erf
Elementwise: erf-based gelu.

enumerator eltwise_log
Elementwise: natural logarithm.

enumerator eltwise_clip
Elementwise: clip.

enumerator eltwise_pow
Elementwise: pow.

5.5. Primitives 62

oneAPI Specification, Release 1.1-rev-1

enumerator eltwise_round
Elementwise: round.

enumerator eltwise_relu_use_dst_for_bwd
Elementwise: rectified linear unit (ReLU) (dst for backward)

enumerator eltwise_tanh_use_dst_for_bwd
Elementwise: hyperbolic tangent non-linearity (tanh) (dst for backward)

enumerator eltwise_elu_use_dst_for_bwd
Elementwise: exponential linear unit (ELU) (dst for backward)

enumerator eltwise_sqrt_use_dst_for_bwd
Elementwise: square root (dst for backward)

enumerator eltwise_logistic_use_dst_for_bwd
Elementwise: logistic (dst for backward)

enumerator eltwise_exp_use_dst_for_bwd
Elementwise: exponent (dst for backward)

enumerator lrn_across_channels
Local response normalization (LRN) across multiple channels.

enumerator lrn_within_channel
LRN within a single channel.

enumerator pooling_max
Max pooling.

enumerator pooling_avg
Average pooling exclude padding, alias for dnnl::algorithm::pooling_avg_include_padding

enumerator pooling_avg_include_padding
Average pooling include padding.

enumerator pooling_avg_exclude_padding
Average pooling exclude padding.

enumerator vanilla_rnn
RNN cell.

enumerator vanilla_lstm
LSTM cell.

enumerator vanilla_gru
GRU cell.

enumerator lbr_gru
GRU cell with linear before reset. Differs from original GRU in how the new memory gate is calculated:
𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐*𝑥𝑡+𝑏𝑐𝑥 +𝑟𝑡*(𝑈𝑐*ℎ𝑡−1+𝑏𝑐ℎ)) LRB GRU expects 4 bias tensors on input: [𝑏𝑢, 𝑏𝑟, 𝑏𝑐𝑥 , 𝑏𝑐ℎ]

5.5. Primitives 63

oneAPI Specification, Release 1.1-rev-1

enumerator binary_add
Binary add.

enumerator binary_mul
Binary mul.

enumerator binary_max
Binary max.

enumerator binary_min
Binary min.

enumerator resampling_nearest
Nearest Neighbor resampling method.

enumerator resampling_linear
Linear (Bilinear, Trilinear) resampling method.

Normalization Primitives Flags

enum dnnl::normalization_flags
Flags for normalization primitives (can be combined via ‘|’)

Values:

enumerator none
Use no normalization flags. If specified, the library computes mean and variance on forward propagation
for training and inference, outputs them on forward propagation for training, and computes the respective
derivatives on backward propagation.

enumerator use_global_stats
Use global statistics. If specified, the library uses mean and variance provided by the user as an input
on forward propagation and does not compute their derivatives on backward propagation. Otherwise, the
library computes mean and variance on forward propagation for training and inference, outputs them on
forward propagation for training, and computes the respective derivatives on backward propagation.

enumerator use_scale_shift
Use scale and shift parameters. If specified, the user is expected to pass scale and shift as inputs on forward
propagation. On backward propagation of type dnnl::prop_kind::backward, the library computes their
derivatives. If not specified, the scale and shift parameters are not used by the library in any way.

enumerator fuse_norm_relu
Fuse normalization with ReLU. On training, normalization will require the workspace to implement back-
ward propagation. On inference, the workspace is not required and behavior is the same as when normal-
ization is fused with ReLU using the post-ops API.

5.5. Primitives 64

oneAPI Specification, Release 1.1-rev-1

Execution argument indices

DNNL_ARG_SRC_0
Source argument #0.

DNNL_ARG_SRC
A special mnemonic for source argument for primitives that have a single source. An alias for
DNNL_ARG_SRC_0.

DNNL_ARG_SRC_LAYER
A special mnemonic for RNN input vector. An alias for DNNL_ARG_SRC_0.

DNNL_ARG_FROM
A special mnemonic for reorder source argument. An alias for DNNL_ARG_SRC_0.

DNNL_ARG_SRC_1
Source argument #1.

DNNL_ARG_SRC_ITER
A special mnemonic for RNN input recurrent hidden state vector. An alias for DNNL_ARG_SRC_1.

DNNL_ARG_SRC_2
Source argument #2.

DNNL_ARG_SRC_ITER_C
A special mnemonic for RNN input recurrent cell state vector. An alias for DNNL_ARG_SRC_2.

DNNL_ARG_DST_0
Destination argument #0.

DNNL_ARG_DST
A special mnemonic for destination argument for primitives that have a single destination. An alias for
DNNL_ARG_DST_0.

DNNL_ARG_TO
A special mnemonic for reorder destination argument. An alias for DNNL_ARG_DST_0.

DNNL_ARG_DST_LAYER
A special mnemonic for RNN output vector. An alias for DNNL_ARG_DST_0.

DNNL_ARG_DST_1
Destination argument #1.

DNNL_ARG_DST_ITER
A special mnemonic for RNN input recurrent hidden state vector. An alias for DNNL_ARG_DST_1.

DNNL_ARG_DST_2
Destination argument #2.

DNNL_ARG_DST_ITER_C
A special mnemonic for LSTM output recurrent cell state vector. An alias for DNNL_ARG_DST_2.

5.5. Primitives 65

oneAPI Specification, Release 1.1-rev-1

DNNL_ARG_WEIGHTS_0
Weights argument #0.

DNNL_ARG_WEIGHTS
A special mnemonic for primitives that have a single weights argument. Alias for DNNL_ARG_WEIGHTS_0.

DNNL_ARG_SCALE_SHIFT
A special mnemonic for scale and shift argument of normalization primitives. Alias for
DNNL_ARG_WEIGHTS_0.

DNNL_ARG_WEIGHTS_LAYER
A special mnemonic for RNN weights applied to the layer input. An alias for DNNL_ARG_WEIGHTS_0.

DNNL_ARG_WEIGHTS_1
Weights argument #1.

DNNL_ARG_WEIGHTS_ITER
A special mnemonic for RNN weights applied to the recurrent input. An alias for DNNL_ARG_WEIGHTS_1.

DNNL_ARG_BIAS
Bias tensor argument.

DNNL_ARG_MEAN
Mean values tensor argument.

DNNL_ARG_VARIANCE
Variance values tensor argument.

DNNL_ARG_WORKSPACE
Workspace tensor argument. Workspace is used to pass information from forward propagation to backward
propagation computations.

DNNL_ARG_SCRATCHPAD
Scratchpad (temporary storage) tensor argument.

DNNL_ARG_DIFF_SRC_0
Gradient (diff) of the source argument #0.

DNNL_ARG_DIFF_SRC
A special mnemonic for primitives that have a single diff source argument. An alias for
DNNL_ARG_DIFF_SRC_0.

DNNL_ARG_DIFF_SRC_LAYER
A special mnemonic for gradient (diff) of RNN input vector. An alias for DNNL_ARG_DIFF_SRC_0.

DNNL_ARG_DIFF_SRC_1
Gradient (diff) of the source argument #1.

DNNL_ARG_DIFF_SRC_ITER
A special mnemonic for gradient (diff) of RNN input recurrent hidden state vector. An alias for
DNNL_ARG_DIFF_SRC_1.

5.5. Primitives 66

oneAPI Specification, Release 1.1-rev-1

DNNL_ARG_DIFF_SRC_2
Gradient (diff) of the source argument #2.

DNNL_ARG_DIFF_SRC_ITER_C
A special mnemonic for gradient (diff) of RNN input recurrent cell state vector. An alias for
DNNL_ARG_DIFF_SRC_1.

DNNL_ARG_DIFF_DST_0
Gradient (diff) of the destination argument #0.

DNNL_ARG_DIFF_DST
A special mnemonic for primitives that have a single diff destination argument. An alias for
DNNL_ARG_DIFF_DST_0.

DNNL_ARG_DIFF_DST_LAYER
A special mnemonic for gradient (diff) of RNN output vector. An alias for DNNL_ARG_DIFF_DST_0.

DNNL_ARG_DIFF_DST_1
Gradient (diff) of the destination argument #1.

DNNL_ARG_DIFF_DST_ITER
A special mnemonic for gradient (diff) of RNN input recurrent hidden state vector. An alias for
DNNL_ARG_DIFF_DST_1.

DNNL_ARG_DIFF_DST_2
Gradient (diff) of the destination argument #2.

DNNL_ARG_DIFF_DST_ITER_C
A special mnemonic for gradient (diff) of RNN input recurrent cell state vector. An alias for
DNNL_ARG_DIFF_DST_2.

DNNL_ARG_DIFF_WEIGHTS_0
Gradient (diff) of the weights argument #0.

DNNL_ARG_DIFF_WEIGHTS
A special mnemonic for primitives that have a single diff weights argument. Alias for
DNNL_ARG_DIFF_WEIGHTS_0.

DNNL_ARG_DIFF_SCALE_SHIFT
A special mnemonic for diff of scale and shift argument of normalization primitives. Alias for
DNNL_ARG_DIFF_WEIGHTS_0.

DNNL_ARG_DIFF_WEIGHTS_LAYER
A special mnemonic for diff of RNN weights applied to the layer input. An alias for
DNNL_ARG_DIFF_WEIGHTS_0.

DNNL_ARG_DIFF_WEIGHTS_1
Gradient (diff) of the weights argument #1.

DNNL_ARG_DIFF_WEIGHTS_ITER
A special mnemonic for diff of RNN weights applied to the recurrent input. An alias for

5.5. Primitives 67

oneAPI Specification, Release 1.1-rev-1

DNNL_ARG_DIFF_WEIGHTS_1.

DNNL_ARG_DIFF_BIAS
Gradient (diff) of the bias tensor argument.

DNNL_ARG_ATTR_OUTPUT_SCALES
Output scaling factors provided at execution time.

DNNL_ARG_MULTIPLE_SRC
Starting index for source arguments for primitives that take a variable number of source arguments.

DNNL_ARG_MULTIPLE_DST
Starting index for destination arguments for primitives that produce a variable number of destination arguments.

DNNL_ARG_ATTR_ZERO_POINTS
Zero points provided at execution time.

DNNL_RUNTIME_DIM_VAL
A wildcard value for dimensions that are unknown at a primitive creation time.

DNNL_RUNTIME_SIZE_VAL
A size_t counterpart of the DNNL_RUNTIME_DIM_VAL. For instance, this value is returned by
dnnl::memory::desc::get_size() if either of the dimensions or strides equal to DNNL_RUNTIME_DIM_VAL.

DNNL_RUNTIME_F32_VAL
A wildcard value for floating point values that are unknown at a primitive creation time.

DNNL_RUNTIME_S32_VAL
A wildcard value for int32_t values that are unknown at a primitive creation time.

5.5.2 Attributes

The parameters passed to create a primitive descriptor specify the problem. An engine specifies where the primitive
will be executed. An operation descriptor specifies the basics: the operation kind; the propagation kind; the source,
destination, and other tensors; the strides (if applicable); and so on.

Attributes specify some extra properties of the primitive. Users must create them before use and must set required
specifics using the corresponding setters. The attributes are copied during primitive descriptor creation, so users can
change or destroy attributes right after that.

If not modified, attributes can stay empty, which is equivalent to the default attributes. Primitive descriptors’ construc-
tors have empty attributes as default parameters, so, unless required, users can simply omit them.

Attributes can also contain post-ops, which are computations executed after the primitive.

5.5. Primitives 68

oneAPI Specification, Release 1.1-rev-1

Post-ops

Post-ops are operations that are appended after a primitive. They are implemented using the Attributes mechanism. If
there are multiple post-ops, the are executed in the order they have been appended.

The post-ops are represented by dnnl::post_ops which is copied once it is attached to the attributes using
dnnl::primitive_attr::set_post_ops() function. The attributes then need to be passed to a primitive descriptor
creation function to take effect. Below is a simple sketch:

dnnl::post_ops po; // default empty post-ops
assert(po.len() == 0); // no post-ops attached

po.append_SOMETHING(params); // append some particular post-op
po.append_SOMETHING_ELSE(other_params); // append one more post-op

// (!) Note that the order in which post-ops are appended matters!
assert(po.len() == 2);

dnnl::primitive_attr attr; // default attributes
attr.set_post_ops(po); // attach the post-ops to the attr
// any changes to po after this point don't affect the value stored in attr

primitive::primitive_desc op_pd(params, attr); // create a pd with the attr

Note: Different primitives may have different post-ops support. Moreover, the support might also depend on the actual
implementation of a primitive. So robust code should be able to handle errors accordingly. See the Attribute Related
Error Handling.

Note: Post-ops do not change memory format of the operation destination memory object.

The post-op objects can be inspected using the dnnl::post_ops::kind() function that takes an index of the post-op
to inspect (that must be less than the value returned by dnnl::post_ops::len()), and returns its kind.

Supported Post-ops

Eltwise Post-op

The eltwise post-op is appended using dnnl::post_ops::append_eltwise() function. The
dnnl::post_ops::kind() returns dnnl::primitive::kind::eltwise for such a post-op.

The eltwise post-op replaces:

dst[:] = Op(...)

with

dst[:] = 𝑠𝑐𝑎𝑙𝑒 · eltwise(Op(...))

The intermediate result of the Op(...) is not preserved.

The 𝑠𝑐𝑎𝑙𝑒 factor is supported in int8 inference only. For all other cases the scale must be 1.0.

5.5. Primitives 69

oneAPI Specification, Release 1.1-rev-1

Sum Post-op

The sum post-op accumulates the result of a primitive with the existing data and is appended
using dnnl::post_ops::append_sum() function. The dnnl::post_ops::kind() returns
dnnl::primitive::kind::sum for such a post-op.

Prior to accumulating the result, the existing value us multiplied by scale. The scale parameter can be used in The 𝑠𝑐𝑎𝑙𝑒
factor is supported in int8 inference only and should be used only when the result and the existing data have different
magnitudes. For all other cases the scale must be 1.0.

Additionally, the sum post-op can reinterpret the destination values as a different data type of the same size. This may
be used to, for example, reinterpret 8-bit signed data as unsigned or vice versa (which requires that values fall within a
common range to work).

The sum post-op replaces

dst[:] = Op(...)

with

dst[:] = 𝑠𝑐𝑎𝑙𝑒 · 𝑎𝑠𝑑𝑎𝑡𝑎𝑡𝑦𝑝𝑒(dst[:]) + Op(...)

Examples of Chained Post-ops

Post-ops can be chained together by appending one after another. Note that the order matters: the post-ops are executed
in the order they have been appended.

Sum -> ReLU

This pattern is pretty common for the CNN topologies of the ResNet family.

dnnl::post_ops po;
po.append_sum(

/* scale = */ 1.f);
po.append_eltwise(

/* scale = */ 1.f,
/* algorithm = */ dnnl::algorithm::eltwise_relu,
/* neg slope = */ 0.f,
/* unused for ReLU */ 0.f);

dnnl::primitive_attr attr;
attr.set_post_ops(po);

convolution_forward::primitive_desc(conv_d, attr, engine);

This will lead to the following computations:

dst[:] = ReLU(dst[:] + conv(src[:],weights[:])

5.5. Primitives 70

oneAPI Specification, Release 1.1-rev-1

API

struct dnnl::post_ops
Post-ops.

Post-ops are computations executed after the main primitive computations and are attached to the primitive via
primitive attributes.

Public Functions

post_ops()
Constructs an empty sequence of post-ops.

int len() const
Returns the number of post-ops entries.

primitive::kind kind(int index) const
Returns the primitive kind of post-op at entry with a certain index.

Parameters index – Index of the post-op to return the kind for.

Returns Primitive kind of the post-op at the specified index.

void append_sum(float scale = 1.f, memory::data_type data_type = memory::data_type::undef)
Appends an accumulation (sum) post-op. Prior to accumulating the result, the previous value would be
multiplied by a scaling factor scale.

The kind of this post-op is dnnl::primitive::kind::sum.

This feature may improve performance for cases like residual learning blocks, where the result of convo-
lution is accumulated to the previously computed activations. The parameter scale may be used for the
integer-based computations when the result and previous activations have different logical scaling factors.

In the simplest case when the accumulation is the only post-op, the computations would be dst[:] :=
scale * dst[:] + op(...) instead of dst[:] := op(...).

If data_type is specified, the original dst tensor will be reinterpreted as a tensor with the provided data
type. Because it is a reinterpretation, data_type and dst data type should have the same size. As a re-
sult, computations would be dst[:] <- scale * as_data_type(dst[:]) + op(...) instead of
dst[:] <- op(...).

Note: This post-op executes in-place and does not change the destination layout.

Parameters
• scale – Scaling factor.

• data_type – Data type.

void get_params_sum(int index, float &scale) const
Returns the parameters of an accumulation (sum) post-op.

Parameters
• index – Index of the sum post-op.

• scale – Scaling factor of the sum post-op.

5.5. Primitives 71

oneAPI Specification, Release 1.1-rev-1

void get_params_sum(int index, float &scale, memory::data_type &data_type) const
Returns the parameters of an accumulation (sum) post-op.

Parameters
• index – Index of the sum post-op.

• scale – Scaling factor of the sum post-op.

• data_type – Data type of the sum post-op.

void append_eltwise(float scale, algorithm aalgorithm, float alpha, float beta)
Appends an elementwise post-op.

The kind of this post-op is dnnl::primitive::kind::eltwise.

In the simplest case when the elementwise is the only post-op, the computations would be dst[:] :=
scale * eltwise_op (op(...)) instead of dst[:] <- op(...), where eltwise_op is configured
with the given parameters.

Parameters
• scale – Scaling factor.

• aalgorithm – Elementwise algorithm.

• alpha – Alpha parameter for the elementwise algorithm.

• beta – Beta parameter for the elementwise algorithm.

void get_params_eltwise(int index, float &scale, algorithm &aalgorithm, float &alpha, float &beta) const
Returns parameters of an elementwise post-up.

Parameters
• index – Index of the post-op.

• scale – Output scaling factor.

• aalgorithm – Output elementwise algorithm kind.

• alpha – Output alpha parameter for the elementwise algorithm.

• beta – Output beta parameter for the elementwise algorithm.

Scratchpad Mode

Some primitives might require a temporary buffer while performing their computations. For instance, the operations
that do not have enough independent work to utilize all cores on a system might use parallelization over the reduction
dimension (the K dimension in the GEMM notation). In this case different threads compute partial results in private
temporary buffers, and then the private results are added to produce the final result. Another example is using matrix
multiplication (GEMM) to implement convolution. Before calling GEMM, the source activations need to be trans-
formed using the im2col operation. The transformation result is written to a temporary buffer that is then used as an
input for the GEMM.

In both of these examples, the temporary buffer is no longer required once the primitive computation is completed.
oneDNN refers to such kind of a memory buffer as a scratchpad.

Both types of implementation might need extra space for the reduction in case there are too few independent tasks. The
amount of memory required by the im2col transformation is proportional to the size of the source image multiplied
by the weights spatial size. The size of a buffer for reduction is proportional to the tensor size to be reduced (e.g.,
diff_weights in the case of backward by weights) multiplied by the number of threads in the reduction groups (the
upper bound is the total number of threads).

5.5. Primitives 72

oneAPI Specification, Release 1.1-rev-1

By contrast, some other primitives might require very little extra space. For instance, one of the implementation of the
dnnl::sum primitive requires temporary space only to store the pointers to data for each and every input array (that
is, the size of the scratchpad is n * sizeof(void *), where n is the number of summands).

oneDNN supports two modes for handling scratchpads:

enum dnnl::scratchpad_mode
Scratchpad mode.

Values:

enumerator library
The library manages the scratchpad allocation. There may be multiple implementation-specific policies
that can be configured via mechanisms that fall outside of the scope of this specification.

enumerator user
The user manages the scratchpad allocation by querying and providing the scratchpad memory to primi-
tives. This mode is thread-safe as long as the scratchpad buffers are not used concurrently by two primitive
executions.

The scratchpad mode is controlled though the dnnl::primitive_attr::set_scratchpad_mode() primitive at-
tributes.

If the user provides scratchpad memory to a primitive, this memory must be created using the same engine that the
primitive uses.

All primitives support both scratchpad modes.

Note: Primitives are not thread-safe by default. The only way to make the primitive execution fully thread-safe is to
use the dnnl::scratchpad_mode::user mode and not pass the same scratchpad memory to two primitives that are
executed concurrently.

Examples

Library Manages Scratchpad

As mentioned above, this is a default behavior. We only want to highlight how a user can query the amount of memory
consumed by a primitive due to a scratchpad.

// Use default attr, hence the library allocates scratchpad
dnnl::primitive::primitive_desc op_pd(params, /* other arguments */);

// Print how much memory would be hold by a primitive due to scratchpad
std::cout << "primitive will use "

<< op_pd.query_s64(dnnl::query::memory_consumption_s64)
<< " bytes" << std::endl;

// In this case scratchpad is internal, hence user visible scratchpad memory
// descriptor should be empty:
auto zero_md = dnnl::memory::desc();

5.5. Primitives 73

oneAPI Specification, Release 1.1-rev-1

User Manages Scratchpad

// Create an empty (default) attributes
dnnl::primitive_attr attr;

// Default scratchpad mode is `library`:
assert(attr.get_scratchpad_mode() == dnnl::scratchpad_mode::library);

// Set scratchpad mode to `user`
attr.set_scratchpad_mode(dnnl::scratchpad_mode::user);

// Create a primitive descriptor with custom attributes
dnnl::primitive::primitive_desc op_pd(op_d, attr, engine);

// Query the scratchpad memory descriptor
dnnl::memory::desc scratchpad_md = op_pd.scratchpad_desc();

// Note, that a primitive doesn't consume memory in this configuration:
assert(op_pd.query_s64(dnnl::query::memory_consumption_s64) == 0);

// Create a primitive
dnnl::primitive prim(op_pd);

// ... more code ..

// Create a scratchpad memory
// NOTE: if scratchpad is not required for a particular primitive the
// scratchpad_md.get_size() will return 0. It is fine to have
// scratchpad_ptr == nullptr in this case.
void *scratchpad_ptr = user_memory_manager::allocate(scratchpad_md.get_size());
// NOTE: engine here must much the engine of the primitive
dnnl::memory scratchpad(scratchpad_md, engine, scratchpad_ptr);

// Pass a scratchpad memory to a primitive
prim.execute(stream, { /* other arguments */,

{DNNL_ARG_SCRATCHPAD, scratchpad}});

Quantization

Primitives may support reduced precision computations which require quantization.

Quantization Model

The primary quantization model that the library assumes is the following:

𝑥𝑓32[:] = 𝑠𝑐𝑎𝑙𝑒𝑓32 · (𝑥𝑖𝑛𝑡8[:]− 0𝑥𝑖𝑛𝑡8)

where 𝑠𝑐𝑎𝑙𝑒𝑓32 is a scaling factor that is somehow known in advance and [:] is used to denote elementwise application
of the formula to the arrays. Typically, the process of computing scale factors is called calibration. The library cannot
compute any of the scale factors at run-time dynamically. Hence, the model is sometimes called a static quantization
model. The main rationale to support only static quantization out-of-the-box is higher performance. To use dynamic
quantization:

5.5. Primitives 74

oneAPI Specification, Release 1.1-rev-1

1. Compute the result in higher precision, like dnnl::memory::data_type::s32.

2. Find the required characteristics, like min and max values, and derive the scale factor.

3. Re-quantize to the lower precision data type.

oneDNN assumes a fixed zero position. For most of the primitives, the real zero value is mapped to the zero for
quantized values; that is, 0𝑥𝑖𝑛𝑡8

= 0. For example, this is the only model that Convolution and Deconvolution and
Inner Product currently support. The RNN primitives have limited support of shifted zero.

For the rest of this section we that 0𝑥𝑖𝑛𝑡8
= 0.

Example: Convolution Quantization Workflow

Consider a convolution without bias. The tensors are represented as:

• src𝑓32[:] = 𝑠𝑐𝑎𝑙𝑒src · src𝑖𝑛𝑡8[:]

• weights𝑓32[:] = 𝑠𝑐𝑎𝑙𝑒weights · weights𝑖𝑛𝑡8[:]

• dst𝑓32[:] = 𝑠𝑐𝑎𝑙𝑒dst · dst𝑖𝑛𝑡8[:]

Here the src𝑓32,weights𝑓32,dst𝑓32 are not computed at all, the whole work happens with int8 tensors. As mentioned
above, we also somehow know all the scaling factors: scale_{src}, scale_{weights}, scale_{dst}.

So the task is to compute the dst𝑖𝑛𝑡8 tensor.

Mathematically, the computations are:

dst𝑖𝑛𝑡8[:] = f32_to_int8(𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑐𝑎𝑙𝑒 · 𝑐𝑜𝑛𝑣𝑠32(src𝑖𝑛𝑡8,weights𝑖𝑛𝑡8)),

where

• 𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑐𝑎𝑙𝑒 :=
𝑠𝑐𝑎𝑙𝑒src·𝑠𝑐𝑎𝑙𝑒weights

𝑠𝑐𝑎𝑙𝑒dst
;

• 𝑐𝑜𝑛𝑣𝑠32 is just a regular convolution which takes source and weights with int8 data type and compute the result
in int32 data type (int32 is chosen to avoid overflows during the computations);

• f32_to_s8() converts an f32 value to s8 with potential saturation if the values are out of the range of the int8 data
type.

Note that in order to perform the operation, one doesn’t need to know the exact scaling factors for all the tensors; it
is enough to know only the output_scale. The library utilizes this fact: a user needs to provide only this one extra
parameter to the convolution primitive (see the Output Scaling Attribute section below).

Per-Channel Scaling

Primitives may have limited support of multiple scales for a quantized tensor. The most popular use case is the Convo-
lution and Deconvolution primitives that support per-output-channel scaling factors for the weights, meaning that the
actual convolution computations would need to scale different output channels differently.

Let 𝛼 denote scales:

• src𝑓32(𝑛, 𝑖𝑐, 𝑖ℎ, 𝑖𝑤) = 𝛼src · src𝑖𝑛𝑡8(𝑛, 𝑖𝑐, 𝑖ℎ, 𝑖𝑤)

• weights𝑓32(𝑜𝑐, 𝑖𝑐, 𝑘ℎ, 𝑘𝑤) = 𝛼weights(𝑜𝑐) · weights𝑖𝑛𝑡8(𝑜𝑐, 𝑖𝑐, 𝑘ℎ, 𝑘𝑤)

• dst𝑓32(𝑛, 𝑜𝑐, 𝑜ℎ, 𝑜𝑤) = 𝑠𝑐𝑎𝑙𝑒dst · dst𝑖𝑛𝑡8(𝑛, 𝑜𝑐, 𝑜ℎ, 𝑜𝑤)

5.5. Primitives 75

oneAPI Specification, Release 1.1-rev-1

Note that now the weights’ scaling factor depends on the 𝑜𝑐.

To compute the dst𝑖𝑛𝑡8 we need to perform the following:

dst𝑖𝑛𝑡8(𝑛, 𝑜𝑐, 𝑜ℎ, 𝑜𝑤) = f32_to_int8(𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑐𝑎𝑙𝑒(𝑜𝑐) · 𝑐𝑜𝑛𝑣𝑠32(src𝑖𝑛𝑡8,weights𝑖𝑛𝑡8)|(𝑛,𝑜𝑐,𝑜ℎ,𝑜𝑤)),

where

𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑐𝑎𝑙𝑒(𝑜𝑐) :=
𝛼src · 𝛼weights(𝑜𝑐)

𝛼dst
.

The user is responsible for preparing quantized weights accordingly. To do that, oneDNN provides reorders that can
perform per-channel scaling:

weights𝑖𝑛𝑡8(𝑜𝑐, 𝑖𝑐, 𝑘ℎ, 𝑘𝑤) = f32_to_int8(𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑐𝑎𝑙𝑒(𝑜𝑐) · weights𝑓32(𝑜𝑐, 𝑖𝑐, 𝑘ℎ, 𝑘𝑤)),

where

𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑐𝑎𝑙𝑒(𝑜𝑐) :=
1

𝛼weights(𝑜𝑐)
.

Output Scaling Attribute

oneDNN provides dnnl::primitive_attr::set_output_scales() for setting scaling factors for most of the
primitives.

The primitives may not support output scales if source (and weights) tensors are not of the int8 data type. In other
words, convolution operating on the single precision floating point data type may not scale the output result.

In the simplest case, when there is only one common scale the attribute changes the op behavior from

dst[:] = 𝑂𝑝(...)

to

dst[:] = 𝑠𝑐𝑎𝑙𝑒 ·𝑂𝑝(...).

To support scales per one or several dimensions, users must set the appropriate mask.

Say the primitive destination is a 𝐷0 × ...×𝐷𝑛−1 tensor and we want to have output scales per 𝑑𝑖 dimension (where
0 ≤ 𝑑𝑖 < 𝑛).

Then 𝑚𝑎𝑠𝑘 =
∑︀
𝑑𝑖

2𝑑𝑖 and the number of scales should be scales.size() =
∏︀
𝑑𝑖

𝐷𝑑𝑖
.

The scaling happens in the single precision floating point data type (dnnl::memory::data_type::f32). Before it is
stored, the result is converted to the destination data type with saturation if required. The rounding happens according
to the current hardware setting.

Example 1: weights quantization with per-output-channel-and-group scaling

// weights dimensions
const int G, OC, IC, KH, KW;

// original f32 weights in plain format
dnnl::memory::desc wei_plain_f32_md(

(continues on next page)

5.5. Primitives 76

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

{G, OC/G, IC/G, KH, KW}, // dims
dnnl::memory::data_type::f32, // the data originally in f32
dnnl::memory::format_tag::hwigo // the plain memory format
);

// the scaling factors for quantized weights
// An unique scale for each group and output-channel.
std::vector<float> wei_scales(G * OC/G) = { /* values */ };

// int8 convolution primitive descriptor
dnnl::convolution_forward::primitive_desc conv_pd(/* see the next example */);

// query the convolution weights memory descriptor
dnnl::memory::desc wei_conv_s8_md = conv_pd.weights_desc();

// prepare the inverse of the scales
// (f32 = scale * int8 --> int8 = 1/scale * f32)
std::vector<float> inv_wei_scales(wei_scales.size());
for (size_t i = 0; i < wei_scales.size(); ++i)

inv_wei_scales[i] = 1.f / wei_scales[i];

// prepare the attributes for the reorder
dnnl::primitive_attr attr;
const int mask = 0

| (1 << 0) // scale per G dimension, which is the dim #0
| (1 << 1); // scale per OC dimension, which is the dim #1

attr.set_output_scales(mask, inv_wei_scales);

// create reorder that would perform:
// wei_s8(g, oc, ic, kh, kw) <- 1/scale(g, oc) * wei_f32(g, oc, ic, kh, kw)
// including the data format transformation.
auto wei_reorder_pd = dnnl::reorder::primitive_desc(

wei_plain_f32_md, engine, // source
wei_conv_s8_md, engine, // destination,
attr);

auto wei_reorder = dnnl::reorder(wei_reorder_pd);

Example 2: convolution with groups, with per-output-channel quantization

This example is complementary to the previous example (which should ideally be the first one). Let’s say we want to
create an int8 convolution with per-output channel scaling.

const float src_scale; // src_f32[:] = src_scale * src_s8[:]
const float dst_scale; // dst_f32[:] = dst_scale * dst_s8[:]

// the scaling factors for quantized weights (as declared above)
// An unique scale for each group and output-channel.
std::vector<float> wei_scales(G * OC/G) = {...};

// Src, weights, and dst memory descriptors for convolution,
(continues on next page)

5.5. Primitives 77

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

// with memory format tag == any to allow a convolution implementation
// to chose the appropriate memory format

dnnl::memory::desc src_conv_s8_any_md(
{BATCH, IC, IH, IW}, // dims
dnnl::memory::data_type::s8, // the data originally in s8
dnnl::memory::format_tag::any // let convolution to choose
);

dnnl::memory::desc wei_conv_s8_any_md(
{G, OC/G, IC/G, KH, KW}, // dims
dnnl::memory::data_type::s8, // the data originally in s8
dnnl::memory::format_tag::any // let convolution to choose
);

dnnl::memory::desc dst_conv_s8_any_md(...); // ditto

// Create a convolution operation descriptor
dnnl::convolution_forward::desc conv_d(

dnnl::prop_kind::forward_inference,
dnnl::algorithm::convolution_direct,
src_conv_s8_any_md, // what's important is that
wei_conv_s8_any_md, // we specified that we want
dst_conv_s8_any_md, // computations in s8
strides, padding_l, padding_r,
dnnl::padding_kind::zero
);

// prepare the attributes for the convolution
dnnl::primitive_attr attr;
const int mask = 0

| (1 << 1); // scale per OC dimension, which is the dim #1 on dst tensor:
// (BATCH, OC, OH, OW)
// 0 1 2 3

std::vector<float> conv_output_scales(G * OC/G);
for (int g_oc = 0; G * OC/G; ++g_oc)

conv_output_scales[g_oc] = src_scale * wei_scales(g_oc) / dst_scale;
attr.set_output_scales(mask, conv_output_scales);

// create a convolution primitive descriptor with the scaling factors
auto conv_pd = dnnl::convolution_forward::primitive_desc(

conv_d, // general (non-customized) operation descriptor
attr, // the attributes contain the output scaling
engine);

5.5. Primitives 78

oneAPI Specification, Release 1.1-rev-1

Interplay of Output Scales with Post-ops

In general, the Post-ops are independent from the output scales. The output scales are applied to the result first; then
post-ops will take effect.

That has an implication on the scaling factors passed to the library, however. Consider the following example of a
convolution with tanh post-op:

dst𝑠8[:] =
1

𝑠𝑐𝑎𝑙𝑒dst
· tanh(𝑠𝑐𝑎𝑙𝑒src · 𝑠𝑐𝑎𝑙𝑒weights · 𝑐𝑜𝑛𝑣𝑠32(src𝑠8, 𝑤𝑒𝑖𝑠8))

• The convolution output scales are 𝑐𝑜𝑛𝑣_𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑐𝑎𝑙𝑒 = 𝑠𝑐𝑎𝑙𝑒src · 𝑠𝑐𝑎𝑙𝑒weights, i.e. there is no division by
𝑠𝑐𝑎𝑙𝑒dst.

• And the post-ops scale for tanh is set to 𝑠𝑐𝑎𝑙𝑒_𝑡𝑎𝑛ℎ_𝑝𝑜𝑠𝑡_𝑜𝑝 = 1
𝑠𝑐𝑎𝑙𝑒dst

.

Attribute Related Error Handling

Since the attributes are created separately from the corresponding primitive descriptor, consistency checks are delayed.
Users can successfully set attributes in whatever configuration they want. However, when they try to create a primitive
descriptor with the attributes they set, it might happen that there is no primitive implementation that supports such a
configuration. In this case the library will throw the dnnl::error exception.

API

struct dnnl::primitive_attr
Primitive attributes.

Public Functions

primitive_attr()
Constructs default (empty) primitive attributes.

scratchpad_mode get_scratchpad_mode() const
Returns the scratchpad mode.

void set_scratchpad_mode(scratchpad_mode mode)
Sets scratchpad mode.

Parameters mode – Specified scratchpad mode.

void get_output_scales(int &mask, std::vector<float> &scales) const
Returns output scaling factors correspondence mask and values.

Parameters
• mask – Scaling factors correspondence mask that defines the correspondence between the

output tensor dimensions and the scales vector. The set i-th bit indicates that a dedicated
output scaling factor is used for each index along that dimension. The mask value of 0
implies a common output scaling factor for the whole output tensor.

• scales – Vector of output scaling factors.

void set_output_scales(int mask, const std::vector<float> &scales)
Sets output scaling factors correspondence mask and values.

Example usage:

5.5. Primitives 79

oneAPI Specification, Release 1.1-rev-1

int mb = 32, oc = 32,
oh = 14, ow = 14; // convolution output params

// unique output scales per output channel
vector<float> scales = { ... };
int oc_dim = 1; // mb_dim = 0, channel_dim = 1, height_dim = 2, ...

// construct a convolution descriptor
dnnl::convolution::desc conv_d;

dnnl::primitive_attr attr;
attr.set_output_scales(attr, oc, 1 << oc_dim, scales);

dnnl::primitive_desc conv_pd(conv_d, attr, engine);

Note: The order of dimensions does not depend on how elements are laid out in memory. For example:

• for a 2D CNN activations tensor the order is always (n, c)

• for a 4D CNN activations tensor the order is always (n, c, h, w)

• for a 5D CNN weights tensor the order is always (g, oc, ic, kh, kw)

Parameters
• mask – Defines the correspondence between the output tensor dimensions and the scales

vector. The set i-th bit indicates that a dedicated scaling factor is used for each index along
that dimension. Set the mask to 0 to use a common output scaling factor for the whole
output tensor.

• scales – Constant vector of output scaling factors. If the scaling factors are
known at the time of this call, the following equality must hold: 𝑠𝑐𝑎𝑙𝑒𝑠.𝑠𝑖𝑧𝑒() =∏︀
𝑑∈𝑚𝑎𝑠𝑘

𝑜𝑢𝑡𝑝𝑢𝑡.𝑑𝑖𝑚𝑠[𝑑]. Violations can only be detected when the attributes are used

to create a primitive descriptor. If the scaling factors are not known at the time of
the call, this vector must contain a single DNNL_RUNTIME_F32_VAL value and the
output scaling factors must be passed at execution time as an argument with index
DNNL_ARG_ATTR_OUTPUT_SCALES.

void get_scales(int arg, int &mask, std::vector<float> &scales) const
Returns scaling factors correspondence mask and values for a given memory argument.

Parameters
• arg – Parameter argument index as passed to the primitive::execute() call.

• mask – Scaling factors correspondence mask that defines the correspondence between the
output tensor dimensions and the scales vector. The set i-th bit indicates that a dedicated
scaling factor is used for each index along that dimension. Set the mask to 0 to use a
common scaling factor for the whole output tensor.

• scales – Output vector of scaling factors.

void set_scales(int arg, int mask, const std::vector<float> &scales)
Sets scaling factors for primitive operations for a given memory argument.

See dnnl::primitive_attr::set_output_scales

5.5. Primitives 80

oneAPI Specification, Release 1.1-rev-1

Parameters
• arg – Parameter argument index as passed to the primitive::execute() call.

• mask – Scaling factors correspondence mask that defines the correspondence between the
tensor dimensions and the scales vector. The set i-th bit indicates that a dedicated scaling
factor is used for each index along that dimension. Set the mask to 0 to use a common
scaling factor for the whole output tensor.

• scales – Constant vector of scaling factors. The following equality must hold:
𝑠𝑐𝑎𝑙𝑒𝑠.𝑠𝑖𝑧𝑒() =

∏︀
𝑑∈𝑚𝑎𝑠𝑘

𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡.𝑑𝑖𝑚𝑠[𝑑].

void get_zero_points(int arg, int &mask, std::vector<int32_t> &zero_points) const
Returns zero points correspondence mask and values.

Parameters
• arg – Parameter argument index as passed to the primitive::execute() call.

• mask – Zero points correspondence mask that defines the correspondence between the
output tensor dimensions and the zero_points vector. The set i-th bit indicates that a
dedicated zero point is used for each index along that dimension. Set the mask to 0 to use
a common zero point for the whole output tensor.

• zero_points – Output vector of zero points.

void set_zero_points(int arg, int mask, const std::vector<int32_t> &zero_points)
Sets zero points for primitive operations for a given memory argument.

See dnnl::primitive_attr::set_output_scales

Parameters
• arg – Parameter argument index as passed to the primitive::execute() call.

• mask – Zero point correspondence mask that defines the correspondence between the tensor
dimensions and the zero_points vector. The set i-th bit indicates that a dedicated zero
point is used for each index along that dimension. Set the mask to 0 to use a common zero
point for the whole output tensor.

• zero_points – Constant vector of zero points. If the zero points are known at
the time of this call, the following equality must hold: 𝑧𝑒𝑟𝑜_𝑝𝑜𝑖𝑛𝑡𝑠.𝑠𝑖𝑧𝑒() =∏︀
𝑑∈𝑚𝑎𝑠𝑘

𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡.𝑑𝑖𝑚𝑠[𝑑]. If the zero points are not known at the time of the call, this vec-

tor must contain a single DNNL_RUNTIME_F32_VAL value and the zero points must be
passed at execution time as an argument with index DNNL_ARG_ATTR_ZERO_POINTS.

const post_ops get_post_ops() const
Returns post-ops previously set via set_post_ops().

Returns Post-ops.

void set_post_ops(const post_ops ops)
Sets post-ops.

Note: There is no way to check whether the post-ops would be supported by the target primitive. Any
error will be reported by the respective primitive descriptor constructor.

5.5. Primitives 81

oneAPI Specification, Release 1.1-rev-1

Parameters ops – Post-ops object to copy post-ops from.

void set_rnn_data_qparams(float scale, float shift)
Sets quantization scale and shift parameters for RNN data tensors.

For performance reasons, the low-precision configuration of the RNN primitives expect input activations to
have the unsigned 8-bit integer data type. The scale and shift parameters are used to quantize floating-point
data to unsigned integer and must be passed to the RNN primitive using attributes.

The quantization formula is scale * (data + shift).

Example usage:

// RNN parameters
int l = 2, t = 2, mb = 32, sic = 32, slc = 32, dic = 32, dlc = 32;
// Activations quantization parameters
float scale = 2.0f, shift = 0.5f;

primitive_attr attr;

// Set scale and shift for int8 quantization of activation
attr.set_rnn_data_qparams(scale, shift);

// Create and configure rnn op_desc
vanilla_rnn_forward::desc rnn_d(/* arguments */);
vanilla_rnn_forward::primitive_desc rnn_d(rnn_d, attr, engine);

Note: Quantization scale and shift are common for src_layer, src_iter, dst_iter, and dst_layer.

Parameters
• scale – The value to scale the data by.

• shift – The value to shift the data by.

void set_rnn_weights_qparams(int mask, const std::vector<float> &scales)
Sets quantization scaling factors for RNN weights tensors. The low-precision configuration of the RNN
primitives expect input weights to use the signed 8-bit integer data type. The scaling factors are used to
quantize floating-point data to signed integer and must be passed to RNN primitives using attributes.

Note: The dimension order is always native and does not depend on the actual layout used. For example,
five-dimensional weights always have (l, d, i, g, o) logical dimension ordering.

Note: Quantization scales are common for weights_layer and weights_iteration

Parameters
• mask – Scaling factors correspondence mask that defines the correspondence between the

output tensor dimensions and the scales vector. The set i-th bit indicates that a dedicated
scaling factor should be used each index along that dimension. Set the mask to 0 to use a
common scaling factor for the whole output tensor.

5.5. Primitives 82

oneAPI Specification, Release 1.1-rev-1

• scales – Constant vector of output scaling factors. The following equality must hold:
𝑠𝑐𝑎𝑙𝑒𝑠.𝑠𝑖𝑧𝑒() =

∏︀
𝑑∈𝑚𝑎𝑠𝑘

𝑤𝑒𝑖𝑔ℎ𝑡𝑠.𝑑𝑖𝑚𝑠[𝑑]. Violations can only be detected when the at-

tributes are used to create a primitive descriptor.

5.5.3 Batch Normalization

The batch normalization primitive performs a forward or backward batch normalization operation on tensors with
number of dimensions equal to 2 or more. Variable names follow the standard Conventions.

The batch normalization operation is defined by the following formulas. We show formulas only for 2D spatial data
which are straightforward to generalize to cases of higher and lower dimensions.

The different flavors of the primitive are controlled by the flags parameter that is passed to the operation descriptor
initialization function like dnnl::batch_normalization_forward::desc::desc(). Multiple flags can be com-
bined using the bitwise OR operator (|).

Forward

dst(𝑛, 𝑐, ℎ, 𝑤) = 𝛾(𝑐) · src(𝑛, 𝑐, ℎ, 𝑤)− 𝜇(𝑐)√︀
𝜎2(𝑐) + 𝜀

+ 𝛽(𝑐),

where

• 𝛾(𝑐) and 𝛽(𝑐) are optional scale and shift for a channel (controlled using the use_scaleshift flag),

• 𝜇(𝑐) and 𝜎2(𝑐) are mean and variance for a channel (controlled using the use_global_stats flag), and

• 𝜀 is a constant to improve numerical stability.

Mean and variance are computed at runtime or provided by a user. When mean and variance are computed at runtime,
the following formulas are used:

• 𝜇(𝑐) = 1
𝑁𝐻𝑊

∑︀
𝑛ℎ𝑤

src(𝑛, 𝑐, ℎ, 𝑤),

• 𝜎2(𝑐) = 1
𝑁𝐻𝑊

∑︀
𝑛ℎ𝑤

(src(𝑛, 𝑐, ℎ, 𝑤)− 𝜇(𝑐))2.

The 𝛾(𝑐) and 𝛽(𝑐) tensors are considered learnable.

In the training mode, the primitive also optionally supports fusion with ReLU activation with zero negative slope
applied to the result (see fuse_norm_relu flag).

Note: The batch normalization primitive computes population mean and variance and not the sample or unbiased
versions that are typically used to compute running mean and variance. * Using the mean and variance computed by
the batch normalization primitive, running mean and variance �̂�𝑖 and �̂�2

𝑖 where 𝑖 is iteration number, can be computed
as:

�̂�𝑖+1 = 𝛼 · �̂�𝑖 + (1− 𝛼) · 𝜇,
�̂�2
𝑖+1 = 𝛼 · �̂�2

𝑖 + (1− 𝛼) · 𝜎2.

5.5. Primitives 83

oneAPI Specification, Release 1.1-rev-1

Difference Between Forward Training and Forward Inference

• If mean and variance are computed at runtime (i.e., use_global_stats is not set), they become outputs for the
propagation kind forward_training (because they would be required during the backward propagation) and
are not exposed for the propagation kind forward_inference.

• If batch normalization is created with ReLU fusion (i.e., fuse_norm_relu is set), for the propagation kind
forward_training the primitive would produce a workspace memory as one extra output. This mem-
ory is required to compute the backward propagation. When the primitive is executed with propagation kind
forward_inference, the workspace is not produced. Behavior would be the same as creating a batch normal-
ization primitive with ReLU as a post-op (see section below).

Backward

The backward propagation computes diff_src(𝑛, 𝑐, ℎ, 𝑤), diff_𝛾(𝑐)*, and diff_𝛽(𝑐)* based on diff_dst(𝑛, 𝑐, ℎ, 𝑤),
src(𝑛, 𝑐, ℎ, 𝑤), 𝜇(𝑐), 𝜎2(𝑐), 𝛾(𝑐)*, and 𝛽(𝑐)*.

The tensors marked with an asterisk are used only when the primitive is configured to use 𝛾(𝑐) and 𝛽(𝑐) (i.e.,
use_scaleshift is set).

Execution Arguments

Depending on the flags and propagation kind, the batch normalization primitive requires different inputs and outputs.
For clarity, a summary is shown below.

forward_inferenceforward_training backward backward_data
none In: src; Out: dst In: src; Out: dst, 𝜇,

𝜎2
In: diff_dst, src, 𝜇,
𝜎2; Out: diff_src

Same as for backward

use_global_statsIn: src, 𝜇, 𝜎2;
Out: dst

In: src, 𝜇, 𝜎2; Out:
dst

In: diff_dst, src, 𝜇,
𝜎2; Out: diff_src

Same as for backward

use_scaleshiftIn: src, 𝛾, 𝛽;
Out: dst

In: src, 𝛾, 𝛽; Out:
dst, 𝜇, 𝜎2

In: diff_dst, src,
𝜇, 𝜎2, 𝛾, 𝛽; Out:
diff_src, diff_𝛾,
diff_𝛽

Not supported

use_global_stats
|
use_scaleshift

In: src, 𝜇, 𝜎2, 𝛾,
𝛽; Out: dst

In: src, 𝜇, 𝜎2, 𝛾, 𝛽;
Out: dst

In: diff_dst, src,
𝜇, 𝜎2, 𝛾, 𝛽; Out:
diff_src, diff_𝛾,
diff_𝛽

Not supported

flags |
fuse_norm_relu

In: same as with
flags; Out:
same as with
flags

In: same as with
flags; Out: same
as with flags,
workspace

In: same as with
flags, workspace;
Out: same as with
flags

Same as for backward
if flags do not contain
use_scaleshift; not sup-
ported otherwise

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

5.5. Primitives 84

oneAPI Specification, Release 1.1-rev-1

Primitive input/output Execution argument index
src DNNL_ARG_SRC
𝛾, 𝛽 DNNL_ARG_SCALE_SHIFT
mean (𝜇) DNNL_ARG_MEAN
variance (𝜎) DNNL_ARG_VARIANCE
dst DNNL_ARG_DST
workspace DNNL_ARG_WORKSPACE
diff_dst DNNL_ARG_DIFF_DST
diff_src DNNL_ARG_DIFF_SRC
diff_𝛾,diff_𝛽 DNNL_ARG_DIFF_SCALE_SHIFT

Operation Details

1. For forward propagation, the mean and variance might be either computed at runtime (in which case they are
outputs of the primitive) or provided by a user (in which case they are inputs). In the latter case, a user must set
the use_global_stats flag. For the backward propagation, the mean and variance are always input parameters.

2. The memory format and data type for src and dst are assumed to be the same, and in the API they are typi-
cally referred to as data (e.g., see data_desc in dnnl::batch_normalization_forward::desc::desc()).
The same is true for diff_src and diff_dst. The corresponding memory descriptors are referred to as
diff_data_desc.

3. Both forward and backward propagation support in-place operations, meaning that src can be used as input and
output for forward propagation, and diff_dst can be used as input and output for backward propagation. In case
of an in-place operation, the original data will be overwritten. Note, however, that backward propagation requires
original src, hence the corresponding forward propagation should not be performed in-place.

4. As mentioned above, the batch normalization primitive can be fused with ReLU activation even in the training
mode. In this case, on the forward propagation the primitive has one additional output, workspace, that should
be passed during the backward propagation.

Data Types Support

The operation supports the following combinations of data types.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source / Destination Mean / Variance / ScaleShift
forward / backward f32, bf16 f32
forward f16 f32
forward s8 f32

5.5. Primitives 85

oneAPI Specification, Release 1.1-rev-1

Data Representation

Source, Destination, and Their Gradients

Like other CNN primitives, the batch normalization primitive expects data to be 𝑁 × 𝐶 × 𝑆𝑃𝑛 × · · · × 𝑆𝑃0 tensor.

The batch normalization primitive is optimized for the following memory formats:

Spatial Logical tensor Implementations optimized for memory formats
0D NC nc (ab)
1D NCW ncw (abc), nwc (acb), optimized
2D NCHW nchw (abcd), nhwc (acdb), optimized
3D NCDHW ncdhw (abcde), ndhwc (acdeb), optimized

Here optimized means the format chosen by the preceding compute-intensive primitive.

Statistics Tensors

The mean (𝜇) and variance (𝜎2) are separate 1D tensors of size 𝐶.

The format of the corresponding memory object must be x (a).

If used, the scale (𝛾) and shift (𝛽) are combined in a single 2D tensor of shape 2× 𝐶.

The format of the corresponding memory object must be nc (ab).

Post-ops and Attributes

Propagation Type Operation Description
forward post-op eltwise Applies an eltwise operation to the output.

Note: Using ReLU as a post-op does not produce additional output in the workspace that is required to compute
backward propagation correctly. Hence, one should use the fuse_norm_relu flag for training.

API

struct dnnl::batch_normalization_forward : public dnnl::primitive
Batch normalization forward propagation primitive.

5.5. Primitives 86

oneAPI Specification, Release 1.1-rev-1

Public Functions

batch_normalization_forward()
Default constructor. Produces an empty object.

batch_normalization_forward(const primitive_desc &pd)
Constructs a batch normalization forward propagation primitive.

Parameters pd – Primitive descriptor for a batch normalization forward propagation primitive.

struct desc
Descriptor for a batch normalization forward propagation primitive.

Public Functions

desc(prop_kind aprop_kind, const memory::desc &data_desc, float epsilon, normalization_flags flags)
Constructs a batch normalization descriptor for forward propagation.

Note: In-place operation is supported: the dst can refer to the same memory as the src.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training and dnnl::prop_kind::forward_inference.
• data_desc – Source and destination memory descriptors.
• epsilon – Batch normalization epsilon parameter.
• flags – Batch normalization flags (dnnl::normalization_flags).

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a batch normalization forward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, bool allow_empty = false)
Constructs a primitive descriptor for a batch normalization forward propagation primitive.

Parameters
• adesc – Descriptor for a batch normalization forward propagation primitive.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, bool
allow_empty = false)

Constructs a primitive descriptor for a batch normalization forward propagation primitive.
Parameters

• adesc – Descriptor for a batch normalization forward propagation primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.

5.5. Primitives 87

oneAPI Specification, Release 1.1-rev-1

• allow_empty – A flag signifying whether construction is allowed to fail without throw-
ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns Weights memory descriptor.
Returns A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns Workspace memory descriptor.
Returns A zero memory descriptor if the primitive does not require workspace parameter.

memory::desc mean_desc() const
Returns memory descriptor for mean.

Returns Memory descriptor for mean.

memory::desc variance_desc() const
Returns memory descriptor for variance.

Returns Memory descriptor for variance.

struct dnnl::batch_normalization_backward : public dnnl::primitive
Batch normalization backward propagation primitive.

Public Functions

batch_normalization_backward()
Default constructor. Produces an empty object.

batch_normalization_backward(const primitive_desc &pd)
Constructs a batch normalization backward propagation primitive.

Parameters pd – Primitive descriptor for a batch normalization backward propagation primitive.

struct desc
Descriptor for a batch normalization backward propagation primitive.

5.5. Primitives 88

oneAPI Specification, Release 1.1-rev-1

Public Functions

desc(prop_kind aprop_kind, const memory::desc &diff_data_desc, const memory::desc &data_desc,
float epsilon, normalization_flags flags)

Constructs a batch normalization descriptor for backward propagation.
Parameters

• aprop_kind – Propagation kind. Possible values are dnnl::prop_kind::backward_data
and dnnl::prop_kind::backward (diffs for all parameters are computed in this case).

• diff_data_desc – Diff source and diff destination memory descriptor.
• data_desc – Source memory descriptor.
• epsilon – Batch normalization epsilon parameter.
• flags – Batch normalization flags (dnnl::normalization_flags).

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a batch normalization backward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const
batch_normalization_forward::primitive_desc &hint_fwd_pd, bool allow_empty =
false)

Constructs a primitive descriptor for a batch normalization backward propagation primitive.
Parameters

• adesc – Descriptor for a batch normalization backward propagation primitive.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a batch normalization forward propagation

primitive. It is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, const
batch_normalization_forward::primitive_desc &hint_fwd_pd, bool allow_empty =
false)

Constructs a primitive descriptor for a batch normalization backward propagation primitive.
Parameters

• adesc – Descriptor for a batch normalization backward propagation primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a batch normalization forward propagation

primitive. It is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc weights_desc() const
Returns a weights memory descriptor.

5.5. Primitives 89

oneAPI Specification, Release 1.1-rev-1

Returns Weights memory descriptor.
Returns A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns Diff source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns Diff destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff destination parameter.

memory::desc diff_weights_desc() const
Returns a diff weights memory descriptor.

Returns Diff weights memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff weights parameter.

memory::desc mean_desc() const
Returns memory descriptor for mean.

Returns Memory descriptor for mean.

memory::desc variance_desc() const
Returns memory descriptor for variance.

Returns Memory descriptor for variance.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns Workspace memory descriptor.
Returns A zero memory descriptor if the primitive does not require workspace parameter.

5.5.4 Binary

The binary primitive computes a result of a binary elementwise operation between tensors source 0 and source 1.

dst(𝑥) = src0(𝑥) 𝑜𝑝 src1(𝑥),

where 𝑥 = (𝑥0, . . . , 𝑥𝑛) and 𝑜𝑝 is an operator like addition, multiplication, maximum or minimum. Variable names
follow the standard Conventions.

Forward and Backward

The binary primitive does not have a notion of forward or backward propagations.

5.5. Primitives 90

oneAPI Specification, Release 1.1-rev-1

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src0 DNNL_ARG_SRC_0
src1 DNNL_ARG_SRC_1
dst DNNL_ARG_DST

Operation Details

• The binary primitive requires all source and destination tensors to have the same number of dimensions.

• The binary primitive supports implicit broadcast semantics for source 1. It means that if some dimension has
value of one, this value will be used to compute an operation with each point of source 0 for this dimension.

• The dst memory format can be either specified explicitly or by dnnl::memory::format_tag::any (recom-
mended), in which case the primitive will derive the most appropriate memory format based on the format of the
source 0 tensor.

• Destination memory descriptor should completely match source 0 memory descriptor.

• The binary primitive supports in-place operations, meaning that source 0 tensor may be used as the destination,
in which case its data will be overwritten.

Post-ops and Attributes

The following attributes should be supported:

Type Op-
era-
tion

Description Restrictions

At-
tribute

Scales Scales the corresponding input tensor
by the given scale factor(s).

The corresponding tensor has integer data type. Only
one scale per tensor is supported. Input tensors only.

Post-
op

Sum Adds the operation result to the destina-
tion tensor instead of overwriting it.

Must precede eltwise post-op.

Post-
op

EltwiseApplies an elementwise operation to
the result.

Data Types Support

The source and destination tensors may have dnnl::memory::data_type::f32,
dnnl::memory::data_type::bf16, dnnl::memory::data_type::s8 or dnnl::memory::data_type::u8
data types.

5.5. Primitives 91

oneAPI Specification, Release 1.1-rev-1

Data Representation

The binary primitive works with arbitrary data tensors. There is no special meaning associated with any of tensors
dimensions.

API

struct dnnl::binary : public dnnl::primitive
Elementwise binary operator primitive.

Public Functions

binary()
Default constructor. Produces an empty object.

binary(const primitive_desc &pd)
Constructs an elementwise binary operation primitive.

Parameters pd – Primitive descriptor for an elementwise binary operation primitive.

struct desc
Descriptor for an elementwise binary operator primitive.

Public Functions

desc(algorithm aalgorithm, const memory::desc &src0, const memory::desc &src1, const memory::desc
&dst)

Constructs a descriptor for an elementwise binary operator primitive.
Parameters

• aalgorithm – Elementwise algorithm.
• src0 – Memory descriptor for source tensor #0.
• src1 – Memory descriptor for source tensor #1.
• dst – Memory descriptor for destination tensor.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for an elementwise binary operator primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, bool allow_empty = false)
Constructs a primitive descriptor for an elementwise binary operator primitive.

Parameters
• adesc – Descriptor for an elementwise binary operator primitive.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

5.5. Primitives 92

oneAPI Specification, Release 1.1-rev-1

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, bool
allow_empty = false)

Constructs a primitive descriptor for an elementwise binary operator primitive.
Parameters

• adesc – Descriptor for an elementwise binary operator primitive.
• aengine – Engine to use.
• attr – Primitive attributes to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc(int idx = 0) const
Returns a source memory descriptor.

Parameters idx – Source index.
Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter with

index pdx.

memory::desc src0_desc() const
Returns the memory descriptor for source #0.

memory::desc src1_desc() const
Returns the memory descriptor for source #1.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

5.5.5 Concat

A primitive to concatenate data by arbitrary dimension.

The concat primitive concatenates 𝑁 tensors over concat_dimension (here denoted as 𝐶), and is defined as

dst(𝑜𝑢, 𝑐, 𝑖𝑛) = src𝑖(𝑜𝑢, 𝑐
′, 𝑖𝑛),

where

• 𝑐 = 𝐶1 + . . . + 𝐶𝑖−1 + 𝑐′,

• 𝑜𝑢 is the outermost indices (to the left from concat axis),

• 𝑖𝑛 is the innermost indices (to the right from concat axis), and

Variable names follow the standard Conventions.

Forward and Backward

The concat primitive does not have a notion of forward or backward propagations. The backward propagation for the
concatenation operation is simply an identity operation.

5.5. Primitives 93

oneAPI Specification, Release 1.1-rev-1

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_MULTIPLE_SRC
dst DNNL_ARG_DST

Operation Details

1. The dst memory format can be either specified by a user or derived by the primitive. The recommended way is
to allow the primitive to choose the most appropriate format.

2. The concat primitive requires all source and destination tensors to have the same shape except for the
concat_dimension. The destination dimension for the concat_dimension must be equal to the sum of the
concat_dimension dimensions of the sources (i.e. 𝐶 =

∑︀
𝑖 𝐶𝑖). Implicit broadcasting is not supported.

Data Types Support

The concat primitive supports arbitrary data types for source and destination tensors. However, it is required that all
source tensors are of the same data type (but not necessarily matching the data type of the destination tensor).

Data Representation

The concat primitive does not assign any special meaning associated with any logical dimensions.

Post-ops and Attributes

The concat primitive does not support any post-ops or attributes.

API

struct dnnl::concat : public dnnl::primitive
Tensor concatenation (concat) primitive.

Public Functions

concat()
Default constructor. Produces an empty object.

concat(const primitive_desc &pd)
Constructs a concatenation primitive.

Parameters pd – Primitive descriptor for concatenation primitive.

struct primitive_desc : public dnnl::primitive_desc_base
Primitive descriptor for a concat primitive.

5.5. Primitives 94

oneAPI Specification, Release 1.1-rev-1

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const memory::desc &dst, int concat_dimension, const std::vector<memory::desc>
&srcs, const engine &aengine, const primitive_attr &attr = primitive_attr())

Constructs a primitive descriptor for an out-of-place concatenation primitive.
Parameters

• dst – Destination memory descriptor.
• concat_dimension – Source tensors will be concatenated over dimension with this

index. Note that order of dimensions does not depend on memory format.
• srcs – Vector of source memory descriptors.
• aengine – Engine to perform the operation on.
• attr – Primitive attributes to use (optional).

primitive_desc(int concat_dimension, const std::vector<memory::desc> &srcs, const engine
&aengine, const primitive_attr &attr = primitive_attr())

Constructs a primitive descriptor for an out-of-place concatenation primitive.

This version derives the destination memory descriptor automatically.
Parameters

• concat_dimension – Source tensors will be concatenated over dimension with this
index. Note that order of dimensions does not depend on memory format.

• srcs – Vector of source memory descriptors.
• aengine – Engine to perform the operation on.
• attr – Primitive attributes to use (optional).

memory::desc src_desc(int idx = 0) const
Returns a source memory descriptor.

Parameters idx – Source index.
Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter with

index pdx.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

5.5. Primitives 95

oneAPI Specification, Release 1.1-rev-1

5.5.6 Convolution and Deconvolution

The convolution and deconvolution primitives compute forward, backward, or weight update for a batched convolution
or deconvolution operations on 1D, 2D, or 3D spatial data with bias.

The operations are defined by the following formulas. We show formulas only for 2D spatial data which are straight-
forward to generalize to cases of higher and lower dimensions. Variable names follow the standard Conventions.

Forward

Let src, weights and dst be 𝑁 × 𝐼𝐶 × 𝐼𝐻 × 𝐼𝑊 , 𝑂𝐶 × 𝐼𝐶 ×𝐾𝐻 ×𝐾𝑊 , and 𝑁 × 𝑂𝐶 × 𝑂𝐻 × 𝑂𝑊 tensors
respectively. Let bias be a 1D tensor with 𝑂𝐶 elements.

Furthermore, let the remaining convolution parameters be:

Parameter Depth Height Width Comment
Padding: Front, top,
and left

𝑃𝐷𝐿 𝑃𝐻𝐿 𝑃𝑊𝐿 In the API padding_l indicates the corresponding vector of
paddings (_l in the name stands for left)

Padding: Back, bot-
tom, and right

𝑃𝐷𝑅 𝑃𝐻𝑅 𝑃𝑊𝑅 In the API padding_r indicates the corresponding vector of
paddings (_r in the name stands for right)

Stride 𝑆𝐷 𝑆𝐻 𝑆𝑊 Convolution without strides is defined by setting the stride parame-
ters to 1

Dilation 𝐷𝐷 𝐷𝐻 𝐷𝑊 Non-dilated convolution is defined by setting the dilation parameters
to 0

The following formulas show how oneDNN computes convolutions. They are broken down into several types to sim-
plify the exposition, but in reality the convolution types can be combined.

To further simplify the formulas, we assume that src(𝑛, 𝑖𝑐, 𝑖ℎ, 𝑖𝑤) = 0 if 𝑖ℎ < 0, or 𝑖ℎ ≥ 𝐼𝐻 , or 𝑖𝑤 < 0, or 𝑖𝑤 ≥ 𝐼𝑊 .

Regular Convolution

dst(𝑛, 𝑜𝑐, 𝑜ℎ, 𝑜𝑤) = bias(𝑜𝑐)

+
𝐼𝐶−1∑︁
𝑖𝑐=0

𝐾𝐻−1∑︁
𝑘ℎ=0

𝐾𝑊−1∑︁
𝑘𝑤=0

src(𝑛, 𝑖𝑐, 𝑜ℎ′, 𝑜𝑤′) · weights(𝑜𝑐, 𝑖𝑐, 𝑘ℎ, 𝑘𝑤).

Here:

• 𝑜ℎ′ = 𝑜ℎ · 𝑆𝐻 + 𝑘ℎ− 𝑃𝐻𝐿,

• 𝑜𝑤′ = 𝑜𝑤 · 𝑆𝑊 + 𝑘𝑤 − 𝑃𝑊𝐿,

• 𝑂𝐻 =
⌊︀
𝐼𝐻−𝐾𝐻+𝑃𝐻𝐿+𝑃𝐻𝑅

𝑆𝐻

⌋︀
+ 1,

• 𝑂𝑊 =
⌊︀
𝐼𝑊−𝐾𝑊+𝑃𝑊𝐿+𝑃𝑊𝑅

𝑆𝑊

⌋︀
+ 1.

5.5. Primitives 96

oneAPI Specification, Release 1.1-rev-1

Convolution with Groups

oneDNN adds a separate groups dimension to memory objects representing weights tensors and represents weights as
𝐺×𝑂𝐶𝐺 × 𝐼𝐶𝐺 ×𝐾𝐻 ×𝐾𝑊 5D tensors for 2D convolutions with groups.

dst(𝑛, 𝑔 ·𝑂𝐶𝐺 + 𝑜𝑐𝑔, 𝑜ℎ, 𝑜𝑤) = bias(𝑔 ·𝑂𝐶𝐺 + 𝑜𝑐𝑔)

+

𝐼𝐶𝐺−1∑︁
𝑖𝑐𝑔=0

𝐾𝐻−1∑︁
𝑘ℎ=0

𝐾𝑊−1∑︁
𝑘𝑤=0

src(𝑛, 𝑔 · 𝐼𝐶𝐺 + 𝑖𝑐𝑔, 𝑜ℎ
′, 𝑜𝑤′) · weights(𝑔, 𝑜𝑐𝑔, 𝑖𝑐𝑔, 𝑘ℎ, 𝑘𝑤),

where

• 𝐼𝐶𝐺 = 𝐼𝐶
𝐺 ,

• 𝑂𝐶𝐺 = 𝑂𝐶
𝐺 , and

• 𝑜𝑐𝑔 ∈ [0, 𝑂𝐶𝐺).

The case when 𝑂𝐶𝐺 = 𝐼𝐶𝐺 = 1 is also known as a depthwise convolution.

Convolution with Dilation

dst(𝑛, 𝑜𝑐, 𝑜ℎ, 𝑜𝑤) = bias(𝑜𝑐)+

+

𝐼𝐶−1∑︁
𝑖𝑐=0

𝐾𝐻−1∑︁
𝑘ℎ=0

𝐾𝑊−1∑︁
𝑘𝑤=0

src(𝑛, 𝑖𝑐, 𝑜ℎ′′, 𝑜𝑤′′) · weights(𝑜𝑐, 𝑖𝑐, 𝑘ℎ, 𝑘𝑤).

Here:

• 𝑜ℎ′′ = 𝑜ℎ · 𝑆𝐻 + 𝑘ℎ · (𝐷𝐻 + 1)− 𝑃𝐻𝐿,

• 𝑜𝑤′′ = 𝑜𝑤 · 𝑆𝑊 + 𝑘𝑤 · (𝐷𝑊 + 1)− 𝑃𝑊𝐿,

• 𝑂𝐻 =
⌊︀
𝐼𝐻−𝐷𝐾𝐻+𝑃𝐻𝐿+𝑃𝐻𝑅

𝑆𝐻

⌋︀
+ 1, where 𝐷𝐾𝐻 = 1 + (𝐾𝐻 − 1) · (𝐷𝐻 + 1), and

• 𝑂𝑊 =
⌊︀
𝐼𝑊−𝐷𝐾𝑊+𝑃𝑊𝐿+𝑃𝑊𝑅

𝑆𝑊

⌋︀
+ 1, where 𝐷𝐾𝑊 = 1 + (𝐾𝑊 − 1) · (𝐷𝑊 + 1).

Deconvolution (Transposed Convolution)

Deconvolutions (also called fractionally-strided convolutions or transposed convolutions) can be defined by swapping
the forward and backward passes of a convolution. One way to put it is to note that the weights define a convolution, but
whether it is a direct convolution or a transposed convolution is determined by how the forward and backward passes
are computed.

Difference Between Forward Training and Forward Inference

There is no difference between the forward_training and forward_inference propagation kinds.

5.5. Primitives 97

oneAPI Specification, Release 1.1-rev-1

Backward

The backward propagation computes diff_src based on diff_dst and weights.

The weights update computes diff_weights and diff_bias based on diff_dst and src.

Note: The optimized memory formats src and weights might be different on forward propagation, backward propa-
gation, and weights update.

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
weights DNNL_ARG_WEIGHTS
bias DNNL_ARG_BIAS
dst DNNL_ARG_DST
diff_src DNNL_ARG_DIFF_SRC
diff_weights DNNL_ARG_DIFF_WEIGHTS
diff_bias DNNL_ARG_DIFF_BIAS
diff_dst DNNL_ARG_DIFF_DST

Operation Details

N/A

Data Types Support

Convolution primitive supports the following combination of data types for source, destination, and weights memory
objects.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source Weights Destination Bias
forward / backward f32 f32 f32 f32
forward f16 f16 f16 f16
forward u8, s8 s8 u8, s8, s32, f32 u8, s8, s32, f32
forward bf16 bf16 f32, bf16 f32, bf16
backward f32, bf16 bf16 bf16
weights update bf16 f32, bf16 bf16 f32, bf16

5.5. Primitives 98

oneAPI Specification, Release 1.1-rev-1

Data Representation

Like other CNN primitives, the convolution primitive expects the following tensors:

Spatial Source / Destination Weights
1D 𝑁 × 𝐶 ×𝑊 [𝐺×]𝑂𝐶 × 𝐼𝐶 ×𝐾𝑊
2D 𝑁 × 𝐶 ×𝐻 ×𝑊 [𝐺×]𝑂𝐶 × 𝐼𝐶 ×𝐾𝐻 ×𝐾𝑊
3D 𝑁 × 𝐶 ×𝐷 ×𝐻 ×𝑊 [𝐺×]𝑂𝐶 × 𝐼𝐶 ×𝐾𝐷 ×𝐾𝐻 ×𝐾𝑊

Memory format of data and weights memory objects is critical for convolution primitive performance. In the oneDNN
programming model, convolution is one of the few primitives that support the placeholder memory format tag any and
can define data and weight memory objects format based on the primitive parameters. When using any it is necessary to
first create a convolution primitive descriptor and then query it for the actual data and weight memory objects formats.

While convolution primitives can be created with memory formats specified explicitly, the performance is likely to be
suboptimal.

The table below shows the combinations for which plain memory formats the convolution primitive is optimized for.

Spatial Convolution Type Data /
Weights logical tensor

Implementation
optimized
for memory formats

1D, 2D, 3D any optimized
1D f32, bf16 NCW / OIW, GOIW ncw (abc) / oiw (abc),

goiw (abcd)
1D f32, bf16 NCW / OIW, GOIW nwc (acb) / wio (cba),

wigo (dcab)
1D int8 NCW / OIW nwc (acb) / wio (cba)
2D f32, bf16 NCHW / OIHW, GOIHW nchw (abcd) / oihw

(abcd), goihw (abcde)
2D f32, bf16 NCHW / OIHW, GOIHW nhwc (acdb) / hwio

(cdba), hwigo (decab)
2D int8 NCHW / OIHW, GOIHW nhwc (acdb) / hwio

(cdba), hwigo (decab)
3D f32, bf16 NCDHW / OIDHW,

GOIDHW
ncdhw (abcde) / oidhw
(abcde), goidhw
(abcdef)

3D f32, bf16 NCDHW / OIDHW,
GOIDHW

ndhwc (acdeb) / dhwio
(cdeba), dhwigo
(defcab)

3D int8 NCDHW / OIDHW ndhwc (acdeb) / dhwio
(cdeba)

5.5. Primitives 99

oneAPI Specification, Release 1.1-rev-1

Post-ops and Attributes

Post-ops and attributes enable you to modify the behavior of the convolution primitive by applying the output scale to
the result of the primitive and by chaining certain operations after the primitive. The following attributes and post-ops
are supported:

Propaga-
tion

Type Operation Description Restrictions

forward at-
tribute

Output
scale

Scales the result of convolution by given scale factor(s) int8 convolu-
tions only

forward post-
op

Eltwise Applies an elementwise operation to the result

forward post-
op

Sum Adds the operation result to the destination tensor instead
of overwriting it

The primitive supports dynamic quantization via run-time output scales. That means a user could configure attributes
with output scales set to the DNNL_RUNTIME_F32_VAL wildcard value instead of the actual scales, if the scales are not
known at the primitive descriptor creation stage. In this case, the user must provide the scales as an additional input
memory object with argument DNNL_ARG_ATTR_OUTPUT_SCALES during the execution stage.

Note: The library does not prevent using post-ops in training, but note that not all post-ops are feasible for training
usage. For instance, using ReLU with non-zero negative slope parameter as a post-op would not produce an additional
output workspace that is required to compute backward propagation correctly. Hence, in this particular case one
should use separate convolution and eltwise primitives for training.

The following post-ops chaining should be supported by the library:

Type of convolutions Post-ops sequence supported
f32 and bf16 convolution eltwise, sum, sum -> eltwise
int8 convolution eltwise, sum, sum -> eltwise, eltwise -> sum

The attributes and post-ops take effect in the following sequence:

• Output scale attribute,

• Post-ops, in order they were attached.

The operations during attributes and post-ops applying are done in single precision floating point data type. The
conversion to the actual destination data type happens just before the actual storing.

Example 1

Consider the following pseudo code:

attribute attr;
attr.set_output_scale(alpha);
attr.set_post_ops({

{ sum={scale=beta} },
{ eltwise={scale=gamma, type=tanh, alpha=ignore, beta=ignored }

});

convolution_forward(src, weights, dst, attr)

5.5. Primitives 100

oneAPI Specification, Release 1.1-rev-1

The would lead to the following:

dst(𝑥) = 𝛾 · tanh (𝛼 · 𝑐𝑜𝑛𝑣(src,weights) + 𝛽 · dst(𝑥))

Example 2

The following pseudo code:

attribute attr;
attr.set_output_scale(alpha);
attr.set_post_ops({

{ eltwise={scale=gamma, type=relu, alpha=eta, beta=ignored }
{ sum={scale=beta} },

});

convolution_forward(src, weights, dst, attr)

That would lead to the following:

dst(𝑥) = 𝛽 · dst(𝑥) + 𝛾 ·𝑅𝑒𝐿𝑈 (𝛼 · 𝑐𝑜𝑛𝑣(src,weights), 𝜂)

Algorithms

oneDNN implementations may implement convolution primitives using several different algorithms which can be cho-
sen by the user.

• Direct (dnnl::algorithm::convolution_direct). The convolution operation is computed directly using
SIMD instructions. This also includes implicit GEMM formulations which notably may require workspace.

• Winograd (dnnl::algorithm::convolution_winograd). This algorithm reduces computational complex-
ity of convolution at the expense of accuracy loss and additional memory operations. The implementation is
based on the Fast Algorithms for Convolutional Neural Networks by A. Lavin and S. Gray. The Winograd algo-
rithm often results in the best performance, but it is applicable only to particular shapes. Moreover, Winograd
only supports int8 and f32 data types.

• Auto (dnnl::algorithm::convolution_auto). In this case the library should automatically select the best
algorithm based on the heuristics that take into account tensor shapes and the number of logical processors
available.

API

struct dnnl::convolution_forward : public dnnl::primitive
Convolution forward propagation primitive.

5.5. Primitives 101

https://arxiv.org/abs/1509.09308

oneAPI Specification, Release 1.1-rev-1

Public Functions

convolution_forward()
Default constructor. Produces an empty object.

convolution_forward(const primitive_desc &pd)
Constructs a convolution forward propagation primitive.

Parameters pd – Primitive descriptor for a convolution forward propagation primitive.

struct desc
Descriptor for a convolution forward propagation primitive.

Public Functions

desc(prop_kind aprop_kind, algorithm aalgorithm, const memory::desc &src_desc, const memory::desc
&weights_desc, const memory::desc &bias_desc, const memory::desc &dst_desc, const
memory::dims &strides, const memory::dims &padding_l, const memory::dims &padding_r)

Constructs a descriptor for a convolution forward propagation primitive with bias.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• src_desc – Source memory descriptor.
• weights_desc – Weights memory descriptor.
• bias_desc – Bias memory descriptor. Passing zero memory descriptor disables the bias

term.
• dst_desc – Destination memory descriptor.
• strides – Strides for each spatial dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

desc(prop_kind aprop_kind, algorithm aalgorithm, const memory::desc &src_desc, const memory::desc
&weights_desc, const memory::desc &dst_desc, const memory::dims &strides, const
memory::dims &padding_l, const memory::dims &padding_r)

Constructs a descriptor for a convolution forward propagation primitive without bias.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

5.5. Primitives 102

oneAPI Specification, Release 1.1-rev-1

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• src_desc – Source memory descriptor.
• weights_desc – Weights memory descriptor.
• dst_desc – Destination memory descriptor.
• strides – Strides for each spatial dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

desc(prop_kind aprop_kind, algorithm aalgorithm, const memory::desc &src_desc, const memory::desc
&weights_desc, const memory::desc &bias_desc, const memory::desc &dst_desc, const
memory::dims &strides, const memory::dims &dilates, const memory::dims &padding_l, const
memory::dims &padding_r)

Constructs a descriptor for a dilated convolution forward propagation primitive with bias.

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• src_desc – Source memory descriptor.
• weights_desc – Weights memory descriptor.
• bias_desc – Bias memory descriptor. Passing zero memory descriptor disables the bias

term.
• dst_desc – Destination memory descriptor.
• strides – Strides for each spatial dimension.
• dilates – Dilations for each spatial dimension. A zero value means no dilation in the

corresponding dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

5.5. Primitives 103

oneAPI Specification, Release 1.1-rev-1

desc(prop_kind aprop_kind, algorithm aalgorithm, const memory::desc &src_desc, const memory::desc
&weights_desc, const memory::desc &dst_desc, const memory::dims &strides, const
memory::dims &dilates, const memory::dims &padding_l, const memory::dims &padding_r)

Constructs a descriptor for a dilated convolution forward propagation primitive without bias.

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• src_desc – Source memory descriptor.
• weights_desc – Weights memory descriptor.
• dst_desc – Destination memory descriptor.
• strides – Strides for each spatial dimension.
• dilates – Dilations for each spatial dimension. A zero value means no dilation in the

corresponding dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a convolution forward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, bool allow_empty = false)
Constructs a primitive descriptor for a convolution forward propagation primitive.

Parameters
• adesc – Descriptor for a convolution forward propagation primitive.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, bool
allow_empty = false)

Constructs a primitive descriptor for a convolution forward propagation primitive.
Parameters

• adesc – Descriptor for a convolution forward propagation primitive.
• aengine – Engine to use.

5.5. Primitives 104

oneAPI Specification, Release 1.1-rev-1

• attr – Primitive attributes to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns Weights memory descriptor.
Returns A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc bias_desc() const
Returns the bias memory descriptor.

Returns The bias memory descriptor.
Returns A zero memory descriptor if the primitive does not have a bias parameter.

struct dnnl::convolution_backward_data : public dnnl::primitive
Convolution backward propagation primitive.

Public Functions

convolution_backward_data()
Default constructor. Produces an empty object.

convolution_backward_data(const primitive_desc &pd)
Constructs a convolution backward propagation primitive.

Parameters pd – Primitive descriptor for a convolution backward propagation primitive.

struct desc
Descriptor for a convolution backward propagation primitive.

Public Functions

desc(algorithm aalgorithm, const memory::desc &diff_src_desc, const memory::desc &weights_desc,
const memory::desc &diff_dst_desc, const memory::dims &strides, const memory::dims
&padding_l, const memory::dims &padding_r)

Constructs a descriptor for a convolution backward propagation primitive.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

5.5. Primitives 105

oneAPI Specification, Release 1.1-rev-1

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• diff_src_desc – Diff source memory descriptor.
• weights_desc – Weights memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

desc(algorithm aalgorithm, const memory::desc &diff_src_desc, const memory::desc &weights_desc,
const memory::desc &diff_dst_desc, const memory::dims &strides, const memory::dims &dilates,
const memory::dims &padding_l, const memory::dims &padding_r)

Constructs a descriptor for dilated convolution backward propagation primitive.

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• diff_src_desc – Diff source memory descriptor.
• weights_desc – Weights memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• dilates – Dilations for each spatial dimension. A zero value means no dilation in the

corresponding dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a convolution backward propagation primitive.

5.5. Primitives 106

oneAPI Specification, Release 1.1-rev-1

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const
convolution_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a convolution backward propagation primitive.
Parameters

• adesc – Descriptor for a convolution backward propagation primitive.
• aengine – Engine to perform the operation on.
• hint_fwd_pd – Primitive descriptor for a convolution forward propagation primitive. It

is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, const
convolution_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a convolution backward propagation primitive.
Parameters

• adesc – Descriptor for a convolution backward propagation primitive.
• aengine – Engine to perform the operation on.
• attr – Primitive attributes to use.
• hint_fwd_pd – Primitive descriptor for a convolution forward propagation primitive. It

is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns Diff source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns Weights memory descriptor.
Returns A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns Diff destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff destination parameter.

struct dnnl::convolution_backward_weights : public dnnl::primitive
Convolution weights gradient primitive.

5.5. Primitives 107

oneAPI Specification, Release 1.1-rev-1

Public Functions

convolution_backward_weights()
Default constructor. Produces an empty object.

convolution_backward_weights(const primitive_desc &pd)
Constructs a convolution weights gradient primitive.

Parameters pd – Primitive descriptor for a convolution weights gradient primitive.

struct desc
Descriptor for a convolution weights gradient primitive.

Public Functions

desc(algorithm aalgorithm, const memory::desc &src_desc, const memory::desc &diff_weights_desc,
const memory::desc &diff_bias_desc, const memory::desc &diff_dst_desc, const memory::dims
&strides, const memory::dims &padding_l, const memory::dims &padding_r)

Constructs a descriptor for a convolution weights gradient primitive with bias.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• src_desc – Source memory descriptor.
• diff_weights_desc – Diff weights memory descriptor.
• diff_bias_desc – Diff bias memory descriptor. Passing zero memory descriptor dis-

ables the bias term.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

desc(algorithm aalgorithm, const memory::desc &src_desc, const memory::desc &diff_weights_desc,
const memory::desc &diff_dst_desc, const memory::dims &strides, const memory::dims
&padding_l, const memory::dims &padding_r)

Constructs a descriptor for a convolution weights gradient primitive without bias.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

5.5. Primitives 108

oneAPI Specification, Release 1.1-rev-1

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• src_desc – Source memory descriptor.
• diff_weights_desc – Diff weights memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

desc(algorithm aalgorithm, const memory::desc &src_desc, const memory::desc &diff_weights_desc,
const memory::desc &diff_bias_desc, const memory::desc &diff_dst_desc, const memory::dims
&strides, const memory::dims &dilates, const memory::dims &padding_l, const memory::dims
&padding_r)

Constructs a descriptor for a dilated convolution weights gradient primitive with bias.

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• src_desc – Source memory descriptor.
• diff_weights_desc – Diff weights memory descriptor.
• diff_bias_desc – Diff bias memory descriptor. Passing zero memory descriptor dis-

ables the bias term.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• dilates – Dilations for each spatial dimension. A zero value means no dilation in the

corresponding dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

desc(algorithm aalgorithm, const memory::desc &src_desc, const memory::desc &diff_weights_desc,
const memory::desc &diff_dst_desc, const memory::dims &strides, const memory::dims &dilates,
const memory::dims &padding_l, const memory::dims &padding_r)

Constructs a descriptor for a dilated convolution weights gradient primitive without bias.

5.5. Primitives 109

oneAPI Specification, Release 1.1-rev-1

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aalgorithm – Convolution algorithm. Possible values are

dnnl::algorithm::convolution_direct, dnnl::algorithm::convolution_winograd, and
dnnl::algorithm::convolution_auto.

• src_desc – Source memory descriptor.
• diff_weights_desc – Diff weights memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• dilates – Dilations for each spatial dimension. A zero value means no dilation in the

corresponding dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a convolution weights gradient primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const
convolution_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a convolution weights gradient primitive.
Parameters

• adesc – Descriptor for a convolution weights gradient primitive.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a convolution forward propagation primitive. It

is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, const
convolution_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a convolution weights gradient primitive.
Parameters

• adesc – Descriptor for a convolution weights gradient primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a convolution forward propagation primitive. It

is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and

5.5. Primitives 110

oneAPI Specification, Release 1.1-rev-1

defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc diff_weights_desc() const
Returns a diff weights memory descriptor.

Returns Diff weights memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff weights parameter.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns Diff destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff destination parameter.

memory::desc diff_bias_desc() const
Returns the diff bias memory descriptor.

Returns The diff bias memory descriptor.
Returns A zero memory descriptor of the primitive does not have a diff bias parameter.

struct dnnl::deconvolution_forward : public dnnl::primitive
Deconvolution forward propagation primitive.

Public Functions

deconvolution_forward()
Default constructor. Produces an empty object.

deconvolution_forward(const primitive_desc &pd)
Constructs a deconvolution forward propagation primitive.

Parameters pd – Primitive descriptor for a deconvolution forward propagation primitive.

struct desc
Descriptor for a deconvolution forward propagation primitive.

Public Functions

desc(prop_kind aprop_kind, algorithm aalgorithm, const memory::desc &src_desc, const memory::desc
&weights_desc, const memory::desc &bias_desc, const memory::desc &dst_desc, const
memory::dims &strides, const memory::dims &padding_l, const memory::dims &padding_r)

Constructs a descriptor for a deconvolution forward propagation primitive with bias.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters

5.5. Primitives 111

oneAPI Specification, Release 1.1-rev-1

• aprop_kind – Propagation kind. Possible values are
dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.

• aalgorithm – Deconvolution algorithm: dnnl::algorithm::deconvolution_direct, and
dnnl::algorithm::deconvolution_winograd.

• src_desc – Source memory descriptor.
• weights_desc – Weights memory descriptor.
• bias_desc – Bias memory descriptor. Passing zero memory descriptor disables the bias

term.
• dst_desc – Destination memory descriptor.
• strides – Vector of strides for spatial dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

desc(prop_kind aprop_kind, algorithm aalgorithm, const memory::desc &src_desc, const memory::desc
&weights_desc, const memory::desc &dst_desc, const memory::dims &strides, const
memory::dims &padding_l, const memory::dims &padding_r)

Constructs a descriptor for a deconvolution forward propagation primitive without bias.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Deconvolution algorithm: dnnl::algorithm::deconvolution_direct, and

dnnl::algorithm::deconvolution_winograd.
• src_desc – Source memory descriptor.
• weights_desc – Weights memory descriptor.
• dst_desc – Destination memory descriptor.
• strides – Vector of strides for spatial dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

desc(prop_kind aprop_kind, algorithm aalgorithm, const memory::desc &src_desc, const memory::desc
&weights_desc, const memory::desc &bias_desc, const memory::desc &dst_desc, const
memory::dims &strides, const memory::dims &dilates, const memory::dims &padding_l, const
memory::dims &padding_r)

Constructs a descriptor for a dilated deconvolution forward propagation primitive with bias.

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

5.5. Primitives 112

oneAPI Specification, Release 1.1-rev-1

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Deconvolution algorithm: dnnl::algorithm::deconvolution_direct, and

dnnl::algorithm::deconvolution_winograd.
• src_desc – Source memory descriptor.
• weights_desc – Weights memory descriptor.
• bias_desc – Bias memory descriptor. Passing zero memory descriptor disables the bias

term.
• dst_desc – Destination memory descriptor.
• strides – Vector of strides for spatial dimension.
• dilates – Dilations for each spatial dimension. A zero value means no dilation in the

corresponding dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

desc(prop_kind aprop_kind, algorithm aalgorithm, const memory::desc &src_desc, const memory::desc
&weights_desc, const memory::desc &dst_desc, const memory::dims &strides, const
memory::dims &dilates, const memory::dims &padding_l, const memory::dims &padding_r)

Constructs a descriptor for a dilated deconvolution forward propagation primitive without bias.

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Deconvolution algorithm: dnnl::algorithm::deconvolution_direct, and

dnnl::algorithm::deconvolution_winograd.
• src_desc – Source memory descriptor.
• weights_desc – Weights memory descriptor.
• dst_desc – Destination memory descriptor.
• strides – Vector of strides for spatial dimension.
• dilates – Dilations for each spatial dimension. A zero value means no dilation in the

corresponding dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a deconvolution forward propagation primitive.

5.5. Primitives 113

oneAPI Specification, Release 1.1-rev-1

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, bool allow_empty = false)
Constructs a primitive descriptor for a deconvolution forward propagation primitive.

Parameters
• adesc – Descriptor for a deconvolution forward propagation primitive.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, bool
allow_empty = false)

Constructs a primitive descriptor for a deconvolution forward propagation primitive.
Parameters

• adesc – Descriptor for a deconvolution forward propagation primitive.
• aengine – Engine to use.
• attr – Primitive attributes to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns Weights memory descriptor.
Returns A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc bias_desc() const
Returns the bias memory descriptor.

Returns The bias memory descriptor.
Returns A zero memory descriptor if the primitive does not have a bias parameter.

struct dnnl::deconvolution_backward_data : public dnnl::primitive
Deconvolution backward propagation primitive.

5.5. Primitives 114

oneAPI Specification, Release 1.1-rev-1

Public Functions

deconvolution_backward_data()
Default constructor. Produces an empty object.

deconvolution_backward_data(const primitive_desc &pd)
Constructs a deconvolution backward propagation primitive.

Parameters pd – Primitive descriptor for a deconvolution backward propagation primitive.

struct desc
Descriptor for a deconvolution backward propagation primitive.

Public Functions

desc(algorithm aalgorithm, const memory::desc &diff_src_desc, const memory::desc &weights_desc,
const memory::desc &diff_dst_desc, const memory::dims &strides, const memory::dims
&padding_l, const memory::dims &padding_r)

Constructs a descriptor for a deconvolution backward propagation primitive.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aalgorithm – Deconvolution algorithm (dnnl::algorithm::convolution_direct,

dnnl::algorithm::convolution_winograd).
• diff_src_desc – Diff source memory descriptor.
• weights_desc – Weights memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

desc(algorithm aalgorithm, const memory::desc &diff_src_desc, const memory::desc &weights_desc,
const memory::desc &diff_dst_desc, const memory::dims &strides, const memory::dims &dilates,
const memory::dims &padding_l, const memory::dims &padding_r)

Constructs a descriptor for a dilated deconvolution backward propagation primitive.

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

5.5. Primitives 115

oneAPI Specification, Release 1.1-rev-1

Parameters
• aalgorithm – Deconvolution algorithm (dnnl::algorithm::convolution_direct,

dnnl::algorithm::convolution_winograd).
• diff_src_desc – Diff source memory descriptor.
• weights_desc – Weights memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• dilates – Dilations for each spatial dimension. A zero value means no dilation in the

corresponding dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a deconvolution backward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const
deconvolution_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a deconvolution backward propagation primitive.
Parameters

• adesc – Descriptor for a deconvolution backward propagation primitive.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a deconvolution forward propagation primitive.

It is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, const
deconvolution_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a deconvolution backward propagation primitive.
Parameters

• adesc – Descriptor for a deconvolution backward propagation primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a deconvolution forward propagation primitive.

It is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns Diff source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns Weights memory descriptor.

5.5. Primitives 116

oneAPI Specification, Release 1.1-rev-1

Returns A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns Diff destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff destination parameter.

struct dnnl::deconvolution_backward_weights : public dnnl::primitive
Deconvolution weights gradient primitive.

Public Functions

deconvolution_backward_weights()
Default constructor. Produces an empty object.

deconvolution_backward_weights(const primitive_desc &pd)
Constructs a deconvolution weights gradient primitive.

Parameters pd – Primitive descriptor for a deconvolution weights gradient primitive.

struct desc
Descriptor for a deconvolution weights gradient primitive.

Public Functions

desc(algorithm aalgorithm, const memory::desc &src_desc, const memory::desc &diff_weights_desc,
const memory::desc &diff_bias_desc, const memory::desc &diff_dst_desc, const memory::dims
&strides, const memory::dims &padding_l, const memory::dims &padding_r)

Constructs a descriptor for a deconvolution weights gradient primitive with bias.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aalgorithm – Deconvolution algorithm. Possible values are

dnnl::algorithm::deconvolution_direct, and dnnl::algorithm::deconvolution_winograd.
• src_desc – Source memory descriptor.
• diff_weights_desc – Diff weights memory descriptor.
• diff_bias_desc – Diff bias memory descriptor. Passing zero memory descriptor dis-

ables the bias term.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

5.5. Primitives 117

oneAPI Specification, Release 1.1-rev-1

desc(algorithm aalgorithm, const memory::desc &src_desc, const memory::desc &diff_weights_desc,
const memory::desc &diff_dst_desc, const memory::dims &strides, const memory::dims
&padding_l, const memory::dims &padding_r)

Constructs a descriptor for a deconvolution weights gradient primitive without bias.

Arrays strides, padding_l, and padding_r contain values for spatial dimensions only and hence
must have the same number of elements as there are spatial dimensions. The order of values is the
same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aalgorithm – Deconvolution algorithm. Possible values are

dnnl::algorithm::deconvolution_direct, and dnnl::algorithm::deconvolution_winograd.
• src_desc – Source memory descriptor.
• diff_weights_desc – Diff weights memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

desc(algorithm aalgorithm, const memory::desc &src_desc, const memory::desc &diff_weights_desc,
const memory::desc &diff_bias_desc, const memory::desc &diff_dst_desc, const memory::dims
&strides, const memory::dims &dilates, const memory::dims &padding_l, const memory::dims
&padding_r)

Constructs a descriptor for a dilated deconvolution weights gradient primitive with bias.

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aalgorithm – Deconvolution algorithm. Possible values are

dnnl::algorithm::deconvolution_direct, and dnnl::algorithm::deconvolution_winograd.
• src_desc – Source memory descriptor.
• diff_weights_desc – Diff weights memory descriptor.
• diff_bias_desc – Diff bias memory descriptor. Passing zero memory descriptor dis-

ables the bias term.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• dilates – Dilations for each spatial dimension. A zero value means no dilation in the

corresponding dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

5.5. Primitives 118

oneAPI Specification, Release 1.1-rev-1

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

desc(algorithm aalgorithm, const memory::desc &src_desc, const memory::desc &diff_weights_desc,
const memory::desc &diff_dst_desc, const memory::dims &strides, const memory::dims &dilates,
const memory::dims &padding_l, const memory::dims &padding_r)

Constructs a descriptor for a dilated deconvolution weights gradient primitive without bias.

Arrays strides, dilates, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aalgorithm – Deconvolution algorithm. Possible values are

dnnl::algorithm::deconvolution_direct, and dnnl::algorithm::deconvolution_winograd.
• src_desc – Source memory descriptor.
• diff_weights_desc – Diff weights memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Strides for each spatial dimension.
• dilates – Dilations for each spatial dimension. A zero value means no dilation in the

corresponding dimension.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a deconvolution weights gradient primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const
deconvolution_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a deconvolution weights update primitive.
Parameters

• adesc – Descriptor for a deconvolution weights gradient primitive.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a deconvolution forward propagation primitive.

It is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, const
deconvolution_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a deconvolution weights update primitive.
Parameters

5.5. Primitives 119

oneAPI Specification, Release 1.1-rev-1

• adesc – Descriptor for a deconvolution weights gradient primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a deconvolution forward propagation primitive.

It is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc diff_weights_desc() const
Returns a diff weights memory descriptor.

Returns Diff weights memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff weights parameter.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns Diff destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff destination parameter.

memory::desc diff_bias_desc() const
Returns the diff bias memory descriptor.

Returns The diff bias memory descriptor.
Returns A zero memory descriptor of the primitive does not have a diff bias parameter.

5.5.7 Elementwise

The elementwise primitive applies an operation to every element of the tensor. Variable names follow the standard
Conventions.

dst(𝑥) = 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛(src(𝑥)),

for 𝑥 = (𝑥0, . . . , 𝑥𝑛).

5.5. Primitives 120

oneAPI Specification, Release 1.1-rev-1

Forward

The following forward operations are supported. Here 𝑠 and 𝑑 denote src and dst, tensor values respectively.

Elementwise algorithm Forward formula

eltwise_abs 𝑑 =

{︃
𝑠 if 𝑠 > 0

−𝑠 if 𝑠 ≤ 0

eltwise_bounded_relu 𝑑 =

⎧⎪⎨⎪⎩
𝛼 if 𝑠 > 𝛼 ≥ 0

𝑠 if 0 < 𝑠 ≤ 𝛼

0 if 𝑠 ≤ 0

eltwise_clip 𝑑 =

⎧⎪⎨⎪⎩
𝛽 if 𝑠 > 𝛽 ≥ 𝛼

𝑠 if 𝛼 < 𝑠 ≤ 𝛽

𝛼 if 𝑠 ≤ 𝛼

eltwise_elu, eltwise_elu_use_dst_for_bwd 𝑑 =

{︃
𝑠 if 𝑠 > 0

𝛼(𝑒𝑠 − 1) if 𝑠 ≤ 0

eltwise_exp, eltwise_exp_use_dst_for_bwd 𝑑 = 𝑒𝑠

eltwise_gelu_erf 𝑑 = 0.5𝑠(1 + 𝑒𝑟𝑓 [𝑠√
2
])

eltwise_gelu_tanh 𝑑 = 0.5𝑠(1 + 𝑡𝑎𝑛ℎ[
√︁

2
𝜋 (𝑠 + 0.044715𝑠3)])

eltwise_linear 𝑑 = 𝛼𝑠 + 𝛽
eltwise_log 𝑑 = log𝑒 𝑠
eltwise_logistic, eltwise_logistic_use_dst_for_bwd 𝑑 = 1

1+𝑒−𝑠

eltwise_pow 𝑑 = 𝛼𝑠𝛽

eltwise_relu, eltwise_relu_use_dst_for_bwd 𝑑 =

{︃
𝑠 if 𝑠 > 0

𝛼𝑠 if 𝑠 ≤ 0

eltwise_round 𝑑 = 𝑟𝑜𝑢𝑛𝑑(𝑠)
eltwise_soft_relu 𝑑 = log𝑒(1 + 𝑒𝑠)
eltwise_sqrt, eltwise_sqrt_use_dst_for_bwd 𝑑 =

√
𝑠

eltwise_square 𝑑 = 𝑠2

eltwise_swish 𝑑 = 𝑠
1+𝑒−𝛼𝑠

eltwise_tanh , eltwise_tanh_use_dst_for_bwd 𝑑 = tanh 𝑠

Backward

The backward propagation computes diff_src(𝑠), based on diff_dst(𝑠) and src(𝑠). However, some operations support a
computation using dst(𝑠) memory produced during forward propagation. Refer to the table above for a list of operations
supporting destination as input memory and the corresponding formulas.

The following backward operations are supported. Here 𝑠, 𝑑, 𝑑𝑠 and 𝑑𝑑 denote src, dst, diff_src, and a diff_dst tensor
values respectively.

5.5. Primitives 121

oneAPI Specification, Release 1.1-rev-1

Elementwise algorithm Backward formula

eltwise_abs 𝑑𝑠 =

⎧⎪⎨⎪⎩
𝑑𝑑 if 𝑠 > 0

−𝑑𝑑 if 𝑠 < 0

0 if 𝑠 = 0

eltwise_bounded_relu 𝑑𝑠 =

{︃
𝑑𝑑 if 0 < 𝑠 ≤ 𝛼,

0 otherwise

eltwise_clip 𝑑𝑠 =

{︃
𝑑𝑑 if 𝛼 < 𝑠 ≤ 𝛽

0 otherwise

eltwise_elu 𝑑𝑠 =

{︃
𝑑𝑑 if 𝑠 > 0

𝑑𝑑 · 𝛼𝑒𝑠 if 𝑠 ≤ 0

eltwise_elu_use_dst_for_bwd 𝑑𝑠 =

{︃
𝑑𝑑 if 𝑑 > 0

𝑑𝑑 · (𝑑 + 𝛼) if 𝑑 ≤ 0
only if 𝛼 ≥ 0

eltwise_exp 𝑑𝑠 = 𝑑𝑑 · 𝑒𝑠
eltwise_exp_use_dst_for_bwd 𝑑𝑠 = 𝑑𝑑 · 𝑑
eltwise_gelu_erf 𝑑𝑠 = 𝑑𝑑 ·

(︁
0.5 + 0.5 erf

(︁
𝑠√
2

)︁
+ 𝑠√

2𝜋
𝑒−0.5𝑠

2
)︁

eltwise_gelu_tanh

𝑑𝑠 = 𝑑𝑑

·0.5(1 + tanh[
√︁

2
𝜋 (𝑠 + 0.044715𝑠3)])

·(1 +
√︁

2
𝜋 (𝑠 + 0.134145𝑠3)

·(1− tanh[
√︁

2
𝜋 (𝑠 + 0.044715𝑠3)]))

eltwise_linear 𝑑𝑠 = 𝛼 · 𝑑𝑑
eltwise_log 𝑑𝑠 = 𝑑𝑑

𝑠

eltwise_logistic 𝑑𝑠 = 𝑑𝑑
1+𝑒−𝑠 · (1− 1

1+𝑒−𝑠)

eltwise_logistic_use_dst_for_bwd 𝑑𝑠 = 𝑑𝑑 · 𝑑 · (1− 𝑑)
eltwise_pow 𝑑𝑠 = 𝑑𝑑 · 𝛼𝛽𝑠𝛽−1

eltwise_relu 𝑑𝑠 =

{︃
𝑑𝑑 if 𝑠 > 0

𝛼 · 𝑑𝑑 if 𝑠 ≤ 0

eltwise_relu_use_dst_for_bwd 𝑑𝑠 =

{︃
𝑑𝑑 if 𝑑 > 0

𝛼 · 𝑑𝑑 if 𝑑 ≤ 0
only if 𝑎𝑙𝑝ℎ𝑎 ≥ 0

eltwise_soft_relu 𝑑𝑠 = 𝑑𝑑
1+𝑒−𝑠

eltwise_sqrt 𝑑𝑠 = 𝑑𝑑
2
√
𝑠

eltwise_sqrt_use_dst_for_bwd 𝑑𝑠 = 𝑑𝑑
2𝑑

eltwise_square 𝑑𝑠 = 𝑑𝑑 · 2𝑠
eltwise_swish 𝑑𝑠 = 𝑑𝑑

1+𝑒−𝛼𝑠 (1 + 𝛼𝑠(1− 1
1+𝑒−𝛼𝑠))

eltwise_tanh 𝑑𝑠 = 𝑑𝑑 · (1− tanh2 𝑠)
eltwise_tanh_use_dst_for_bwd 𝑑𝑠 = 𝑑𝑑 · (1− 𝑑2)

5.5. Primitives 122

oneAPI Specification, Release 1.1-rev-1

Difference Between Forward Training and Forward Inference

There is no difference between the #dnnl_forward_training and #dnnl_forward_inference propagation kinds.

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
dst DNNL_ARG_DST
diff_src DNNL_ARG_DIFF_SRC
diff_dst DNNL_ARG_DIFF_DST

Operation Details

1. The dnnl::eltwise_forward::desc::desc() and dnnl::eltwise_backward::desc::desc() con-
structors take both parameters 𝛼, and 𝛽. These parameters are ignored if they are unused by the algorithm.

2. The memory format and data type for src and dst are assumed to be the same, and in the API are typically
denoted as data (for example dnnl::eltwise_forward::desc::desc() has a data_desc argument). The
same holds for diff_src and diff_dst. The corresponding memory descriptors are denoted as diff_data_desc.

3. Both forward and backward propagation support in-place operations, meaning that src can be used as input and
output for forward propagation, and diff_dst can be used as input and output for backward propagation. In case
of an in-place operation, the original data will be overwritten. Note, however, that some algorithms for backward
propagation require original src, hence the corresponding forward propagation should not be performed in-place
for those algorithms. Algorithms that use dst for backward propagation can be safely done in-place.

4. For some operations it might be beneficial to compute backward propagation based on dst(𝑠), rather than on
src(𝑠), for improved performance.

Note: For operations supporting destination memory as input, dst can be used instead of src when backward propa-
gation is computed. This enables several performance optimizations (see the tips below).

Data Type Support

The eltwise primitive should support the following combinations of data types.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source / Destination Intermediate data type
forward / backward f32, bf16 f32
forward f16 f16
forward s32 / s8 / u8 f32

5.5. Primitives 123

oneAPI Specification, Release 1.1-rev-1

Here the intermediate data type means that the values coming in are first converted to the intermediate data type, then
the operation is applied, and finally the result is converted to the output data type.

Data Representation

The eltwise primitive works with arbitrary data tensors. There is no special meaning associated with any logical
dimensions.

Post-ops and Attributes

The eltwise primitive does not have to support any post-ops or attributes.

API

struct dnnl::eltwise_forward : public dnnl::primitive
Elementwise unary operation forward propagation primitive.

Public Functions

eltwise_forward()
Default constructor. Produces an empty object.

eltwise_forward(const primitive_desc &pd)
Constructs an eltwise forward propagation primitive.

Parameters pd – Primitive descriptor for an eltwise forward propagation primitive.

struct desc
Descriptor for an elementwise forward propagation primitive.

Public Functions

desc(prop_kind aprop_kind, algorithm aalgorithm, const memory::desc &data_desc, float alpha = 0,
float beta = 0)

Constructs a descriptor for an elementwise forward propagation primitive.
Parameters

• aprop_kind – Propagation kind. Possible values are
dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.

• aalgorithm – Elementwise algorithm kind.
• data_desc – Source and destination memory descriptors.
• alpha – The alpha parameter for the elementwise operation. Specific meaning depends

on the algorithm.
• beta – The beta parameter for the elementwise operation. Specific meaning depends on

the algorithm.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for an elementwise forward propagation primitive.

5.5. Primitives 124

oneAPI Specification, Release 1.1-rev-1

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, bool allow_empty = false)
Constructs a primitive descriptor for an elementwise forward propagation primitive.

Parameters
• adesc – Descriptor for an elementwise forward propagation primitive.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, bool
allow_empty = false)

Constructs a primitive descriptor for an elementwise forward propagation primitive.
Parameters

• adesc – Descriptor for an elementwise forward propagation primitive.
• aengine – Engine to use.
• attr – Primitive attributes to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

struct dnnl::eltwise_backward : public dnnl::primitive
Elementwise unary operation backward propagation primitive.

See eltwise_forward

Public Functions

eltwise_backward()
Default constructor. Produces an empty object.

eltwise_backward(const primitive_desc &pd)
Constructs an eltwise backward propagation primitive.

Parameters pd – Primitive descriptor for an eltwise backward propagation primitive.

struct desc
Descriptor for an elementwise backward propagation primitive.

5.5. Primitives 125

oneAPI Specification, Release 1.1-rev-1

Public Functions

desc(algorithm aalgorithm, const memory::desc &diff_data_desc, const memory::desc &data_desc, float
alpha = 0, float beta = 0)

Constructs a descriptor for an elementwise backward propagation primitive.
Parameters

• aalgorithm – Elementwise algorithm kind.
• diff_data_desc – Diff source and destination memory descriptors.
• data_desc – Source memory descriptor.
• alpha – The alpha parameter for the elementwise operation. Specific meaning depends

on the algorithm.
• beta – The beta parameter for the elementwise operation. Specific meaning depends on

the algorithm.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for eltwise backward propagation.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const eltwise_forward::primitive_desc
&hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for an elementwise backward propagation primitive.
Parameters

• adesc – Descriptor for an elementwise backward propagation primitive.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for an elementwise forward propagation primitive.

It is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, const
eltwise_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for an elementwise backward propagation primitive.
Parameters

• adesc – Descriptor for an elementwise backward propagation primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for an elementwise forward propagation primitive.

It is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns Diff source memory descriptor.

5.5. Primitives 126

oneAPI Specification, Release 1.1-rev-1

Returns A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns Diff destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff destination parameter.

5.5.8 Inner Product

The inner product primitive (sometimes called fully connected layer) treats each activation in the minibatch as a vector
and computes its product with a weights 2D tensor producing a 2D tensor as an output.

Forward

Let src, weights, bias and dst be 𝑁 × 𝐼𝐶, 𝑂𝐶 × 𝐼𝐶, 𝑂𝐶, and 𝑁 ×𝑂𝐶 tensors, respectively. Variable names follow
the standard Conventions. Then:

dst(𝑛, 𝑜𝑐) = bias(𝑜𝑐) +

𝐼𝐶−1∑︁
𝑖𝑐=0

src(𝑛, 𝑖𝑐) · weights(𝑜𝑐, 𝑖𝑐)

In cases where the src and weights tensors have spatial dimensions, they are flattened to 2D. For example, if they are 4D
𝑁×𝐼𝐶 ′×𝐼𝐻×𝐼𝑊 and 𝑂𝐶×𝐼𝐶 ′×𝐾𝐻×𝐾𝑊 tensors, then the formula above is applied with 𝐼𝐶 = 𝐼𝐶 ′ ·𝐼𝐻 ·𝐼𝑊 .
In such cases, the src and weights tensors must have equal spatial dimensions (e.g. 𝐾𝐻 = 𝐼𝐻 and 𝐾𝑊 = 𝐼𝑊 for
4D tensors).

Difference Between Forward Training and Forward Inference

There is no difference between the forward_training and forward_inference propagation kinds.

Backward

The backward propagation computes diff_src based on diff_dst and weights.

The weights update computes diff_weights and diff_bias based on diff_dst and src.

Note: The optimized memory formats src and weights might be different on forward propagation, backward propa-
gation, and weights update.

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

5.5. Primitives 127

oneAPI Specification, Release 1.1-rev-1

Primitive input/output Execution argument index
src DNNL_ARG_SRC
weights DNNL_ARG_WEIGHTS
bias DNNL_ARG_BIAS
dst DNNL_ARG_DST
diff_src DNNL_ARG_DIFF_SRC
diff_weights DNNL_ARG_DIFF_WEIGHTS
diff_bias DNNL_ARG_DIFF_BIAS
diff_dst DNNL_ARG_DIFF_DST

Operation Details

N/A

Data Types Support

Inner product primitive supports the following combination of data types for source, destination, weights, and bias.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source Weights Destination Bias
forward / backward f32 f32 f32 f32
forward f16 f16 f16 f16
forward u8, s8 s8 u8, s8, s32, f32 u8, s8, s32, f32
forward bf16 bf16 f32, bf16 f32, bf16
backward f32, bf16 bf16 bf16
weights update bf16 f32, bf16 bf16 f32, bf16

Data Representation

Like other CNN primitives, the inner product primitive expects the following tensors:

Spatial Source Destination Weights
1D 𝑁 × 𝐶 ×𝑊 𝑁 × 𝐶 𝑂𝐶 × 𝐼𝐶 ×𝐾𝑊
2D 𝑁 × 𝐶 ×𝐻 ×𝑊 𝑁 × 𝐶 𝑂𝐶 × 𝐼𝐶 ×𝐾𝐻 ×𝐾𝑊
3D 𝑁 × 𝐶 ×𝐷 ×𝐻 ×𝑊 𝑁 × 𝐶 𝑂𝐶 × 𝐼𝐶 ×𝐾𝐷 ×𝐾𝐻 ×𝐾𝑊

Memory format of data and weights memory objects is critical for inner product primitive performance. In the oneDNN
programming model, inner product primitive is one of the few primitives that support the placeholder format any and
can define data and weight memory objects formats based on the primitive parameters. When using any it is necessary
to first create an inner product primitive descriptor and then query it for the actual data and weight memory objects
formats.

The table below shows the combinations for which plain memory formats the inner product primitive is optimized for.
For the destination tensor (which is always 𝑁 × 𝐶) the memory format is always nc (ab).

5.5. Primitives 128

oneAPI Specification, Release 1.1-rev-1

Spatial Source / Weights logical tensor Implementation optimized for memory formats
0D NC / OI nc (ab) / oi (ab)
0D NC / OI nc (ab) / io (ba)
1D NCW / OIW ncw (abc) / oiw (abc)
1D NCW / OIW nwc (acb) / wio (cba)
2D NCHW / OIHW nchw (abcd) / oihw (abcd)
2D NCHW / OIHW nhwc (acdb) / hwio (cdba)
3D NCDHW / OIDHW ncdhw (abcde) / oidhw (abcde)
3D NCDHW / OIDHW ndhwc (acdeb) / dhwio (cdeba)

Post-ops and Attributes

The following post-ops should be supported by inner product primitives:

Propa-
gation

Type Operation Description Restrictions

forward at-
tribute

Output
scale

Scales the result of inner product by given scale factor(s) int8 inner prod-
ucts only

forward post-
op

Eltwise Applies an elementwise operation to the result

forward post-
op

Sum Adds the operation result to the destination tensor in-
stead of overwriting it

API

struct dnnl::inner_product_forward : public dnnl::primitive
Inner product forward propagation primitive.

Public Functions

inner_product_forward()
Default constructor. Produces an empty object.

inner_product_forward(const primitive_desc &pd)
Constructs an inner product forward propagation primitive.

Parameters pd – Primitive descriptor for an inner product forward propagation primitive.

struct desc
Descriptor for an inner product forward propagation primitive.

5.5. Primitives 129

oneAPI Specification, Release 1.1-rev-1

Public Functions

desc(prop_kind aprop_kind, const memory::desc &src_desc, const memory::desc &weights_desc, const
memory::desc &bias_desc, const memory::desc &dst_desc)

Constructs a descriptor for an inner product forward propagation primitive with bias.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• src_desc – Memory descriptor for src.
• weights_desc – Memory descriptor for diff weights.
• bias_desc – Memory descriptor for diff bias.
• dst_desc – Memory descriptor for diff dst.

desc(prop_kind aprop_kind, const memory::desc &src_desc, const memory::desc &weights_desc, const
memory::desc &dst_desc)

Constructs a descriptor for an inner product forward propagation primitive without bias.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• src_desc – Memory descriptor for src.
• weights_desc – Memory descriptor for diff weights.
• dst_desc – Memory descriptor for dst.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for an inner product forward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, bool allow_empty = false)
Constructs a primitive descriptor for an inner product forward propagation primitive.

Parameters
• adesc – Descriptor for an inner product forward propagation primitive.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, bool
allow_empty = false)

Constructs a primitive descriptor for an inner product forward propagation primitive.
Parameters

• adesc – Descriptor for an inner product forward propagation primitive.

5.5. Primitives 130

oneAPI Specification, Release 1.1-rev-1

• attr – Primitive attributes to use.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns Weights memory descriptor.
Returns A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc bias_desc() const
Returns the bias memory descriptor.

Returns The bias memory descriptor.
Returns A zero memory descriptor if the primitive does not have a bias parameter.

struct dnnl::inner_product_backward_data : public dnnl::primitive
Inner product backward propagation primitive.

Public Functions

inner_product_backward_data()
Default constructor. Produces an empty object.

inner_product_backward_data(const primitive_desc &pd)
Constructs an inner product backward propagation primitive.

Parameters pd – Primitive descriptor for an inner product backward propagation primitive.

struct desc
Descriptor for an inner product backward propagation primitive.

Public Functions

desc(const memory::desc &diff_src_desc, const memory::desc &weights_desc, const memory::desc
&diff_dst_desc)

Constructs a descriptor for an inner product backward propagation primitive.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• diff_src_desc – Memory descriptor for diff src.
• weights_desc – Memory descriptor for weights.

5.5. Primitives 131

oneAPI Specification, Release 1.1-rev-1

• diff_dst_desc – Memory descriptor for diff dst.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for an inner product backward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const
inner_product_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for an inner product backward propagation primitive.
Parameters

• adesc – Descriptor for an inner product backward propagation primitive.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for an inner product forward propagation primitive.

It is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, const
inner_product_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for an inner product backward propagation primitive.
Parameters

• adesc – Descriptor for an inner product backward propagation primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for an inner product forward propagation primitive.

It is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns Diff source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns Weights memory descriptor.
Returns A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns Diff destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff destination parameter.

struct dnnl::inner_product_backward_weights : public dnnl::primitive
Inner product weights gradient primitive.

5.5. Primitives 132

oneAPI Specification, Release 1.1-rev-1

Public Functions

inner_product_backward_weights()
Default constructor. Produces an empty object.

inner_product_backward_weights(const primitive_desc &pd)
Constructs an inner product weights gradient primitive.

Parameters pd – Primitive descriptor for an inner product weights gradient primitive.

struct desc
Descriptor for an inner product weights gradient primitive.

Public Functions

desc(const memory::desc &src_desc, const memory::desc &diff_weights_desc, const memory::desc
&diff_bias_desc, const memory::desc &diff_dst_desc)

Constructs a descriptor for an inner product descriptor weights update primitive with bias.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• src_desc – Memory descriptor for src.
• diff_weights_desc – Memory descriptor for diff weights.
• diff_bias_desc – Memory descriptor for diff bias.
• diff_dst_desc – Memory descriptor for diff dst.

desc(const memory::desc &src_desc, const memory::desc &diff_weights_desc, const memory::desc
&diff_dst_desc)

Constructs a descriptor for an inner product descriptor weights update primitive without bias.

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• src_desc – Memory descriptor for src.
• diff_weights_desc – Memory descriptor for diff weights.
• diff_dst_desc – Memory descriptor for diff dst.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for an inner product weights gradient primitive.

5.5. Primitives 133

oneAPI Specification, Release 1.1-rev-1

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const
inner_product_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for an inner product weights update primitive.
Parameters

• adesc – Descriptor for an inner product weights gradient primitive.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for an inner product forward propagation primitive.

It is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, const
inner_product_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for an inner product weights update primitive.
Parameters

• adesc – Descriptor for an inner product weights gradient primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for an inner product forward propagation primitive.

It is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc diff_weights_desc() const
Returns a diff weights memory descriptor.

Returns Diff weights memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff weights parameter.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns Diff destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff destination parameter.

memory::desc diff_bias_desc() const
Returns the diff bias memory descriptor.

Returns The diff bias memory descriptor.
Returns A zero memory descriptor of the primitive does not have a diff bias parameter.

5.5. Primitives 134

oneAPI Specification, Release 1.1-rev-1

5.5.9 Layer normalization

The layer normalization primitive performs a forward or backward layer normalization operation on a 2-5D data tensor.

The layer normalization operation performs normalization over the last logical axis of the data tensor and is defined by
the following formulas. We show formulas only for 3D data, which are straightforward to generalize to cases of higher
dimensions. Variable names follow the standard Conventions.

Forward

dst(𝑡, 𝑛, 𝑐) = 𝛾(𝑐) · src(𝑡, 𝑛, 𝑐)− 𝜇(𝑡, 𝑛)√︀
𝜎2(𝑡, 𝑛) + 𝜀

+ 𝛽(𝑐),

where

• 𝛾(𝑐), 𝛽(𝑐) are optional scale and shift for a channel (see the use_scaleshift flag),

• 𝜇(𝑡, 𝑛), 𝜎2(𝑡, 𝑛) are mean and variance (see use_global_stats flag), and

• 𝜀 is a constant to improve numerical stability.

Mean and variance are computed at runtime or provided by a user. When mean and variance are computed at runtime,
the following formulas are used:

• 𝜇(𝑡, 𝑛) = 1
𝐶

∑︀
𝑐

src(𝑡, 𝑛, 𝑐),

• 𝜎2(𝑡, 𝑛) = 1
𝐶

∑︀
𝑐

(src(𝑡, 𝑛, 𝑐)− 𝜇(𝑡, 𝑛))2.

The 𝛾(𝑐) and 𝛽(𝑐) tensors are considered learnable.

Difference Between Forward Training and Forward Inference

If mean and variance are computed at runtime (i.e., use_global_stats is not set), they become outputs for the prop-
agation kind forward_training (because they would be required during the backward propagation). Data layout for
mean and variance must be specified during initialization of the layer normalization descriptor by passing the memory
descriptor for statistics (e.g., by passing stat_desc in dnnl::layer_normalization_forward::desc::desc()).
Mean and variance are not exposed for the propagation kind forward_inference.

Backward

The backward propagation computes diff_src(𝑡, 𝑛, 𝑐), diff_𝛾(𝑐)*, and diff_𝛽(𝑐)* based on diff_dst(𝑡, 𝑛, 𝑐),
𝑠𝑟𝑐(𝑡, 𝑛, 𝑐), 𝜇(𝑡, 𝑛), 𝜎2(𝑡, 𝑛), 𝛾(𝑐)*, and 𝛽(𝑐)*.

The tensors marked with an asterisk are used only when the primitive is configured to use 𝛾(𝑐), and 𝛽(𝑐) (i.e.,
use_scaleshift is set).

5.5. Primitives 135

oneAPI Specification, Release 1.1-rev-1

Execution Arguments

Depending on the flags and propagation kind, the layer normalization primitive requires different inputs and outputs.
For clarity, a summary is shown below.

forward_inferenceforward_trainingbackward backward_data
none In: src Out: dst In: src Out:

dst, 𝜇, 𝜎2
In: diff_dst, src, 𝜇, 𝜎2 Out:
diff_src

Same as for
backward

use_global_stats In: src, 𝜇, 𝜎2

Out: dst
In: src, 𝜇, 𝜎2

Out: dst
In: diff_dst, src, 𝜇, 𝜎2 Out:
diff_src

Same as for
backward

use_scaleshift In: src, 𝛾, 𝛽
Out: dst

In: src, 𝛾, 𝛽
Out: dst, 𝜇, 𝜎2

In: diff_dst, src, 𝜇, 𝜎2, 𝛾, 𝛽 Out:
diff_src, diff_𝛾, diff_𝛽

Not sup-
ported

use_global_stats |
use_scaleshift

In: src, 𝜇, 𝜎2, 𝛾,
𝛽 Out: dst

In: src, 𝜇, 𝜎2, 𝛾,
𝛽 Out: dst

In: diff_dst, src, 𝜇, 𝜎2, 𝛾, 𝛽 Out:
diff_src, diff_𝛾, diff_𝛽

Not sup-
ported

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
𝛾, 𝛽 DNNL_ARG_SCALE_SHIFT
mean (𝜇) DNNL_ARG_MEAN
variance (𝜎) DNNL_ARG_VARIANCE
dst DNNL_ARG_DST
diff_dst DNNL_ARG_DIFF_DST
diff_src DNNL_ARG_DIFF_SRC
diff_𝛾, diff_𝛽 DNNL_ARG_DIFF_SCALE_SHIFT

Operation Details

1. The different flavors of the primitive are partially controlled by the flags parameter that is passed to the operation
descriptor initialization function (e.g., dnnl::layer_normalization_forward::desc::desc()). Multiple
flags can be combined using the bitwise OR operator (|).

2. For forward propagation, the mean and variance might be either computed at runtime (in which case they are
outputs of the primitive) or provided by a user (in which case they are inputs). In the latter case, a user must set
the use_global_stats flag. For the backward propagation, the mean and variance are always input parameters.

3. The memory format and data type for src and dst are assumed to be the same, and in the API they are typically
referred to as data (e.g., see data_desc in dnnl::layer_normalization_forward::desc::desc()). The same is true
for diff_src and diff_dst. The corresponding memory descriptors are referred to as diff_data_desc.

4. Both forward and backward propagation support in-place operations, meaning that src can be used as input and
output for forward propagation, and diff_dst can be used as input and output for backward propagation. In case
of an in-place operation, the original data will be overwritten. Note, however, that backward propagation requires
original src, hence the corresponding forward propagation should not be performed in-place.

5.5. Primitives 136

oneAPI Specification, Release 1.1-rev-1

Data Types Support

The layer normalization supports the following combinations of data types.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source / Destination Mean / Variance / ScaleShift
forward / backward f32 f32
forward f16 f32

Data Representation

Mean and Variance

The mean (𝜇) and variance (𝜎2) are separate tensors with number of dimensions equal to (𝑑𝑎𝑡𝑎_𝑛𝑑𝑖𝑚𝑠− 1) and size
(𝑑𝑎𝑡𝑎_𝑑𝑖𝑚[0], 𝑑𝑎𝑡𝑎_𝑑𝑖𝑚[1], ..., 𝑑𝑎𝑡𝑎_𝑑𝑖𝑚[𝑛𝑑𝑖𝑚𝑠− 2]).

The corresponding memory object can have an arbitrary memory format. Unless mean and variance are computed
at runtime and not exposed (i.e., propagation kind is forward_inference and use_global_stats is not set), the
user should provide a memory descriptor for statistics when initializing the layer normalization descriptor. For best
performance, it is advised to use the memory format that follows the data memory format; i.e., if the data format is tnc,
the best performance can be expected for statistics with the tn format and suboptimal for statistics with the nt format.

Scale and Shift

If used, the scale (𝛾) and shift (𝛽) are combined in a single 2D tensor of shape 2× 𝐶.

The format of the corresponding memory object must be nc (ab).

Source, Destination, and Their Gradients

The layer normalization primitive works with an arbitrary data tensor; however, it was designed for RNN data tensors
(i.e., nc, tnc, ldnc). Unlike CNN data tensors, RNN data tensors have a single feature dimension. Layer normaliza-
tion performs normalization over the last logical dimension (feature dimension for RNN tensors) across non-feature
dimensions.

The layer normalization primitive is optimized for the following memory formats:

Logical tensor Implementations optimized for memory formats
NC nc (ab)
TNC tnc (abc), ntc (bac)
LDNC ldnc (abcd)

5.5. Primitives 137

oneAPI Specification, Release 1.1-rev-1

API

struct dnnl::layer_normalization_forward : public dnnl::primitive
Layer normalization forward propagation primitive.

Public Functions

layer_normalization_forward()
Default constructor. Produces an empty object.

layer_normalization_forward(const primitive_desc &pd)
Constructs a layer normalization forward propagation primitive.

Parameters pd – Primitive descriptor for a layer normalization forward propagation primitive.

struct desc
Descriptor for a layer normalization forward propagation primitive.

Public Functions

desc(prop_kind aprop_kind, const memory::desc &data_desc, const memory::desc &stat_desc, float
epsilon, normalization_flags flags)

Constructs a descriptor for layer normalization forward propagation primitive.
Parameters

• aprop_kind – Propagation kind. Possible values are
dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.

• data_desc – Source and destination memory descriptor.
• stat_desc – Statistics memory descriptors.
• epsilon – Layer normalization epsilon parameter.
• flags – Layer normalization flags (dnnl::normalization_flags).

desc(prop_kind aprop_kind, const memory::desc &data_desc, float epsilon, normalization_flags flags)
Constructs a descriptor for layer normalization forward propagation primitive.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• data_desc – Source and destination memory descriptor.
• epsilon – Layer normalization epsilon parameter.
• flags – Layer normalization flags (dnnl::normalization_flags).

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a layer normalization forward propagation primitive.

5.5. Primitives 138

oneAPI Specification, Release 1.1-rev-1

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, bool allow_empty = false)
Constructs a primitive descriptor for a layer normalization forward propagation primitive.

Parameters
• adesc – Descriptor for a layer normalization forward propagation primitive.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, bool
allow_empty = false)

Constructs a primitive descriptor for a layer normalization forward propagation primitive.
Parameters

• adesc – Descriptor for a layer normalization forward propagation primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns Weights memory descriptor.
Returns A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns Workspace memory descriptor.
Returns A zero memory descriptor if the primitive does not require workspace parameter.

memory::desc mean_desc() const
Returns memory descriptor for mean.

Returns Memory descriptor for mean.

memory::desc variance_desc() const
Returns memory descriptor for variance.

Returns Memory descriptor for variance.

struct dnnl::layer_normalization_backward : public dnnl::primitive
Layer normalization backward propagation primitive.

5.5. Primitives 139

oneAPI Specification, Release 1.1-rev-1

Public Functions

layer_normalization_backward()
Default constructor. Produces an empty object.

layer_normalization_backward(const primitive_desc &pd)
Constructs a layer normalization backward propagation primitive.

Parameters pd – Primitive descriptor for a layer normalization backward propagation primitive.

struct desc
Descriptor for a layer normalization backward propagation primitive.

Public Functions

desc(prop_kind aprop_kind, const memory::desc &diff_data_desc, const memory::desc &data_desc,
const memory::desc &stat_desc, float epsilon, normalization_flags flags)

Constructs a descriptor for layer normalization backward propagation primitive.
Parameters

• aprop_kind – Propagation kind. Possible values are dnnl::prop_kind::backward_data
and dnnl::prop_kind::backward (diffs for all parameters are computed in this case).

• diff_data_desc – Diff source and diff destination memory descriptor.
• data_desc – Source memory descriptor.
• stat_desc – Statistics memory descriptors.
• epsilon – Layer normalization epsilon parameter.
• flags – Layer normalization flags (dnnl::normalization_flags).

desc(prop_kind aprop_kind, const memory::desc &diff_data_desc, const memory::desc &data_desc,
float epsilon, normalization_flags flags)

Constructs a descriptor for layer normalization backward propagation primitive.
Parameters

• aprop_kind – Propagation kind. Possible values are dnnl::prop_kind::backward_data
and dnnl::prop_kind::backward (diffs for all parameters are computed in this case).

• diff_data_desc – Diff source and diff destination memory descriptor.
• data_desc – Source memory descriptor.
• epsilon – Layer normalization epsilon parameter.
• flags – Layer normalization flags (dnnl::normalization_flags).

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a layer normalization backward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const
layer_normalization_forward::primitive_desc &hint_fwd_pd, bool allow_empty =
false)

Constructs a primitive descriptor for a layer normalization backward propagation primitive.
Parameters

• adesc – Descriptor for a layer normalization backward propagation primitive.
• aengine – Engine to use.

5.5. Primitives 140

oneAPI Specification, Release 1.1-rev-1

• hint_fwd_pd – Primitive descriptor for a layer normalization forward propagation prim-
itive. It is used as a hint for deciding which memory format to use.

• allow_empty – A flag signifying whether construction is allowed to fail without throw-
ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, const
layer_normalization_forward::primitive_desc &hint_fwd_pd, bool allow_empty =
false)

Constructs a primitive descriptor for a layer normalization backward propagation primitive.
Parameters

• adesc – Descriptor for a layer normalization backward propagation primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a layer normalization forward propagation prim-

itive. It is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns Weights memory descriptor.
Returns A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns Diff source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns Diff destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff destination parameter.

memory::desc diff_weights_desc() const
Returns a diff weights memory descriptor.

Returns Diff weights memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff weights parameter.

memory::desc mean_desc() const
Returns memory descriptor for mean.

Returns Memory descriptor for mean.

memory::desc variance_desc() const
Returns memory descriptor for variance.

Returns Memory descriptor for variance.

5.5. Primitives 141

oneAPI Specification, Release 1.1-rev-1

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns Workspace memory descriptor.
Returns A zero memory descriptor if the primitive does not require workspace parameter.

5.5.10 LogSoftmax

The logsoftmax primitive performs softmax along a particular axis on data with arbitrary dimensions followed by the
logarithm function. All other axes are treated as independent (batch).

In general form, the operation is defined by the following formulas. Variable names follow the standard Conventions.

Forward

The second form is used as more numerically stable:

dst(𝑜𝑢, 𝑐, 𝑖𝑛) = ln

(︃
𝑒src(𝑜𝑢,𝑐,𝑖𝑛)−𝜈(𝑜𝑢,𝑖𝑛)∑︀

𝑖𝑐
𝑒src(𝑜𝑢,𝑖𝑐,𝑖𝑛)−𝜈(𝑜𝑢,𝑖𝑛)

)︃
=

(︀
src(𝑜𝑢, 𝑐, 𝑖𝑛)− 𝜈(𝑜𝑢, 𝑖𝑛)

)︀
− ln

(︂∑︀
𝑖𝑐

𝑒src(𝑜𝑢,𝑖𝑐,𝑖𝑛)−𝜈(𝑜𝑢,𝑖𝑛)
)︂
,

where

• 𝑐 axis over which the logsoftmax computation is computed on,

• 𝑜𝑢 is the outermost index (to the left of logsoftmax axis),

• 𝑖𝑛 is the innermost index (to the right of logsoftmax axis), and

• 𝜈 is used to produce more accurate results and defined as:

𝜈(𝑜𝑢, 𝑖𝑛) = max
𝑖𝑐

src(𝑜𝑢, 𝑖𝑐, 𝑖𝑛)

Difference Between Forward Training and Forward Inference

There is no difference between the forward_training and forward_inference propagation kinds.

Backward

The backward propagation computes diff_src(𝑜𝑢, 𝑐, 𝑖𝑛), based on diff_dst(𝑜𝑢, 𝑐, 𝑖𝑛) and dst(𝑜𝑢, 𝑐, 𝑖𝑛).

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
dst DNNL_ARG_DST
diff_src DNNL_ARG_DIFF_SRC
diff_dst DNNL_ARG_DIFF_DST

5.5. Primitives 142

oneAPI Specification, Release 1.1-rev-1

Operation Details

Both forward and backward propagation support in-place operations, meaning that src can be used as input and output
for forward propagation, and diff_dst can be used as input and output for backward propagation. In case of in-place
operation, the original data will be overwritten.

Post-ops and Attributes

The logsoftmax primitive does not support any post-ops or attributes.

Data Type Support

The logsoftmax primitive supports the following combinations of data types.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source / Destination
forward / backward bf16, f32

Data Representation

Source, Destination, and Their Gradients

The logsoftmax primitive works with arbitrary data tensors. There is no special meaning associated with any logical
dimensions. However, the logsoftmax axis is typically referred to as channels (hence in formulas we use 𝑐).

API

struct dnnl::logsoftmax_forward : public dnnl::primitive
Logsoftmax forward propagation primitive.

Public Functions

logsoftmax_forward()
Default constructor. Produces an empty object.

logsoftmax_forward(const primitive_desc &pd)
Constructs a logsoftmax forward propagation primitive.

Parameters pd – Primitive descriptor for a logsoftmax forward propagation primitive.

struct desc
Descriptor for a logsoftmax forward propagation primitive.

5.5. Primitives 143

oneAPI Specification, Release 1.1-rev-1

Public Functions

desc()
Default constructor. Produces an empty object.

desc(prop_kind aprop_kind, const memory::desc &data_desc, int logsoftmax_axis)
Constructs a descriptor for a logsoftmax forward propagation primitive.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• data_desc – Source and destination memory descriptor.
• logsoftmax_axis – Axis over which softmax is computed.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a logsoftmax forward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, bool allow_empty = false)
Constructs a primitive descriptor for a logsoftmax forward propagation primitive.

Parameters
• adesc – descriptor for a logsoftmax forward propagation primitive.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, bool
allow_empty = false)

Constructs a primitive descriptor for a logsoftmax forward propagation primitive.
Parameters

• adesc – Descriptor for a logsoftmax forward propagation primitive.
• aengine – Engine to use.
• attr – Primitive attributes to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

struct dnnl::logsoftmax_backward : public dnnl::primitive
Logsoftmax backward propagation primitive.

5.5. Primitives 144

oneAPI Specification, Release 1.1-rev-1

Public Functions

logsoftmax_backward()
Default constructor. Produces an empty object.

logsoftmax_backward(const primitive_desc &pd)
Constructs a logsoftmax backward propagation primitive.

Parameters pd – Primitive descriptor for a logsoftmax backward propagation primitive.

struct desc
Descriptor for a logsoftmax backward propagation primitive.

Public Functions

desc()
Default constructor. Produces an empty object.

desc(const memory::desc &diff_data_desc, const memory::desc &data_desc, int logsoftmax_axis)
Constructs a descriptor for a logsoftmax backward propagation primitive.

Parameters
• diff_data_desc – Diff source and diff destination memory descriptors.
• data_desc – Destination memory descriptor.
• logsoftmax_axis – Axis over which softmax is computed.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a logsoftmax backward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const logsoftmax_forward::primitive_desc
&hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a logsoftmax backward propagation primitive.
Parameters

• adesc – Descriptor for a logsoftmax backward propagation primitive.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a logsoftmax forward propagation primitive. It

is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, const
logsoftmax_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a logsoftmax backward propagation primitive.
Parameters

• adesc – Descriptor for a logsoftmax backward propagation primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a logsoftmax forward propagation primitive. It

is used as a hint for deciding which memory format to use.

5.5. Primitives 145

oneAPI Specification, Release 1.1-rev-1

• allow_empty – A flag signifying whether construction is allowed to fail without throw-
ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns Diff source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc diff_dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

5.5.11 Local Response Normalization

The LRN primitive performs a forward or backward local response normalization operation defined by the following
formulas. Variable names follow the standard Conventions.

Forward

LRN across channels:

dst(𝑛, 𝑐, ℎ, 𝑤) =

⎧⎨⎩𝑘 +
𝛼

𝑛𝑙

(𝑛𝑙+1)/2−1∑︁
𝑖=−(𝑛𝑙−1)/2

(src(𝑛, 𝑐 + 𝑖, ℎ, 𝑤))2

⎫⎬⎭
−𝛽

· src(𝑛, 𝑐, ℎ, 𝑤),

LRN within channel:

dst(𝑛, 𝑐, ℎ, 𝑤) =

⎧⎨⎩𝑘 +
𝛼

𝑛𝑙

(𝑛𝑙+1)/2−1∑︁
𝑖=−(𝑛𝑙−1)/2

(𝑛𝑙+1)/2−1∑︁
𝑗=−(𝑛𝑙−1)/2

(src(𝑛, 𝑐, ℎ + 𝑖, 𝑤 + 𝑗))2

⎫⎬⎭
−𝛽

· src(𝑛, 𝑐, ℎ, 𝑤),

where 𝑛𝑙 is the local_size. Formulas are provided for 2D spatial data case.

Backward

The backward propagation computes diff_src(𝑛, 𝑐, ℎ, 𝑤), based on diff_dst(𝑛, 𝑐, ℎ, 𝑤) and src(𝑛, 𝑐, ℎ, 𝑤).

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
dst DNNL_ARG_DST
workspace DNNL_ARG_WORKSPACE
diff_src DNNL_ARG_DIFF_SRC
diff_dst DNNL_ARG_DIFF_DST

5.5. Primitives 146

oneAPI Specification, Release 1.1-rev-1

Operation Details

1. During training, LRN might or might not require a workspace on forward and backward passes. The behav-
ior is implementation specific. Optimized implementations typically require a workspace and use it to save
some intermediate results from the forward pass that accelerate computations on the backward pass. To check
whether a workspace is required, query the LRN primitive descriptor for the workspace. Success indicates that
the workspace is required and its description will be returned.

2. The memory format and data type for src and dst are assumed to be the same, and in the API are typically
referred to as data (e.g., see data_desc in dnnl::lrn_forward::desc::desc()). The same holds for diff_src and
diff_dst. The corresponding memory descriptors are referred to as diff_data_desc.

Data Type Support

The LRN primitive supports the following combinations of data types.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source / Destination
forward / backward f32, bf16
forward f16

Data Representation

Source, Destination, and Their Gradients

Like most other primitives, the LRN primitive expects the following tensors:

Spatial Source / Destination
0D 𝑁 × 𝐶
1D 𝑁 × 𝐶 ×𝑊
2D 𝑁 × 𝐶 ×𝐻 ×𝑊
3D 𝑁 × 𝐶 ×𝐷 ×𝐻 ×𝑊

The LRN primitive is optimized for the following memory formats:

Spatial Logical tensor Implementations optimized for memory formats
2D NCHW nchw (abcd), nhwc (acdb), optimized

Here optimized means the format chosen by the preceding compute-intensive primitive.

5.5. Primitives 147

oneAPI Specification, Release 1.1-rev-1

Post-ops and Attributes

The LRN primitive does not support any post-ops or attributes.

API

struct dnnl::lrn_forward : public dnnl::primitive
Local response normalization (LRN) forward propagation primitive.

Public Functions

lrn_forward()
Default constructor. Produces an empty object.

lrn_forward(const primitive_desc &pd)
Constructs an LRN forward propagation primitive.

Parameters pd – Primitive descriptor for an LRN forward propagation primitive.

struct desc
Descriptor for an LRN forward propagation primitive.

Public Functions

desc(prop_kind aprop_kind, algorithm aalgorithm, const memory::desc &data_desc, memory::dim
local_size, float alpha, float beta, float k = 1.f)

Constructs a descriptor for a LRN forward propagation primitive.
Parameters

• aprop_kind – Propagation kind. Possible values are
dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.

• aalgorithm – LRN algorithm kind: either dnnl::algorithm::lrn_across_channels, or
dnnl::algorithm::lrn_within_channel.

• data_desc – Source and destination memory descriptors.
• local_size – Regularization local size.
• alpha – The alpha regularization parameter.
• beta – The beta regularization parameter.
• k – The k regularization parameter.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for an LRN forward propagation primitive.

5.5. Primitives 148

oneAPI Specification, Release 1.1-rev-1

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, bool allow_empty = false)
Constructs a primitive descriptor for an LRN forward propagation primitive.

Parameters
• adesc – Descriptor for an LRN forward propagation primitive.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, bool
allow_empty = false)

Constructs a primitive descriptor for an LRN forward propagation primitive.
Parameters

• adesc – Descriptor for an LRN forward propagation primitive.
• aengine – Engine to use.
• attr – Primitive attributes to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns Workspace memory descriptor.
Returns A zero memory descriptor if the primitive does not require workspace parameter.

struct dnnl::lrn_backward : public dnnl::primitive
Local response normalization (LRN) backward propagation primitive.

Public Functions

lrn_backward()
Default constructor. Produces an empty object.

lrn_backward(const primitive_desc &pd)
Constructs an LRN backward propagation primitive.

Parameters pd – Primitive descriptor for an LRN backward propagation primitive.

struct desc
Descriptor for an LRN backward propagation primitive.

5.5. Primitives 149

oneAPI Specification, Release 1.1-rev-1

Public Functions

desc(algorithm aalgorithm, const memory::desc &data_desc, const memory::desc &diff_data_desc,
memory::dim local_size, float alpha, float beta, float k = 1.f)

Constructs a descriptor for an LRN backward propagation primitive.
Parameters

• aalgorithm – LRN algorithm kind: either dnnl::algorithm::lrn_across_channels, or
dnnl::algorithm::lrn_within_channel.

• diff_data_desc – Diff source and diff destination memory descriptor.
• data_desc – Source memory descriptor.
• local_size – Regularization local size.
• alpha – The alpha regularization parameter.
• beta – The beta regularization parameter.
• k – The k regularization parameter.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for an LRN backward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const lrn_forward::primitive_desc
&hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for an LRN backward propagation primitive.
Parameters

• adesc – Descriptor for an LRN backward propagation primitive.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for an LRN forward propagation primitive. It is

used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, const
lrn_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for an LRN backward propagation primitive.
Parameters

• adesc – Descriptor for an LRN backward propagation primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for an LRN forward propagation primitive. It is

used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc diff_src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

5.5. Primitives 150

oneAPI Specification, Release 1.1-rev-1

Returns Diff destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff destination parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns Workspace memory descriptor.
Returns A zero memory descriptor if the primitive does not require workspace parameter.

5.5.12 Matrix Multiplication

The matrix multiplication (MatMul) primitive computes the product of two 2D tensors with optional bias addition.
Variable names follow the standard Conventions.

dst(𝑚,𝑛) =

𝐾∑︁
𝑘=0

(src(𝑚, 𝑘) · weights(𝑘, 𝑛)) + bias(𝑚,𝑛)

The MatMul primitive also supports batching multiple independent matrix multiplication operations, in which case the
tensors must be 3D:

dst(𝑚𝑏,𝑚, 𝑛) =

𝐾∑︁
𝑘=0

(src(𝑚𝑏,𝑚, 𝑘) · weights(𝑚𝑏, 𝑘, 𝑛)) + bias(𝑚𝑏,𝑚, 𝑛)

The bias tensor is optional and supports implicit broadcast semantics: any of its dimensions can be 1 and the same
value would be used across the corresponding dimension. However, bias must have the same number of dimensions as
the dst.

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
weights DNNL_ARG_WEIGHTS
bias DNNL_ARG_BIAS
dst DNNL_ARG_DST

Operation Details

The MatMul primitive supports input and output tensors with run-time specified shapes and memory formats. The
run-time specified dimensions or strides are specified using the DNNL_RUNTIME_DIM_VAL wildcard value during the
primitive initialization and creation stage. At the execution stage, the user must pass fully specified memory objects so
that the primitive is able to perform the computations. Note that the less information about shapes or format is available
at the creation stage, the less performant execution will be. In particular, if the shape is not known at creation stage,
one cannot use the special format tag any to enable an implementation to choose the most appropriate memory format
for the corresponding input or output shapes. On the other hand, run-time specified shapes enable users to create a
primitive once and use it in different situations.

5.5. Primitives 151

oneAPI Specification, Release 1.1-rev-1

Data Types Support

The MatMul primitive supports the following combinations of data types for source, destination, weights, and bias
tensors.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Source Weights Destination Bias
f32 f32 f32 f32
f16 f16 f16 f16
bf16 bf16 bf16 bf16, f32
u8, s8 s8, u8 u8, s8, s32, f32 u8, s8, s32, f32

Data Representation

The MatMul primitive expects the following tensors:

Dims Source Weights Destination Bias (optional)
2D 𝑀 ×𝐾 𝐾 ×𝑁 𝑀 ×𝑁 (𝑀 or 1) ×(𝑁 or 1)
3D 𝑀𝐵 ×𝑀 ×𝐾 𝑀𝐵 ×𝐾 ×𝑁 𝑀𝐵 ×𝑀 ×𝑁 (𝑀𝐵 or 1) ×(𝑀 or 1) ×(𝑁 or 1)

The MatMul primitive is generally optimized for the case in which memory objects use plain memory formats (with
some restrictions; see the table below). However, it is recommended to use the placeholder memory format any if
an input tensor is reused across multiple executions. In this case, the primitive will set the most appropriate memory
format for the corresponding input tensor.

The table below shows the combinations of memory formats for which the MatMul primitive is optimized. The memory
format of the destination tensor should always be ab for the 2D case and abc for the 3D one.

Dims Logical tensors MatMul is optimized for the following memory for-
mats

2D Source: 𝑀 ×𝐾, Weights: 𝐾 ×𝑁 Source: ab or ba, Weights: ab or ba
3D Source: 𝑀𝐵×𝑀×𝐾, Weights: 𝑀𝐵×𝐾×𝑁 Source: abc or acb, Weights: abc or acb

Attributes and Post-ops

Attributes and post-ops enable modifying the behavior of the MatMul primitive. The following attributes and post-ops
are supported:

Type Operation Description Restrictions
At-
tribute

Output
scales

Scales the result by given scale factor(s)

At-
tribute

Zero points Sets zero point(s) for the corresponding tensors Int8 computations
only

Post-op Eltwise Applies an elementwise operation to the result
Post-op Sum Adds the operation result to the destination tensor instead of

overwriting it

5.5. Primitives 152

oneAPI Specification, Release 1.1-rev-1

To facilitate dynamic quantization, the primitive should support run-time output scales. That means a user could
configure attributes with output scales set to the DNNL_RUNTIME_F32_VAL wildcard value instead of the actual scales,
if the scales are not known at the primitive descriptor creation stage. In this case, the user must provide the scales as
an additional input memory object with argument DNNL_ARG_ATTR_OUTPUT_SCALES during the execution stage.

Similarly to run-time output scales, the primitive supports run-time zero points. The wildcard value for zero points
is DNNL_RUNTIME_S32_VAL. During the execution stage, the corresponding memory object needs to be passed in the
argument with index set to (DNNL_ARG_ATTR_ZERO_POINTS | DNNL_ARG_${MEMORY}). For instance, source tensor
zero points memory argument would be passed with index (DNNL_ARG_ATTR_ZERO_POINTS | DNNL_ARG_SRC).

API

struct dnnl::matmul : public dnnl::primitive
Matrix multiplication (matmul) primitive.

Public Functions

matmul()
Default constructor. Produces an empty object.

matmul(const primitive_desc &pd)
Constructs a matmul primitive.

Parameters pd – Primitive descriptor for a matmul primitive.

struct desc
Descriptor for a matmul primitive.

Public Functions

desc(const memory::desc &src_desc, const memory::desc &weights_desc, const memory::desc
&dst_desc)

Constructs a descriptor for a matmul primitive.
Parameters

• src_desc – Memory descriptor for source (matrix A).
• weights_desc – Memory descriptor for weights (matrix B).
• dst_desc – Memory descriptor for destination (matrix C).

desc(const memory::desc &src_desc, const memory::desc &weights_desc, const memory::desc
&bias_desc, const memory::desc &dst_desc)

Constructs a descriptor for a matmul primitive.
Parameters

• src_desc – Memory descriptor for source (matrix A).
• weights_desc – Memory descriptor for weights (matrix B).
• dst_desc – Memory descriptor for destination (matrix C).
• bias_desc – Memory descriptor for bias.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a matmul primitive.

5.5. Primitives 153

oneAPI Specification, Release 1.1-rev-1

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, bool allow_empty = false)
Constructs a primitive descriptor for a matmul primitive.

Parameters
• adesc – Descriptor for a matmul primitive.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, bool
allow_empty = false)

Constructs a primitive descriptor for a matmul primitive.
Parameters

• adesc – Descriptor for a matmul primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc weights_desc() const
Returns a weights memory descriptor.

Returns Weights memory descriptor.
Returns A zero memory descriptor if the primitive does not have a weights parameter.

memory::desc bias_desc() const
Returns the bias memory descriptor.

Returns The bias memory descriptor.
Returns A zero memory descriptor if the primitive does not have a bias parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

5.5.13 Pooling

The pooling primitive performs forward or backward max or average pooling operation on 1D, 2D, or 3D spatial data.

The pooling operation is defined by the following formulas. We show formulas only for 2D spatial data which are
straightforward to generalize to cases of higher and lower dimensions. Variable names follow the standard Conventions.

5.5. Primitives 154

oneAPI Specification, Release 1.1-rev-1

Forward

Max pooling:

dst(𝑛, 𝑐, 𝑜ℎ, 𝑜𝑤) = max
𝑘ℎ,𝑘𝑤

(src(𝑛, 𝑐, 𝑜ℎ · 𝑆𝐻 + 𝑘ℎ− 𝑃𝐻𝐿, 𝑜𝑤 · 𝑆𝑊 + 𝑘𝑤 − 𝑃𝑊𝐿))

Average pooling:

dst(𝑛, 𝑐, 𝑜ℎ, 𝑜𝑤) =
1

𝐷𝐸𝑁𝑂𝑀

∑︁
𝑘ℎ,𝑘𝑤

src(𝑛, 𝑐, 𝑜ℎ · 𝑆𝐻 + 𝑘ℎ− 𝑃𝐻𝐿, 𝑜𝑤 · 𝑆𝑊 + 𝑘𝑤 − 𝑃𝑊𝐿)

Here output spatial dimensions are calculated similarly to how they are done for Convolution and Deconvolution.

Average pooling supports two algorithms:

• pooling_avg_include_padding, in which case 𝐷𝐸𝑁𝑂𝑀 = 𝐾𝐻 ·𝐾𝑊 ,

• pooling_avg_exclude_padding, in which case 𝐷𝐸𝑁𝑂𝑀 equals to the size of overlap between an averaging
window and images.

Difference Between Forward Training and Forward Inference

Max pooling requires a workspace for the forward_training propagation kind, and does not require it for
forward_inference (see details below).

Backward

The backward propagation computes diff_src(𝑛, 𝑐, ℎ, 𝑤), based on diff_dst(𝑛, 𝑐, ℎ, 𝑤) and, in case of max pooling,
workspace.

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
dst DNNL_ARG_DST
workspace DNNL_ARG_WORKSPACE
diff_src DNNL_ARG_DIFF_SRC
diff_dst DNNL_ARG_DIFF_DST

Operation Details

1. During training, max pooling requires a workspace on forward (forward_training) and backward passes to
save indices where a maximum was found. The workspace format is opaque, and the indices cannot be restored
from it. However, one can use backward pooling to perform up-sampling (used in some detection topologies).
The workspace can be created via dnnl::pooling_forward::primitive_desc::workspace_desc().

2. A user can use memory format tag any for dst memory descriptor when creating pooling forward propagation.
The library would derive the appropriate format from the src memory descriptor. However, the src itself must
be defined. Similarly, a user can use memory format tag any for the diff_srcmemory descriptor when creating
pooling backward propagation.

5.5. Primitives 155

oneAPI Specification, Release 1.1-rev-1

Data Type Support

The pooling primitive supports the following combinations of data types.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source / Destination Accumulation data type (used for average pooling only)
forward / backward f32, bf16 f32
forward f16 f16
forward s8, u8, s32 s32

Data Representation

Source, Destination, and Their Gradients

Like other CNN primitives, the pooling primitive expects data to be an 𝑁 × 𝐶 ×𝑊 tensor for the 1D spatial case, an
𝑁 × 𝐶 ×𝐻 ×𝑊 tensor for the 2D spatial case, and an 𝑁 × 𝐶 ×𝐷 ×𝐻 ×𝑊 tensor for the 3D spatial case.

The pooling primitive is optimized for the following memory formats:

Spatial Logical tensor Data type Implementations optimized for memory formats
1D NCW f32 ncw (abc), nwc (acb), optimized^
1D NCW s32, s8, u8 nwc (acb), optimized^
2D NCHW f32 nchw (abcd), nhwc (acdb), optimized^
2D NCHW s32, s8, u8 nhwc (acdb), optimized^
3D NCDHW f32 ncdhw (abcde), ndhwc (acdeb), optimized^
3D NCDHW s32, s8, u8 ndhwc (acdeb), optimized^

Here optimized^ means the format that comes out of any preceding compute-intensive primitive.

Post-ops and Attributes

The pooling primitive does not support any post-ops or attributes.

API

struct dnnl::pooling_forward : public dnnl::primitive
Pooling forward propagation primitive.

5.5. Primitives 156

oneAPI Specification, Release 1.1-rev-1

Public Functions

pooling_forward()
Default constructor. Produces an empty object.

pooling_forward(const primitive_desc &pd)
Constructs a pooling forward propagation primitive.

Parameters pd – Primitive descriptor for a pooling forward propagation primitive.

struct desc
Descriptor for a pooling forward propagation primitive.

Public Functions

desc(prop_kind aprop_kind, algorithm aalgorithm, const memory::desc &src_desc, const memory::desc
&dst_desc, const memory::dims &strides, const memory::dims &kernel, const memory::dims
&padding_l, const memory::dims &padding_r)

Constructs a descriptor for pooling forward propagation primitive.

Arrays strides, kernel, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – Pooling algorithm kind: either dnnl::algorithm::pooling_max,

dnnl::algorithm::pooling_avg_include_padding, or dnnl::algorithm::pooling_avg
(same as dnnl::algorithm::pooling_avg_exclude_padding).

• src_desc – Source memory descriptor.
• dst_desc – Destination memory descriptor.
• strides – Vector of strides for spatial dimension.
• kernel – Vector of kernel spatial dimensions.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a pooling forward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, bool allow_empty = false)
Constructs a primitive descriptor for a pooling forward propagation primitive.

Parameters
• adesc – Descriptor for a pooling forward propagation primitive.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

5.5. Primitives 157

oneAPI Specification, Release 1.1-rev-1

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, bool
allow_empty = false)

Constructs a primitive descriptor for a pooling forward propagation primitive.
Parameters

• adesc – Descriptor for a pooling forward propagation primitive.
• aengine – Engine to use.
• attr – Primitive attributes to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns Workspace memory descriptor.
Returns A zero memory descriptor if the primitive does not require workspace parameter.

struct dnnl::pooling_backward : public dnnl::primitive
Pooling backward propagation primitive.

Public Functions

pooling_backward()
Default constructor. Produces an empty object.

pooling_backward(const primitive_desc &pd)
Constructs a pooling backward propagation primitive.

Parameters pd – Primitive descriptor for a pooling backward propagation primitive.

struct desc
Descriptor for a pooling backward propagation primitive.

Public Functions

desc(algorithm aalgorithm, const memory::desc &diff_src_desc, const memory::desc &diff_dst_desc,
const memory::dims &strides, const memory::dims &kernel, const memory::dims &padding_l,
const memory::dims &padding_r)

Constructs a descriptor for pooling backward propagation primitive.

Arrays strides, kernel, padding_l, and padding_r contain values for spatial dimensions only
and hence must have the same number of elements as there are spatial dimensions. The order of values
is the same as in the tensor: depth (for 3D tensors), height (for 3D and 2D tensors), and width.

Parameters

5.5. Primitives 158

oneAPI Specification, Release 1.1-rev-1

• aalgorithm – Pooling algorithm kind: either dnnl::algorithm::pooling_max,
dnnl::algorithm::pooling_avg_include_padding, or dnnl::algorithm::pooling_avg
(same as dnnl::algorithm::pooling_avg_exclude_padding).

• diff_src_desc – Diff source memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.
• strides – Vector of strides for spatial dimension.
• kernel – Vector of kernel spatial dimensions.
• padding_l – Vector of padding values for low indices for each spatial dimension
([[front,] top,] left).

• padding_r – Vector of padding values for high indices for each spatial dimension
([[back,] bottom,] right).

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a pooling backward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const pooling_forward::primitive_desc
&hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a pooling backward propagation primitive.
Parameters

• adesc – Descriptor for a pooling backward propagation primitive.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a pooling forward propagation primitive. It is

used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, const
pooling_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a pooling backward propagation primitive.
Parameters

• adesc – Descriptor for a pooling backward propagation primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a pooling forward propagation primitive. It is

used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc diff_src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns Diff destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff destination parameter.

5.5. Primitives 159

oneAPI Specification, Release 1.1-rev-1

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns Workspace memory descriptor.
Returns A zero memory descriptor if the primitive does not require workspace parameter.

5.5.14 Reorder

A primitive to copy data between two memory objects. This primitive is typically used to change the way that the data
is laid out in memory.

The reorder primitive copies data between different memory formats but does not change the tensor from mathematical
perspective. Variable names follow the standard Conventions.

dst(𝑥) = src(𝑥)

for 𝑥 = (𝑥0, . . . , 𝑥𝑛).

As described in Introduction in order to achieve the best performance some primitives (such as convolution) require
special memory format which is typically referred to as an optimized memory format. The optimized memory format
may match or may not match memory format that data is currently kept in. In this case a user can use reorder primitive
to copy (reorder) the data between the memory formats.

Using the attributes and post-ops users can also use reorder primitive to quantize the data (and if necessary change the
memory format simultaneously).

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_FROM
dst DNNL_ARG_TO

Operation Details

1. The reorder primitive requires the source and destination tensors to have the same shape. Implicit broadcasting
is not supported.

2. While in most of the cases the reorder should be able to handle arbitrary source and destination memory formats
and data types, it might happen than some combinations are not implemented. For instance:

• Reorder implementations between weights in non-plain memory formats might be limited (but if encoun-
tered in real practice should be treated as a bug and reported to oneDNN team);

• Weights in one Winograd format cannot be reordered to the weights of the other Winograd format;

• Quantized weights for convolution with #dnnl_s8 source data type cannot be dequantized back to the
#dnnl_f32 data type;

3. To alleviate the problem a user may rely on fact that the reorder from original plain memory format and user’s
data type to the optimized format with chosen data type should be always implemented.

5.5. Primitives 160

oneAPI Specification, Release 1.1-rev-1

Data Types Support

The reorder primitive supports arbitrary data types for the source and destination.

When converting the data from one data type to a smaller one saturation is used. For instance:

reorder(src={1024, data_type=f32}, dst={, data_type=s8})
// dst == {127}

reorder(src={-124, data_type=f32}, dst={, data_type=u8})
// dst == {0}

Data Representation

The reorder primitive works with arbitrary data tensors. There is no special meaning associated with any logical
dimensions.

Post-ops and Attributes

The reorder primitive should support the following attributes and post-ops:

Type Operation Description Restric-
tions

At-
tribute

Output
scales

Scales the result by given scale factor(s)

Post-op Sum Adds the operation result to the destination tensor instead of overwrit-
ing it

For instance, the following pseudo-code

reorder(
src = {dims={N, C, H, W}, data_type=dt_src, memory_format=fmt_src},
dst = {dims={N, C, H, W}, data_type=dt_dst, memory_format=fmt_dst},
attr ={

output_scale=alpha,
post-ops = { sum={scale=beta} },

})

would lead to the following operation:

dst(𝑥) = 𝛼 · src(𝑥) + 𝛽 · dst(𝑥)

Note: The intermediate operations are being done using single precision floating point data type.

5.5. Primitives 161

oneAPI Specification, Release 1.1-rev-1

API

struct dnnl::reorder : public dnnl::primitive
Reorder primitive.

Public Functions

reorder()
Default constructor. Produces an empty object.

reorder(const primitive_desc &pd)
Constructs a reorder primitive.

Parameters pd – Primitive descriptor for reorder primitive.

reorder(const memory &src, const memory &dst, const primitive_attr &attr = primitive_attr())
Constructs a reorder primitive that would reorder data between memory objects having the same memory
descriptors as memory objects src and dst.

Parameters
• src – Source memory object.

• dst – Destination memory object.

• attr – Primitive attributes to use (optional).

void execute(const stream &astream, memory &src, memory &dst) const
Executes the reorder primitive.

Parameters
• astream – Stream object. The stream must belong to the same engine as the primitive.

• src – Source memory object.

• dst – Destination memory object.

struct primitive_desc : public dnnl::primitive_desc_base
Primitive descriptor for a reorder primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const engine &src_engine, const memory::desc &src_md, const engine &dst_engine,
const memory::desc &dst_md, const primitive_attr &attr = primitive_attr(), bool
allow_empty = false)

Constructs a primitive descriptor for reorder primitive.

Note: If allow_empty is true, the constructor does not throw if a primitive descriptor cannot be
created.

Parameters
• src_engine – Engine on which the source memory object will be located.
• src_md – Source memory descriptor.

5.5. Primitives 162

oneAPI Specification, Release 1.1-rev-1

• dst_engine – Engine on which the destination memory object will be located.
• dst_md – Destination memory descriptor.
• attr – Primitive attributes to use (optional).
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const memory &src, const memory &dst, const primitive_attr &attr = primitive_attr(),
bool allow_empty = false)

Constructs a primitive descriptor for reorder primitive.
Parameters

• src – Source memory object. It is used to obtain the source memory descriptor and
engine.

• dst – Destination memory object. It is used to obtain the destination memory descriptor
and engine.

• attr – Primitive attributes to use (optional).
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

engine get_src_engine() const
Returns the engine on which the source memory is allocated.

Returns The engine on which the source memory is allocated.

engine get_dst_engine() const
Returns the engine on which the destination memory is allocated.

Returns The engine on which the destination memory is allocated.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

5.5.15 Resampling

The resampling primitive computes forward or backward resampling operation on 1D, 2D, or 3D spatial data. Resam-
pling performs spatial scaling of original tensor using one of the supported interpolation algorithms:

• Nearest Neighbor

• Linear (or Bilinear for 2D spatial tensor, Trilinear for 3D spatial tensor).

Resampling operation is defined by the source tensor and scaling factors in each spatial dimension. Upsampling and
downsampling are the alternative terms for resampling that are used when all scaling factors are greater (upsampling)
or less (downsampling) than one.

The resampling operation is defined by the following formulas. We show formulas only for 2D spatial data which are
straightforward to generalize to cases of higher and lower dimensions. Variable names follow the standard Conventions.

Let src and dst be 𝑁 ×𝐶 × 𝐼𝐻 × 𝐼𝑊 and 𝑁 ×𝐶 ×𝑂𝐻 ×𝑂𝑊 tensors respectively. Let 𝐹ℎ = 𝑂𝐻
𝐼𝐻 and 𝐹𝑤 = 𝑂𝑊

𝐼𝑊
define scaling factors in each spatial dimension.

The following formulas show how oneDNN computes resampling for nearest neighbor and bilinear interpolation meth-
ods. To further simplify the formulas, we assume the following:

5.5. Primitives 163

oneAPI Specification, Release 1.1-rev-1

• src(𝑛, 𝑖𝑐, 𝑖ℎ, 𝑖𝑤) = 0 if 𝑖ℎ < 0 or 𝑖𝑤 < 0,

• src(𝑛, 𝑖𝑐, 𝑖ℎ, 𝑖𝑤) = src(𝑛, 𝑖𝑐, 𝐼𝐻 − 1, 𝑖𝑤) if 𝑖ℎ ≥ 𝐼𝐻 ,

• src(𝑛, 𝑖𝑐, 𝑖ℎ, 𝑖𝑤) = src(𝑛, 𝑖𝑐, 𝑖ℎ, 𝐼𝑊 − 1) if 𝑖𝑤 ≥ 𝐼𝑊 .

Forward

Nearest Neighbor Resampling

dst(𝑛, 𝑐, 𝑜ℎ, 𝑜𝑤) = src(𝑛, 𝑐, 𝑖ℎ, 𝑖𝑤)

where

• 𝑖ℎ = [𝑜ℎ+0.5
𝐹ℎ

− 0.5],

• 𝑖𝑤 = [𝑜𝑤+0.5
𝐹𝑤

− 0.5].

Bilinear Resampling

dst(𝑛, 𝑐, 𝑜ℎ, 𝑜𝑤) = src(𝑛, 𝑐, 𝑖ℎ0, 𝑖𝑤0) ·𝑊𝑖ℎ ·𝑊𝑖𝑤+

src(𝑛, 𝑐, 𝑖ℎ1, 𝑖𝑤0) · (1−𝑊𝑖ℎ) ·𝑊𝑖𝑤+

src(𝑛, 𝑐, 𝑖ℎ0, 𝑖𝑤1) ·𝑊𝑖ℎ · (1−𝑊𝑖𝑤)+

src(𝑛, 𝑐, 𝑖ℎ1, 𝑖𝑤1) · (1−𝑊𝑖ℎ) · (1−𝑊𝑖𝑤)

where

• 𝑖ℎ0 =
⌊︁
𝑜ℎ+0.5

𝐹ℎ
− 0.5

⌋︁
,

• 𝑖ℎ1 =
⌈︁
𝑜ℎ+0.5

𝐹ℎ
− 0.5

⌉︁
,

• 𝑖𝑤0 =
⌊︁
𝑜𝑤+0.5

𝐹𝑤
− 0.5

⌋︁
,

• 𝑖𝑤1 =
⌈︁
𝑜𝑤+0.5

𝐹𝑤
− 0.5

⌉︁
,

• 𝑊𝑖ℎ = 𝑜ℎ+0.5
𝐹ℎ

− 0.5− 𝑖ℎ0,

• 𝑊𝑖𝑤 = 𝑜𝑤+0.5
𝐹𝑤

− 0.5− 𝑖𝑤0.

Difference Between Forward Training and Forward Inference

There is no difference between the forward_training and forward_inference propagation kinds.

5.5. Primitives 164

oneAPI Specification, Release 1.1-rev-1

Backward

The backward propagation computes diff_src based on diff_dst.

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
dst DNNL_ARG_DST
diff_src DNNL_ARG_DIFF_SRC
diff_dst DNNL_ARG_DIFF_DST

Operation Details

1. Resampling implementation supports data with arbitrary data tag (nchw, nhwc, etc.) but memory tags for src
and dst are expected to be the same. Resampling primitive supports dst and diff_src memory tag any and
can define destination format based on source format.

2. Resampling descriptor can be created by specifying the source and destination memory descriptors, only the
source descriptor and floating point factors, or the source and destination memory descriptors and factors. In
case when user does not provide the destination descriptor, the destination dimensions are deduced using the
factors: 𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠𝑖𝑧𝑒 =

⌊︁
𝑖𝑛𝑝𝑢𝑡_𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠𝑖𝑧𝑒

𝐹

⌋︁
.

Note: Resampling algorithm uses factors as defined by the relation 𝐹 = 𝑜𝑢𝑡𝑝𝑢𝑡_𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠𝑖𝑧𝑒
𝑖𝑛𝑝𝑢𝑡_𝑠𝑝𝑎𝑡𝑖𝑎𝑙_𝑠𝑖𝑧𝑒 that do not necessarily

equal to the ones passed by the user.

Data Types Support

Resampling primitive supports the following combination of data types for source and destination memory objects.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source / Destination
forward / backward f32, bf16
forward f16, s8, u8

5.5. Primitives 165

oneAPI Specification, Release 1.1-rev-1

Post-ops and Attributes

The resampling primitive does not support any post-ops or attributes.

API

struct dnnl::resampling_forward : public dnnl::primitive
Resampling forward propagation.

Public Functions

resampling_forward()
Default constructor. Produces an empty object.

resampling_forward(const primitive_desc &pd)
Constructs a resampling forward propagation primitive.

Parameters pd – Primitive descriptor for a resampling forward propagation primitive.

struct desc
Descriptor for resampling forward propagation.

Public Functions

desc(prop_kind aprop_kind, algorithm aalgorithm, const memory::desc &src_desc, const memory::desc
&dst_desc)

Constructs a descriptor for a resampling forward propagation primitive using source and destination
memory descriptors.

Note: The destination memory descriptor may be initialized with dnnl::memory::format_tag::any
value of format_tag.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – resampling algorithm kind: either dnnl::algorithm::resampling_nearest,

or dnnl::algorithm::resampling_linear
• src_desc – Source memory descriptor.
• dst_desc – Destination memory descriptor.

desc(prop_kind aprop_kind, algorithm aalgorithm, const std::vector<float> &factors, const
memory::desc &src_desc)

Constructs a descriptor for a resampling forward propagation primitive using source memory descrip-
tor and factors.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – resampling algorithm kind: either dnnl::algorithm::resampling_nearest,

or dnnl::algorithm::resampling_linear
• factors – Vector of scaling factors for spatial dimension.
• src_desc – Source memory descriptor.

5.5. Primitives 166

oneAPI Specification, Release 1.1-rev-1

desc(prop_kind aprop_kind, algorithm aalgorithm, const std::vector<float> &factors, const
memory::desc &src_desc, const memory::desc &dst_desc)

Constructs a descriptor for a resampling forward propagation primitive.

Note: The destination memory descriptor may be initialized with dnnl::memory::format_tag::any
value of format_tag.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• aalgorithm – resampling algorithm kind: either dnnl::algorithm::resampling_nearest,

or dnnl::algorithm::resampling_linear
• factors – Vector of scaling factors for spatial dimension.
• src_desc – Source memory descriptor.
• dst_desc – Destination memory descriptor.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a resampling forward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, bool allow_empty = false)
Constructs a primitive descriptor for a resampling forward propagation primitive.

Parameters
• adesc – Descriptor for a resampling forward propagation primitive.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, bool
allow_empty = false)

Constructs a primitive descriptor for a resampling forward propagation primitive.
Parameters

• adesc – Descriptor for a resampling forward propagation primitive.
• aengine – Engine to use.
• attr – Primitive attributes to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

5.5. Primitives 167

oneAPI Specification, Release 1.1-rev-1

struct dnnl::resampling_backward : public dnnl::primitive
Resampling backward propagation primitive.

Public Functions

resampling_backward()
Default constructor. Produces an empty object.

resampling_backward(const primitive_desc &pd)
Constructs a resampling backward propagation primitive.

Parameters pd – Primitive descriptor for a resampling backward propagation primitive.

struct desc
Descriptor for a resampling backward propagation primitive.

Public Functions

desc(algorithm aalgorithm, const memory::desc &diff_src_desc, const memory::desc &diff_dst_desc)
Constructs a descriptor for a resampling backward propagation primitive using source and destination
memory descriptors.

Parameters
• aalgorithm – resampling algorithm kind: either dnnl::algorithm::resampling_nearest,

or dnnl::algorithm::resampling_linear
• diff_src_desc – Diff source memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.

desc(algorithm aalgorithm, const std::vector<float> &factors, const memory::desc &diff_src_desc, const
memory::desc &diff_dst_desc)

Constructs a descriptor for resampling backward propagation primitive.
Parameters

• aalgorithm – resampling algorithm kind: either dnnl::algorithm::resampling_nearest,
or dnnl::algorithm::resampling_linear

• factors – Vector of scaling factors for spatial dimension.
• diff_src_desc – Diff source memory descriptor.
• diff_dst_desc – Diff destination memory descriptor.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for resampling backward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const resampling_forward::primitive_desc
&hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a resampling backward propagation primitive.
Parameters

• adesc – Descriptor for a resampling backward propagation primitive.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a resampling forward propagation primitive. It

is used as a hint for deciding which memory format to use.

5.5. Primitives 168

oneAPI Specification, Release 1.1-rev-1

• allow_empty – A flag signifying whether construction is allowed to fail without throw-
ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, const
resampling_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a resampling backward propagation primitive.
Parameters

• adesc – Descriptor for a resampling backward propagation primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a resampling forward propagation primitive. It

is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns Diff source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns Diff destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff destination parameter.

5.5.16 RNN

The RNN primitive computes a stack of unrolled recurrent cells, as depicted in Figure 1. bias, src_iter and dst_iter are
optional parameters. If not provided, bias and src_iter default to 0. Variable names follow the standard Conventions.

The RNN primitive supports four modes for evaluation direction:

• left2right will process the input data timestamps by increasing order,

• right2left will process the input data timestamps by decreasing order,

• bidirectional_concat will process all the stacked layers from left2right and from right2left indepen-
dently, and will concatenate the output in dst_layer over the channel dimension,

• bidirectional_sum will process all the stacked layers from left2right and from right2left indepen-
dently, and will sum the two outputs to dst_layer.

5.5. Primitives 169

oneAPI Specification, Release 1.1-rev-1

Even though the RNN primitive supports passing a different number of channels for src_layer, src_iter, dst_layer,
and dst_iter, we always require the following conditions in order for the dimension to be consistent:

• 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(dst_layer) = 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(dst_iter),

• when 𝑇 > 1, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(src_iter) = 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(dst_iter),

• when 𝐿 > 1, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(src_layer) = 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(dst_layer),

• when using the bidirectional_concat direction, 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(dst_layer) = 2 * 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(dst_iter).

The general formula for the execution of a stack of unrolled recurrent cells depends on the current iteration of the
previous layer (ℎ𝑡,𝑙−1 and 𝑐𝑡,𝑙−1) and the previous iteration of the current layer (ℎ𝑡−1,𝑙). Here is the exact equation for
non-LSTM cells:

ℎ𝑡,𝑙 = 𝐶𝑒𝑙𝑙(ℎ𝑡,𝑙−1, ℎ𝑡−1,𝑙)

where 𝑡, 𝑙 are the indices of the timestamp and the layer of the cell being executed.

And here is the equation for LSTM cells:

(ℎ𝑡,𝑙, 𝑐𝑡,𝑙) = 𝐶𝑒𝑙𝑙(ℎ𝑡,𝑙−1, ℎ𝑡−1,𝑙, 𝑐𝑡−1,𝑙)

where 𝑡, 𝑙 are the indices of the timestamp and the layer of the cell being executed.

Cell Functions

The RNN API provides four cell functions:

• Vanilla RNN , a single-gate recurrent cell,

• LSTM, a four-gate long short-term memory cell,

• GRU, a three-gate gated recurrent unit cell,

• Linear-before-reset GRU, a three-gate recurrent unit cell with the linear layer before the reset gate.

Vanilla RNN

A single-gate recurrent cell initialized with dnnl::vanilla_rnn_forward::desc or
dnnl::vanilla_rnn_forward::desc as in the following example.

auto vanilla_rnn_desc = dnnl::vanilla_rnn_forward::desc(
aprop, activation, direction, src_layer_desc, src_iter_desc,
weights_layer_desc, weights_iter_desc, bias_desc,
dst_layer_desc, dst_iter_desc);

The Vanilla RNN cell should support the ReLU, Tanh and Sigmoid activation functions. The following equations
defines the mathematical operation performed by the Vanilla RNN cell for the forward pass:

𝑎𝑡 = 𝑊 · ℎ𝑡,𝑙−1 + 𝑈 · ℎ𝑡−1,𝑙 + 𝐵

ℎ𝑡 = 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛(𝑎𝑡)

5.5. Primitives 170

oneAPI Specification, Release 1.1-rev-1

LSTM

LSTM (or Vanilla LSTM)

A four-gate long short-term memory recurrent cell initialized with dnnl::lstm_forward::desc or
dnnl::lstm_backward::desc as in the following example.

auto lstm_desc = dnnl::lstm_forward::desc(
aprop, direction, src_layer_desc, src_iter_h_desc, src_iter_c_desc,
weights_layer_desc, weights_iter_desc, bias_desc, dst_layer_desc,
dst_iter_h_desc, dst_iter_c_desc);

Note that for all tensors with a dimension depending on the gates number, we implicitly require the order of these gates
to be 𝑖, 𝑓 , 𝑐, and 𝑜. The following equation gives the mathematical description of these gates and output for the forward
pass:

𝑖𝑡 = 𝜎(𝑊𝑖 · ℎ𝑡,𝑙−1 + 𝑈𝑖 · ℎ𝑡−1,𝑙 + 𝐵𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓 · ℎ𝑡,𝑙−1 + 𝑈𝑓 · ℎ𝑡−1,𝑙 + 𝐵𝑓)

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 · ℎ𝑡,𝑙−1 + 𝑈𝑐 · ℎ𝑡−1,𝑙 + 𝐵𝑐)

𝑐𝑡 = 𝑓𝑡 * 𝑐𝑡−1 + 𝑖𝑡 * 𝑐𝑡

𝑜𝑡 = 𝜎(𝑊𝑜 · ℎ𝑡,𝑙−1 + 𝑈𝑜 · ℎ𝑡−1,𝑙 + 𝐵𝑜)

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑐𝑡) * 𝑜𝑡

where 𝑊* are stored in weights_layer, 𝑈* are stored in weights_iter and 𝐵* are stored in bias.

Note: In order for the dimensions to be consistent, we require 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(src_iter_c) = 𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(dst_iter_c) =
𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠(dst_iter).

LSTM with Peephole

A four-gate long short-term memory recurrent cell with peephole initialized with dnnl::lstm_forward::desc or
dnnl::lstm_backward::desc as in the following example.

auto lstm_desc = dnnl::lstm_forward::desc(
aprop, direction, src_layer_desc, src_iter_h_desc, src_iter_c_desc,
weights_layer_desc, weights_iter_desc, weights_peephole_desc,
bias_desc, dst_layer_desc, dst_iter_h_desc, dst_iter_c_desc);

Similarly to vanilla LSTM, we implicitly require the order of these gates to be 𝑖, 𝑓 , 𝑐, and 𝑜. For peephole weights, the
gates order is:math:i, 𝑓 , 𝑜. The following equation gives the mathematical description of these gates and output for the

5.5. Primitives 171

oneAPI Specification, Release 1.1-rev-1

forward pass:

𝑖𝑡 = 𝜎(𝑊𝑖 · ℎ𝑡,𝑙−1 + 𝑈𝑖 · ℎ𝑡−1,𝑙 + 𝑃𝑖 · 𝑐𝑡−1 + 𝐵𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓 · ℎ𝑡,𝑙−1 + 𝑈𝑓 · ℎ𝑡−1,𝑙 + 𝑃𝑓 · 𝑐𝑡−1 + 𝐵𝑓)

𝑐𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 · ℎ𝑡,𝑙−1 + 𝑈𝑐 · ℎ𝑡−1,𝑙 + 𝐵𝑐)

𝑐𝑡 = 𝑓𝑡 * 𝑐𝑡−1 + 𝑖𝑡 * 𝑐𝑡

𝑜𝑡 = 𝜎(𝑊𝑜 · ℎ𝑡,𝑙−1 + 𝑈𝑜 · ℎ𝑡−1,𝑙 + 𝑃𝑜 · 𝑐𝑡 + 𝐵𝑜)

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑐𝑡) * 𝑜𝑡

where 𝑃* are stored in weights_peephole, and the other parameters are the same as in vanilla LSTM.

Note: If the weights_peephole_desc passed to the operation descriptor constructor is a zero memory descriptor,
the primitive will behave the same as in LSTM primitive without peephole.

LSTM with Projection

A four-gate long short-term memory recurrent cell with projection initialized with dnnl::lstm_forward::desc or
dnnl::lstm_backward::desc as in the following example.

auto lstm_desc = dnnl::lstm_forward::desc(
aprop, direction, src_layer_desc, src_iter_h_desc, src_iter_c_desc,
weights_layer_desc, weights_iter_desc, weights_peephole_desc,
weights_projection_desc, bias_desc, dst_layer_desc, dst_iter_h_desc,
dst_iter_c_desc);

Similarly to vanilla LSTM, we implicitly require the order of the gates to be i, 𝑓 , 𝑐, and 𝑜 for all tensors with a dimension
depending on the gates. The following equation gives the mathematical description of these gates and output for the
forward pass (for simplicity, LSTM without peephole is shown):

𝑖𝑡 = 𝜎(𝑊𝑖 · ℎ𝑡,𝑙−1 + 𝑈𝑖 · ℎ𝑡−1,𝑙 + 𝐵𝑖)

𝑓𝑡 = 𝜎(𝑊𝑓 · ℎ𝑡,𝑙−1 + 𝑈𝑓 · ℎ𝑡−1,𝑙 + 𝐵𝑓)

𝑐𝑡 = tanh(𝑊𝑐 · ℎ𝑡,𝑙−1 + 𝑈𝑐 · ℎ𝑡−1,𝑙 + 𝐵𝑐)

𝑐𝑡 = 𝑓𝑡 * 𝑐𝑡−1 + 𝑖𝑡 * 𝑐𝑡

𝑜𝑡 = 𝜎(𝑊𝑜 · ℎ𝑡,𝑙−1 + 𝑈𝑜 · ℎ𝑡−1,𝑙 + 𝐵𝑜)

ℎ𝑡 = 𝑅 · (tanh(𝑐𝑡) * 𝑜𝑡)

where 𝑅 is stored in weights_projection, and the other parameters are the same as in vanilla LSTM.

Note: If the weights_projection_desc passed to the operation descriptor constructor is a zero memory descriptor,
the primitive will behave the same as in LSTM primitive without projection.

5.5. Primitives 172

oneAPI Specification, Release 1.1-rev-1

GRU

A three-gate gated recurrent unit cell, initialized with dnnl::gru_forward::desc or dnnl::gru_backward::desc
as in the following example.

auto gru_desc = dnnl::gru_forward::desc(
aprop, direction, src_layer_desc, src_iter_desc,
weights_layer_desc, weights_iter_desc, bias_desc,
dst_layer_desc, dst_iter_desc);

Note that for all tensors with a dimension depending on the gates number, we implicitly require the order of these gates
to be:math:u, 𝑟, and 𝑜. The following equation gives the mathematical definition of these gates.

𝑢𝑡 = 𝜎(𝑊𝑢 · ℎ𝑡,𝑙−1 + 𝑈𝑢 · ℎ𝑡−1,𝑙 + 𝐵𝑢)

𝑟𝑡 = 𝜎(𝑊𝑟 · ℎ𝑡,𝑙−1 + 𝑈𝑟 · ℎ𝑡−1,𝑙 + 𝐵𝑟)

𝑜𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑜 · ℎ𝑡,𝑙−1 + 𝑈𝑜 · (𝑟𝑡 * ℎ𝑡−1,𝑙) + 𝐵𝑜)

ℎ𝑡 = 𝑢𝑡 * ℎ𝑡−1,𝑙 + (1− 𝑢𝑡) * 𝑜𝑡

where 𝑊* are in weights_layer, 𝑈* are in weights_iter, and 𝐵* are stored in bias.

Note: If you need to replace 𝑢𝑡 by (1− 𝑢𝑡) when computing ℎ𝑡, you can achieve this by multiplying 𝑊𝑢, 𝑈𝑢 and 𝐵𝑢

by −1. This is possible as 𝑢𝑡 = 𝜎(𝑊𝑢 · ℎ𝑡,𝑙−1 + 𝑈𝑢 · ℎ𝑡−1,𝑙 + 𝐵𝑢), and 1˘𝜎(𝑎) = 𝜎(−𝑎).

Linear-Before-Reset GRU

A three-gate gated recurrent unit cell with linear layer applied before the reset gate, initialized with
dnnl::lbr_gru_forward::desc or dnnl::lbr_gru_backward::desc as in the following example.

auto lbr_gru_desc = dnnl::lbr_gru_forward::desc(
aprop, direction, src_layer_desc, src_iter_desc,
weights_layer_desc, weights_iter_desc, bias_desc,
dst_layer_desc, dst_iter_desc);

The following equation describes the mathematical behavior of the Linear-Before-Reset GRU cell.

𝑢𝑡 = 𝜎(𝑊𝑢 · ℎ𝑡,𝑙−1 + 𝑈𝑢 · ℎ𝑡−1,𝑙 + 𝐵𝑢)

𝑟𝑡 = 𝜎(𝑊𝑟 · ℎ𝑡,𝑙−1 + 𝑈𝑟 · ℎ𝑡−1,𝑙 + 𝐵𝑟)

𝑜𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑜 · ℎ𝑡,𝑙−1 + 𝑟𝑡 * (𝑈𝑜 · ℎ𝑡−1,𝑙 + 𝐵𝑢′) + 𝐵𝑜)

ℎ𝑡 = 𝑢𝑡 * ℎ𝑡−1,𝑙 + (1− 𝑢𝑡) * 𝑜𝑡

Note that for all tensors with a dimension depending on the gates number, except the bias, we implicitly require the
order of these gates to be 𝑢, 𝑟, and 𝑜. For the bias tensor, we implicitly require the order of the gates to be 𝑢, 𝑟, 𝑜, and
𝑢′.

Note: If you need to replace 𝑢𝑡 by (1− 𝑢𝑡) when computing ℎ𝑡, you can achieve this by multiplying 𝑊𝑢, 𝑈𝑢 and 𝐵𝑢

by −1. This is possible as 𝑢𝑡 = 𝜎(𝑊𝑢 · ℎ𝑡,𝑙−1 + 𝑈𝑢 · ℎ𝑡−1,𝑙 + 𝐵𝑢), and 1˘𝜎(𝑎) = 𝜎(−𝑎).

5.5. Primitives 173

oneAPI Specification, Release 1.1-rev-1

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src_layer DNNL_ARG_SRC_LAYER
src_iter DNNL_ARG_SRC_ITER
src_iter_c DNNL_ARG_SRC_ITER_C
weights_layer DNNL_ARG_WEIGHTS_LAYER
weights_iter DNNL_ARG_WEIGHTS_ITER
weights_peephole DNNL_ARG_WEIGHTS_PEEPHOLE
weights_projection DNNL_ARG_WEIGHTS_PROJECTION
bias DNNL_ARG_BIAS
dst_layer DNNL_ARG_DST_LAYER
dst_iter DNNL_ARG_DST_ITER
dst_iter_c DNNL_ARG_DST_ITER_C
workspace DNNL_ARG_WORKSPACE
diff_src_layer DNNL_ARG_DIFF_SRC_LAYER
diff_src_iter DNNL_ARG_DIFF_SRC_ITER
diff_src_iter_c DNNL_ARG_DIFF_SRC_ITER_C
diff_weights_layer DNNL_ARG_DIFF_WEIGHTS_LAYER
diff_weights_iter DNNL_ARG_DIFF_WEIGHTS_ITER
diff_weights_peephole DNNL_ARG_DIFF_WEIGHTS_PEEPHOLE
diff_weights_projection DNNL_ARG_DIFF_WEIGHTS_PROJECTION
diff_bias DNNL_ARG_DIFF_BIAS
diff_dst_layer DNNL_ARG_DIFF_DST_LAYER
diff_dst_iter DNNL_ARG_DIFF_DST_ITER
diff_dst_iter_c DNNL_ARG_DIFF_DST_ITER_C

Operation Details

N/A

Data Types Support

The following table lists the combination of data types that should be supported by the RNN primitive for each input
and output memory object.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Cell Func-
tion

Input
Data

Recurrent Data (1) Weights Bias Output
Data

Forward / Backward All f32 f32 f32 f32 f32
Forward / Backward (2) All (3) bf16 bf16 bf16 f32 bf16
Forward All (3) f16 f16 f16 f16 f16
Forward inference Vanilla LSTM u8 u8 s8 f32 u8, f32

(1) With LSTM and Peephole LSTM cells, the cell state data type is always f32.

5.5. Primitives 174

oneAPI Specification, Release 1.1-rev-1

(2) In backward propagation, all diff_* tensors are in f32.

(3) Projection LSTM is not defined yet.

Data Representation

In the oneDNN programming model, the RNN primitive is one of a few that support the placeholder memory format
#dnnl::memory::format_tag::any (shortened to any from now on) and can define data and weight memory objects
format based on the primitive parameters.

The following table summarizes the data layouts supported by the RNN primitive.

Input/Output
Data

Recurrent
Data

Layer and Iteration
Weights

Peephole Weights
and Bias

Projection LSTM
Weights

any any any ldgo any, ldio (Forward prop-
agation)

ntc, tnc ldnc ldigo, ldgoi ldgo any, ldio (Forward prop-
agation)

While an RNN primitive can be created with memory formats specified explicitly, the performance is likely to be sub-
optimal. When using any it is necessary to first create an RNN primitive descriptor and then query it for the actual
data and weight memory objects formats.

Note: The RNN primitive should support padded tensors and views. So even if two memory descriptors share the
same data layout, they might still be different.

Post-ops and Attributes

Currently post-ops and attributes are only used by the int8 variant of LSTM.

API

enum dnnl::rnn_flags
RNN cell flags.

Values:

enumerator undef
Undefined RNN flags.

enum dnnl::rnn_direction
A direction of RNN primitive execution.

Values:

enumerator unidirectional_left2right
Unidirectional execution of RNN primitive from left to right.

enumerator unidirectional_right2left
Unidirectional execution of RNN primitive from right to left.

5.5. Primitives 175

oneAPI Specification, Release 1.1-rev-1

enumerator bidirectional_concat
Bidirectional execution of RNN primitive with concatenation of the results.

enumerator bidirectional_sum
Bidirectional execution of RNN primitive with summation of the results.

enumerator unidirectional
Alias for dnnl::rnn_direction::unidirectional_left2right.

struct dnnl::vanilla_rnn_forward : public dnnl::primitive
Vanilla RNN forward propagation primitive.

Public Functions

vanilla_rnn_forward()
Default constructor. Produces an empty object.

vanilla_rnn_forward(const primitive_desc &pd)
Constructs a vanilla RNN forward propagation primitive.

Parameters pd – Primitive descriptor for a vanilla RNN forward propagation primitive.

struct desc
Descriptor for a vanilla RNN forward propagation primitive.

Public Functions

desc(prop_kind aprop_kind, algorithm activation, rnn_direction direction, const memory::desc
&src_layer_desc, const memory::desc &src_iter_desc, const memory::desc &weights_layer_desc,
const memory::desc &weights_iter_desc, const memory::desc &bias_desc, const memory::desc
&dst_layer_desc, const memory::desc &dst_iter_desc, rnn_flags flags = rnn_flags::undef , float
alpha = 0.0f, float beta = 0.0f)

Constructs a descriptor for a vanilla RNN forward propagation primitive.

The following arguments may point to a zero memory descriptor:
• src_iter_desc,
• bias_desc,
• dst_iter_desc.

This would then indicate that the RNN forward propagation primitive should not use them and should
default to zero values instead.

Note: All memory descriptors except src_iter_desc can be initialized with an
dnnl::memory::format_tag::any value of format_tag.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• activation – Activation kind. Possible values are dnnl::algorithm::eltwise_relu,

dnnl::algorithm::eltwise_tanh, or dnnl::algorithm::eltwise_logistic.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.

5.5. Primitives 176

oneAPI Specification, Release 1.1-rev-1

• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• flags – Unused.
• alpha – Negative slope if activation is dnnl::algorithm::eltwise_relu.
• beta – Unused.

struct primitive_desc : public dnnl::rnn_primitive_desc_base
Primitive descriptor for a vanilla RNN forward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, bool allow_empty = false)
Constructs a primitive descriptor for a vanilla RNN forward propagation primitive.

Parameters
• adesc – Descriptor for a vanilla RNN forward propagation primitive.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, bool
allow_empty = false)

Constructs a primitive descriptor for a vanilla RNN forward propagation primitive.
Parameters

• adesc – Descriptor for a vanilla RNN forward propagation primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_layer_desc() const
Returns source layer memory descriptor.

Returns Source layer memory descriptor.

memory::desc src_iter_desc() const
Returns source iteration memory descriptor.

Returns Source iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc weights_layer_desc() const
Returns weights layer memory descriptor.

Returns Weights layer memory descriptor.

memory::desc weights_iter_desc() const
Returns weights iteration memory descriptor.

Returns Weights iteration memory descriptor.

memory::desc bias_desc() const
Returns bias memory descriptor.

5.5. Primitives 177

oneAPI Specification, Release 1.1-rev-1

Returns Bias memory descriptor.
Returns A zero memory descriptor if the primitive does not have a bias parameter.

memory::desc dst_layer_desc() const
Returns destination layer memory descriptor.

Returns Destination layer memory descriptor.

memory::desc dst_iter_desc() const
Returns destination iteration memory descriptor.

Returns Destination iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination iteration pa-

rameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns Workspace memory descriptor.
Returns A zero memory descriptor if the primitive does not require workspace parameter.

struct dnnl::vanilla_rnn_backward : public dnnl::primitive
Vanilla RNN backward propagation primitive.

Public Functions

vanilla_rnn_backward()
Default constructor. Produces an empty object.

vanilla_rnn_backward(const primitive_desc &pd)
Constructs a vanilla RNN backward propagation primitive.

Parameters pd – Primitive descriptor for a vanilla RNN backward propagation primitive.

struct desc
Descriptor for a vanilla RNN backward propagation primitive.

Public Functions

desc(prop_kind aprop_kind, algorithm activation, rnn_direction direction, const memory::desc
&src_layer_desc, const memory::desc &src_iter_desc, const memory::desc &weights_layer_desc,
const memory::desc &weights_iter_desc, const memory::desc &bias_desc, const memory::desc
&dst_layer_desc, const memory::desc &dst_iter_desc, const memory::desc &diff_src_layer_desc,
const memory::desc &diff_src_iter_desc, const memory::desc &diff_weights_layer_desc, const
memory::desc &diff_weights_iter_desc, const memory::desc &diff_bias_desc, const memory::desc
&diff_dst_layer_desc, const memory::desc &diff_dst_iter_desc, rnn_flags flags = rnn_flags::undef ,
float alpha = 0.0f, float beta = 0.0f)

Constructs a descriptor for a vanilla RNN backward propagation primitive.

The following arguments may point to a zero memory descriptor:
• src_iter_desc together with diff_src_iter_desc,
• bias_desc together with diff_bias_desc,
• dst_iter_desc together with diff_dst_iter_desc.

This would then indicate that the RNN backward propagation primitive should not use the respective
data and should use zero values instead.

5.5. Primitives 178

oneAPI Specification, Release 1.1-rev-1

Note: All the memory descriptors may be initialized with the dnnl::memory::format_tag::any value
of format_tag.

Parameters
• aprop_kind – Propagation kind. Must be dnnl::prop_kind::backward.
• activation – Activation kind. Possible values are dnnl::algorithm::eltwise_relu,

dnnl::algorithm::eltwise_tanh, or dnnl::algorithm::eltwise_logistic.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• diff_src_layer_desc – Memory descriptor for the diff of input vector.
• diff_src_iter_desc – Memory descriptor for the diff of input recurrent hidden state

vector.
• diff_weights_layer_desc – Memory descriptor for the diff of weights applied to the

layer input.
• diff_weights_iter_desc – Memory descriptor for the diff of weights applied to the

recurrent input.
• diff_bias_desc – Diff bias memory descriptor.
• diff_dst_layer_desc – Memory descriptor for the diff of output vector.
• diff_dst_iter_desc – Memory descriptor for the diff of output recurrent hidden state

vector.
• flags – Unused.
• alpha – Negative slope if activation is dnnl::algorithm::eltwise_relu.
• beta – Unused.

struct primitive_desc : public dnnl::rnn_primitive_desc_base
Primitive descriptor for an RNN backward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const
vanilla_rnn_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a vanilla RNN backward propagation primitive.
Parameters

• adesc – Descriptor for a vanilla RNN backward propagation primitive.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a vanilla RNN forward propagation primitive.

It is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

5.5. Primitives 179

oneAPI Specification, Release 1.1-rev-1

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, const
vanilla_rnn_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a vanilla RNN backward propagation primitive.
Parameters

• adesc – Descriptor for a vanilla RNN backward propagation primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a vanilla RNN forward propagation primitive.

It is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_layer_desc() const
Returns source layer memory descriptor.

Returns Source layer memory descriptor.

memory::desc src_iter_desc() const
Returns source iteration memory descriptor.

Returns Source iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc weights_layer_desc() const
Returns weights layer memory descriptor.

Returns Weights layer memory descriptor.

memory::desc weights_iter_desc() const
Returns weights iteration memory descriptor.

Returns Weights iteration memory descriptor.

memory::desc bias_desc() const
Returns bias memory descriptor.

Returns Bias memory descriptor.
Returns A zero memory descriptor if the primitive does not have a bias parameter.

memory::desc dst_layer_desc() const
Returns destination layer memory descriptor.

Returns Destination layer memory descriptor.

memory::desc dst_iter_desc() const
Returns destination iteration memory descriptor.

Returns Destination iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination iteration pa-

rameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns Workspace memory descriptor.
Returns A zero memory descriptor if the primitive does not require workspace parameter.

memory::desc diff_src_layer_desc() const
Returns diff source layer memory descriptor.

Returns Diff source layer memory descriptor.

memory::desc diff_src_iter_desc() const
Returns diff source iteration memory descriptor.

Returns Diff source iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff source iteration pa-

rameter.

5.5. Primitives 180

oneAPI Specification, Release 1.1-rev-1

memory::desc diff_weights_layer_desc() const
Returns diff weights layer memory descriptor.

Returns Diff weights layer memory descriptor.

memory::desc diff_weights_iter_desc() const
Returns diff weights iteration memory descriptor.

Returns Diff weights iteration memory descriptor.

memory::desc diff_bias_desc() const
Returns diff bias memory descriptor.

Returns Diff bias memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff bias parameter.

memory::desc diff_dst_layer_desc() const
Returns diff destination layer memory descriptor.

Returns Diff destination layer memory descriptor.

memory::desc diff_dst_iter_desc() const
Returns diff destination iteration memory descriptor.

Returns Diff destination iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff destination iteration

parameter.

struct dnnl::lstm_forward : public dnnl::primitive
LSTM forward propagation primitive.

Public Functions

lstm_forward()
Default constructor. Produces an empty object.

lstm_forward(const primitive_desc &pd)
Constructs an LSTM forward propagation primitive.

Parameters pd – Primitive descriptor for an LSTM forward propagation primitive.

struct desc
Descriptor for an LSTM forward propagation primitive.

Public Functions

desc(prop_kind aprop_kind, rnn_direction direction, const memory::desc &src_layer_desc, const
memory::desc &src_iter_desc, const memory::desc &src_iter_c_desc, const memory::desc
&weights_layer_desc, const memory::desc &weights_iter_desc, const memory::desc
&weights_peephole_desc, const memory::desc &weights_projection_desc, const memory::desc
&bias_desc, const memory::desc &dst_layer_desc, const memory::desc &dst_iter_desc, const
memory::desc &dst_iter_c_desc, rnn_flags flags = rnn_flags::undef)

Constructs a descriptor for an LSTM (with or without peephole and with or without projection) forward
propagation primitive.

The following arguments may point to a zero memory descriptor:
• src_iter_desc together with src_iter_c_desc,
• weights_peephole_desc,
• bias_desc,
• dst_iter_desc together with dst_iter_c_desc.

5.5. Primitives 181

oneAPI Specification, Release 1.1-rev-1

This would then indicate that the LSTM forward propagation primitive should not use them and should
default to zero values instead.

The weights_projection_desc may point to a zero memory descriptor. This would then indicate
that the LSTM doesn’t have recurrent projection layer.

Note: All memory descriptors can be initialized with an dnnl::memory::format_tag::any value of
format_tag.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• src_iter_c_desc – Memory descriptor for the input recurrent cell state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• weights_peephole_desc – Memory descriptor for the weights applied to the cell states

(according to the Peephole LSTM formula).
• weights_projection_desc – Memory descriptor for the weights applied to the hidden

states to get the recurrent projection (according to the Projection LSTM formula).
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• dst_iter_c_desc – Memory descriptor for the output recurrent cell state vector.
• flags – Unused.

desc(prop_kind aprop_kind, rnn_direction direction, const memory::desc &src_layer_desc, const
memory::desc &src_iter_desc, const memory::desc &src_iter_c_desc, const memory::desc
&weights_layer_desc, const memory::desc &weights_iter_desc, const memory::desc
&weights_peephole_desc, const memory::desc &bias_desc, const memory::desc &dst_layer_desc,
const memory::desc &dst_iter_desc, const memory::desc &dst_iter_c_desc, rnn_flags flags =
rnn_flags::undef)

Constructs a descriptor for an LSTM (with or without peephole) forward propagation primitive.

The following arguments may point to a zero memory descriptor:
• src_iter_desc together with src_iter_c_desc,
• weights_peephole_desc,
• bias_desc,
• dst_iter_desc together with dst_iter_c_desc.

This would then indicate that the LSTM forward propagation primitive should not use them and should
default to zero values instead.

Note: All memory descriptors can be initialized with an dnnl::memory::format_tag::any value of
format_tag.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.

5.5. Primitives 182

oneAPI Specification, Release 1.1-rev-1

• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• src_iter_c_desc – Memory descriptor for the input recurrent cell state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• weights_peephole_desc – Memory descriptor for the weights applied to the cell states

(according to the Peephole LSTM formula).
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• dst_iter_c_desc – Memory descriptor for the output recurrent cell state vector.
• flags – Unused.

desc(prop_kind aprop_kind, rnn_direction direction, const memory::desc &src_layer_desc, const
memory::desc &src_iter_desc, const memory::desc &src_iter_c_desc, const memory::desc
&weights_layer_desc, const memory::desc &weights_iter_desc, const memory::desc &bias_desc,
const memory::desc &dst_layer_desc, const memory::desc &dst_iter_desc, const memory::desc
&dst_iter_c_desc, rnn_flags flags = rnn_flags::undef)

Constructs a descriptor for an LSTM forward propagation primitive.

The following arguments may point to a zero memory descriptor:
• src_iter_desc together with src_iter_c_desc,
• bias_desc,
• dst_iter_desc together with dst_iter_c_desc.

This would then indicate that the LSTM forward propagation primitive should not use them and should
default to zero values instead.

Note: All memory descriptors can be initialized with an dnnl::memory::format_tag::any value of
format_tag.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• src_iter_c_desc – Memory descriptor for the input recurrent cell state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• dst_iter_c_desc – Memory descriptor for the output recurrent cell state vector.
• flags – Unused.

struct primitive_desc : public dnnl::rnn_primitive_desc_base
Primitive descriptor for an LSTM forward propagation primitive.

5.5. Primitives 183

oneAPI Specification, Release 1.1-rev-1

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, bool allow_empty = false)
Constructs a primitive descriptor for an LSTM forward propagation primitive.

Parameters
• adesc – Descriptor for an LSTM forward propagation primitive.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, bool
allow_empty = false)

Constructs a primitive descriptor for an LSTM forward propagation primitive.
Parameters

• adesc – Descriptor for an LSTM forward propagation primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_layer_desc() const
Returns source layer memory descriptor.

Returns Source layer memory descriptor.

memory::desc src_iter_desc() const
Returns source iteration memory descriptor.

Returns Source iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc src_iter_c_desc() const
Returns source iteration memory descriptor.

Returns Source iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc weights_layer_desc() const
Returns weights layer memory descriptor.

Returns Weights layer memory descriptor.

memory::desc weights_iter_desc() const
Returns weights iteration memory descriptor.

Returns Weights iteration memory descriptor.

memory::desc weights_peephole_desc() const
Returns weights peephole memory descriptor.

Returns Weights peephole memory descriptor.

memory::desc weights_projection_desc() const
Returns weights projection memory descriptor.

Returns Weights projection memory descriptor.

memory::desc bias_desc() const
Returns bias memory descriptor.

Returns Bias memory descriptor.
Returns A zero memory descriptor if the primitive does not have a bias parameter.

5.5. Primitives 184

oneAPI Specification, Release 1.1-rev-1

memory::desc dst_layer_desc() const
Returns destination layer memory descriptor.

Returns Destination layer memory descriptor.

memory::desc dst_iter_desc() const
Returns destination iteration memory descriptor.

Returns Destination iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination iteration pa-

rameter.

memory::desc dst_iter_c_desc() const
Returns source iteration memory descriptor.

Returns Source iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns Workspace memory descriptor.
Returns A zero memory descriptor if the primitive does not require workspace parameter.

struct dnnl::lstm_backward : public dnnl::primitive
LSTM backward propagation primitive.

Public Functions

lstm_backward()
Default constructor. Produces an empty object.

lstm_backward(const primitive_desc &pd)
Constructs an LSTM backward propagation primitive.

Parameters pd – Primitive descriptor for an LSTM backward propagation primitive.

struct desc
Descriptor for an LSTM backward propagation primitive.

Public Functions

desc(prop_kind aprop_kind, rnn_direction direction, const memory::desc &src_layer_desc, const
memory::desc &src_iter_desc, const memory::desc &src_iter_c_desc, const memory::desc
&weights_layer_desc, const memory::desc &weights_iter_desc, const memory::desc
&weights_peephole_desc, const memory::desc &weights_projection_desc, const memory::desc
&bias_desc, const memory::desc &dst_layer_desc, const memory::desc &dst_iter_desc, const
memory::desc &dst_iter_c_desc, const memory::desc &diff_src_layer_desc, const memory::desc
&diff_src_iter_desc, const memory::desc &diff_src_iter_c_desc, const memory::desc
&diff_weights_layer_desc, const memory::desc &diff_weights_iter_desc, const memory::desc
&diff_weights_peephole_desc, const memory::desc &diff_weights_projection_desc, const
memory::desc &diff_bias_desc, const memory::desc &diff_dst_layer_desc, const memory::desc
&diff_dst_iter_desc, const memory::desc &diff_dst_iter_c_desc, rnn_flags flags =
rnn_flags::undef)

projection) descriptor for backward propagation using prop_kind, direction, and memory descrip-
tors.

The following arguments may point to a zero memory descriptor:

5.5. Primitives 185

oneAPI Specification, Release 1.1-rev-1

• src_iter_desc together with src_iter_c_desc, diff_src_iter_desc, and
diff_src_iter_c_desc,

• weights_peephole_desc together with diff_weights_peephole_desc
• bias_desc together with diff_bias_desc,
• dst_iter_desc together with dst_iter_c_desc, diff_dst_iter_desc, and
diff_dst_iter_c_desc.

This would then indicate that the LSTM backward propagation primitive should not use them and
should default to zero values instead.

The weights_projection_desc together with diff_weights_projection_desc may point to a
zero memory descriptor. This would then indicate that the LSTM doesn’t have recurrent projection
layer.

Note: All memory descriptors can be initialized with dnnl::memory::format_tag::any value of
format_tag.

Parameters
• aprop_kind – Propagation kind. Must be dnnl::prop_kind::backward.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• src_iter_c_desc – Memory descriptor for the input recurrent cell state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• weights_peephole_desc – Memory descriptor for the weights applied to the cell states

(according to the Peephole LSTM formula).
• weights_projection_desc – Memory descriptor for the weights applied to the hidden

states to get the recurrent projection (according to the Projection LSTM formula).
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• dst_iter_c_desc – Memory descriptor for the output recurrent cell state vector.
• diff_src_layer_desc – Memory descriptor for the diff of input vector.
• diff_src_iter_desc – Memory descriptor for the diff of input recurrent hidden state

vector.
• diff_src_iter_c_desc – Memory descriptor for the diff of input recurrent cell state

vector.
• diff_weights_layer_desc – Memory descriptor for the diff of weights applied to the

layer input.
• diff_weights_iter_desc – Memory descriptor for the diff of weights applied to the

recurrent input.
• diff_weights_peephole_desc – Memory descriptor for the diff of weights applied

to the cell states (according to the Peephole LSTM formula).
• diff_weights_projection_desc – Memory descriptor for the diff of weights applied

to the hidden states to get the recurrent projection (according to the Projection LSTM
formula).

• diff_bias_desc – Diff bias memory descriptor.
• diff_dst_layer_desc – Memory descriptor for the diff of output vector.
• diff_dst_iter_desc – Memory descriptor for the diff of output recurrent hidden state

vector.
• diff_dst_iter_c_desc – Memory descriptor for the diff of output recurrent cell state

vector.

5.5. Primitives 186

oneAPI Specification, Release 1.1-rev-1

• flags – Unused.

desc(prop_kind aprop_kind, rnn_direction direction, const memory::desc &src_layer_desc, const
memory::desc &src_iter_desc, const memory::desc &src_iter_c_desc, const memory::desc
&weights_layer_desc, const memory::desc &weights_iter_desc, const memory::desc
&weights_peephole_desc, const memory::desc &bias_desc, const memory::desc &dst_layer_desc,
const memory::desc &dst_iter_desc, const memory::desc &dst_iter_c_desc, const memory::desc
&diff_src_layer_desc, const memory::desc &diff_src_iter_desc, const memory::desc
&diff_src_iter_c_desc, const memory::desc &diff_weights_layer_desc, const memory::desc
&diff_weights_iter_desc, const memory::desc &diff_weights_peephole_desc, const memory::desc
&diff_bias_desc, const memory::desc &diff_dst_layer_desc, const memory::desc
&diff_dst_iter_desc, const memory::desc &diff_dst_iter_c_desc, rnn_flags flags =
rnn_flags::undef)

Constructs an LSTM (with or without peephole) descriptor for backward propagation using
prop_kind, direction, and memory descriptors.

The following arguments may point to a zero memory descriptor:
• src_iter_desc together with src_iter_c_desc, diff_src_iter_desc, and
diff_src_iter_c_desc,

• weights_peephole_desc together with diff_weights_peephole_desc
• bias_desc together with diff_bias_desc,
• dst_iter_desc together with dst_iter_c_desc, diff_dst_iter_desc, and
diff_dst_iter_c_desc.

This would then indicate that the LSTM backward propagation primitive should not use them and
should default to zero values instead.

Note: All memory descriptors may be initialized with dnnl::memory::format_tag::any value of
format_tag.

Parameters
• aprop_kind – Propagation kind. Must be dnnl::prop_kind::backward.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• src_iter_c_desc – Memory descriptor for the input recurrent cell state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• weights_peephole_desc – Memory descriptor for the weights applied to the cell states

(according to the Peephole LSTM formula).
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• dst_iter_c_desc – Memory descriptor for the output recurrent cell state vector.
• diff_src_layer_desc – Memory descriptor for the diff of input vector.
• diff_src_iter_desc – Memory descriptor for the diff of input recurrent hidden state

vector.
• diff_src_iter_c_desc – Memory descriptor for the diff of input recurrent cell state

vector.
• diff_weights_layer_desc – Memory descriptor for the diff of weights applied to the

layer input.
• diff_weights_iter_desc – Memory descriptor for the diff of weights applied to the

recurrent input.
• diff_weights_peephole_desc – Memory descriptor for the diff of weights applied

5.5. Primitives 187

oneAPI Specification, Release 1.1-rev-1

to the cell states (according to the Peephole LSTM formula).
• diff_bias_desc – Diff bias memory descriptor.
• diff_dst_layer_desc – Memory descriptor for the diff of output vector.
• diff_dst_iter_desc – Memory descriptor for the diff of output recurrent hidden state

vector.
• diff_dst_iter_c_desc – Memory descriptor for the diff of output recurrent cell state

vector.
• flags – Unused.

desc(prop_kind aprop_kind, rnn_direction direction, const memory::desc &src_layer_desc, const
memory::desc &src_iter_desc, const memory::desc &src_iter_c_desc, const memory::desc
&weights_layer_desc, const memory::desc &weights_iter_desc, const memory::desc &bias_desc,
const memory::desc &dst_layer_desc, const memory::desc &dst_iter_desc, const memory::desc
&dst_iter_c_desc, const memory::desc &diff_src_layer_desc, const memory::desc
&diff_src_iter_desc, const memory::desc &diff_src_iter_c_desc, const memory::desc
&diff_weights_layer_desc, const memory::desc &diff_weights_iter_desc, const memory::desc
&diff_bias_desc, const memory::desc &diff_dst_layer_desc, const memory::desc
&diff_dst_iter_desc, const memory::desc &diff_dst_iter_c_desc, rnn_flags flags =
rnn_flags::undef)

Constructs an LSTM descriptor for backward propagation using prop_kind, direction, and memory
descriptors.

The following arguments may point to a zero memory descriptor:
• src_iter_desc together with src_iter_c_desc, diff_src_iter_desc, and
diff_src_iter_c_desc,

• bias_desc together with diff_bias_desc,
• dst_iter_desc together with dst_iter_c_desc, diff_dst_iter_desc, and
diff_dst_iter_c_desc.

This would then indicate that the LSTM backward propagation primitive should not use them and
should default to zero values instead.

Note: All memory descriptors may be initialized with dnnl::memory::format_tag::any value of
format_tag.

Parameters
• aprop_kind – Propagation kind. Must be dnnl::prop_kind::backward.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• src_iter_c_desc – Memory descriptor for the input recurrent cell state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• dst_iter_c_desc – Memory descriptor for the output recurrent cell state vector.
• diff_src_layer_desc – Memory descriptor for the diff of input vector.
• diff_src_iter_desc – Memory descriptor for the diff of input recurrent hidden state

vector.
• diff_src_iter_c_desc – Memory descriptor for the diff of input recurrent cell state

vector.
• diff_weights_layer_desc – Memory descriptor for the diff of weights applied to the

layer input.

5.5. Primitives 188

oneAPI Specification, Release 1.1-rev-1

• diff_weights_iter_desc – Memory descriptor for the diff of weights applied to the
recurrent input.

• diff_bias_desc – Diff bias memory descriptor.
• diff_dst_layer_desc – Memory descriptor for the diff of output vector.
• diff_dst_iter_desc – Memory descriptor for the diff of output recurrent hidden state

vector.
• diff_dst_iter_c_desc – Memory descriptor for the diff of output recurrent cell state

vector.
• flags – Unused.

struct primitive_desc : public dnnl::rnn_primitive_desc_base
Primitive descriptor for LSTM backward propagation.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const lstm_forward::primitive_desc
&hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for an LSTM backward propagation primitive.
Parameters

• adesc – Descriptor for LSTM backward propagation primitive.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for an LSTM forward propagation primitive. It is

used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, const
lstm_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for an LSTM backward propagation primitive.
Parameters

• adesc – Descriptor for an LSTM backward propagation primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for an LSTM forward propagation primitive. It is

used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_layer_desc() const
Returns source layer memory descriptor.

Returns Source layer memory descriptor.

memory::desc src_iter_desc() const
Returns source iteration memory descriptor.

Returns Source iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc src_iter_c_desc() const
Returns source iteration memory descriptor.

Returns Source iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source iteration parameter.

5.5. Primitives 189

oneAPI Specification, Release 1.1-rev-1

memory::desc weights_layer_desc() const
Returns weights layer memory descriptor.

Returns Weights layer memory descriptor.

memory::desc weights_iter_desc() const
Returns weights iteration memory descriptor.

Returns Weights iteration memory descriptor.

memory::desc weights_peephole_desc() const
Returns weights peephole memory descriptor.

Returns Weights peephole memory descriptor.

memory::desc weights_projection_desc() const
Returns weights projection memory descriptor.

Returns Weights projection memory descriptor.

memory::desc bias_desc() const
Returns bias memory descriptor.

Returns Bias memory descriptor.
Returns A zero memory descriptor if the primitive does not have a bias parameter.

memory::desc dst_layer_desc() const
Returns destination layer memory descriptor.

Returns Destination layer memory descriptor.

memory::desc dst_iter_desc() const
Returns destination iteration memory descriptor.

Returns Destination iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination iteration pa-

rameter.

memory::desc dst_iter_c_desc() const
Returns source iteration memory descriptor.

Returns Source iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns Workspace memory descriptor.
Returns A zero memory descriptor if the primitive does not require workspace parameter.

memory::desc diff_src_layer_desc() const
Returns diff source layer memory descriptor.

Returns Diff source layer memory descriptor.

memory::desc diff_src_iter_desc() const
Returns diff source iteration memory descriptor.

Returns Diff source iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff source iteration pa-

rameter.

memory::desc diff_src_iter_c_desc() const
Returns diff source recurrent cell state memory descriptor.

Returns Diff source recurrent cell state memory descriptor.

memory::desc diff_weights_layer_desc() const
Returns diff weights layer memory descriptor.

Returns Diff weights layer memory descriptor.

5.5. Primitives 190

oneAPI Specification, Release 1.1-rev-1

memory::desc diff_weights_iter_desc() const
Returns diff weights iteration memory descriptor.

Returns Diff weights iteration memory descriptor.

memory::desc diff_weights_peephole_desc() const
Returns diff weights peephole memory descriptor.

Returns Diff weights peephole memory descriptor.

memory::desc diff_weights_projection_desc() const
Returns diff weights projection memory descriptor.

Returns Diff weights projection memory descriptor.

memory::desc diff_bias_desc() const
Returns diff bias memory descriptor.

Returns Diff bias memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff bias parameter.

memory::desc diff_dst_layer_desc() const
Returns diff destination layer memory descriptor.

Returns Diff destination layer memory descriptor.

memory::desc diff_dst_iter_desc() const
Returns diff destination iteration memory descriptor.

Returns Diff destination iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff destination iteration

parameter.

memory::desc diff_dst_iter_c_desc() const
Returns diff destination recurrent cell state memory descriptor.

Returns Diff destination recurrent cell state memory descriptor.

struct dnnl::gru_forward : public dnnl::primitive
GRU forward propagation primitive.

Public Functions

gru_forward()
Default constructor. Produces an empty object.

gru_forward(const primitive_desc &pd)
Constructs a GRU forward propagation primitive.

Parameters pd – Primitive descriptor for a GRU forward propagation primitive.

struct desc
Descriptor for a GRU forward propagation primitive.

5.5. Primitives 191

oneAPI Specification, Release 1.1-rev-1

Public Functions

desc(prop_kind aprop_kind, rnn_direction direction, const memory::desc &src_layer_desc, const
memory::desc &src_iter_desc, const memory::desc &weights_layer_desc, const memory::desc
&weights_iter_desc, const memory::desc &bias_desc, const memory::desc &dst_layer_desc, const
memory::desc &dst_iter_desc, rnn_flags flags = rnn_flags::undef)

Constructs a descriptor for a GRU forward propagation primitive.

The following arguments may point to a zero memory descriptor:
• src_iter_desc,
• bias_desc,
• dst_iter_desc.

This would then indicate that the GRU forward propagation primitive should not use them and should
default to zero values instead.

Note: All memory descriptors except src_iter_desc may be initialized with an
dnnl::memory::format_tag::any value of format_tag.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• flags – Unused.

struct primitive_desc : public dnnl::rnn_primitive_desc_base
Primitive descriptor GRU forward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, bool allow_empty = false)
Constructs a primitive descriptor for a GRU forward propagation primitive.

Parameters
• adesc – Descriptor for a GRU forward propagation primitive.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, bool
allow_empty = false)

Constructs a primitive descriptor for a GRU forward propagation primitive.
Parameters

• adesc – Descriptor for a GRU forward propagation primitive.

5.5. Primitives 192

oneAPI Specification, Release 1.1-rev-1

• attr – Primitive attributes to use.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_layer_desc() const
Returns source layer memory descriptor.

Returns Source layer memory descriptor.

memory::desc src_iter_desc() const
Returns source iteration memory descriptor.

Returns Source iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc weights_layer_desc() const
Returns weights layer memory descriptor.

Returns Weights layer memory descriptor.

memory::desc weights_iter_desc() const
Returns weights iteration memory descriptor.

Returns Weights iteration memory descriptor.

memory::desc bias_desc() const
Returns bias memory descriptor.

Returns Bias memory descriptor.
Returns A zero memory descriptor if the primitive does not have a bias parameter.

memory::desc dst_layer_desc() const
Returns destination layer memory descriptor.

Returns Destination layer memory descriptor.

memory::desc dst_iter_desc() const
Returns destination iteration memory descriptor.

Returns Destination iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination iteration pa-

rameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns Workspace memory descriptor.
Returns A zero memory descriptor if the primitive does not require workspace parameter.

struct dnnl::gru_backward : public dnnl::primitive
GRU backward propagation primitive.

Public Functions

gru_backward()
Default constructor. Produces an empty object.

gru_backward(const primitive_desc &pd)
Constructs a GRU backward propagation primitive.

Parameters pd – Primitive descriptor for a GRU backward propagation primitive.

struct desc
Descriptor for a GRU backward propagation primitive.

5.5. Primitives 193

oneAPI Specification, Release 1.1-rev-1

Public Functions

desc(prop_kind aprop_kind, rnn_direction direction, const memory::desc &src_layer_desc, const
memory::desc &src_iter_desc, const memory::desc &weights_layer_desc, const memory::desc
&weights_iter_desc, const memory::desc &bias_desc, const memory::desc &dst_layer_desc, const
memory::desc &dst_iter_desc, const memory::desc &diff_src_layer_desc, const memory::desc
&diff_src_iter_desc, const memory::desc &diff_weights_layer_desc, const memory::desc
&diff_weights_iter_desc, const memory::desc &diff_bias_desc, const memory::desc
&diff_dst_layer_desc, const memory::desc &diff_dst_iter_desc, rnn_flags flags =
rnn_flags::undef)

Constructs a descriptor for a GRU backward propagation primitive.

The following arguments may point to a zero memory descriptor:
• src_iter_desc together with diff_src_iter_desc,
• bias_desc together with diff_bias_desc,
• dst_iter_desc together with diff_dst_iter_desc.

This would then indicate that the GRU backward propagation primitive should not use them and should
default to zero values instead.

Note: All memory descriptors may be initialized with dnnl::memory::format_tag::any value of
format_tag.

Parameters
• aprop_kind – Propagation kind. Must be dnnl::prop_kind::backward.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• diff_src_layer_desc – Memory descriptor for the diff of input vector.
• diff_src_iter_desc – Memory descriptor for the diff of input recurrent hidden state

vector.
• diff_weights_layer_desc – Memory descriptor for the diff of weights applied to the

layer input.
• diff_weights_iter_desc – Memory descriptor for the diff of weights applied to the

recurrent input.
• diff_bias_desc – Diff bias memory descriptor.
• diff_dst_layer_desc – Memory descriptor for the diff of output vector.
• diff_dst_iter_desc – Memory descriptor for the diff of output recurrent hidden state

vector.
• flags – Unused.

struct primitive_desc : public dnnl::rnn_primitive_desc_base
Primitive descriptor for a GRU backward propagation primitive.

5.5. Primitives 194

oneAPI Specification, Release 1.1-rev-1

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const gru_forward::primitive_desc
&hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a GRU backward propagation primitive.
Parameters

• adesc – Descriptor for a GRU backward propagation primitive.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a GRU forward propagation primitive. It is used

as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, const
gru_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a GRU backward propagation primitive.
Parameters

• adesc – Descriptor for a GRU backward propagation primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a GRU forward propagation primitive. It is used

as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_layer_desc() const
Returns source layer memory descriptor.

Returns Source layer memory descriptor.

memory::desc src_iter_desc() const
Returns source iteration memory descriptor.

Returns Source iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc weights_layer_desc() const
Returns weights layer memory descriptor.

Returns Weights layer memory descriptor.

memory::desc weights_iter_desc() const
Returns weights iteration memory descriptor.

Returns Weights iteration memory descriptor.

memory::desc bias_desc() const
Returns bias memory descriptor.

Returns Bias memory descriptor.
Returns A zero memory descriptor if the primitive does not have a bias parameter.

memory::desc dst_layer_desc() const
Returns destination layer memory descriptor.

Returns Destination layer memory descriptor.

memory::desc dst_iter_desc() const
Returns destination iteration memory descriptor.

5.5. Primitives 195

oneAPI Specification, Release 1.1-rev-1

Returns Destination iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination iteration pa-

rameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns Workspace memory descriptor.
Returns A zero memory descriptor if the primitive does not require workspace parameter.

memory::desc diff_src_layer_desc() const
Returns diff source layer memory descriptor.

Returns Diff source layer memory descriptor.

memory::desc diff_src_iter_desc() const
Returns diff source iteration memory descriptor.

Returns Diff source iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff source iteration pa-

rameter.

memory::desc diff_weights_layer_desc() const
Returns diff weights layer memory descriptor.

Returns Diff weights layer memory descriptor.

memory::desc diff_weights_iter_desc() const
Returns diff weights iteration memory descriptor.

Returns Diff weights iteration memory descriptor.

memory::desc diff_bias_desc() const
Returns diff bias memory descriptor.

Returns Diff bias memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff bias parameter.

memory::desc diff_dst_layer_desc() const
Returns diff destination layer memory descriptor.

Returns Diff destination layer memory descriptor.

memory::desc diff_dst_iter_desc() const
Returns diff destination iteration memory descriptor.

Returns Diff destination iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff destination iteration

parameter.

struct dnnl::lbr_gru_forward : public dnnl::primitive
LBR GRU forward propagation primitive.

Public Functions

lbr_gru_forward()
Default constructor. Produces an empty object.

lbr_gru_forward(const primitive_desc &pd)
Constructs an LBR GRU forward propagation primitive.

Parameters pd – Primitive descriptor for an LBR GRU forward propagation primitive.

struct desc
Descriptor for an LBR GRU forward propagation primitive.

5.5. Primitives 196

oneAPI Specification, Release 1.1-rev-1

Public Functions

desc(prop_kind aprop_kind, rnn_direction direction, const memory::desc &src_layer_desc, const
memory::desc &src_iter_desc, const memory::desc &weights_layer_desc, const memory::desc
&weights_iter_desc, const memory::desc &bias_desc, const memory::desc &dst_layer_desc, const
memory::desc &dst_iter_desc, rnn_flags flags = rnn_flags::undef)

Constructs a descriptor for LBR GRU forward propagation primitive.

The following arguments may point to a zero memory descriptor:
• src_iter_desc,
• bias_desc,
• dst_iter_desc.

This would then indicate that the LBR GRU forward propagation primitive should not use them and
should default to zero values instead.

Note: All memory descriptors except src_iter_desc may be initialized with an
dnnl::memory::format_tag::any value of format_tag.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• flags – Unused.

struct primitive_desc : public dnnl::rnn_primitive_desc_base
Primitive descriptor for an LBR GRU forward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, bool allow_empty = false)
Constructs a primitive descriptor for a LBR GRU forward propagation primitive.

Parameters
• adesc – Descriptor for a LBR GRU forward propagation primitive.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, bool
allow_empty = false)

Constructs a primitive descriptor for a LBR GRU forward propagation primitive.
Parameters

• adesc – Descriptor for a LBR GRU forward propagation primitive.

5.5. Primitives 197

oneAPI Specification, Release 1.1-rev-1

• attr – Primitive attributes to use.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_layer_desc() const
Returns source layer memory descriptor.

Returns Source layer memory descriptor.

memory::desc src_iter_desc() const
Returns source iteration memory descriptor.

Returns Source iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc weights_layer_desc() const
Returns weights layer memory descriptor.

Returns Weights layer memory descriptor.

memory::desc weights_iter_desc() const
Returns weights iteration memory descriptor.

Returns Weights iteration memory descriptor.

memory::desc bias_desc() const
Returns bias memory descriptor.

Returns Bias memory descriptor.
Returns A zero memory descriptor if the primitive does not have a bias parameter.

memory::desc dst_layer_desc() const
Returns destination layer memory descriptor.

Returns Destination layer memory descriptor.

memory::desc dst_iter_desc() const
Returns destination iteration memory descriptor.

Returns Destination iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination iteration pa-

rameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns Workspace memory descriptor.
Returns A zero memory descriptor if the primitive does not require workspace parameter.

struct dnnl::lbr_gru_backward : public dnnl::primitive
LBR GRU backward propagation primitive.

Public Functions

lbr_gru_backward()
Default constructor. Produces an empty object.

lbr_gru_backward(const primitive_desc &pd)
Constructs an LBR GRU backward propagation primitive.

Parameters pd – Primitive descriptor for an LBR GRU backward propagation primitive.

struct desc
Descriptor for a LBR GRU backward propagation primitive.

5.5. Primitives 198

oneAPI Specification, Release 1.1-rev-1

Public Functions

desc(prop_kind aprop_kind, rnn_direction direction, const memory::desc &src_layer_desc, const
memory::desc &src_iter_desc, const memory::desc &weights_layer_desc, const memory::desc
&weights_iter_desc, const memory::desc &bias_desc, const memory::desc &dst_layer_desc, const
memory::desc &dst_iter_desc, const memory::desc &diff_src_layer_desc, const memory::desc
&diff_src_iter_desc, const memory::desc &diff_weights_layer_desc, const memory::desc
&diff_weights_iter_desc, const memory::desc &diff_bias_desc, const memory::desc
&diff_dst_layer_desc, const memory::desc &diff_dst_iter_desc, rnn_flags flags =
rnn_flags::undef)

Constructs a descriptor for LBR GRU backward propagation primitive.

The following arguments may point to a zero memory descriptor:
• src_iter_desc together with diff_src_iter_desc,
• bias_desc together with diff_bias_desc,
• dst_iter_desc together with diff_dst_iter_desc.

This would then indicate that the LBR GRU backward propagation primitive should not use them and
should default to zero values instead.

Note: All memory descriptors may be initialized with dnnl::memory::format_tag::any value of
format_tag.

Parameters
• aprop_kind – Propagation kind. Must be dnnl::prop_kind::backward.
• direction – RNN direction. See dnnl::rnn_direction for more info.
• src_layer_desc – Memory descriptor for the input vector.
• src_iter_desc – Memory descriptor for the input recurrent hidden state vector.
• weights_layer_desc – Memory descriptor for the weights applied to the layer input.
• weights_iter_desc – Memory descriptor for the weights applied to the recurrent in-

put.
• bias_desc – Bias memory descriptor.
• dst_layer_desc – Memory descriptor for the output vector.
• dst_iter_desc – Memory descriptor for the output recurrent hidden state vector.
• diff_src_layer_desc – Memory descriptor for the diff of input vector.
• diff_src_iter_desc – Memory descriptor for the diff of input recurrent hidden state

vector.
• diff_weights_layer_desc – Memory descriptor for the diff of weights applied to the

layer input.
• diff_weights_iter_desc – Memory descriptor for the diff of weights applied to the

recurrent input.
• diff_bias_desc – Diff bias memory descriptor.
• diff_dst_layer_desc – Memory descriptor for the diff of output vector.
• diff_dst_iter_desc – Memory descriptor for the diff of output recurrent hidden state

vector.
• flags – Unused.

struct primitive_desc : public dnnl::rnn_primitive_desc_base
Primitive descriptor for an LBR GRU backward propagation primitive.

5.5. Primitives 199

oneAPI Specification, Release 1.1-rev-1

Public Functions

primitive_desc() = default
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const lbr_gru_forward::primitive_desc
&hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for an LBR GRU backward propagation primitive.
Parameters

• adesc – Descriptor for an LBR GRU backward propagation primitive.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for an LBR GRU forward propagation primitive. It

is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, const
lbr_gru_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for an LBR GRU backward propagation primitive.
Parameters

• adesc – Descriptor for an LBR GRU backward propagation primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for an LBR GRU forward propagation primitive. It

is used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_layer_desc() const
Returns source layer memory descriptor.

Returns Source layer memory descriptor.

memory::desc src_iter_desc() const
Returns source iteration memory descriptor.

Returns Source iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source iteration parameter.

memory::desc weights_layer_desc() const
Returns weights layer memory descriptor.

Returns Weights layer memory descriptor.

memory::desc weights_iter_desc() const
Returns weights iteration memory descriptor.

Returns Weights iteration memory descriptor.

memory::desc bias_desc() const
Returns bias memory descriptor.

Returns Bias memory descriptor.
Returns A zero memory descriptor if the primitive does not have a bias parameter.

memory::desc dst_layer_desc() const
Returns destination layer memory descriptor.

Returns Destination layer memory descriptor.

memory::desc dst_iter_desc() const
Returns destination iteration memory descriptor.

5.5. Primitives 200

oneAPI Specification, Release 1.1-rev-1

Returns Destination iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination iteration pa-

rameter.

memory::desc workspace_desc() const
Returns the workspace memory descriptor.

Returns Workspace memory descriptor.
Returns A zero memory descriptor if the primitive does not require workspace parameter.

memory::desc diff_src_layer_desc() const
Returns diff source layer memory descriptor.

Returns Diff source layer memory descriptor.

memory::desc diff_src_iter_desc() const
Returns diff source iteration memory descriptor.

Returns Diff source iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff source iteration pa-

rameter.

memory::desc diff_weights_layer_desc() const
Returns diff weights layer memory descriptor.

Returns Diff weights layer memory descriptor.

memory::desc diff_weights_iter_desc() const
Returns diff weights iteration memory descriptor.

Returns Diff weights iteration memory descriptor.

memory::desc diff_bias_desc() const
Returns diff bias memory descriptor.

Returns Diff bias memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff bias parameter.

memory::desc diff_dst_layer_desc() const
Returns diff destination layer memory descriptor.

Returns Diff destination layer memory descriptor.

memory::desc diff_dst_iter_desc() const
Returns diff destination iteration memory descriptor.

Returns Diff destination iteration memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff destination iteration

parameter.

5.5.17 Shuffle

The shuffle primitive shuffles data along the shuffle axis (here is designated as 𝐶) with the group parameter 𝐺. Namely,
the shuffle axis is thought to be a 2D tensor of size (𝐶

𝐺 × 𝐺) and it is being transposed to (𝐺 × 𝐶
𝐺). Variable names

follow the standard Conventions.

The formal definition is shown below:

5.5. Primitives 201

oneAPI Specification, Release 1.1-rev-1

Forward

dst(𝑜𝑢, 𝑐, 𝑖𝑛) = src(𝑜𝑢, 𝑐′, 𝑖𝑛)

where

• 𝑐 dimension is called a shuffle axis,

• 𝐺 is a group_size,

• 𝑜𝑢 is the outermost indices (to the left from shuffle axis),

• 𝑖𝑛 is the innermost indices (to the right from shuffle axis), and

• 𝑐′ and 𝑐 relate to each other as define by the system:{︃
𝑐 = 𝑢 + 𝑣 · 𝐶𝐺 ,

𝑐′ = 𝑢 ·𝐺 + 𝑣,

Here, 0 ≤ 𝑢 < 𝐶
𝐺 and 0 ≤ 𝑣 < 𝐺.

Difference Between Forward Training and Forward Inference

There is no difference between the forward_training and forward_inference propagation kinds.

Backward

The backward propagation computes diff_src(𝑜𝑢, 𝑐, 𝑖𝑛), based on diff_dst(𝑜𝑢, 𝑐, 𝑖𝑛).

Essentially, backward propagation is the same as forward propagation with 𝑔 replaced by 𝐶/𝑔.

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
dst DNNL_ARG_DST
diff_src DNNL_ARG_DIFF_SRC
diff_dst DNNL_ARG_DIFF_DST

Operation Details

1. The memory format and data type for src and dst are assumed to be the same, and in the API are typically
referred as data (e.g., see data_desc in dnnl::shuffle_forward::desc::desc()). The same holds for
diff_src and diff_dst. The corresponding memory descriptors are referred to as diff_data_desc.

5.5. Primitives 202

oneAPI Specification, Release 1.1-rev-1

Data Types Support

The shuffle primitive supports the following combinations of data types:

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source / Destination
forward / backward f32, bf16
forward s32, s8, u8

Data Layouts

The shuffle primitive works with arbitrary data tensors. There is no special meaning associated with any logical di-
mensions. However, the shuffle axis is typically referred to as channels (hence in formulas we use 𝑐).

Shuffle operation typically appear in CNN topologies. Hence, in the library the shuffle primitive is optimized for the
corresponding memory formats:

Spatial Logical tensor Shuffle Axis Implementations optimized for memory formats
2D NCHW 1 (C) nchw (abcd), nhwc (acdb), optimized^
3D NCDHW 1 (C) ncdhw (abcde), ndhwc (acdeb), optimized^

Here optimized^ means the format that comes out of any preceding compute-intensive primitive.

Post-ops and Attributes

The shuffle primitive does not have to support any post-ops or attributes.

API

struct dnnl::shuffle_forward : public dnnl::primitive
Shuffle forward propagation primitive.

Public Functions

shuffle_forward()
Default constructor. Produces an empty object.

shuffle_forward(const primitive_desc &pd)
Constructs a shuffle forward propagation primitive.

Parameters pd – Primitive descriptor for a shuffle forward propagation primitive.

struct desc
Descriptor for a shuffle forward propagation primitive.

5.5. Primitives 203

oneAPI Specification, Release 1.1-rev-1

Public Functions

desc(prop_kind aprop_kind, const memory::desc &data_desc, int axis, int group_size)
Constructs a descriptor for a shuffle forward propagation primitive.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• data_desc – Source and destination memory descriptor.
• axis – The axis along which the data is shuffled.
• group_size – Shuffle group size.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a shuffle forward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const primitive_attr &attr =
primitive_attr(), bool allow_empty = false)

Constructs a primitive descriptor for a shuffle forward propagation primitive.
Parameters

• adesc – Descriptor for a shuffle forward propagation primitive.
• aengine – Engine to use.
• attr – Primitive attributes to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

struct dnnl::shuffle_backward : public dnnl::primitive
Shuffle backward propagation primitive.

Public Functions

shuffle_backward()
Default constructor. Produces an empty object.

shuffle_backward(const primitive_desc &pd)
Constructs a shuffle backward propagation primitive.

Parameters pd – Primitive descriptor for a shuffle backward propagation primitive.

struct desc
Descriptor for a shuffle primitive backward propagation primitive.

5.5. Primitives 204

oneAPI Specification, Release 1.1-rev-1

Public Functions

desc(const memory::desc &diff_data_desc, int axis, int group_size)
Constructs a descriptor for a shuffle backward propagation primitive.

Parameters
• diff_data_desc – Diff source and diff destination memory descriptor.
• axis – The axis along which the data is shuffled.
• group_size – Shuffle group size.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a shuffle backward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const shuffle_forward::primitive_desc
&hint_fwd_pd, const primitive_attr &attr = primitive_attr(), bool allow_empty =
false)

Constructs a primitive descriptor for a shuffle backward propagation primitive.
Parameters

• adesc – Descriptor for a shuffle backward propagation primitive.
• aengine – Engine to use.
• attr – Primitive attributes to use.
• hint_fwd_pd – Primitive descriptor for a shuffle forward propagation primitive. It is

used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns Diff source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc diff_dst_desc() const
Returns a diff destination memory descriptor.

Returns Diff destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff destination parameter.

5.5.18 Softmax

The softmax primitive performs softmax along a particular axis on data with arbitrary dimensions. All other axes are
treated as independent (batch).

In general form, the operation is defined by the following formulas. The variable names follow the standard Conven-
tions.

5.5. Primitives 205

oneAPI Specification, Release 1.1-rev-1

Forward

dst(𝑜𝑢, 𝑐, 𝑖𝑛) =
𝑒src(𝑜𝑢,𝑐,𝑖𝑛)−𝜈(𝑜𝑢,𝑖𝑛)∑︀

𝑖𝑐

𝑒src(𝑜𝑢,𝑖𝑐,𝑖𝑛)−𝜈(𝑜𝑢,𝑖𝑛)
,

where

• 𝑐 axis over which the softmax computation is computed on,

• 𝑜𝑢 is the outermost index (to the left of softmax axis),

• 𝑖𝑛 is the innermost index (to the right of softmax axis), and

• 𝜈 is used to produce more accurate results and defined as:

𝜈(𝑜𝑢, 𝑖𝑛) = max
𝑖𝑐

src(𝑜𝑢, 𝑖𝑐, 𝑖𝑛)

Difference Between Forward Training and Forward Inference

There is no difference between the forward_training and forward_inference propagation kinds.

Backward

The backward propagation computes diff_src(𝑜𝑢, 𝑐, 𝑖𝑛), based on diff_dst(𝑜𝑢, 𝑐, 𝑖𝑛) and dst(𝑜𝑢, 𝑐, 𝑖𝑛).

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

Primitive input/output Execution argument index
src DNNL_ARG_SRC
dst DNNL_ARG_DST
diff_src DNNL_ARG_DIFF_SRC
diff_dst DNNL_ARG_DIFF_DST

Operation Details

1. Both forward and backward propagation support in-place operations, meaning that src can be used as input and
output for forward propagation, and diff_dst can be used as input and output for backward propagation. In
case of in-place operation, the original data will be overwritten.

5.5. Primitives 206

oneAPI Specification, Release 1.1-rev-1

Post-ops and Attributes

The softmax primitive does not have to support any post-ops or attributes.

Data Types Support

The softmax primitive supports the following combinations of data types.

Note: Here we abbreviate data types names for readability. For example, dnnl::memory::data_type::f32 is
abbreviated to f32.

Propagation Source / Destination
forward / backward bf16, f32
forward f16

Data Representation

Source, Destination, and Their Gradients

The softmax primitive works with arbitrary data tensors. There is no special meaning associated with any logical
dimensions. However, the softmax axis is typically referred to as channels (hence in formulas we use 𝑐).

API

struct dnnl::softmax_forward : public dnnl::primitive
Softmax forward propagation primitive.

Public Functions

softmax_forward()
Default constructor. Produces an empty object.

softmax_forward(const primitive_desc &pd)
Constructs a softmax forward propagation primitive.

Parameters pd – Primitive descriptor for a softmax forward propagation primitive.

struct desc
Descriptor for a softmax forward propagation primitive.

5.5. Primitives 207

oneAPI Specification, Release 1.1-rev-1

Public Functions

desc()
Default constructor. Produces an empty object.

desc(prop_kind aprop_kind, const memory::desc &data_desc, int softmax_axis)
Constructs a descriptor for a softmax forward propagation primitive.

Parameters
• aprop_kind – Propagation kind. Possible values are

dnnl::prop_kind::forward_training, and dnnl::prop_kind::forward_inference.
• data_desc – Source and destination memory descriptor.
• softmax_axis – Axis over which softmax is computed.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a softmax forward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, bool allow_empty = false)
Constructs a primitive descriptor for a softmax forward propagation primitive.

Parameters
• adesc – descriptor for a softmax forward propagation primitive.
• aengine – Engine to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, bool
allow_empty = false)

Constructs a primitive descriptor for a softmax forward propagation primitive.
Parameters

• adesc – Descriptor for a softmax forward propagation primitive.
• aengine – Engine to use.
• attr – Primitive attributes to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc src_desc() const
Returns a source memory descriptor.

Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

struct dnnl::softmax_backward : public dnnl::primitive
Softmax backward propagation primitive.

5.5. Primitives 208

oneAPI Specification, Release 1.1-rev-1

Public Functions

softmax_backward()
Default constructor. Produces an empty object.

softmax_backward(const primitive_desc &pd)
Constructs a softmax backward propagation primitive.

Parameters pd – Primitive descriptor for a softmax backward propagation primitive.

struct desc
Descriptor for a softmax backward propagation primitive.

Public Functions

desc()
Default constructor. Produces an empty object.

desc(const memory::desc &diff_data_desc, const memory::desc &data_desc, int softmax_axis)
Constructs a descriptor for a softmax backward propagation primitive.

Parameters
• diff_data_desc – Diff source and diff destination memory descriptor.
• data_desc – Destination memory descriptor.
• softmax_axis – Axis over which softmax is computed.

struct primitive_desc : public dnnl::primitive_desc
Primitive descriptor for a softmax backward propagation primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const desc &adesc, const engine &aengine, const softmax_forward::primitive_desc
&hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a softmax backward propagation primitive.
Parameters

• adesc – Descriptor for a softmax backward propagation primitive.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a softmax forward propagation primitive. It is

used as a hint for deciding which memory format to use.
• allow_empty – A flag signifying whether construction is allowed to fail without throw-

ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

primitive_desc(const desc &adesc, const primitive_attr &attr, const engine &aengine, const
softmax_forward::primitive_desc &hint_fwd_pd, bool allow_empty = false)

Constructs a primitive descriptor for a softmax backward propagation primitive.
Parameters

• adesc – Descriptor for a softmax backward propagation primitive.
• attr – Primitive attributes to use.
• aengine – Engine to use.
• hint_fwd_pd – Primitive descriptor for a softmax forward propagation primitive. It is

used as a hint for deciding which memory format to use.

5.5. Primitives 209

oneAPI Specification, Release 1.1-rev-1

• allow_empty – A flag signifying whether construction is allowed to fail without throw-
ing an exception. In this case an empty object will be produced. This flag is optional and
defaults to false.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

memory::desc diff_src_desc() const
Returns a diff source memory descriptor.

Returns Diff source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a diff source memory with.

memory::desc diff_dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

5.5.19 Sum

The sum primitive sums 𝑁 tensors. The variable names follow the standard Conventions.

dst(𝑥) =

𝑁∑︁
𝑖=1

𝑠𝑐𝑎𝑙𝑒𝑠(𝑖) · src𝑖(𝑥)

The sum primitive does not have a notion of forward or backward propagations. The backward propagation for the sum
operation is simply an identity operation.

Execution Arguments

When executed, the inputs and outputs should be mapped to an execution argument index as specified by the following
table.

primitive input/output execution argument index
src DNNL_ARG_MULTIPLE_SRC
dst DNNL_ARG_DST

Operation Details

• The dst memory format can be either specified by a user or derived the most appropriate one by the primitive.
The recommended way is to allow the primitive to choose the appropriate format.

• The sum primitive requires all source and destination tensors to have the same shape. Implicit broadcasting is
not supported.

5.5. Primitives 210

oneAPI Specification, Release 1.1-rev-1

Post-ops and Attributes

The sum primitive does not support any post-ops or attributes.

Data Types Support

The sum primitive supports arbitrary data types for source and destination tensors.

Data Representation

Sources, Destination

The sum primitive works with arbitrary data tensors. There is no special meaning associated with any logical dimen-
sions.

API

struct dnnl::sum : public dnnl::primitive
Out-of-place summation (sum) primitive.

Public Functions

sum()
Default constructor. Produces an empty object.

sum(const primitive_desc &pd)
Constructs a sum primitive.

Parameters pd – Primitive descriptor for sum primitive.

struct primitive_desc : public dnnl::primitive_desc_base
Primitive descriptor for a sum primitive.

Public Functions

primitive_desc()
Default constructor. Produces an empty object.

primitive_desc(const memory::desc &dst, const std::vector<float> &scales, const
std::vector<memory::desc> &srcs, const engine &aengine, const primitive_attr &attr
= primitive_attr())

Constructs a primitive descriptor for a sum primitive.
Parameters

• dst – Destination memory descriptor.
• scales – Vector of scales to multiply data in each source memory by.
• srcs – Vector of source memory descriptors.
• aengine – Engine to perform the operation on.
• attr – Primitive attributes to use (optional).

5.5. Primitives 211

oneAPI Specification, Release 1.1-rev-1

primitive_desc(const std::vector<float> &scales, const std::vector<memory::desc> &srcs, const
engine &aengine, const primitive_attr &attr = primitive_attr())

Constructs a primitive descriptor for a sum primitive.

This version derives the destination memory descriptor automatically.
Parameters

• scales – Vector of scales by which to multiply data in each source memory object.
• srcs – Vector of source memory descriptors.
• aengine – Engine on which to perform the operation.
• attr – Primitive attributes to use (optional).

memory::desc src_desc(int idx = 0) const
Returns a source memory descriptor.

Parameters idx – Source index.
Returns Source memory descriptor.
Returns A zero memory descriptor if the primitive does not have a source parameter with

index pdx.

memory::desc dst_desc() const
Returns a destination memory descriptor.

Returns Destination memory descriptor.
Returns A zero memory descriptor if the primitive does not have a destination parameter.

5.6 Open Source Implementation

Intel has published an open source implementation with the Apache license.

5.7 Implementation Notes

This specification provides high-level descriptions for oneDNN operations and does not cover all the implementation-
specific details of the open source implementation. Specifically, it does not cover highly-optimized memory formats
and integration with profiling tools, etc. This is done intentionally to improve specification portability. Code that uses
API defined in this specification is expected to be portable across open source implementation and any potential other
implementations of this specification to a reasonable extent.

In the future this section will be extended with more details on how different implementations of this specification
should cooperate and co-exist.

5.8 Testing

Intel’s binary distribution of oneDNN contains example code that you can be used to test library functionality.

The open source implementation includes a comprehensive test suite. Consult the README for directions.

5.6. Open Source Implementation 212

https://github.com/oneapi-src/oneDNN/
https://github.com/oneapi-src/oneDNN/
https://github.com/oneapi-src/oneDNN/
https://github.com/oneapi-src/oneDNN/blob/master/README.md

CHAPTER

SIX

ONECCL

6.1 Introduction

The oneAPI Collective Communications Library (oneCCL) provides primitives for the communication patterns that
occur in deep learning applications. oneCCL supports both scale-up for platforms with multiple oneAPI devices and
scale-out for clusters with multiple compute nodes.

oneCCL supports the following communication patterns used in deep learning (DL) algorithms:

• allgatherv

• allreduce

• alltoallv

• broadcast

• reduce

• reduce_scatter

oneCCL exposes controls over additional optimizations and capabilities such as:

• Prioritization for communication operations

• Persistent communication operations (enables decoupling one-time initialization and repetitive execution)

6.2 Namespaces

This section describes the oneCCL namespace conventions.

6.2.1 oneapi::ccl namespace

The oneapi::ccl namespace shall contains public identifiers defined by the library.

213

oneAPI Specification, Release 1.1-rev-1

6.2.2 ccl namespace

The alternative ccl namespace shall be considered an alias for the oneapi::ccl namespace.

6.3 Current Version of this oneCCL Specification

This is the oneCCL specification version 1.0.

6.4 Definitions

6.4.1 oneCCL Concepts

oneCCL specification defines the following list of concepts:

• Device

• Context

• Key-Value Store

• Communicator

• Stream

• Event

• Operation Attributes

Device

Note: Here and below, a native device/context/stream/event are defined in the scope of SYCL device runtime

using native_device_type = sycl::device;
using native_context_type = sycl::context;
using native_stream_type = sycl::queue;
using native_event_type = sycl::event;

oneCCL specification defines device as an abstraction of a computational device: a CPU, a specific GPU card in the
system, or any other device participating in a communication operation. device corresponds to the communicator’s
rank (addressable entity in a communication operation).

oneCCL specification defines the way to create an instance of the device class with a native object
(native_device_type) and without a native object (corresponds to the host).

Creating a new device object:

device ccl::create_device(native_device_type& native_device);

device ccl::create_device();

native_device the existing native device object

return device a device object

6.3. Current Version of this oneCCL Specification 214

oneAPI Specification, Release 1.1-rev-1

device class shall provide ability to retrieve a native object.

Retrieving a native device object:

native_device_type device::get_native();

return native_device_type
a native device object
shall throw exception if a device object does not wrap the native object

Context

oneCCL specification defines context as an abstraction of a computational devices context that is responsible for
managing resources and for executing of communication operations on one or more devices specified in the context.

oneCCL specification defines the way to create an instance of the context class with a native object
(native_context_type) and without a native object.

Creating a new context object:

context ccl::create_context(native_context_type& native_context);

context ccl::create_context();

native_context the existing native context object

return context a context object

context class shall provide ability to retrieve a native object.

Retrieving a native context object:

native_context_type context::get_native();

return native_context_type
a native context object
shall throw exception if a context object does not wrap the native object

Key-Value Store

kvs_interface defines the key-value store (KVS) interface to be used to establish connection between ranks during
the creation of oneCCL communicator. The interface shall include blocking get and set methods.

Getting a record from the key-value store:

virtual vector_class<char> kvs_interface::get(
const string_class& key) = 0;

key the key of value to be retrieved

return vector_class<char> the value associated with the given key

Note: get operation with a non-existing key shall return empty result

Saving a record in the key-value store:

6.4. Definitions 215

oneAPI Specification, Release 1.1-rev-1

void kvs_interface::set(
const string_class& key,
const vector_class<char>& data) = 0;

key the key at which the value should be stored

data the value that should be associated with the given key

Note: set operation with empty data shall remove a record from the key-value store

oneCCL specification defines kvs class as a built-in KVS provided by oneCCL.

class kvs : public kvs_interface {

public:

static constexpr size_t address_max_size = 256;
using address_type = array_class<char, address_max_size>;

~kvs() override;

address_type get_address() const;

vector_class<char> get(
const string_class& key) override;

void set(
const string_class& key,
const vector_class<char>& data) override;

}

Retrieving an address of built-in key-value store:

kvs::address_type kvs::get_address() const;

return kvs::address_type
the address of the key-value store
should be retrieved from the main built-in KVS and distributed to other processes for the built-in KVS creation

Creating a main built-in key-value store. Its address should be distributed using an out-of-band communication mech-
anism and be used to create key-value stores on other ranks:

shared_ptr_class<kvs> ccl::create_main_kvs();

return shared_ptr_class<kvs> the main key-value store object

Creating a new key-value store from main kvs address:

shared_ptr_class<kvs> ccl::create_kvs(const kvs::address_type& addr);

addr the address of the main kvs

return shared_ptr_class<kvs> key-value store object

6.4. Definitions 216

oneAPI Specification, Release 1.1-rev-1

Communicator

oneCCL specification defines communicator class that describes a group of communicating ranks, where a rank is an
addressable entity in a communication operation and corresponds to single oneCCL device.

communicator defines communication operations on memory buffers between homogenous oneCCL devices, that is,
all oneCCL devices either wrap native device objects of the same type (for example CPUs only or GPUs only) or do
not wrap native objects.

Each process may correspond to multiple ranks.

Note: Support for multiple ranks per process is optional

Creating a new communicator(s) with user-supplied communicator size, rank-to-device mapping/rank, context and kvs:

Note: If device and context objects are omitted, then they are created with ccl::create_device() and
ccl::create_context() functions without native objects

vector_class<communicator> ccl::create_communicators(
int size,
const map_class<int, device>& rank_device_map,
const context& context,
shared_ptr_class<kvs_interface> kvs);

communicator ccl::create_communicator(
int size,
int rank,
shared_ptr_class<kvs_interface> kvs);

size user-supplied total number of ranks

rank_device_map user-supplied mapping of local ranks on devices

rank user-supplied local rank

context device context

kvs key-value store for ranks wire-up

return vector_class<communicator> / communicator a vector of communicator objects / a communicator object

communicator shall provide methods to retrieve the rank, the device, and the context that correspond to the commu-
nicator object as well as the total number of ranks in the communicator.

Retrieving the rank in a communicator:

int communicator::rank() const;

return int the rank that corresponds to the communicator object

Retrieving the total number of ranks in a communicator:

int communicator::size() const;

return int the total number of the ranks

Retrieving an underlying device, which was used as communicator construction argument:

6.4. Definitions 217

oneAPI Specification, Release 1.1-rev-1

device communicator::get_device() const;

return device the device that corresponds to the communicator object

Retrieving an underlying context, which was used as communicator construction argument:

context communicator::get_context() const;

return context the context that corresponds to the communicator object

Note: See also: Collective Operations

Stream

oneCCL specification defines stream as an abstraction that encapsulates execution context for communicator com-
munication operations.

Stream shall be passed to communicator communication operation.

oneCCL specification defines the way to create an instance of the stream class with a native object
(native_stream_type) and without a native object.

Creating a new stream object:

stream ccl::create_stream(native_stream_type& native_stream);

stream ccl::create_stream();

native_stream the existing native stream object

return stream a stream object

stream class shall provide ability to retrieve a native object.

Retrieving a native stream object:

native_stream_type stream::get_native();

return native_stream_type
a native stream object
shall throw exception if a stream object does not wrap the native object

Event

oneCCL specification defines event as an abstraction that encapsulates synchronization context for communicator
communication operations.

Each communication operation of oneCCL shall return an event object for tracking the operation’s progress. A vector of
events may be passed to the communicator communication operation to designate input dependencies for the operation.

Note: Support for handling of input events is optional

oneCCL specification defines the way to create an instance of the event class with a native object
(native_event_type).

6.4. Definitions 218

oneAPI Specification, Release 1.1-rev-1

Creating a new event object:

event ccl::create_event(native_event_type& native_event);

native_event the existing native event object

return event an event object

event class shall provide ability to retrieve a native object.

Retrieving a native event object:

native_event_type event::get_native();

return native_event_type
a native event object
shall throw exception if an event object does not wrap the native object

Note: See also: Operation Progress Tracking

Operation Attributes

Communication operation behavior may be controlled through operation attributes.

Operation Attributes

6.4.2 Communication Operations

This section covers communication operations defined by oneCCL specification.

Datatypes

oneCCL specification defines the following datatypes that may be used for communication operations:

enum class datatype : int
{

int8 = /* unspecified */,
uint8 = /* unspecified */,
int16 = /* unspecified */,
uint16 = /* unspecified */,
int32 = /* unspecified */,
uint32 = /* unspecified */,
int64 = /* unspecified */,
uint64 = /* unspecified */,

float16 = /* unspecified */,
float32 = /* unspecified */,
float64 = /* unspecified */,
bfloat16 = /* unspecified */,

last_predefined = /* unspecified, equal to the largest of all the values above */
};

6.4. Definitions 219

oneAPI Specification, Release 1.1-rev-1

datatype::int8 8 bits signed integer

datatype::uint8 8 bits unsigned integer

datatype::int16 16 bits signed integer

datatype::uint16 16 bits unsigned integer

datatype::int32 32 bits signed integer

datatype::uint32 32 bits unsigned integer

datatype::int64 64 bits signed integer

datatype::uint64 64 bits unsigned integer

datatype::float16 16-bit/half-precision floating point

datatype::float32 32-bit/single-precision floating point

datatype::float64 64-bit/double-precision floating point

datatype::bfloat16 non-standard 16-bit floating point with 7-bit mantissa

Note: Support for datatype::float16 is optional

Custom Datatypes

oneCCL specification defines the way to register and deregister a custom datatype using the datatype_attr attribute
object.

The list of identifiers that may be used to fill an attribute object:

enum class datatype_attr_id {
size = /* unspecified */

};

datatype_attr_id::size the size of the datatype in bytes

Creating a datatype attribute object, which may used to register custom datatype:

datatype_attr ccl::create_datatype_attr();

return datatype_attr an object containing attributes for the custom datatype

Registering a custom datatype to be used in communication operations:

datatype ccl::register_datatype(const datatype_attr& attr);

attr the datatype’s attributes

return datatype the handle for the custom datatype

Deregistering a custom datatype:

void ccl::deregister_datatype(datatype dtype);

dtype the handle for the custom datatype

Retrieving a datatype size in bytes:

6.4. Definitions 220

https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://en.wikipedia.org/wiki/Bfloat16_floating-point_format

oneAPI Specification, Release 1.1-rev-1

size_t ccl::get_datatype_size(datatype dtype);

dtype the datatype’s handle

return size_t datatype size in bytes

Reductions

oneCCL specification defines the following reduction operations for Allreduce, Reduce and ReduceScatter collective
operations:

enum class reduction
{

sum = /* unspecified */,
prod = /* unspecified */,
min = /* unspecified */,
max = /* unspecified */,
custom = /* unspecified */

};

reduction::sum elementwise summation

reduction::prod elementwise multiplication

reduction::min elementwise min

reduction::max elementwise max

reduction::custom
specify user-defined reduction operation
the actual reduction function must be passed through reduction_fn operation attribute

Operation Attributes

Collective Operations

oneCCL specification defines the following collective communication operations:

• Allgatherv

• Allreduce

• Alltoallv

• Barrier

• Broadcast

• Reduce

• ReduceScatter

These operations are collective, meaning that all participants (ranks) of oneCCL communicator should make a call.
The order of collective operation calls should be the same across all ranks.

communicator shall provide the ability to perform communication operations either on host or device memory buffers
depending on the device used to create the communicator. Additionally, communication operations shall accept an
execution context (stream) and may accept a vector of events that the communication operation should depend on, that
is, input dependencies. The output event object shall provide the ability to track the progress of the operation.

6.4. Definitions 221

oneAPI Specification, Release 1.1-rev-1

Note: Support for handling of input events is optional

BufferType is used below to define the C++ type of elements in data buffers (buf, send_buf and recv_buf) of com-
munication operations. At least the following types shall be supported: [u]int{8/16/32/64}_t, float, double.
The explicit datatype parameter shall be used to enable data types which cannot be inferred from the function argu-
ments.

Note: See also: Custom Datatypes

The communication operation accepts a stream object. If a communicator is created from native_device_type,
then the stream shall translate to native_stream_type created from the corresponding device.

The communication operation may accept attribute object. If that parameter is missed, then the default attribute object
is used (default_<operation_name>_attr). The default attribute object shall be provided by the library.

Note: See also: Operation Attributes

If the arguments provided to a communication operation call do not comply to the requirements of the operation, the
behavior is undefined unless it is specified otherwise.

Allgatherv

Allgatherv is a collective communication operation that collects data from all the ranks within a communicator into a
single buffer. Different ranks may contribute segments of different sizes. The resulting data in the output buffer must
be the same for each rank.

template<class BufferType>
event ccl::allgatherv(const BufferType* send_buf,

size_t send_count,
BufferType* recv_buf,
const vector_class<size_t>& recv_counts,
const communicator& comm,
const stream& stream,
const allgatherv_attr& attr = default_allgatherv_attr,
const vector_class<event>& deps = {});

event ccl::allgatherv(const void* send_buf,
size_t send_count,
void* recv_buf,
const vector_class<size_t>& recv_counts,
datatype dtype,
const communicator& comm,
const stream& stream,
const allgatherv_attr& attr = default_allgatherv_attr,
const vector_class<event>& deps = {});

send_buf the buffer with send_count elements of BufferType that stores local data to be gathered

send_count the number of elements of type BufferType in send_buf

recv_buf [out] the buffer to store the gathered result, must be large enough to hold values from all ranks

6.4. Definitions 222

oneAPI Specification, Release 1.1-rev-1

recv_counts
an array with the number of elements of type BufferType to be received from each rank
the array’s size must be equal to the number of ranks
the values in the array are expected to be the same for all ranks
the value at the position of the caller’s rank must be equal to send_count

dtype
the datatype of elements in send_buf and recv_buf

must be skipped if BufferType can be inferred
otherwise must be passed explicitly

comm the communicator that defines a group of ranks for the operation

stream the stream associated with the operation

attr optional attributes to customize the operation

deps an optional vector of the events that the operation should depend on

return event an object to track the progress of the operation

Allreduce

Allreduce is a collective communication operation that performs the global reduction operation on values from all ranks
of communicator and distributes the result back to all ranks.

template <class BufferType>
event ccl::allreduce(const BufferType* send_buf,

BufferType* recv_buf,
size_t count,
reduction rtype,
const communicator& comm,
const stream& stream,
const allreduce_attr& attr = default_allreduce_attr,
const vector_class<event>& deps = {});

event ccl::allreduce(const void* send_buf,
void* recv_buf,
size_t count,
reduction rtype,
datatype dtype,
const communicator& comm,
const stream& stream,
const allreduce_attr& attr = default_allreduce_attr,
const vector_class<event>& deps = {});

send_buf the buffer with count elements of BufferType that stores local data to be reduced

recv_buf [out] the buffer to store the reduced result, must have the same dimension as send_buf

count the number of elements of type BufferType in send_buf and recv_buf

rtype the type of the reduction operation to be applied

dtype
the datatype of elements in send_buf and recv_buf

6.4. Definitions 223

oneAPI Specification, Release 1.1-rev-1

must be skipped if BufferType can be inferred
otherwise must be passed explicitly

comm the communicator that defines a group of ranks for the operation

stream the stream associated with the operation

attr optional attributes to customize the operation

deps an optional vector of the events that the operation should depend on

return event an object to track the progress of the operation

Alltoallv

Alltoall is a collective communication operation in which each rank sends separate blocks of data to each rank. Block
sizes may differ. The j-th block of send buffer sent from the i-th rank is received by the j-th rank and is placed in the
i-th block of receive buffer.

template <class BufferType>
event ccl::alltoallv(const BufferType* send_buf,

const vector_class<size_t>& send_counts,
BufferType* recv_buf,
const vector_class<size_t>& recv_counts,
const communicator& comm,
const stream& stream,
const alltoallv_attr& attr = default_alltoallv_attr,
const vector_class<event>& deps = {});

event ccl::alltoallv(const void* send_buf,
const vector_class<size_t>& send_counts,
void* recv_buf,
const vector_class<size_t>& recv_counts,
datatype dtype,
const communicator& comm,
const stream& stream,
const alltoallv_attr& attr = default_alltoallv_attr,
const vector_class<event>& deps = {});

send_buf the buffer with elements of BufferType that stores local blocks to be sent to each rank

send_counts
an array with number of elements of type BufferType in the blocks sent for each rank
the array’s size must be equal to the number of ranks
the values at the position of the caller’s rank in send_counts and recv_counts must be equal

recv_buf [out] the buffer to store the received result, must be large enough to hold blocks from all ranks

recv_counts
an array with number of elements of type BufferType in the blocks received from each rank
the array’s size must be equal to the number of ranks
the values at the position of the caller’s rank in send_counts and recv_counts must be equal

dtype
the datatype of elements in send_buf and recv_buf

6.4. Definitions 224

oneAPI Specification, Release 1.1-rev-1

must be skipped if BufferType can be inferred
otherwise must be passed explicitly

comm the communicator that defines a group of ranks for the operation

stream the stream associated with the operation

attr optional attributes to customize the operation

deps an optional vector of the events that the operation should depend on

return event an object to track the progress of the operation

Barrier

Barrier synchronization is performed across all ranks of the communicator and it is completed only after all the ranks
in the communicator have called it.

event ccl::barrier(const communicator& comm,
const stream& stream,
const barrier_attr& attr = default_barrier_attr,
const vector_class<event>& deps = {});

comm the communicator that defines a group of ranks for the operation

stream the stream associated with the operation

attr optional attributes to customize the operation

deps an optional vector of the events that the operation should depend on

return event an object to track the progress of the operation

Broadcast

Broadcast is a collective communication operation that broadcasts data from one rank of communicator (denoted as
root) to all other ranks.

template <class BufferType>
event ccl::broadcast(BufferType* buf,

size_t count,
int root,
const communicator& comm,
const stream& stream,
const broadcast_attr& attr = default_broadcast_attr,
const vector_class<event>& deps = {});

event ccl::broadcast(void* buf,
size_t count,
datatype dtype,
int root,
const communicator& comm,
const stream& stream,
const broadcast_attr& attr = default_broadcast_attr,
const vector_class<event>& deps = {});

buf [in,out]

6.4. Definitions 225

oneAPI Specification, Release 1.1-rev-1

the buffer with count elements of BufferType
serves as send_buf for root and as recv_buf for other ranks

count the number of elements of type BufferType in buf

root the rank that broadcasts buf

dtype
the datatype of elements in buf

must be skipped if BufferType can be inferred
otherwise must be passed explicitly

comm the communicator that defines a group of ranks for the operation

stream the stream associated with the operation

attr optional attributes to customize the operation

deps an optional vector of the events that the operation should depend on

return event an object to track the progress of the operation

Reduce

Reduce is a collective communication operation that performs the global reduction operation on values from all ranks
of the communicator and returns the result to the root rank.

template <class BufferType>
event ccl::reduce(const BufferType* send_buf,

BufferType* recv_buf,
size_t count,
reduction rtype,
int root,
const communicator& comm,
const stream& stream,
const reduce_attr& attr = default_reduce_attr,
const vector_class<event>& deps = {});

event ccl::reduce(const void* send_buf,
void* recv_buf,
size_t count,
datatype dtype,
reduction rtype,
int root,
const communicator& comm,
const stream& stream,
const reduce_attr& attr = default_reduce_attr,
const vector_class<event>& deps = {});

send_buf the buffer with count elements of BufferType that stores local data to be reduced

recv_buf [out]
the buffer to store the reduced result, must have the same dimension as send_buf.
Used by the root rank only, ignored by other ranks.

count the number of elements of type BufferType in send_buf and recv_buf

6.4. Definitions 226

oneAPI Specification, Release 1.1-rev-1

rtype the type of the reduction operation to be applied

root the rank that gets the result of the reduction

dtype
the datatype of elements in send_buf and recv_buf

must be skipped if BufferType can be inferred
otherwise must be passed explicitly

comm the communicator that defines a group of ranks for the operation

stream the stream associated with the operation

attr optional attributes to customize the operation

deps an optional vector of the events that the operation should depend on

return event an object to track the progress of the operation

ReduceScatter

Reduce-scatter is a collective communication operation that performs the global reduction operation on values from all
ranks of the communicator and scatters the result in blocks back to all ranks.

template <class BufferType>
event ccl::reduce_scatter(const BufferType* send_buf,

BufferType* recv_buf,
size_t recv_count,
reduction rtype,
const communicator& comm,
const stream& stream,
const reduce_scatter_attr& attr = default_reduce_scatter_attr,
const vector_class<event>& deps = {});

event ccl::reduce_scatter(const void* send_buf,
void* recv_buf,
size_t recv_count,
datatype dtype,
reduction rtype,
const communicator& comm,
const stream& stream,
const reduce_scatter_attr& attr = default_reduce_scatter_attr,
const vector_class<event>& deps = {});

send_buf the buffer with comm_size * count elements of BufferType that stores local data to be reduced

recv_buf [out] the buffer to store the result block containing recv_count elements of type BufferType

recv_count the number of elements of type BufferType in the received block

rtype the type of the reduction operation to be applied

dtype
the datatype of elements in send_buf and recv_buf

must be skipped if BufferType can be inferred
otherwise must be passed explicitly

comm the communicator that defines a group of ranks for the operation

6.4. Definitions 227

oneAPI Specification, Release 1.1-rev-1

stream the stream associated with the operation

attr optional attributes to customize the operation

deps an optional vector of the events that the operation should depend on

return event an object to track the progress of the operation

Note: See also:

• Communicator

• Stream

• Event

• Operation Progress Tracking

Operation Attributes

oneCCL specification defines communication operation attributes that serve as modifiers of an operation’s behavior.
Optionally, they may be passed to the corresponding communication operations.

oneCCL specification defines the following operation attribute classes:

• allgatherv_attr

• allreduce_attr

• alltoallv_attr

• barrier_attr

• broadcast_attr

• reduce_attr

• reduce_scatter_attr

oneCCL specification defines attribute identifiers that may be used to fill operation attribute objects.

The list of common attribute identifiers that may be used for any communication operation:

enum class operation_attr_id {
priority = /* unspecified */,
to_cache = /* unspecified */,
synchronous = /* unspecified */,
match_id = /* unspecified */

last_value = /* unspecified, equal to the largest of all the values above */
};

operation_attr_id::priority the priority of the communication operation

operation_attr_id::to_cache
persistent/non-persistent communication operation
should be used in conjunction with match_id

operation_attr_id::synchronous synchronous/asynchronous communication operation

operation_attr_id::match_id

6.4. Definitions 228

oneAPI Specification, Release 1.1-rev-1

the unique identifier of the operation
in conjunction with to_cache, it enables the caching of the communication operation

The communication operation specific attribute identifiers may extend the list of common identifiers.

The list of attribute identifiers that may be used for Allreduce, Reduce and ReduceScatter collective operations:

enum class allreduce_attr_id {
reduction_fn = /* unspecified */

};

enum class reduce_attr_id {
reduction_fn = /* unspecified */

};

enum class reduce_scatter_attr_id {
reduction_fn = /* unspecified */

};

allreduce_attr_id::reduction_fn / reduce_attr_id::reduction_fn / reduce_scatter_attr_id::reduction_fn a func-
tion pointer for the custom reduction operation that follows the signature:

typedef void (*reduction_fn)
(

const void*, /* in_buf */
size_t, /* in_count */
void*, /* inout_buf */
size_t*, /* out_count */
datatype, /* datatype */
const fn_context* /* context */

);

typedef struct {
const char* match_id;
const size_t offset;

} fn_context;

Creating an operation attribute object, which may be used in a corresponding communication operation:

template <class OpAttrType>
OpAttrType ccl::create_operation_attr();

return OpAttrType an object to hold attributes for a specific communication operation

The operation attribute classes shall provide get and setmethods for getting and setting of values with specific attribute
identifiers.

6.4. Definitions 229

oneAPI Specification, Release 1.1-rev-1

Operation Progress Tracking

oneCCL communication operation shall return an event object to be used for tracking the operation’s progress.

The event class shall provide the ability to wait for completion of an operation in a blocking manner, the ability to
check the completion status in a non-blocking manner, and the ability to retrieve the underlying native object that is
signaled when the operation completes.

Event

Waiting for the completion of an operation in a blocking manner:

void event::wait();

Checking for the completion of an operation in a non-blocking manner:

bool event::test();

return bool true if the operation has been completed false if the operation has not been completed

Retrieving a native object that is signaled when the operation completes:

native_event_type event::get_native();

return native_event_type
a native object that is signaled when the operation completes
shall throw an exception if an event object does not wrap the native object

6.4.3 Error handling

oneCCL error handling relies on the mechanism of C++ exceptions. If an error occurs, it shall be propagated at the
point of a function call where it is caught using standard C++ error handling mechanism.

Exception classification

Exception classification in oneCCL is aligned with C++ Standard Library classification. oneCCL introduces class that
defines the base class in the hierarchy of oneCCL exception classes. All oneCCL routines throw exceptions inherited
from this base class.

In the hierarchy of oneCCL exceptions, ccl::exception is the base class inherited from std::exception class.
All other oneCCL exception classes are derived from this base class.

This specification does not require implementations to perform error-checking. However, if an implementation does
provide error-checking, it shall use the following exception classes. Additional implementation-specific exception
classes can be used for exceptional conditions not fitting any of these classes.

6.4. Definitions 230

oneAPI Specification, Release 1.1-rev-1

Common exceptions

Exception class Description

ccl::exception
Reports general unspecified error

ccl::invalid_argument
Reports an error when arguments to the operation were rejected

ccl::host_bad_alloc
Reports an error that occurred during memory allocation on the host

ccl::unimplemented
Reports an error when the requested operation is not implemented

ccl::unsupported
Reports an error when the requested operation is not supported

6.5 Programming Model

6.5.1 Generic Workflow

Below is a generic workflow with oneCCL API

1. Create a main built-in key-value store. Its address should be distributed using an out-of-band communication
mechanism and be used to create key-value stores on other processes:

using namespace std;

/* for example use MPI as an out-of-band communication mechanism */

int mpi_rank, mpi_size;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size);

ccl::shared_ptr_class<ccl::kvs> kvs;
ccl::kvs::address_type kvs_addr;

if (mpi_rank == 0) {
kvs = ccl::create_main_kvs();
kvs_addr = kvs->get_address();
MPI_Bcast((void*)kvs_addr.data(), ccl::kvs::address_max_size, MPI_BYTE, 0, MPI_COMM_

→˓WORLD);
}
else {

MPI_Bcast((void*)kvs_addr.data(), ccl::kvs::address_max_size, MPI_BYTE, 0, MPI_COMM_
→˓WORLD);

kvs = ccl::create_kvs(kvs_addr);
}

2. Create communicator(s):

/* host communications */
auto comm = ccl::create_communicator(mpi_size, mpi_rank, kvs);

6.5. Programming Model 231

oneAPI Specification, Release 1.1-rev-1

/* SYCL devices communications, for example with multiple devices per process */

/* sycl_context -> sycl::context */
/* sycl_devices -> vector<sycl::device> */
/* sycl_queues -> vector<sycl::queue> */

/* create ccl::context object from sycl::context object */
auto ccl_context = ccl::create_context(sycl_context);

/* create ccl::device objects from sycl::device objects */
vector<ccl::device> ccl_devices;
for (size_t idx = 0; idx < sycl_devices.size(); idx++) {

ccl_devices.push_back(ccl::create_device(sycl_devices[idx]));
}

map<int, ccl::device> r2d_map;
for (auto& dev : ccl_devices) {

int rank = /* generate a globally unique rank for a specific device */
r2d_map[rank] = dev;

}

/* create ccl::stream objects from sycl::queue objects */
vector<ccl::stream> ccl_streams;
for (size_t idx = 0; idx < sycl_queues.size(); idx++) {

ccl_streams.push_back(ccl::create_stream(sycl_queues[idx]));
}

auto comms = ccl::create_communicators(mpi_size * r2d_map.size(),
r2d_map,
ccl_context,
kvs);

3. Execute a communication operation of choice on the communicator(s):

/* host communications */
allreduce(..., comm).wait();

/* SYCL devices communications */
vector<ccl::event> events;
for (auto& comm : comms) {

events.push_back(allreduce(..., comm, ccl_streams[comm.rank()]));
}

for (auto& e : events) {
e.wait();

}

6.5. Programming Model 232

CHAPTER

SEVEN

LEVEL ZERO

The oneAPI Level Zero (Level Zero) provides low-level direct-to-metal interfaces that are tailored to the devices in a
oneAPI platform. Level Zero supports broader language features such as function pointers, virtual functions, unified
memory, and I/O capabilities while also providing fine-grain explicit controls needed by higher-level runtime APIs
including:

• Device discovery

• Memory allocation

• Peer-to-peer communication

• Inter-process sharing

• Kernel submission

• Asynchronous execution and scheduling

• Synchronization primitives

• Metrics reporting

The API architecture exposes both physical and logical abstractions of the underlying oneAPI platform devices and
their capabilities. The device, sub-device, and memory are exposed at a physical level while command queues, events,
and synchronization methods are defined as logical entities. All logical entities are bound to device-level physical ca-
pabilities. The API provides a scheduling model that is tailored to multiple uses including a low-latency submission
model to the devices as well as one that is tailored to the construction and submission of work across simultaneous host
threads. While heavily influenced by other low-level APIs, such as OpenCL, Level Zero is designed to evolve inde-
pendently. While heavily influenced by GPU architecture, Level Zero is supportable across different oneAPI compute
device architectures, such as FPGAs.

7.1 Detailed API Descriptions

The detailed specification can be found online in the specification.

233

https://spec.oneapi.com/level-zero/latest/index.html

CHAPTER

EIGHT

ONEDAL

This document specifies requirements for implementations of oneAPI Data Analytics Library (oneDAL).

oneDAL is a library that helps speed up big data analysis by providing highly optimized algorithmic building blocks
for all stages of data analytics (preprocessing, transformation, analysis, modeling, validation, and decision making) in
batch, online, and distributed processing modes of computation. The current version of oneDAL provides Data Parallel
C++ (DPC++) API extensions to the traditional C++ interface.

For general information, visit oneDAL GitHub* page.

8.1 Introduction

oneAPI Data Analytics Library (oneDAL) is a library that provides building blocks covering all stages of data analytics:
data acquisition from a data source, preprocessing, transformation, data mining, modeling, validation, and decision
making.

oneDAL supports the concept of the end-to-end analytics when some of data analytics stages are performed on the
edge devices (close to where the data is generated and where it is finally consumed). Specifically, oneDAL Application
Programming Interfaces (APIs) are agnostic about a particular cross-device communication technology and, therefore,
can be used within different end-to-end analytics frameworks.

234

https://github.com/intel/daal

oneAPI Specification, Release 1.1-rev-1

oneDAL consists of the following major components:

• The Data Management component includes classes and utilities for data acquisition, initial preprocessing and
normalization, for data conversion into numeric formats (performed by one of supported Data Sources), and for
model representation.

• The Algorithms component consists of classes that implement algorithms for data analysis (data mining) and
data modeling (training and prediction). These algorithms include clustering, classification, regression, and
recommendation algorithms. Algorithms support the following computation modes:

– Batch processing: algorithms work with the entire data set to produce the final result

– Online processing: algorithms process a data set in blocks streamed into the device’s memory

– Distributed processing: algorithms operate on a data set distributed across several devices (compute nodes)

Distributed algorithms in oneDAL are abstracted from underlying cross-device communication technology,
which enables use of the library in a variety of multi-device computing and data transfer scenarios.

Depending on the usage, algorithms operate both on actual data (data set) and data models:

– Analysis algorithms typically operate on data sets.

– Training algorithms typically operate on a data set to train an appropriate data model.

– Prediction algorithms typically work with the trained data model and with a working data set.

• The Utilities component includes auxiliary functionality intended to be used for design of classes and imple-
mentation of methods such as memory allocators or type traits.

• The Miscellaneous component includes functionality intended to be used by oneDAL algorithms and applica-
tions for algorithm customization and optimization on various stages of the analytical pipeline. Examples of such
algorithms include solvers and random number generators.

Classes in Data Management, Algorithms, Utilities, and Miscellaneous components cover the most important usage
scenarios and allow seamless implementation of complex data analytics workflows through direct API calls. At the
same time, the library is an object-oriented framework that helps customize the API by redefining particular classes
and methods of the library.

8.1. Introduction 235

oneAPI Specification, Release 1.1-rev-1

8.2 Glossary

8.2.1 Machine learning terms

Categorical feature A feature with a discrete domain. Can be nominal or ordinal.

Synonyms: discrete feature, qualitative feature

Classification A supervised machine learning problem of assigning labels to feature vectors.

Examples: predict what type of object is on the picture (a dog or a cat?), predict whether or not an email is spam

Clustering An unsupervised machine learning problem of grouping feature vectors into bunches, which are usually
encoded as nominal values.

Example: find big star clusters in the space images

Continuous feature A feature with values in a domain of real numbers. Can be interval or ratio

Synonyms: quantitative feature, numerical feature

Examples: a person’s height, the price of the house

CSV file A comma-separated values file (csv) is a type of a text file. Each line in a CSV file is a record containing
fields that are separated by the delimiter. Fields can be of a numerical or a text format. Text usually refers to
categorical values. By default, the delimiter is a comma, but, generally, it can be any character. For more details,
see.

Dataset A collection of observations.

Dimensionality reduction A problem of transforming a set of feature vectors from a high-dimensional space into a
low-dimensional space while retaining meaningful properties of the original feature vectors.

Feature A particular property or quality of a real object or an event. Has a defined type and domain. In machine
learning problems, features are considered as input variable that are independent from each other.

Synonyms: attribute, variable, input variable

Feature vector A vector that encodes information about real object, an event or a group of objects or events. Contains
at least one feature.

Example: A rectangle can be described by two features: its width and height

Inference A process of applying a trained model to the dataset in order to predict response values based on input
feature vectors.

Synonym: prediction

Inference set A dataset used at the inference stage. Usually without responses.

Interval feature A continuous feature with values that can be compared, added or subtracted, but cannot be multiplied
or divided.

Examples: a time frame scale, a temperature in Celsius or Fahrenheit

Label A response with categorical or ordinal values. This is an output in classification and clustering problems.

Example: the spam-detection problem has a binary label indicating whether the email is spam or not

Model An entity that stores information necessary to run inference on a new dataset. Typically a result of a training
process.

Example: in linear regression algorithm, the model contains weight values for each input feature and a single
bias value

8.2. Glossary 236

https://en.wikipedia.org/wiki/Comma-separated_values

oneAPI Specification, Release 1.1-rev-1

Nominal feature A categorical feature without ordering between values. Only equality operation is defined for nom-
inal features.

Examples: a person’s gender, color of a car

Observation A feature vector and zero or more responses.

Synonyms: instance, sample

Ordinal feature A categorical feature with defined operations of equality and ordering between values.

Example: student’s grade

Outlier Observation which is significantly different from the other observations.

Ratio feature A continuous feature with defined operations of equality, comparison, addition, subtraction, multipli-
cation, and division. Zero value element means the absence of any value.

Example: the height of a tower

Regression A supervised machine learning problem of assigning continuous responses for feature vectors.

Example: predict temperature based on weather conditions

Response A property of some real object or event which dependency from feature vector need to be defined in super-
vised learning problem. While a feature is an input in the machine learning problem, the response is one of the
outputs can be made by the model on the inference stage.

Synonym: dependent variable

Supervised learning Training process that uses a dataset with information about dependencies between features and
responses. The goal is to get a model of dependencies between input feature vector and responses.

Training A process of creating a model based on information extracted from a training set. Resulting model is selected
in accordance with some quality criteria.

Training set A dataset used at the training stage to create a model.

Unsupervised learning Training process that uses a training set with no responses. The goal is to find hidden patters
inside feature vectors and dependencies between them.

8.2.2 oneDAL terms

Accessor A oneDAL concept for an object that provides access to the data of another object in the special data format.
It abstracts data access from interface of an object and provides uniform access to the data stored in objects of
different types.

Batch mode The computation mode for an algorithm in oneDAL, where all the data needed for computation is available
at the start and fits the memory of the device on which the computations are performed.

Builder A oneDAL concept for an object that encapsulates the creation process of another object and enables its
iterative creation.

Contiguous data Data that are stored as one contiguous memory block. One of the characteristics of a data format.

Data format Representation of the internal structure of the data.

Examples: data can be stored in array-of-structures or compressed-sparse-row format

Data layout A characteristic of data format which describes the order of elements in a contiguous data block.

Example: row-major format, where elements are stored row by row

8.2. Glossary 237

oneAPI Specification, Release 1.1-rev-1

Data type An attribute of data used by a compiler to store and access them. Includes size in bytes, encoding principles,
and available operations (in terms of a programming language).

Examples: int32_t, float, double

Flat data A block of contiguous homogeneous data.

Getter A method that returns the value of the private member variable.

Example:

std::int64_t get_row_count() const;

Heterogeneous data Data which contain values either of different data types or different sets of operations defined on
them. One of the characteristics of a data format.

Example: A dataset with 100 observations of three interval features. The first two features are of float32 data
type, while the third one is of float64 data type.

Homogeneous data Data with values of single data type and the same set of available operations defined on them.
One of the characteristics of a data format.

Example: A dataset with 100 observations of three interval features, each of type float32

Immutability The object is immutable if it is not possible to change its state after creation.

Metadata Information about logical and physical structure of an object. All possible combinations of metadata values
present the full set of possible objects of a given type. Metadata do not expose information that is not a part of a
type definition, e.g. implementation details.

Example: table object can contain three nominal features with 100 observations (logical part of metadata). This
object can store data as sparse csr array and provides direct access to them (physical part)

Online mode The computation mode for an algorithm in oneDAL, where the data needed for computation becomes
available in parts over time.

Reference-counted object A copy-constructible and copy-assignable oneDAL object which stores the number of ref-
erences to the unique implementation. Both copy operations defined for this object are lightweight, which means
that each time a new object is created, only the number of references is increased. An implementation is auto-
matically freed when the number of references becomes equal to zero.

Setter A method that accepts the only parameter and assigns its value to the private member variable.

Example:

void set_row_count(std::int64_t row_count);

Table A oneDAL concept for a dataset that contains only numerical data, categorical or continuous. Serves as a
transfer of data between user’s application and computations inside oneDAL. Hides details of data format and
generalizes access to the data.

Workload A problem of applying a oneDAL algorithm to a dataset.

8.2. Glossary 238

oneAPI Specification, Release 1.1-rev-1

8.2.3 Common oneAPI terms

API Application Programming Interface

DPC++ Data Parallel C++ (DPC++) is a high-level language designed for data parallel programming productivity.
DPC++ is based on SYCL* from the Khronos* Group to support data parallelism and heterogeneous program-
ming.

Host/Device OpenCL [OpenCLSpec] refers to CPU that controls the connected GPU executing kernels.

JIT Just in Time Compilation — compilation during execution of a program.

Kernel Code written in OpenCL [OpenCLSpec] or SYCL and executed on a GPU device.

SPIR-V Standard Portable Intermediate Representation - V is a language for intermediate representation of compute
kernels.

SYCL SYCL(TM) [SYCLSpec] — high-level programming model for OpenCL(TM) that enables code for heteroge-
neous processors to be written in a “single-source” style using completely standard C++.

8.3 Mathematical Notations

Notation Definition
𝑛 or 𝑚 The number of observations in a dataset. Typically 𝑛 is used, but sometimes 𝑚 is required to

distinguish two datasets, e.g., the training set and the inference set.
𝑝 or 𝑟 The number of features in a dataset. Typically 𝑝 is used, but sometimes 𝑟 is required to distinguish

two datasets.
𝑎× 𝑏 The dimensionality of a matrix (dataset) has 𝑎 rows (observations) and 𝑏 columns (features).
|𝐴| Depending on the context may be interpreted as follows:

• If 𝐴 is a set, this denotes its cardinality, i.e., the number of elements in the set 𝐴.
• If 𝐴 is a real number, this denotes an absolute value of 𝐴.

‖𝑥‖ The 𝐿2-norm of a vector 𝑥 ∈ R𝑑,

‖𝑥‖ =
√︁

𝑥2
1 + 𝑥2

2 + · · ·+ 𝑥2
𝑑.

sgn(𝑥) Sign function for 𝑥 ∈ R,

sgn(𝑥) =

⎧⎪⎨⎪⎩
−1, 𝑥 < 0,

0, 𝑥 = 0,

1, 𝑥 > 0.

𝑥𝑖 In the description of an algorithm, this typically denotes the 𝑖-th feature vector in the training set.
𝑥′𝑖 In the description of an algorithm, this typically denotes the 𝑖-th feature vector in the inference

set.
𝑦𝑖 In the description of an algorithm, this typically denotes the 𝑖-th response in the training set.
𝑦′𝑖 In the description of an algorithm, this typically denotes the 𝑖-th response that needs to be predicted

by the inference algorithm given the feature vector 𝑥′𝑖 from the inference set.

8.3. Mathematical Notations 239

oneAPI Specification, Release 1.1-rev-1

8.4 Programming model

oneDAL primarily targets algorithms that are extensively used in data analytics. These algorithms typically have many
parameters, i.e. knobs to control its internal behavior and produced result. In machine learning, those parameters are
often referred as meta-parameters to distinguish them from the model parameters learned during the training. Some
algorithms define a dozen meta-parameters, while others depend on another algorithm as, for example, the logistic
regression training procedure depends on an optimization algorithm.

Besides meta-parameters, machine learning algorithms may have different stages, such as training and inference. More-
over, the stages of an algorithm may be implemented in a variety of computational methods. For instance, a linear
regression model could be trained by solving a system of linear equations [Friedman17] or by applying an iterative
optimization solver directly to the empirical risk function [Zhang04].

The same machine learning techniques are often applied for solving problems of different types. In the example with
linear regression, the same mathematical model used for solving regression problem is generalized for solving a clas-
sification problem, for example, logistic regression. Such techniques differ only in few problem-specific aspects, but
share the same subset of meta-parameters and have a common computational flow. oneDAL does not distinguish these
techniques into different algorithms. Instead, from oneDAL perspective, the same algorithm may perform different
computational tasks.

From computational perspective, algorithm implementation may rely on different floating-point types, such as float,
double or bfloat16. Having a capability to specify what type is needed is important for the end user as their precision
requirements vary depending on a workload.

To best tackle the mentioned challenges, each algorithm is decomposed into descriptors and operations.

8.4.1 End-to-end example

Below you can find a typical workflow of using oneDAL algorithm on GPU. The example is provided for Principal
Component Analysis algorithm (PCA).

The following steps depict how to:

• Read the data from CSV file

• Run the training and inference operations for PCA

• Access intermediate results obtained at the training stage

1. Include the following header that makes all oneDAL declarations available.

#include "oneapi/dal.hpp"

/* Standard library headers required by this example */
#include <cassert>
#include <iostream>

2. Create a SYCL* queue with the desired device selector. In this case, GPU selector is used:

const auto queue = sycl::queue{ sycl::gpu_selector{} };

3. Since all oneDAL declarations are in the oneapi::dal namespace, import all declarations from the oneapi
namespace to use dal instead of oneapi::dal for brevity:

using namespace oneapi;

4. Use CSV data source to read the data from the CSV file into a table:

8.4. Programming model 240

https://xgboost.readthedocs.io/en/latest/parameter.html
https://xgboost.readthedocs.io/en/latest/parameter.html

oneAPI Specification, Release 1.1-rev-1

const auto data = dal::read<dal::table>(queue, dal::csv::data_source{"data.csv"});

5. Create a PCA descriptor, configure its parameters, and run the training algorithm on the data loaded from CSV.

const auto pca_desc = dal::pca::descriptor<float>
.set_component_count(3)
.set_deterministic(true);

const dal::pca::train_result train_res = dal::train(queue, pca_desc, data);

6. Print the learned eigenvectors:

const dal::table eigenvectors = train_res.get_eigenvectors();

const auto acc = dal::row_accessor<const float>{eigenvectors};
for (std::int64_t i = 0; i < eigenvectors.row_count(); i++) {

/* Get i-th row from the table, the eigenvector stores pointer to USM */
const dal::array<float> eigenvector = acc.pull(queue, {i, i + 1});
assert(eigenvector.get_count() == eigenvectors.get_column_count());

std::cout << i << "-th eigenvector: ";
for (std::int64_t j = 0; j < eigenvector.get_count(); j++) {

std::cout << eigenvector[j] << " ";
}
std::cout << std::endl;

}

7. Use the trained model for inference to reduce dimensionality of the data:

const dal::pca::model model = train_res.get_model();

const dal::table data_transformed =
dal::infer(queue, pca_desc, data).get_transformed_data();

assert(data_transformed.column_count() == 3);

8.4.2 Descriptors

A descriptor is an object that represents an algorithm including all its meta-parameters, dependencies on other algo-
rithms, floating-point types, computational methods and tasks. A descriptor serves as:

• A dispatching mechanism for operations. Based on a descriptor type, an operation executes a particular algorithm
implementation.

• An aggregator of meta-parameters. It provides an interface for setting up meta-parameters at either compile-time
or run-time.

• An object that stores the state of the algorithm. In the general case, a descriptor is a stateful object whose state
changes after an operation is applied.

Each oneDAL algorithm has its own dedicated namespace, where the corresponding descriptor is defined (for more
details, see Namespaces). Descriptor, in its turn, defines the following:

8.4. Programming model 241

oneAPI Specification, Release 1.1-rev-1

• Template parameters. A descriptor is allowed to have any number of template parameters, but shall support at
least three:

– Float is a floating-point type that the algorithm uses for computations. This parameter is defined first and
has the oneapi::dal::default_float_t default value.

– Method is a tag-type that specifies the computational method. This parameter is defined second and has
the method::by_default default value.

– Task is a tag-type that specifies the computational task. This parameter is defined third and has the
task::by_default default value.

• Properties. A property is a run-time parameter that can be accessed by means of the corresponding getter and
setter methods.

The following code sample shows the common structure of a descriptor’s definition for an abstract algorithm. To define
a particular algorithm, the following strings shall be substituted:

• %ALGORITHM% is the name of an algorithm and its namespace. All classes and structures related to that algorithm
are defined within the namespace.

• %PROPERTY_NAME% and %PROPERTY_TYPE% are the name and the type of one of the algorithm’s properties.

namespace oneapi::dal::%ALGORITHM% {

template <typename Float = default_float_t,
typename Method = method::by_default,
typename Task = task::by_default,
/* more template parameters */>

class descriptor {
public:
/* Constructor */
descriptor(const %PROPERTY_TYPE%& %PROPERTY_NAME%,

/* more properties */)

/* Getter & Setter for the property called `%PROPERTY_NAME%` */
descriptor& set_%PROPERTY_NAME%(%PROPERTY_TYPE% value);
%PROPERTY_TYPE% get_%PROPERTY_NAME%() const;

/* more properties */
};

} // namespace oneapi::dal::%ALGORITHM%

Each meta-parameter of an algorithm is mapped to a property that shall satisfy the following requirements:

• Properties are defined with getter and setter methods. The underlying class member variable that stores the
property’s value is never exposed in the descriptor interface.

• The getter returns the value of the underlying class member variable.

• The setter accepts only one parameter of the property’s type and assigns it to the underlying class member
variable.

• Most of the properties are preset with default values, others are initialized by passing the required parameters to
the constructor.

• The setter returns a reference to the descriptor object to allow chaining calls as shown in the example below.

8.4. Programming model 242

oneAPI Specification, Release 1.1-rev-1

auto desc = descriptor{}
.set_property_name_1(value_1)
.set_property_name_2(value_2)
.set_property_name_3(value_3);

Floating-point Types

It is required for each algorithm to support at least one implementation-defined floating-point type. Other floating-point
types are optional, for example float, double, float16, and bfloat16. It is up to a specific oneDAL implementation
whether or not to support these types.

The floating-point type used as a default in descriptors is implementation-defined and shall be declared within the
top-level namespace.

namespace oneapi::dal {
using default_float_t = /* implementation defined */;

} // namespace oneapi::dal

Computational Methods

The supported computational methods are declared within the %ALGORITHM%::method namespace using tag-types.
Algorithm shall support at least one method and declare the by_default type alias that refers to one of the methods
as shown in the example below.

namespace oneapi::dal::%ALGORITHM% {
namespace method {
struct x {};
struct y {};
using by_default = x;

} // namespace method
} // namespace oneapi::dal::%ALGORITHM%

Computational Tasks

The supported computational tasks are declared within the %ALGORITHM%::task namespace using tag-types. Algo-
rithm shall support at least one task and declare the by_default type alias that refers to one of the tasks as shown in
the example below.

If an algorithm assumes both classification and regression tasks, the default task shall be classification.
In some cases where an algorithm does not have the well-defined training and inference stages an algorithm may define
only one task.

namespace oneapi::dal::%ALGORITHM% {
namespace task {
struct classification {};
struct regression {};
using by_default = classification;

} // namespace task
} // namespace oneapi::dal::%ALGORITHM%

8.4. Programming model 243

oneAPI Specification, Release 1.1-rev-1

8.4.3 Operations

An operation is a function that transforms a descriptor and other arguments represented via an input object to a result
object. An operation is responsible for:

• Executing all of an algorithm’s computational routines represented by the descriptor.

• Passing SYCL* queue to computational routines.

• Verifying preconditions and postconditions before and after the execution of computational routines.

General operation definition

The following code sample shows the declaration of an abstract operation. To declare a particular operation, the
%OPERATION% shall be substituted with the name of the operation.

namespace oneapi::dal {

template <typename Descriptor>
using %OPERATION%_input_t = /* implementation defined */;

template <typename Descriptor>
using %OPERATION%_result_t = /* implementation defined */;

template <typename Descriptor>
%OPERATION%_result_t<Descriptor> %OPERATION%(

sycl::queue& queue,
const Descriptor& desc,
const %OPERATION%_input_t<Descriptor>& input);

} // namespace oneapi::dal

Each operation shall satisfy the following requirements:

• An operation shall accept three parameters in the following order:

– The SYCL* queue object

– The descriptor of the algorithm

– The input object

• An operation shall return the result object.

• The %OPERATION%_input_t and %OPERATION%_result_t alias templates shall be used for inference of the
input and return types.

• If a precondition is violated, an operation shall throw an exception derived from oneapi::dal::logic_error.

• If a postcondition is violated, an operation shall throw an exception derived from
oneapi::dal::runtime_error.

• If the descriptor is incompatible with some operation, an error shall be reported at compile-time.

• The exact list of compatible operations and pre-/post- conditions shall be defined by a particular algorithm
specification.

8.4. Programming model 244

oneAPI Specification, Release 1.1-rev-1

Operation shortcuts

In order to make the code on user side less verbose, oneDAL defines the following overloaded functions called shortcuts
for each operation in addition to the general one described in section General operation definition.

• A shortcut for execution on host that performs the same operation as the general function on host, but does not
require the queue to be passed explicitly.

template <typename Descriptor>
%OPERATION%_result_t<Descriptor> %OPERATION%(
const Descriptor& desc,
const %OPERATION%_input_t<Descriptor>& input);

• A shortcut that allows omitting explicit input creation.

template <typename Descriptor, typename... Args>
%OPERATION%_result_t<Descriptor> %OPERATION%(

sycl::queue& queue,
const Descriptor& desc,
Args&&... args);

• A shortcut that allows omitting explicit queue and input creation. This is a combination of two previous shortcuts.

template <typename Descriptor, typename... Args>
%OPERATION%_result_t<Descriptor> %OPERATION%(
const Descriptor& desc,
Args&&... args);

Input

An input object aggregates all the data that the algorithm requires for performing a specific operation. The data is
represented via tables, so, typically, an input is a collection of tables, but not limited to them and can aggregate objects
of an arbitrary type.

In general, input class definition is similar to descriptor. An input defines properties that can be accessed by means of
the corresponding getter and setter methods. Requirements to the input’s properties are the same as requirements for
descriptor’s properties.

The following code sample shows the common structure of a inputs’s definition. To define an input for particular
algorithm and operation, the following strings shall be substituted:

• %ALGORITHM% is the name of an algorithm and its namespace.

• %OPERATION% is the name of operation.

• %PROPERTY_NAME% and %PROPERTY_TYPE% are the name and the type of one of the input’s properties.

namespace oneapi::dal::%ALGORITHM% {

template <typename Task = task::by_default>
class OPERATION_input {
public:
/* Constructor */
%OPERATION%_input(const %PROPERTY_TYPE%& %PROPERTY_NAME%,

/* more properties */)

(continues on next page)

8.4. Programming model 245

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

/* Getter & Setter for the property called `%PROPERTY_NAME%` */
descriptor& set_%PROPERTY_NAME%(%PROPERTY_TYPE% value);
%PROPERTY_TYPE% get_%PROPERTY_NAME%() const;

/* more properties */
};

} // namespace oneapi::dal::%ALGORITHM%

Note: An input is specific to algorithm and operation, so each %ALGORITHM%-%OPERATION% pair shall define its own
set of the properties.

Result

A result object aggregates all output values computed by the algorithm. All assumptions about an input are applied to
a result as well.

namespace oneapi::dal::%ALGORITHM% {

template <typename Task = task::by_default>
class OPERATION_result {
public:
/* Constructor */
%OPERATION%_result(const %PROPERTY_TYPE%& %PROPERTY_NAME%,

/* more properties */)

/* Getter & Setter for the property called `%PROPERTY_NAME%` */
descriptor& set_%PROPERTY_NAME%(%PROPERTY_TYPE% value);
%PROPERTY_TYPE% get_%PROPERTY_NAME%() const;

/* more properties */
};

} // namespace oneapi::dal::%ALGORITHM%

8.4. Programming model 246

oneAPI Specification, Release 1.1-rev-1

Supported operation

Refer to the Supported operations section for more information about particular operations.

Supported operations

This section describes all operations supported by oneDAL. For more information about general operation definition,
refer to Operations section.

The table bellow specifies whether an algorithm’s descriptor can be used together with each operation.

Algorithm Operations
Train Infer Compute

K-Means Yes Yes No
K-Means Initialization No No Yes
k-NN Yes Yes No
PCA Yes Yes No

Train

The train operation performs training procedure of a machine learning algorithm. The result obtained after the
training contains a model that can be passed to the infer operation.

namespace oneapi::dal {

template <typename Descriptor>
using train_input_t = /* implementation defined */;

template <typename Descriptor>
using train_result_t = /* implementation defined */;

template <typename Descriptor>
train_result_t<Descriptor> train(

sycl::queue& queue,
const Descriptor& desc,
const train_input_t<Descriptor>& input);

} // namespace oneapi::dal

Infer

The infer operation performs inference procedure of a machine learning algorithm based on the model obtained as a
result of training.

namespace oneapi::dal {

template <typename Descriptor>
using infer_input_t = /* implementation defined */;

template <typename Descriptor>
(continues on next page)

8.4. Programming model 247

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

using infer_result_t = /* implementation defined */;

template <typename Descriptor>
infer_result_t<Descriptor> infer(

sycl::queue& queue,
const Descriptor& desc,
const infer_input_t<Descriptor>& input);

} // namespace oneapi::dal

Compute

The compute operation is used if an algorithm does not have the well-defined training and inference stages.

namespace oneapi::dal {

template <typename Descriptor>
using compute_input_t = /* implementation defined */;

template <typename Descriptor>
using compute_result_t = /* implementation defined */;

template <typename Descriptor>
compute_result_t<Descriptor> compute(

sycl::queue& queue,
const Descriptor& desc,
const compute_input_t<Descriptor>& input);

} // namespace oneapi::dal

8.4.4 Computational modes

Batch

In the batch processing mode, the algorithm works with the entire data set to produce the final result. A more complex
scenario occurs when the entire data set is not available at the moment or the data set does not fit into the device
memory.

Online

In the online processing mode, the algorithm processes a data set in blocks streamed into the device’s memory. Partial
results are updated incrementally and finalized when the last data block is processed.

8.4. Programming model 248

oneAPI Specification, Release 1.1-rev-1

Distributed

In the distributed processing mode, the algorithm operates on a data set distributed across several devices (compute
nodes). On each node, the algorithm produces partial results that are later merged into the final result on the main node.

8.5 Common Interface

8.5.1 Current Version of this oneDAL Specification

This is the oneDAL specification which is part of the oneAPI specification version 1.0.

8.5.2 Header files

oneDAL public identifiers are represented in the following header files:

Header file Description
oneapi/dal.
hpp

The main header file of oneDAL library.

oneapi/dal/
%FILE%.hpp

The common type definitions used in other oneDAL layers. For example, data_type or range.

oneapi/dal/
algo/%ALGO%.
hpp

A header file for a particular algorithm. The folder for the algorithm itself is oneapi/dal/
algo/%ALGO%/.
The string %ALGO% should be substituted with the name of the algorithm, for example, kmeans
or knn.

oneapi/dal/
algo/misc/
%FUNC%.hpp

A header file for miscellaneous data types and functionality that is intended to be used by
oneDAL algorithms and applications of the analytical pipeline.
The string %FUNC% should be substituted with the name of the functionality, for example,
mt19937 or cross_enthropy_loss.

oneapi/
dal/table/
%FILE%.hpp

A header file for the types related to the table concept.
The string %FILE% should be substituted with the name of the functionality, for example,
common for key concepts related to table types (e.g., table, table_metadata, data_layout
classes). For entities that have the _table suffix in their names, the related header file shall not
contain this suffix in its name, for example, homogen for homogen_table class.

oneapi/dal/
io/%FILE%.
hpp

A header file for the types and entities of input-output functionality.
The string %FILE% should be substituted with the name of the functionality, for example, csv
for reading and writing csv files.

oneapi/dal/
util/%UTIL%.
hpp`

A header file for auxiliary functionality, such as memory allocators or type traits, that is intended
to be used for the design of classes and implementation of various methods.
The string %UTIL% should be substituted with the name of the auxiliary functionality, for ex-
ample, usm_allocator or type_traits.

8.5. Common Interface 249

oneAPI Specification, Release 1.1-rev-1

8.5.3 Namespaces

oneDAL functionality is represented with a system of C++ namespaces described below:

Namespace oneDAL content
oneapi::dal The namespace of the library that contains externally visible data types, data management enti-

ties, processing and service functionality of oneDAL.
oneapi::dal::%ALGORITHM%The namespace of the algorithm. All classes and structures related to that algorithm shall be

defined within this particular namespace.
To define a namespace for a specific algorithm, the string %ALGORITHM% should be substi-
tuted with its name, for example, oneapi::dal::kmeans or oneapi::dal::knn.

oneapi::dal::%DATA_SOURCE%The namespace of the data source. All classes and structures related to that data source shall be
defined within a particular namespace.
To define a specific data source, the string %DATA_SOURCE% should be substituted with its
name, for example, oneapi::dal::csv.

oneapi::dal::miscThe namespace that contains miscellaneous data types and functionality intended to be used by
oneDAL algorithms and applications for algorithm customization and optimization on various
stages of the analytical pipeline.

%PARENT%::detailThe namespace that contains implementation details of the data types and functionality for the
parent namespace. The namespace can be on any level in the namespace hierarchy.
To define a specific namespace, the string %PARENT% should be substituted with the
namespace for which the details are provided, for example, oneapi::dal::detail or
oneapi::dal::kmeans::detail.
The application shall not use any data types nor call any functionality located in the detail
namespaces.

8.5.4 Error handling

oneDAL error handling relies on the mechanism of C++ exceptions. If an error occurs, it shall be propagated at the
point of a function call where it is caught using standard C++ error handling mechanism.

Exception classification

Exception classification in oneDAL is aligned with C++ Standard Library classification. oneDAL shall introduce
abstract classes that define the base class in the hierarchy of exception classes. Non-abstract exception classes are
derived from the respective C++ Standard Library exception classes. oneDAL shall throw exceptions represented with
non-abstract classes.

In the hierarchy of oneDAL exceptions, oneapi::dal::exception is the base abstract class that all other exception
classes are derived from.

class oneapi::dal::exception;

Exception Description Ab-
stract

oneapi::dal::exception The base class of oneDAL exception hierarchy. Yes

All oneDAL exceptions shall be divided into three groups:

• logic errors

• runtime errors

8.5. Common Interface 250

oneAPI Specification, Release 1.1-rev-1

• errors with allocation

class oneapi::dal::logic_error : public oneapi::dal::exception;
class oneapi::dal::runtime_error : public oneapi::dal::exception;
class oneapi::dal::bad_alloc : public oneapi::dal::exception, public std::bad_alloc;

Exception Description Ab-
stract

oneapi::dal::logic_error Reports violations of preconditions and invariants. Yes
oneapi::dal::runtime_error Reports violations of postconditions and other errors happened during the

execution of oneDAL functionality.
Yes

oneapi::dal::bad_alloc Reports failure to allocate storage. Yes

All precondition and invariant errors represented by oneapi::dal::logic_error shall be divided into the following
groups:

• invalid argument errors

• domain errors

• out of range errors

• errors with an unimplemented method or algorithm

• unsupported device

class oneapi::dal::invalid_argument : public oneapi::dal::logic_error, public␣
→˓std::invalid_argument;
class oneapi::dal::domain_error : public oneapi::dal::logic_error, public std::domain_
→˓error;
class oneapi::dal::out_of_range : public oneapi::dal::logic_error, public std::out_of_
→˓range;
class oneapi::dal::unimplemented : public oneapi::dal::logic_error, public std::logic_
→˓error;
class oneapi::dal::unsupported_device : public oneapi::dal::logic_error, public␣
→˓std::logic_error;

Exception Description Ab-
stract

oneapi::dal::invalid_argumentReports situations when the argument was not accepted. No
oneapi::dal::domain_error Reports situations when the argument is outside of the do-

main on which the operation is defined. Higher priority than
oneapi::dal::invalid_argument.

No

oneapi::dal::out_of_range Reports situations when the index is out of range. Higher priority than
oneapi::dal::invalid_argument.

No

oneapi::dal::unimplemented Reports errors that arise because an algorithm or a method is not imple-
mented.

No

oneapi::dal::unsupported_deviceReports situations when a device is not supported. No

Errors that occur during the execution of oneDAL functionality are represented with oneapi::dal::runtime_error.
Two main groups of errors shall be distinguished:

• errors in the destination type range

• errors in the OS facilities interaction

8.5. Common Interface 251

oneAPI Specification, Release 1.1-rev-1

All other errors are reported via oneapi::dal::internal_error.

class oneapi::dal::range_error : public oneapi::dal::runtime_error, public std::range_
→˓error;
class oneapi::dal::system_error : public oneapi::dal::runtime_error, public std::system_
→˓error;
class oneapi::dal::internal_error : public oneapi::dal::runtime_error, public␣
→˓std::runtime_error;

Exception Description Ab-
stract

oneapi::dal::range_error Reports situations where a result of a computation cannot be represented
by the destination type.

No

oneapi::dal::system_error Reports errors occurred during interaction with OS facilities. No
oneapi::dal::internal_errorReports all runtime errors that could not be assigned to other inheritors. No

All memory allocation errors are represented by oneapi::dal::bad_alloc. They shall be divided into two groups
based on where they occur:

• Host memory allocation error

• Device memory allocation error

class oneapi::dal::host_bad_alloc : public oneapi::dal::bad_alloc;
class oneapi::dal::device_bad_alloc : public oneapi::dal::bad_alloc;

Exception Description Ab-
stract

oneapi::dal::host_bad_allocReports failure to allocate storage on the host. No
oneapi::dal::device_bad_allocReports failure to allocate storage on the device. No

8.5.5 Common type definitions

This section describes common types used in oneDAL.

Programming interface

All types and functions in this section shall be declared in the oneapi::dal namespace and be available via inclusion
of the oneapi/dal/common.hpp header file.

Scalar types

oneDAL relies on the use of integral types defined in <cstdint>. This file shall be included in oneapi/dal/common.
hpp and all oneDAL types shall use these data types.

The interfaces of the library shall use std::int64_t data type to represent dimensionality (for example, the number
of rows and columns in the table).

It is recommended to use standard C++ types for applications as well.

8.5. Common Interface 252

oneAPI Specification, Release 1.1-rev-1

Enum classes

Which base type to use when defining enum or enum class representing a oneDAL concept is up to the implementer
unless specification requires a specific base type.

Data type

The implementation of data type concept. It shall enumerate all the data types supported by oneDAL to perform
computations. The data_type class shall contain all the base scalar types and can also extend them. Base scalar types
include the types whose names follow the pattern std::int_XX_t or std::uint_XX_t, where XX is 8, 16, 32, or
64.

enum class data_type {
int8,
int16,
int32,
int64,
uint8,
uint16,
uint32,
uint64,
float32,
float64,
bfloat16

};

enum class data_type

data_type::int8 8-bit signed integer value type.

data_type::int16 16-bit signed integer value type.

data_type::int32 32-bit signed integer value type.

data_type::int64 64-bit signed integer value type.

data_type::uint8 8-bit unsigned integer value type.

data_type::uint16 16-bit unsigned integer value type.

data_type::uint32 32-bit unsigned integer value type.

data_type::uint64 64-bit unsigned integer value type.

data_type::float32 32-bit floating-point value type.

data_type::float64 64-bit floating-point value type.

data_type::bfloat16 bi-float value type.

8.5. Common Interface 253

oneAPI Specification, Release 1.1-rev-1

Range

A range [start_index, end_index) in an array or any other container that supports value indexing.

struct range {
public:

range(std::int64_t start, std::int64_t end);

std::int64_t get_element_count(std::int64_t max_end_index) const noexcept;

std::int64_t start_idx;

std::int64_t end_idx;
};

struct range
Constructors
range(std::int64_t start, std::int64_t end)

Constructs a range of elements from the given start and end indices.

Parameters
• start – The first index in the range. The value shall be greater than or equal to 0.

• end – The relative end index in the range. Indicates the next index after the last one in the
range. If positive, shall be greater than 𝑠𝑡𝑎𝑟𝑡. If negative, indicates the offset of the last
element from the end of the range. For example, start = 1 and end = -2 specify the
range of elements [1, 2, 3] in the set [0, 1, 2, 3, 4].

Public Methods
std::int64_t get_element_count(std::int64_t max_end_index) const noexcept

The number of elements in the range. The max_end_index value specifies the last maximal index in the
sequence.

8.6 Data management

This section includes concepts and objects that operate on data. For oneDAL, such set of operations, or data manage-
ment, is distributed between different stages of the data analytics pipeline. From a perspective of data management,
this pipeline contains three main steps of data acquisition, preparation, and computation (see the picture below):

1. Raw data acquisition

• Transfer out-of-memory data from various sources (databases, files, remote storage) into an in-memory repre-
sentation.

2. Data preparation

• Support different in-memory data formats.

• Compress and decompress the data.

• Convert the data into numeric representation.

• Recover missing values.

• Filter the data and perform data normalization.

• Compute various statistical metrics for numerical data, such as mean, variance, and covariance.

8.6. Data management 254

oneAPI Specification, Release 1.1-rev-1

3. Algorithm computation

• Stream in-memory numerical data to the algorithm.

In complex usage scenarios, data flow goes through these three stages back and forth. For example, when the data are
not fully available at the start of the computation, it can be done step-by-step using blocks of data. After the computation
on the current block is completed, the next block should be obtained and prepared.

8.6.1 Key concepts

oneDAL provides a set of concepts to operate on out-of-memory and in-memory data during different stages of the
data analytics pipeline.

Dataset

The main data-related concept that oneDAL works with is a dataset. It is a tabular view of data, where table rows
represent the observations and columns represent the features.

8.6. Data management 255

oneAPI Specification, Release 1.1-rev-1

The dataset is used across all stages of the data analytics pipeline. For example:

1. At the acquisition stage, it is downloaded into the local memory.

2. At the preparation stage, it is converted into a numerical representation.

3. At the computation stage, it is used as one of the inputs or results of an algorithm or a descriptor properties.

8.6. Data management 256

oneAPI Specification, Release 1.1-rev-1

Data source

Data source is a concept of an out-of-memory storage for a dataset. It is used at the data acquisition and data preparation
stages to:

• Extract datasets from external sources such as databases, files, remote storage.

• Load datasets into the device’s local memory. Data do not always fit the local memory, especially when pro-
cessing with accelerators. A data source provides the ability to load data by batches and extracts it directly into
the device’s local memory. Therefore, a data source enables complex data analytics scenarios, such as online
computations.

• Transform datasets into their numerical representation. Data source shall automatically transform non-numeric
categorical and continuous data values into one of the numeric data formats.

For details, see data sources section.

Table

Table is a concept of in-memory numerical data that are organized in a tabular view with several rows and columns. It
is used at the data preparation and data processing stages to:

• Be an in-memory representation of a dataset or another tabular data (for example, matrices, vectors, and scalars).

• Store heterogeneous data in various data formats, such as dense, sparse, chunked, contiguous.

• Avoid unnecessary data copies during conversion from external data representations.

• Transfer memory ownership of the data from user application to the table, or share it between them.

• Connect with the data source to convert data from an out-of-memory into an in-memory representation.

• Support streaming of the data to the algorithm.

• Access the underlying data on a device in a required data format, e.g. by blocks with the defined data layout.

Note: For thread-safety reasons and better integration with external entities, a table provides a read-only access to the
data within it, thus, table object shall be immutable.

This concept has different logical organization and physical format of the data:

• Logically, a table contains 𝑛 rows and 𝑝 columns. Every column may have its own type of data values and a set
of allowed operations.

• Physically, a table can be organized in different ways: as a homogeneous, contiguous array of bytes, as a hetero-
geneous list of arrays of different data types, in a compressed-sparse-row format. The number of bytes needed
to store the data differs from the number of elements 𝑛× 𝑝 within a table.

For details, see tables section.

8.6. Data management 257

oneAPI Specification, Release 1.1-rev-1

Table metadata

Table metadata concept provides an additional information about data in the table:

1. The data types of the columns.

2. The logical types of data in the columns: nominal, ordinal, interval, or ratio.

Only the properties of data that do not affect table concept definition shall be the part of metadata concept.

Warning: While extending the table concept, specification implementer shall distinguish whether a new property
they are adding is a property of a particular table sub-type or a property of table metadata.

For example, data layout and data format are properties of table objects since they affect the structure of a table,
its contract, and behavior. The list of names of features or columns inside the table is the example of metadata
property.

Accessor

Accessor is a concept that defines a single way to extract the data from a table. It allows to:

• Have unified access to the data from table objects of different types, without exposing their implementation
details.

• Provide a flat view on the data blocks of a table for better data locality. For example, the accessor returns a
column of the table stored in row-major format as a contiguous array.

• Acquire data in a desired data format for which a specific set of operations is defined.

• Have read-only access to the data.

For details, see accessors section.

Example of interaction between table and accessor objects

This section provides a basic usage scenario of the table and accessor concepts and demonstrates the relations between
them. The following diagram shows objects of these concepts, which are highlighted by colors:

• table object is dark blue

• accessor is orange

• table metadata is light blue

8.6. Data management 258

oneAPI Specification, Release 1.1-rev-1

To perform computations on a dataset, one shall create a table object first. It can be done either using a data source or
directly from user-defined memory. The diagram shows the creation of a table object t from the data provided by user
(not shown on the diagram). During a table creation, an object tm of table metadata is constructed and initialized using
the data.

Once a table object is created, it can be used as an input in computations or as a parameter of some algorithm. The data
in the table can be accessed via its own interface or via read-only accessor as shown on the diagram.

8.6.2 Details

This section includes the detailed descriptions of all data management objects in oneDAL.

Array

The array is a simple concept over the data in oneDAL. It represents a storage that:

1. Holds the data allocated inside it or references to the external data. The data are organized as one homogeneous
and contiguous memory block.

2. Contains information about the memory block’s size.

3. Represents either immutable or mutable data.

4. Provides an ability to change the data state from immutable to mutable one.

5. Holds ownership information on the data (see the data ownership requirements section).

6. Ownership information on the data can be shared between several arrays. It is possible to create a new array from
another one without any data copies.

8.6. Data management 259

oneAPI Specification, Release 1.1-rev-1

Usage example

The following listing provides a brief introduction to the array API and an example of basic usage scenario:

#include <CL/sycl.hpp>
#include <iostream>
#include <string>
#include "oneapi/dal/array.hpp"

using namespace oneapi;

void print_property(const std::string& description, const auto& property) {
std::cout << description << ": " << property << std::endl;

}

int main() {
sycl::queue queue { sycl::default_selector() };

constexpr std::int64_t data_count = 4;
const float data[] = { 1.0f, 2.0f, 3.0f, 4.0f };

// Creating an array from immutable user-defined memory
auto arr_data = dal::array<float>::wrap(data, data_count);

// Creating an array from internally allocated memory filled by ones
auto arr_ones = dal::array<float>::full(queue, data_count, 1.0f);

print_property("Is arr_data mutable", arr_data.has_mutable_data()); // false
print_property("Is arr_ones mutable", arr_ones.has_mutable_data()); // true

// Creating new array from arr_data without data copy - they share ownership␣
→˓information.

dal::array<float> arr_mdata = arr_data;

print_property("arr_mdata elements count", arr_mdata.get_count()); // equal to data_
→˓count

print_property("Is arr_mdata mutable", arr_mdata.has_mutable_data()); // false

/// Copying data inside arr_mdata to new mutable memory block.
/// arr_data still refers to the original data pointer.
arr_mdata.need_mutable_data(queue);

print_property("Is arr_data mutable", arr_data.has_mutable_data()); // false
print_property("Is arr_mdata mutable", arr_mdata.has_mutable_data()); // true

queue.submit([&](sycl::handler& cgh){
auto mdata = arr_mdata.get_mutable_data();
auto cones = arr_ones.get_data();
cgh.parallel_for<class array_addition>(sycl::range<1>(data_count), [=](sycl::id<1>␣

→˓idx) {
mdata[idx[0]] += cones[idx[0]];

});
}).wait();

(continues on next page)

8.6. Data management 260

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::cout << "arr_mdata values: ";
for(std::int64_t i = 0; i < arr_mdata.get_count(); i++) {

std::cout << arr_mdata[i] << ", ";
}
std::cout << std::endl;

return 0;
}

Data ownership requirements

The array shall satisfy the following requirements on managing the memory blocks:

1. An array shall retain:

• A pointer to the immutable data block of size count;

• A pointer to the mutable data block of size count.

2. If an array represents mutable data, both pointers shall point to the mutable data block.

3. If an array represents immutable data, pointer to the mutable data block shall be nullptr.

4. An array shall use shared ownership semantics to manage the lifetime of the stored data block:

• Several array objects may own the same data block;

• An array releases the ownership when one of the following happens:

– The array owning the data block is destroyed;

– The array owning the data block is assigned another memory block via operator= or reset();

• If the array that releases the ownership is the last remaining object owning the data block, the release of
ownership is followed by the data block deallocation.

• The data block is deallocated using the deleter object that is provided to array during construction. If no
deleter object provided, an array calls the default deallocating function that corresponds to the internal
memory allocation mechanism.

5. If a managed pointer to the data block is replaced by another pointer via reset(), the array that managed the
pointer releases the ownership of it and starts managing the lifetime of the data block represented by the other
pointer.

6. If an array changes its state from immutable to mutable via need_mutable_data(), it releases the ownership
of immutable data block and start managing lifetime of the mutable data block.

7. An array object may own no data. An array like this is called zero-sized:

• Pointers to the immutable and mutable data of the zero-sized array shall be nullptr;

• The data block size count shall be 0.

8.6. Data management 261

oneAPI Specification, Release 1.1-rev-1

Implementation notes

A typical array implementation may be organized in the following way:

1. An array class has the following member variables:

• A pointer to the immutable data block;

• A pointer to the mutable data block;

• A pointer to the ownership structure that implements the shared ownership semantics;

• The data block size count;

2. An ownership structure is an object that stores:

• A pointer to either immutable or mutable data block;

• The deleter object;

• The reference count (the number of array objects that own the associated data block);

3. If an array starts managing the lifetime of the data block represented by the pointer p and deleter d, it creates
the ownership structure object and initialize it with p and d. The reference count of the ownership structure is
assigned one.

4. If an array object releases the ownership, the reference count of the ownership structure is decremented.

• If that count reaches zero, the ownership structure deallocates the memory block and the array destroys the
ownership structure.

• If that count is greater than zero, the ownership structure is not destroyed.

5. If a copy of the array object is created, the reference count of the ownership structure is incremented and a pointer
to the same ownership structure is assigned to the created copy. The other member variables of an array class
are copied as is.

Note: You may choose an arbitrary implementation strategy that satisfies array requirements.

Programming interface

All types and functions in this section shall be declared in the oneapi::dal namespace and be available via inclusion
of the oneapi/dal/array.hpp header file.

All the array class methods can be divided into several groups:

1. Constructors that are used to create an array from external, mutable or immutable memory.

2. Constructors and assignment operators that are used to create an array that shares its data with another one.

3. The group of reset() methods that are used to re-assign an array to another external memory block.

4. The group of reset() methods that are used to re-assign an array to an internally allocated memory block.

5. The methods that are used to access the data.

6. Static methods that provide simplified ways to create an array either from external memory or by allocating it
within a new object.

8.6. Data management 262

oneAPI Specification, Release 1.1-rev-1

template <typename Data>
class array {
public:

using data_t = Data;

static array<Data> empty(const sycl::queue& queue,
std::int64_t count,
const sycl::usm::alloc& alloc = sycl::usm::alloc::shared);

template <typename Element>
static array<Data> full(sycl::queue& queue,

std::int64_t count,
Element&& element,
const sycl::usm::alloc& alloc = sycl::usm::alloc::shared);

static array<Data> zeros(sycl::queue& queue,
std::int64_t count,
const sycl::usm::alloc& alloc = sycl::usm::alloc::shared);

template <typename ExtData>
static array<Data> wrap(ExtData* data,

std::int64_t count,
const std::vector<sycl::event>& dependencies = {});

array();

array(const array<Data>& other);

array(array<Data>&& other);

template <typename ExtData, typename Deleter>
explicit array(const sycl::queue& queue,

ExtData* data,
std::int64_t count,
Deleter&& deleter,
const std::vector<sycl::event>& dependencies = {});

template <typename RefData, typename ExtData>
explicit array(const array<RefData>& ref, ExtData* data, std::int64_t count);

array<Data> operator=(const array<Data>& other);

array<Data> operator=(array<Data>&& other);

const Data* get_data() const noexcept;

bool has_mutable_data() const noexcept;

Data* get_mutable_data() const;

array& need_mutable_data(sycl::queue& queue,
const sycl::usm::alloc& alloc = sycl::usm::alloc::shared);

(continues on next page)

8.6. Data management 263

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int64_t get_count() const noexcept;

std::int64_t get_size() const noexcept;

const Data& operator[](std::int64_t index) const noexcept;

void reset();

void reset(const sycl::queue& queue,
std::int64_t count,
const sycl::usm::alloc& alloc = sycl::usm::alloc::shared);

template <typename ExtData, typename Deleter>
void reset(ExtData* data,

std::int64_t count,
Deleter&& deleter,
const std::vector<sycl::event>& dependencies = {});

template <typename RefData, typename ExtData>
void reset(const array<RefData>& ref, ExtData* data, std::int64_t count);

};

template<typename Data>
class array

Template Parameters Data – The type of the memory block elements within the array. Data can
represent any data type.

Public Static Methods
static array<Data> empty(const sycl::queue &queue, std::int64_t count, const sycl::usm::alloc &alloc =

sycl::usm::alloc::shared)
Creates a new array instance by allocating a mutable memory block. The created array manages the lifetime
of the allocated memory block. The function is not required to initialize the values of the allocated memory
block.

Parameters
• queue – The SYCL* queue object.

• count – The number of elements of type Data to allocate memory for.

• alloc – The kind of USM to be allocated.

Preconditions
count > 0

Postconditions
get_count() == count

has_mutable_data() == true

template<typename Element>
static array<Data> full(sycl::queue &queue, std::int64_t count, Element &&element, const sycl::usm::alloc

&alloc = sycl::usm::alloc::shared)
Creates a new array instance by allocating a mutable memory block and filling its content with a scalar

8.6. Data management 264

oneAPI Specification, Release 1.1-rev-1

value. The created array manages the lifetime of the allocated memory block.

Template Parameters Element – The type from which array elements of type Data can be con-
structed.

Parameters
• queue – The SYCL* queue object.

• count – The number of elements of type Data to allocate memory for.

• element – The value that is used to fill a memory block.

• alloc – The kind of USM to be allocated.

Preconditions
count > 0

Postconditions
get_count() == count

has_mutable_data() == true

get_data()[i] == element, 0 <= i < count

static array<Data> zeros(sycl::queue &queue, std::int64_t count, const sycl::usm::alloc &alloc =
sycl::usm::alloc::shared)

Creates a new array instance by allocating a mutable memory block and filling its content with zeros. The
created array manages the lifetime of the allocated memory block.

Parameters
• queue – The SYCL* queue object.

• count – The number of elements of type Data to allocate memory for.

• alloc – The kind of USM to be allocated.

Preconditions
count > 0

Postconditions
get_count() == count

has_mutable_data() == true

get_data()[i] == 0, 0 <= i < count

template<typename ExtData>
static array<Data> wrap(ExtData *data, std::int64_t count, const std::vector<sycl::event> &dependencies =

{})
Creates a new array instance from a pointer to externally-allocated memory block. The created array does
not manage the lifetime of the user-provided memory block. It is the responsibility of the programmer to
make sure that data pointer remains valid as long as this array object exists.

Template Parameters ExtData – Either Data or const Data type.

Parameters
• data – The pointer to the mutable or immutable externally-allocated memory block.

• count – The number of elements of type Data in the memory block.

• dependencies – Events indicating the availability of the data for reading or writing.

8.6. Data management 265

oneAPI Specification, Release 1.1-rev-1

Preconditions
data != nullptr

count > 0

Postconditions
get_count() == count

get_data() == data

has_mutable_data() == false

Constructors
array()

Creates a zero-sized array without memory allocation.

Postconditions
get_count() == 0

get_data() == nullptr

has_mutable_data() == false

array(const array<Data> &other)
Creates a new array instance that shares an ownership with the other array.

array(array<Data> &&other)
Creates a new array instance that transfers the ownership from the other array. After the construction of a
new instance, the behaviour of the other is defined by the implementation.

Postconditions
other.get_count() == 0

other.get_data() == nullptr

has_mutable_data() == false

template<typename ExtData, typename Deleter>
array(const sycl::queue &queue, ExtData *data, std::int64_t count, Deleter &&deleter, const

std::vector<sycl::event> &dependencies = {})
Creates a new array instance from a pointer to externally-allocated memory block. The created array man-
ages the lifetime of the user-provided memory block. The memory block is deallocated using a custom
deleter object provided by the user.

Template Parameters
• ExtData – Either Data or const Data type.

• Deleter – The type of a deleter used to deallocate the data. The expression
deleter(data) must be well-formed (can be compiled) and not throw any exceptions.

Parameters
• queue – The SYCL* queue object.

• data – The pointer to the mutable or immutable externally-allocated mutable data.

• count – The number of elements of type Data in the memory block.

• deleter – The object used to deallocate data.

• dependencies – Events that indicate when data becomes ready to be read or written.

Preconditions

8.6. Data management 266

oneAPI Specification, Release 1.1-rev-1

data != nullptr

count > 0

Postconditions
get_count() == count

get_data() == data

has_mutable_data() == true

get_mutable_data() == data

template<typename RefData, typename ExtData>
array(const array<RefData> &ref, ExtData *data, std::int64_t count)

Creates a new array instance that shares the ownership with the reference array while storing the pointer
to another memory block provided by the user. The lifetime of the user-provided memory block is not
managed by the created array. One of the use cases of this constructor is the creation of an array with
an offset, for example, array{ other, other.get_data() + offset }. The array created this way
shares the ownership with the other, but points to its data with an offset. It is the responsibility of the
programmer to make sure that data pointer remains valid as long as this array object exists.

Template Parameters
• RefData – The type of elements in the reference array.

• ExtData – Either Data or const Data type.

Parameters
• ref – The reference array which shares the ownership with the created one.

• data – The unmanaged pointer to the mutable or immutable externally-allocated memory
block.

• count – The number of elements of type Data in the data.

Preconditions
data != nullptr

count > 0

Postconditions
get_count() == count

get_data() == data

Public Methods
array<Data> operator=(const array<Data> &other)

Replaces the immutable and mutable data pointers and the number of elements by the values stored in the
other array.

Postconditions
get_data() == other.get_data()

get_count() == other.get_count()

get_mutable_data() == other.get_mutable_data()

array<Data> operator=(array<Data> &&other)
Replaces the immutable and mutable data pointers and the number of elements by the values stored in the
other array.

Postconditions

8.6. Data management 267

oneAPI Specification, Release 1.1-rev-1

get_data() == other.get_data()

get_count() == other.get_count()

get_mutable_data() == other.get_mutable_data()

const Data *get_data() const noexcept
The pointer to the immutable memory block.

bool has_mutable_data() const noexcept
Returns whether an array contains mutable data or not.

Data *get_mutable_data() const
The pointer to the mutable memory block.

Preconditions
has_mutable_data() == true, othewise throws domain_error

array &need_mutable_data(sycl::queue &queue, const sycl::usm::alloc &alloc = sycl::usm::alloc::shared)
Does nothing if an array contains mutable data. Otherwise, allocates a mutable memory block and copies
the content of the immutable memory block into it. The array manages the lifetime of the allocated mutable
memory block. Returns the reference to the same array instance.

Parameters
• queue – The SYCL* queue object.

• alloc – The kind of USM to be allocated.

Postconditions
has_mutable_data() == true

std::int64_t get_count() const noexcept
The number of elements of type Data in a memory block.

std::int64_t get_size() const noexcept
The size of memory block in bytes.

const Data &operator[](std::int64_t index) const noexcept
Provides a read-only access to the elements of an array. No bounds checking is performed.

void reset()
Releases the ownership of the managed memory block.

Preconditions
count > 0

Postconditions
get_count() == count

has_mutable_data() == true

void reset(const sycl::queue &queue, std::int64_t count, const sycl::usm::alloc &alloc =
sycl::usm::alloc::shared)

Releases the ownership of the managed memory block and replaces it by a newly allocated mutable memory
block. The lifetime of the allocated memory block is managed by the array.

Parameters
• queue – The SYCL* queue object.

• count – The number of elements of type Data to allocate memory for.

8.6. Data management 268

oneAPI Specification, Release 1.1-rev-1

• alloc – The kind of USM to be allocated.

Preconditions
count > 0

Postconditions
get_count() == count

template<typename ExtData, typename Deleter>
void reset(ExtData *data, std::int64_t count, Deleter &&deleter, const std::vector<sycl::event>

&dependencies = {})
Releases the ownership of the managed memory block and replace it by a pointer to externally-allocated
memory block. The lifetime of the memory block is managed by the array. The memory block is deallocated
using a custom deleter object provided by the user.

Template Parameters
• ExtData – Either Data or const Data type.

• Deleter – The type of a deleter used to deallocate the data. The expression
deleter(data) must be well-formed (can be compiled) and not throw any exceptions.

Parameters
• data – The pointer to the to the mutable or immutable externally-allocated memory block.

• count – The number of elements of type Data in the data.

• deleter – The object used to deallocate data.

• dependencies – Events indicating the availability of the data for reading or writing.

Preconditions
data != nullptr

count > 0

Postconditions
get_count() == count

get_data() == data

has_mutable_data() == true

get_mutable_data() == data

template<typename RefData, typename ExtData>
void reset(const array<RefData> &ref, ExtData *data, std::int64_t count)

Releases the ownership of the managed memory block and starts managing the lifetime of the reference
array while storing the pointer to another memory block provided by the user. The lifetime of the user-
provided memory block is not managed. It is the responsibility of the programmer to make sure that data
pointer remains valid as long as this array object exists.

Template Parameters
• RefData – The type of elements in the reference array.

• ExtData – Either Data or const Data type.

Parameters
• ref – The reference array which shares the ownership with the created one.

8.6. Data management 269

oneAPI Specification, Release 1.1-rev-1

• data – The unmanaged pointer to the mutable or immutable externally-allocated memory
block.

• count – The number of elements of type Data in the data.

Preconditions
data != nullptr

count > 0

Postconditions
get_count() == count

get_data() == data

Accessors

This section defines requirements to an accessor implementation and introduces several accessor types.

Requirements

Each accessor implementation shall:

1. Define a single format of the data for the access. Every accessor type shall return and use only one data format.

2. Provide read-only access to the data in the table types.

3. Provide the pull() method for obtaining the values from the table.

4. Be lightweight. Its constructors shall not have computationally intensive operations such data copy, reading, or
conversion. These operations shall be performed by method pull(). Support of copy- and move- constructors
by the accessor is not required since it shall be designed for use in a local scope - directly in a place when it is
created.

5. The pull() method shall avoid data copy and conversion when it is possible to return the pointer to the memory
block in the table. This is applicable for cases such as when the data format and data types of the data within
the table are the same as the data format and data type for the access.

Accessor Types

oneDAL defines a set of accessor classes. Each class supports one specific way of obtaining data from the table.

All accessor classes in oneDAL are listed below:

Accessor type Description List of supported types
row accessor Provides access to the range of rows as one contiguous

homogeneous block of memory.
homogen table

column accessor Provides access to the range of values within a single
column as one contiguous homogeneous block of mem-
ory.

homogen table

8.6. Data management 270

oneAPI Specification, Release 1.1-rev-1

Details

Column accessor

The column_accessor class provides a read-only access to the column values of the table as contiguous homogeneous
array.

Usage example

#include <CL/sycl.hpp>
#include <iostream>

#include "oneapi/dal/table/homogen.hpp"
#include "oneapi/dal/table/column_accessor.hpp"

using namespace oneapi;

int main() {
sycl::queue queue { sycl::default_selector() };

constexpr float host_data[] = {
1.0f, 1.5f, 2.0f,
2.1f, 3.2f, 3.7f,
4.0f, 4.9f, 5.0f,
5.2f, 6.1f, 6.2f

};

constexpr std::int64_t row_count = 4;
constexpr std::int64_t column_count = 3;

auto shared_data = sycl::malloc_shared<float>(row_count * column_count, queue);
auto event = queue.memcpy(shared_data, host_data, sizeof(float) * row_count * column_

→˓count);
auto t = dal::homogen_table::wrap(queue, data, row_count, column_count, { event });

// Accessing whole elements in a first column
dal::column_accessor<const float> acc { t };

auto block = acc.pull(queue, 0);
for(std::int64_t i = 0; i < block.get_count(); i++) {

std::cout << block[i] << ", ";
}
std::cout << std::endl;

sycl::free(shared_data, queue);
return 0;

}

8.6. Data management 271

oneAPI Specification, Release 1.1-rev-1

Programming interface

All types and functions in this section shall be declared in the oneapi::dal namespace and be available via inclusion
of the oneapi/dal/table/column_accessor.hpp header file.

template <typename Data>
class column_accessor {
public:

using data_t = std::remove_const_t<Data>;

public:
column_accessor(const table& obj);

array<data_t> pull(sycl::queue& queue,
std::int64_t column_index,
const range& rows = { 0, -1 },
const sycl::usm::alloc& alloc = sycl::usm::alloc::shared) const;

Data* pull(sycl::queue& queue,
array<data_t>& block,
std::int64_t column_index,
const range& rows = { 0, -1 },
const sycl::usm::alloc& alloc = sycl::usm::alloc::shared) const;

};

template<typename Data>
class column_accessor

Template Parameters Data – The type of data values in blocks returned by the accessor. Shall
be const-qualified for read-only access. An accessor shall support at least float, double, and
std::int32_t types of 𝐷𝑎𝑡𝑎.

Constructors
column_accessor(const table &obj)

Creates a new read-only accessor object from the table. The check that the accessor supports the table kind
of 𝑜𝑏𝑗 shall be performed. The reference to the 𝑜𝑏𝑗 table shall be stored within the accessor to obtain data
from the table.

Public Methods
array<data_t> pull(sycl::queue &queue, std::int64_t column_index, const range &rows = {0, -1}, const

sycl::usm::alloc &alloc = sycl::usm::alloc::shared) const
Provides access to the column values of the table. The method shall return an array that directly points to
the memory within the table if it is possible. In that case, the array shall refer to the memory as to immutable
data. Otherwise, the new memory block shall be allocated, the data from the table rows shall be converted
and copied into this block. The array shall refer to the block as to mutable data.

Parameters
• queue – The SYCL* queue object.

• column_index – The index of the column from which the data shall be returned by the
accessor.

• rows – The range of rows that should be read in the 𝑐𝑜𝑙𝑢𝑚𝑛𝑖𝑛𝑑𝑒𝑥 block.

• alloc – The requested kind of USM in the returned block.

8.6. Data management 272

oneAPI Specification, Release 1.1-rev-1

Preconditions
rows are within the range of [0, obj.row_count).
column_index is within the range of [0, obj.column_count).

Data *pull(sycl::queue &queue, array<data_t> &block, std::int64_t column_index, const range &rows = {0,
-1}, const sycl::usm::alloc &alloc = sycl::usm::alloc::shared) const

Provides access to the column values of the table. The method shall return the block.data pointer.

Parameters
• queue – The SYCL* queue object.

• block – The block which memory is reused (if it is possible) to obtain the data from the
table. The block memory shall be reset either when its size is not big enough, or when it
contains immutable data, or when direct memory from the table can be used. If the block
is reset to use a direct memory pointer from the object, it shall refer to this pointer as to
immutable memory block.

• column_index – The index of the column from which the data shall be returned by the
accessor.

• rows – The range of rows that should be read in the 𝑐𝑜𝑙𝑢𝑚𝑛𝑖𝑛𝑑𝑒𝑥 block.

• alloc – The requested kind of USM in the returned block.

Preconditions
rows are within the range of [0, obj.row_count).
column_index is within the range of [0, obj.column_count).

Row accessor

The row_accessor class provides a read-only access to the rows of the table as contiguous homogeneous array.

Usage example

#include <CL/sycl.hpp>
#include <iostream>

#include "oneapi/dal/table/homogen.hpp"
#include "oneapi/dal/table/row_accessor.hpp"

using namespace oneapi;

int main() {
sycl::queue queue { sycl::default_selector() };

constexpr float host_data[] = {
1.0f, 1.5f, 2.0f,
2.1f, 3.2f, 3.7f,
4.0f, 4.9f, 5.0f,
5.2f, 6.1f, 6.2f

};

(continues on next page)

8.6. Data management 273

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

constexpr std::int64_t row_count = 4;
constexpr std::int64_t column_count = 3;

auto shared_data = sycl::malloc_shared<float>(row_count * column_count, queue);
auto event = queue.memcpy(shared_data, host_data, sizeof(float) * row_count * column_

→˓count);
auto t = dal::homogen_table::wrap(queue, data, row_count, column_count, { event });

// Accessing second and third rows of the table
dal::row_accessor<const float> acc { t };

auto block = acc.pull(queue, {1, 3});
for(std::int64_t i = 0; i < block.get_count(); i++) {

std::cout << block[i] << ", ";
}
std::cout << std::endl;

sycl::free(shared_data, queue);
return 0;

}

Programming interface

All types and functions in this section shall be declared in the oneapi::dal namespace and be available via inclusion
of the oneapi/dal/table/row_accessor.hpp header file.

template <typename Data>
class row_accessor {
public:

using data_t = std::remove_const_t<Data>;

public:
row_accessor(const table& obj);

array<data_t> pull(sycl::queue& queue,
const range& rows = { 0, -1 },
const sycl::usm::alloc& alloc = sycl::usm::alloc::shared) const;

Data* pull(sycl::queue& queue,
array<data_t>& block,
const range& rows = { 0, -1 },
const sycl::usm::alloc& alloc = sycl::usm::alloc::shared) const;

};

template<typename Data>
class row_accessor

Template Parameters Data – The type of data values in blocks returned by the accessor. Shall
be const-qualified for read-only access. An accessor shall support at least float, double, and
std::int32_t types of 𝐷𝑎𝑡𝑎.

Constructors

8.6. Data management 274

oneAPI Specification, Release 1.1-rev-1

row_accessor(const table &obj)
Creates a new read-only accessor object from the table. The check that the accessor supports the table kind
of 𝑜𝑏𝑗 shall be performed. The reference to the 𝑜𝑏𝑗 table shall be stored within the accessor to obtain data
from the table.

Public Methods
array<data_t> pull(sycl::queue &queue, const range &rows = {0, -1}, const sycl::usm::alloc &alloc =

sycl::usm::alloc::shared) const
Provides access to the rows of the table. The method shall return an array that directly points to the memory
within the table if it is possible. In that case, the array shall refer to the memory as to immutable data.
Otherwise, the new memory block shall be allocated, the data from the table rows shall be converted and
copied into this block. The array shall refer to the block as to mutable data.

Parameters
• queue – The SYCL* queue object.

• rows – The range of rows that data shall be returned from the accessor.

• alloc – The requested kind of USM in the returned block.

Preconditions
rows are within the range of [0, obj.row_count).

Data *pull(sycl::queue &queue, array<data_t> &block, const range &rows = {0, -1}, const sycl::usm::alloc
&alloc = sycl::usm::alloc::shared) const

Provides access to the rows of the table. The method shall return the block.data pointer.

Parameters
• queue – The SYCL* queue object.

• block – The block which memory is reused (if it is possible) to obtain the data from the
table. The block memory shall be reset either when its size is not big enough, or when it
contains immutable data, or when direct memory from the table can be used. If the block
is reset to use a direct memory pointer from the object, it shall refer to this pointer as to
immutable memory block.

• rows – The range of rows that data shall be returned from the accessor.

• alloc – The requested kind of USM in the returned block.

Preconditions
rows are within the range of [0, obj.row_count).

Data Sources

This section describes the types related to the data source concept.

8.6. Data management 275

oneAPI Specification, Release 1.1-rev-1

Read

Read operation is a function that transforms a data source and other arguments represented via an args object to a
result object. The operation is responsible for:

• Executing all of the data retrieval and transformation routines of the data source.

• Passing a SYCL* queue to the data retrieval and transformation routines.

Read operation definition

The following code sample shows the declaration for a read operation.

namespace oneapi::dal {

template <typename Object, typename DataSource>
using read_args_t = /* implementation defined */;

template <typename Object, typename DataSource>
using read_result_t = Object;

template <typename Object, typename DataSource>
read_result_t<Object, DataSource> read(

sycl::queue& queue,
const DataSource& data_source,
const read_args_t<Object, DataSource>& args);

} // namespace oneapi::dal

Each operation shall satisfy the following requirements:

• An operation shall accept three parameters in the following order:

– The SYCL* queue object.

– The data source.

– The args object.

• An operation shall return the result object.

• The read_args_t and read_result_t alias templates shall be used for inference of the args and return types.

Read operation shortcuts

In order to make the code on user side less verbose, oneDAL defines the following overloaded functions called shortcuts
for a read operation in addition to the general one described in section Read operation definition.

• A shortcut for execution on host. Performs the same operation as the general function on host, but does not
require passing the queue explicitly.

template <typename Object, typename DataSource>
read_result_t<Object, DataSource> read(
const DataSource& data_source,
const read_args_t<Object, DataSource>& args);

• A shortcut that allows omitting explicit args creation.

8.6. Data management 276

oneAPI Specification, Release 1.1-rev-1

template <typename Object, typename DataSource, typename... Args>
read_result_t<Object, DataSource> read(

sycl::queue& queue,
const DataSource& data_source,
Args&&... args);

• A shortcut that allows omitting explicit queue and args creation. This is a combination of two previous shortcuts.

template <typename Object, typename DataSource, typename... Args>
read_result_t<Object, DataSource> read(
const DataSource& data_source,
Args&&... args);

Args

• The string %DATA_SOURCE% should be substituted with the name of the data source, for example, csv.

• %PROPERTY_NAME% and %PROPERTY_TYPE% should be substituted with the name and the type of one of the data
source args properties.

namespace oneapi::dal::%DATA_SOURCE% {

template <typename Object, typename DataSource>
class read_args {
public:

read_args(
const %PROPERTY_TYPE_1%& property_name_1,
const %PROPERTY_TYPE_2%& property_name_2,
/* more properties */

)
/* Getter & Setter for the property called `%PROPERTY_NAME_1%` */
descriptor& set_%PROPERTY_NAME_1%(%PROPERTY_TYPE_1% value);
%PROPERTY_TYPE_1% get_%PROPERTY_NAME_1%() const;
/* Getter & Setter for the property called `%PROPERTY_NAME_2%` */
descriptor& set_%PROPERTY_NAME_2%(%PROPERTY_TYPE_2% value);
%PROPERTY_TYPE_2% get_%PROPERTY_NAME_2%() const;
/* more properties */

};
} // namespace oneapi::dal::%DATA_SOURCE%

8.6. Data management 277

oneAPI Specification, Release 1.1-rev-1

Result

The result of a read operation is an instance of an in-memory object with Object type.

Data Source Types

oneDAL defines a set of classes.

Data
source
type

Description

CSV data
source

Data source that allows reading data from a text file into a table.

Details

CSV data source

Class csv::data_source is an API for accessing the data source represented as a csv file. CSV data source shall be
used with read operation to extract data in text format from the given input file, process it using provided parameters
(such as delimiter and read options), transform it into numerical representation, and store it as an in-memory dataset
of a chosen type.

Supported type of in-memory object for read operation with CSV data source is oneapi::dal::table.

CSV data source requires input file name to be set in the constructor, while the other parameters of the constructor such
as delimiter and read options rely on default values.

Usage example

using namespace oneapi;

const auto data_source = dal::csv::data_source("data.csv", ',');

const auto table = dal::read<dal::table>(data_source);

Programming Interface

All types and functions in this section shall be declared in the oneapi::dal::csv namespace and be available via
inclusion of the oneapi/dal/io/csv.hpp header file.

enum class read_options : std::uint64_t {
none = 0,
parse_header = 1 << 0

};

constexpr char default_delimiter = ',';
constexpr read_options default_read_options = read_options::none;

(continues on next page)

8.6. Data management 278

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

class data_source {
public:

data_source(const char *file_name,
char delimiter = default_delimiter,
read_options opts = default_read_options);

data_source(const std::string &file_name,
char delimiter = default_delimiter,
read_options opts = default_read_options);

std::string get_file_name() const;
char get_delimiter() const;
read_options get_read_options() const;

};

class data_source

data_source(const char *file_name, char delimiter = default_delimiter, read_options opts =
default_read_options)

Creates a new instance of a CSV data source with the given file_name, delimiter and read options
opts flag.

data_source(const std::string &file_name, char delimiter = default_delimiter, read_options opts =
default_read_options)

Creates a new instance of a CSV data source with the given file_name, delimiter and read options
opts flag.

std::string file_name = ""
A string that contains the name of the file with the dataset to read.

Getter
std::string get_filename() const

char delimiter = default_delimiter
A character that represents the delimiter between separate features in the input file.

Getter
char get_delimter() const

read_options options = default_read_options
Value that stores read options to be applied during reading of the input file. Enabled parse_header option
indicates that the first line in the input file shall be processed as a header record with features names.

Getter
read_options get_read_options() const

8.6. Data management 279

oneAPI Specification, Release 1.1-rev-1

Reading oneapi::dal::read<Object>(...)

Args

template <typename Object>
class read_args {
public:

read_args();
};

template<typename Object>
class read_args

read_args()
Creates args for the read operation with the default attribute values.

Operation

oneapi::dal::table is the only supported value of the Object template parameter for read operation with CSV
data source.

template<typename Object, typename DataSource>
Object read(const DataSource &ds)

Template Parameters
• Object – oneDAL object type that shall be produced as a result of reading from the data

source.

• DataSource – CSV data source csv::data_source.

Tables

This section describes the types related to the table concept.

Type Description
table A common implementation of the table concept. Base class for other table types.
ta-
ble_metadata

An implementation of table metadata concept.

data_layout An enumeration of data layouts used to store contiguous data blocks inside the table.
fea-
ture_type

An enumeration of feature types used in oneDAL to define set of available operations onto the data.

8.6. Data management 280

oneAPI Specification, Release 1.1-rev-1

Requirements on table types

Each implementation of table concept shall:

1. Follow the definition of the table concept and its restrictions (e.g., immutability).

2. Be derived from the oneapi::dal::table class. The behavior of this class can be extended, but cannot be
weaken.

3. Be reference-counted.

4. Every new oneapi::dal::table sub-type shall define a unique id number - the “kind” that represents objects
of that type in runtime.

The following listing provides an example of table API to illustrate table kinds and copy-assignment operation:

using namespace onedal;

// Creating homogen_table sub-type.
dal::homogen_table table1 = homogen_table::wrap(queue, data_ptr, row_count, column_
→˓count);

// table1 and table2 share the same data (no data copy is performed)
dal::table table2 = table1;

// Creating an empty table
dal::table table3;

std::cout << table1.get_kind() == table2.get_kind() << std::endl; // true
std::cout << homogen_table::kind() == table2.get_kind() << std::endl; // true
std::cout << table2.get_kind() == table3.get_kind() << std::endl; // false

// Referring table3 to the table2.
table3 = table2;
std::cout << table2.get_kind() == table3.get_kind() << std::endl; // true

Table types

oneDAL defines a set of classes that implement the table concept for a specific data format:

Table type Description
homogen table A dense table that contains contiguous homogeneous data.

Programming interface

All types and functions in this section shall be declared in the oneapi::dal namespace and be available via inclusion
of the oneapi/dal/table/common.hpp header file.

8.6. Data management 281

oneAPI Specification, Release 1.1-rev-1

Table

A base implementation of the table concept. The table type and all of its subtypes shall be reference-counted:

1. The instance shall store a pointer to table implementation that holds all property values and data

2. The reference count indicating how many table objects refer to the same implementation.

3. The table shall increment the reference count for it to be equal to the number of table objects sharing the same
implementation.

4. The table shall decrement the reference count when the table goes out of the scope. If the reference count is zero,
the table shall free its implementation.

class table {
public:

table();

table(const table& other);

table(table&& other);

table& operator=(const table& other);

table& operator=(table&& other);

bool has_data() const noexcept;

std::int64_t get_column_count() const;

std::int64_t get_row_count() const;

const table_metadata& get_metadata() const;

std::int64_t get_kind() const;

data_layout get_data_layout() const;
};

class table
Constructors
table()

An empty table constructor: creates the table instance with zero number of rows and columns. Imple-
mentation shall be set to the special “empty” object that returns all the property values set to default (see
Properties section).

table(const table &other)
Creates a new table instance which shares implementation with 𝑜𝑡ℎ𝑒𝑟.

table(table &&other)
Creates a new table instance and moves implementation from 𝑜𝑡ℎ𝑒𝑟 into it.

Public Methods
table &operator=(const table &other)

Replaces the implementation by another one from 𝑜𝑡ℎ𝑒𝑟.

8.6. Data management 282

oneAPI Specification, Release 1.1-rev-1

table &operator=(table &&other)
Swaps the implementation of this object and 𝑜𝑡ℎ𝑒𝑟.

bool has_data() const noexcept
Indicates whether a table contains non-zero number of rows and columns.

std::int64_t get_column_count() const
The number of columns in the table.

std::int64_t get_row_count() const
The number of rows in the table.

const table_metadata &get_metadata() const
The metadata object that holds additional information about the data within the table.

std::int64_t get_kind() const
The runtime id of the table type. Each table sub-type shall have its unique kind. An empty table (see the
default constructor) shall have a unique kind value as well.

data_layout get_data_layout() const
The layout of the data within the table.

Table metadata

An implementation of the table metadata concept. Holds additional information about data within the table. The
objects of table_metadata shall be reference-counted.

class table_metadata {
public:

table_metadata();

table_metadata(const array<data_type>& dtypes, const array<feature_type>& ftypes);

std::int64_t get_feature_count() const;

const feature_type& get_feature_type(std::int64_t feature_index) const;

const data_type& get_data_type(std::int64_t feature_index) const;
};

class table_metadata
Constructors
table_metadata()

Creates the metadata instance without information about the features. The feature_count shall be set to
zero. The data_type and feature_type properties shall not be initialized.

table_metadata(const array<data_type> &dtypes, const array<feature_type> &ftypes)
Creates the metadata instance from external information about the data types and the feature types.

Parameters
• dtypes – The data types of the features. Shall be assigned into the data_type property.

• ftypes – The feature types. Shall be assigned into the feature_type property.

Preconditions
dtypes.get_count() == ftypes.get_count()

8.6. Data management 283

oneAPI Specification, Release 1.1-rev-1

Public Methods
std::int64_t get_feature_count() const

The number of features that metadata contains information about.

Preconditions
feature_count >= 0

const feature_type &get_feature_type(std::int64_t feature_index) const
Feature types in the metadata object. Shall be within the range [0, feature_count).

const data_type &get_data_type(std::int64_t feature_index) const
Data types of the features in the metadata object. Shall be within the range [0, feature_count).

Data layout

An implementation of the data layout concept.

enum class data_layout { unknown, row_major, column_major };

enum class data_layout

data_layout::unknown Represents the data layout that is undefined or unknown at this moment.

data_layout::row_major The data block elements are stored in raw-major layout.

data_layout::column_major The data block elements are stored in column_major layout.

Feature type

An implementation of the logical data types.

enum class feature_type { nominal, ordinal, interval, ratio };

enum class feature_type

feature_type::nominal Represents the type of Nominal feature.

feature_type::ordinal Represents the type of Ordinal feature.

feature_type::interval Represents the type of Interval feature.

feature_type::ratio Represents the type of Ratio feature.

Homogeneous table

Class homogen_table is an implementation of a table type for which the following is true:

• The data within the table are dense and stored as one contiguous memory block.

• All the columns have the same data type.

8.6. Data management 284

oneAPI Specification, Release 1.1-rev-1

Programming interface

All types and functions in this section shall be declared in the oneapi::dal namespace and be available via inclusion
of the oneapi/dal/table/homogen.hpp header file.

class homogen_table : public table {
public:

static std::int64_t kind();

template <typename Data>
static homogen_table wrap(const sycl::queue& queue,

const Data* data_pointer,
std::int64_t row_count,
std::int64_t column_count,
const sycl::vector_class<sycl::event>& dependencies = {},
data_layout layout = data_layout::row_major);

public:
homogen_table();

template <typename Data, typename ConstDeleter>
homogen_table(const sycl::queue& queue,

const Data* data_pointer,
std::int64_t row_count,
std::int64_t column_count,
ConstDeleter&& data_deleter,
const sycl::vector_class<sycl::event>& dependencies = {},
data_layout layout = data_layout::row_

→˓major);

template <typename Data>
const Data* get_data() const {

return reinterpret_cast<const Data*>(this->get_data());
}

const void* get_data() const;

std::int64_t get_kind() const {
return kind();

}
};

class homogen_table
Public Static Methods
static std::int64_t kind()

Returns the unique id of homogen_table class.

template<typename Data>
static homogen_table wrap(const sycl::queue &queue, const Data *data_pointer, std::int64_t row_count,

std::int64_t column_count, const sycl::vector_class<sycl::event> &dependencies =
{}, data_layout layout = data_layout::row_major)

Creates a new homogen_table instance from externally-defined data block. Table object refers to the data
but does not own it. The responsibility to free the data remains on the user side. The data shall point to
the data_pointer memory block.

8.6. Data management 285

oneAPI Specification, Release 1.1-rev-1

Template Parameters Data – The type of elements in the data block that will be stored into the
table. The table shall initialize data types of metadata with this data type. The feature types
shall be set to default values for 𝐷𝑎𝑡𝑎 type: contiguous for floating-point, ordinal for integer
types. The 𝐷𝑎𝑡𝑎 type shall be at least float, double or std::int32_t.

Parameters
• queue – The SYCL* queue object.

• data_pointer – The pointer to a homogeneous data block.

• row_count – The number of rows in the table.

• column_count – The number of columns in the table.

• dependencies – Events indicating availability of the 𝑑𝑎𝑡𝑎 for reading or writing.

• layout – The layout of the data. Shall be data_layout::row_major or
data_layout::column_major.

Constructors
homogen_table()

Creates a new homogen_table instance with zero number of rows and columns. The kind shall be set
to`homogen_table::kind()`. All the properties shall be set to default value (see the Properties section).

template<typename Data, typename ConstDeleter>
homogen_table(const sycl::queue &queue, const Data *data_pointer, std::int64_t row_count, std::int64_t

column_count, ConstDeleter &&data_deleter, const sycl::vector_class<sycl::event>
&dependencies = {}, data_layout layout = data_layout::row_major)

Creates a new homogen_table instance from externally-defined data block. Table object owns the data
pointer. The data shall point to the data_pointer memory block.

Template Parameters
• Data – The type of elements in the data block that will be stored into the table. The 𝐷𝑎𝑡𝑎

type shall be at least float, double or std::int32_t.

• ConstDeleter – The type of a deleter called on data_pointer when the last table that refers
it is out of the scope.

Parameters
• queue – The SYCL* queue object.

• data_pointer – The pointer to a homogeneous data block.

• row_count – The number of rows in the table.

• column_count – The number of columns in the table.

• data_deleter – The deleter that is called on the data_pointer when the last table that
refers it is out of the scope.

• dependencies – Events indicating availability of the 𝑑𝑎𝑡𝑎 for reading or writing.

• layout – The layout of the data. Shall be data_layout::row_major or
data_layout::column_major.

Public Methods
template<typename Data>
const Data *get_data() const

Returns the data pointer cast to the 𝐷𝑎𝑡𝑎 type. No checks are performed that this type is the actual type
of the data within the table.

8.6. Data management 286

oneAPI Specification, Release 1.1-rev-1

const void *get_data() const
The pointer to the data block within the table. Shall be equal to nullptr when row_count == 0 and
column_count == 0.

std::int64_t get_kind() const
The unique id of the homogen table type.

8.7 Algorithms

The Algorithms component consists of classes that implement algorithms for data analysis (data mining) and data
modeling (training and prediction). These algorithms include matrix decompositions, clustering, classification, and
regression algorithms, as well as association rules discovery.

8.7.1 Clustering

K-Means

The K-Means algorithm solves clustering problem by partitioning 𝑛 feature vectors into 𝑘 clusters minimizing some
criterion. Each cluster is characterized by a representative point, called a centroid.

Operation Computational methods Programming Interface
Training Lloyd’s train(. . .) train_input train_result
Inference Lloyd’s infer(. . .) infer_input infer_result

Mathematical formulation

Training

Given the training set 𝑋 = {𝑥1, . . . , 𝑥𝑛} of 𝑝-dimensional feature vectors and a positive integer 𝑘, the problem is to
find a set 𝐶 = {𝑐1, . . . , 𝑐𝑘} of 𝑝-dimensional centroids that minimize the objective function

Φ𝑋(𝐶) =

𝑛∑︁
𝑖=1

𝑑2(𝑥𝑖, 𝐶),

where 𝑑2(𝑥𝑖, 𝐶) is the squared Euclidean distance from 𝑥𝑖 to the closest centroid in 𝐶,

𝑑2(𝑥𝑖, 𝐶) = min
1≤𝑗≤𝑘

‖𝑥𝑖 − 𝑐𝑗‖2, 1 ≤ 𝑖 ≤ 𝑛.

Expression ‖ · ‖ denotes 𝐿2 norm.

Note: In the general case, 𝑑 may be an arbitrary distance function. Current version of the oneDAL spec defines only
Euclidean distance case.

8.7. Algorithms 287

https://mathworld.wolfram.com/L2-Norm.html

oneAPI Specification, Release 1.1-rev-1

Training method: Lloyd’s

The Lloyd’s method [Lloyd82] consists in iterative updates of centroids by applying the alternating Assignment and
Update steps, where 𝑡 denotes a index of the current iteration, e.g., 𝐶(𝑡) = {𝑐(𝑡)1 , . . . , 𝑐

(𝑡)
𝑘 } is the set of centroids at the

𝑡-th iteration. The method requires the initial centroids 𝐶(1) to be specified at the beginning of the algorithm (𝑡 = 1).

(1) Assignment step: Assign each feature vector 𝑥𝑖 to the nearest centroid. 𝑦
(𝑡)
𝑖 denotes the assigned label (cluster

index) to the feature vector 𝑥𝑖.

𝑦
(𝑡)
𝑖 = arg min

1≤𝑗≤𝑘
‖𝑥𝑖 − 𝑐

(𝑡)
𝑗 ‖

2, 1 ≤ 𝑖 ≤ 𝑛.

Each feature vector from the training set 𝑋 is assigned to exactly one centroid so that 𝑋 is partitioned to 𝑘 disjoint sets
(clusters)

𝑆
(𝑡)
𝑗 =

{︀
𝑥𝑖 ∈ 𝑋 : 𝑦

(𝑡)
𝑖 = 𝑗

}︀
, 1 ≤ 𝑗 ≤ 𝑘.

(2) Update step: Recalculate centroids by averaging feature vectors assigned to each cluster.

𝑐
(𝑡+1)
𝑗 =

1

|𝑆(𝑡)
𝑗 |

∑︁
𝑥∈𝑆(𝑡)

𝑗

𝑥, 1 ≤ 𝑗 ≤ 𝑘.

The steps (1) and (2) are performed until the following stop condition,

𝑘∑︁
𝑗=1

⃦⃦
𝑐
(𝑡)
𝑗 − 𝑐

(𝑡+1)
𝑗

⃦⃦2
< 𝜀,

is satisfied or number of iterations exceeds the maximal value 𝑇 defined by the user.

Inference

Given the inference set 𝑋 ′ = {𝑥′1, . . . , 𝑥′𝑚} of 𝑝-dimensional feature vectors and the set 𝐶 = {𝑐1, . . . , 𝑐𝑘} of centroids
produced at the training stage, the problem is to predict the index 𝑦′𝑗 ∈ {0, . . . , 𝑘 − 1}, 1 ≤ 𝑗 ≤ 𝑚, of the centroid in
accordance with a method-defined rule.

Inference method: Lloyd’s

Lloyd’s inference method computes the 𝑦′𝑗 as an index of the centroid closest to the feature vector 𝑥′𝑗 ,

𝑦′𝑗 = arg min
1≤𝑙≤𝑘

‖𝑥′𝑗 − 𝑐𝑙‖2, 1 ≤ 𝑗 ≤ 𝑚.

Usage example

Training

kmeans::model<> run_training(const table& data,
const table& initial_centroids) {

const auto kmeans_desc = kmeans::descriptor<float>{}
.set_cluster_count(10)
.set_max_iteration_count(50)

(continues on next page)

8.7. Algorithms 288

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

.set_accuracy_threshold(1e-4);

const auto result = train(kmeans_desc, data, initial_centroids);

print_table("labels", result.get_labels());
print_table("centroids", result.get_model().get_centroids());
print_value("objective", result.get_objective_function_value());

return result.get_model();
}

Inference

table run_inference(const kmeans::model<>& model,
const table& new_data) {

const auto kmeans_desc = kmeans::descriptor<float>{}
.set_cluster_count(model.get_cluster_count());

const auto result = infer(kmeans_desc, model, new_data);

print_table("labels", result.get_labels());
}

Programming Interface

All types and functions in this section shall be declared in the oneapi::dal::kmeans namespace and be available
via inclusion of the oneapi/dal/algo/kmeans.hpp header file.

Descriptor

template <typename Float = float,
typename Method = method::by_default,
typename Task = task::by_default>

class descriptor {
public:
explicit descriptor(std::int64_t cluster_count = 2);

int64_t get_cluster_count() const;
descriptor& set_cluster_count(int64_t);

int64_t get_max_iteration_count() const;
descriptor& set_max_iteration_count(int64_t);

double get_accuracy_threshold() const;
descriptor& set_accuracy_threshold(double);

};

template<typename Float = float, typename Method = method::by_default, typename Task = task::by_default>

8.7. Algorithms 289

oneAPI Specification, Release 1.1-rev-1

class descriptor

Template Parameters
• Float – The floating-point type that the algorithm uses for intermediate computations. Can

be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be method::lloyd .

• Task – Tag-type that specifies the type of the problem to solve. Can be task::clustering.

Constructors
descriptor(std::int64_t cluster_count = 2)

Creates a new instance of the class with the given cluster_count.

Properties
int64_t max_iteration_count

The maximum number of iterations 𝑇 . Default value: 100.

Getter & Setter
int64_t get_max_iteration_count() const

descriptor & set_max_iteration_count(int64_t)

Invariants
max_iteration_count >= 0

double accuracy_threshold
The threshold 𝜀 for the stop condition. Default value: 0.0.

Getter & Setter
double get_accuracy_threshold() const

descriptor & set_accuracy_threshold(double)

Invariants
accuracy_threshold >= 0.0

int64_t cluster_count
The number of clusters 𝑘. Default value: 2.

Getter & Setter
int64_t get_cluster_count() const

descriptor & set_cluster_count(int64_t)

Invariants
cluster_count > 0

8.7. Algorithms 290

oneAPI Specification, Release 1.1-rev-1

Method tags

namespace method {
struct lloyd {};
using by_default = lloyd;

} // namespace method

struct lloyd
Tag-type that denotes Lloyd’s computational method.

using by_default = lloyd
Alias tag-type for Lloyd’s computational method.

Task tags

namespace task {
struct clustering {};
using by_default = clustering;

} // namespace task

struct clustering
Tag-type that parameterizes entities used for solving clustering problem.

using by_default = clustering
Alias tag-type for the clustering task.

Model

template <typename Task = task::by_default>
class model {
public:

model();

const table& get_centroids() const;

int64_t get_cluster_count() const;
};

template<typename Task = task::by_default>
class model

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::clustering.

Constructors
model()

Creates a new instance of the class with the default property values.

Public Methods
const table &get_centroids() const

A 𝑘 × 𝑝 table with the cluster centroids. Each row of the table stores one centroid.

8.7. Algorithms 291

oneAPI Specification, Release 1.1-rev-1

int64_t get_cluster_count() const
Number of clusters 𝑘 in the trained model.

Training train(...)

Input

template <typename Task = task::by_default>
class train_input {
public:

train_input(const table& data = table{},
const table& initial_centroids = table{});

const table& get_data() const;
train_input& set_data(const table&);

const table& get_initial_centroids() const;
train_input& set_initial_centroids(const table&);

};

template<typename Task = task::by_default>
class train_input

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::clustering.

Constructors
train_input(const table &data = table{}, const table &initial_centroids = table{})

Creates a new instance of the class with the given data and initial_centroids.

Properties
const table &data

An 𝑛× 𝑝 table with the data to be clustered, where each row stores one feature vector.

Getter & Setter
const table & get_data() const

train_input & set_data(const table &)

const table &initial_centroids
A 𝑘 × 𝑝 table with the initial centroids, where each row stores one centroid.

Getter & Setter
const table & get_initial_centroids() const

train_input & set_initial_centroids(const table &)

8.7. Algorithms 292

oneAPI Specification, Release 1.1-rev-1

Result

template <typename Task = task::by_default>
class train_result {
public:

train_result();

const model<Task>& get_model() const;

const table& get_labels() const;

int64_t get_iteration_count() const;

double get_objective_function_value() const;
};

template<typename Task = task::by_default>
class train_result

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::clustering.

Constructors
train_result()

Creates a new instance of the class with the default property values.

Public Methods
const model<Task> &get_model() const

The trained K-means model.

const table &get_labels() const
An 𝑛× 1 table with the labels 𝑦𝑖 assigned to the samples 𝑥𝑖 in the input data, 1 ≤ 1 ≤ 𝑛.

int64_t get_iteration_count() const
The number of iterations performed by the algorithm.

double get_objective_function_value() const
The value of the objective function Φ𝑋(𝐶), where 𝐶 is model.centroids (see
kmeans::model::centroids).

Operation

template <typename Float, typename Method, typename Task>
train_result<Task> train(const descriptor<Float, Method, Task>& desc,

const train_input<Task>& input);

template<typename Float, typename Method, typename Task>
train_result<Task> train(const descriptor<Float, Method, Task> &desc, const train_input<Task> &input)

Runs the training operation for K-Means clustering. For more details see oneapi::dal::train.

Template Parameters
• Float – The floating-point type that the algorithm uses for intermediate computations. Can

be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be method::lloyd .

8.7. Algorithms 293

oneAPI Specification, Release 1.1-rev-1

• Task – Tag-type that specifies type of the problem to solve. Can be task::clustering.

Parameters
• desc – Descriptor of the algorithm.

• input – Input data for the training operation.

Preconditions
input.data.has_data == true

input.initial_centroids.row_count == desc.cluster_count

input.initial_centroids.column_count == input.data.column_count

Postconditions
result.labels.row_count == input.data.row_count

result.labels.column_count == 1

result.labels[i] >= 0

result.labels[i] < desc.cluster_count

result.iteration_count <= desc.max_iteration_count

result.model.centroids.row_count == desc.cluster_count

result.model.centroids.column_count == input.data.column_count

Inference infer(...)

Input

template <typename Task = task::by_default>
class infer_input {
public:

infer_input(const model<Task>& m = model<Task>{},
const table& data = table{});

const model<Task>& get_model() const;
infer_input& set_model(const model<Task>&);

const table& get_data() const;
infer_input& set_data(const table&);

};

template<typename Task = task::by_default>
class infer_input

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::clustering.

Constructors
infer_input(const model<Task> &m = model<Task>{}, const table &data = table{})

Creates a new instance of the class with the given model and data.

Properties
const model<Task> &model

An 𝑛×𝑝 table with the data to be assigned to the clusters, where each row stores one feature vector. Default
value: model<Task>{}.

8.7. Algorithms 294

oneAPI Specification, Release 1.1-rev-1

Getter & Setter
const model< Task > & get_model() const

infer_input & set_model(const model< Task > &)

const table &data
The trained K-Means model. Default value: table{}.

Getter & Setter
const table & get_data() const

infer_input & set_data(const table &)

Result

template <typename Task = task::by_default>
class infer_result {
public:

infer_result();

const table& get_labels() const;

double get_objective_function_value() const;
};

template<typename Task = task::by_default>
class infer_result

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::clustering.

Constructors
infer_result()

Creates a new instance of the class with the default property values.

Public Methods
const table &get_labels() const

An 𝑛× 1 table with assignments labels to feature vectors in the input data.

double get_objective_function_value() const
The value of the objective function Φ𝑋(𝐶), where 𝐶 is defined by the corresponding
infer_input::model::centroids.

Operation

template <typename Float, typename Method, typename Task>
infer_result<Task> infer(const descriptor<Float, Method, Task>& desc,

const infer_input<Task>& input);

template<typename Float, typename Method, typename Task>
infer_result<Task> infer(const descriptor<Float, Method, Task> &desc, const infer_input<Task> &input)

Runs the inference operation for K-Means clustering. For more details see oneapi::dal::infer.

Template Parameters

8.7. Algorithms 295

oneAPI Specification, Release 1.1-rev-1

• Float – The floating-point type that the algorithm uses for intermediate computations. Can
be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be method::lloyd .

• Task – Tag-type that specifies type of the problem to solve. Can be task::clustering.

Parameters
• desc – Descriptor of the algorithm.

• input – Input data for the inference operation.

Preconditions
input.data.has_data == true

input.model.centroids.has_data == true

input.model.centroids.row_count == desc.cluster_count

input.model.centroids.column_count == input.data.column_count

Postconditions
result.labels.row_count == input.data.row_count

result.labels.column_count == 1

result.labels[i] >= 0

result.labels[i] < desc.cluster_count

K-Means initialization

The K-Means initialization algorithm receives 𝑛 feature vectors as input and chooses 𝑘 initial centroids. After initial-
ization, K-Means algorithm uses the initialization result to partition input data into 𝑘 clusters.

Operation Computational methods Programming Interface
Computing Dense compute(. . .) compute_input compute_result

Mathematical formulation

Computing

Given the training set 𝑋 = {𝑥1, . . . , 𝑥𝑛} of 𝑝-dimensional feature vectors and a positive integer 𝑘, the problem is to
find a set 𝐶 = {𝑐1, . . . , 𝑐𝑘} of 𝑝-dimensional initial centroids.

Computing method: dense

The method chooses first 𝑘 feature vectors from the training set 𝑋 .

8.7. Algorithms 296

oneAPI Specification, Release 1.1-rev-1

Usage example

Computing

table run_compute(const table& data) {
const auto kmeans_desc = kmeans_init::descriptor<float,

kmeans_init::method::dense>{}
.set_cluster_count(10)

const auto result = compute(kmeans_desc, data);

print_table("centroids", result.get_centroids());

return result.get_centroids();
}

Programming Interface

All types and functions in this section shall be declared in the oneapi::dal::kmeans_init namespace and be avail-
able via inclusion of the oneapi/dal/algo/kmeans_init.hpp header file.

Descriptor

template <typename Float = float,
typename Method = method::by_default,
typename Task = task::by_default>

class descriptor {
public:

explicit descriptor(std::int64_t cluster_count = 2);

std::int64_t get_cluster_count() const;
descriptor& set_cluster_count(std::int64_t);

};

template<typename Float = float, typename Method = method::by_default, typename Task = task::by_default>
class descriptor

Template Parameters
• Float – The floating-point type that the algorithm uses for intermediate computations. Can

be float or double.

• Method – Tag-type that specifies an implementation of K-Means Initialization algorithm.

• Task – Tag-type that specifies the type of the problem to solve. Can be task::init.

Constructors
descriptor(std::int64_t cluster_count = 2)

Creates a new instance of the class with the given cluster_count.

Properties

8.7. Algorithms 297

oneAPI Specification, Release 1.1-rev-1

std::int64_t cluster_count
The number of clusters 𝑘. Default value: 2.

Getter & Setter
std::int64_t get_cluster_count() const

descriptor & set_cluster_count(std::int64_t)

Invariants
cluster_count > 0

Method tags

namespace method {
struct dense {};
using by_default = dense;

} // namespace method

struct dense
Tag-type that denotes dense computational method.

using by_default = dense

Task tags

namespace task {
struct init {};
using by_default = init;

} // namespace task

struct init
Tag-type that parameterizes entities used for obtaining the initial K-Means centroids.

using by_default = init
Alias tag-type for the initialization task.

Computing compute(...)

Input

template <typename Task = task::by_default>
class compute_input {
public:

compute_input(const table& data = table{});

const table& get_data() const;
compute_input& set_data(const table&);

};

template<typename Task = task::by_default>
class compute_input

8.7. Algorithms 298

oneAPI Specification, Release 1.1-rev-1

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::init.

Constructors
compute_input(const table &data = table{})

Creates a new instance of the class with the given data.

Properties
const table &data

An 𝑛 × 𝑝 table with the data to be clustered, where each row stores one feature vector. Default value:
table{}.

Getter & Setter
const table & get_data() const

compute_input & set_data(const table &)

Result

template <typename Task = task::by_default>
class compute_result {
public:

compute_result();

const table& get_centroids() const;
};

template<typename Task = task::by_default>
class compute_result

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::clustering.

Constructors
compute_result()

Creates a new instance of the class with the default property values.

Public Methods
const table &get_centroids() const

A 𝑘 × 𝑝 table with the initial centroids. Each row of the table stores one centroid.

Operation

template <typename Float, typename Method, typename Task>
compute_result<Task> compute(const descriptor<Float, Method, Task>& desc,

const compute_input<Task>& input);

template<typename Float, typename Method, typename Task>
compute_result<Task> compute(const descriptor<Float, Method, Task> &desc, const compute_input<Task>

&input)
Runs the computing operation for K-Means initialization. For more details, see oneapi::dal::compute.

8.7. Algorithms 299

oneAPI Specification, Release 1.1-rev-1

Template Parameters
• Float – The floating-point type that the algorithm uses for intermediate computations. Can

be float or double.

• Method – Tag-type that specifies an implementation of K-Means Initialization algorithm.

• Task – Tag-type that specifies type of the problem to solve. Can be task::init.

Parameters
• desc – The descriptor of the algorithm.

• input – Input data for the computing operation.

Preconditions
input.data.has_data == true

input.data.row_count == desc.cluster_count

Postconditions
result.centroids.has_data == true

result.centroids.row_count == desc.cluster_count

result.centroids.column_count == input.data.column_count

8.7.2 Nearest Neighbors (kNN)

k-Nearest Neighbors Classification (k-NN)

𝑘-NN classification algorithm infers the class for the new feature vector by computing majority vote of the 𝑘 nearest
observations from the training set.

Operation Computational methods Programming Interface
Training Brute-force k-d tree train(. . .) train_input train_result
Inference Brute-force k-d tree infer(. . .) infer_input infer_result

Mathematical formulation

Training

Let 𝑋 = {𝑥1, . . . , 𝑥𝑛} be the training set of 𝑝-dimensional feature vectors, let 𝑌 = {𝑦1, . . . , 𝑦𝑛} be the set of class
labels, where 𝑦𝑖 ∈ {0, . . . , 𝑐 − 1}, 1 ≤ 𝑖 ≤ 𝑛. Given 𝑋 , 𝑌 and the number of nearest neighbors 𝑘, the problem
is to build a model that allows distance computation between the feature vectors in training and inference sets at the
inference stage.

8.7. Algorithms 300

oneAPI Specification, Release 1.1-rev-1

Training method: brute-force

The training operation produces the model that stores all the feature vectors from the initial training set 𝑋 .

Training method: k-d tree

The training operation builds a 𝑘-𝑑 tree that partitions the training set 𝑋 (for more details, see k-d Tree).

Inference

Let 𝑋 ′ = {𝑥′1, . . . , 𝑥′𝑚} be the inference set of 𝑝-dimensional feature vectors. Given 𝑋 ′, the model produced at the
training stage and the number of nearest neighbors 𝑘, the problem is to predict the label 𝑦′𝑗 for each 𝑥′𝑗 , 1 ≤ 𝑗 ≤ 𝑚, by
performing the following steps:

1. Identify the set 𝑁(𝑥′𝑗) ⊆ 𝑋 of the 𝑘 feature vectors in the training set that are nearest to 𝑥′𝑗 with respect to the
Euclidean distance.

2. Estimate the conditional probability for the 𝑙-th class as the fraction of vectors in 𝑁(𝑥′𝑗) whose labels 𝑦𝑗 are
equal to 𝑙:

𝑃𝑗𝑙 =
1

|𝑁(𝑥′𝑗)|

⃒⃒⃒{︀
𝑥𝑟 ∈ 𝑁(𝑥′𝑗) : 𝑦𝑟 = 𝑙

}︀⃒⃒⃒
, 1 ≤ 𝑗 ≤ 𝑚, 0 ≤ 𝑙 < 𝑐. (8.1)

3. Predict the class that has the highest probability for the feature vector 𝑥′𝑗 :

𝑦′𝑗 = arg max
0≤𝑙<𝑐

𝑃𝑗𝑙, 1 ≤ 𝑗 ≤ 𝑚. (8.2)

Inference method: brute-force

Brute-force inference method determines the set 𝑁(𝑥′𝑗) of the nearest feature vectors by iterating over all the pairs
(𝑥′𝑗 , 𝑥𝑖) in the implementation defined order, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚. The final prediction is computed according to
the equations (8.1) and (8.2).

Inference method: k-d tree

K-d tree inference method traverses the 𝑘-𝑑 tree to find feature vectors associated with a leaf node that are closest to
𝑥′𝑗 , 1 ≤ 𝑗 ≤ 𝑚. The set �̃�(𝑥′𝑗) of the currently-known nearest 𝑘-th neighbors is progressively updated during tree
traversal. The search algorithm limits exploration of the nodes for which the distance between the 𝑥′𝑗 and respective
part of the feature space is not less than the distance between 𝑥′𝑗 and the most distant feature vector from �̃�(𝑥′𝑗). Once
tree traversal is finished, �̃�(𝑥′𝑗) ≡ 𝑁(𝑥′𝑗). The final prediction is computed according to the equations (8.1) and (8.2).

8.7. Algorithms 301

oneAPI Specification, Release 1.1-rev-1

Usage example

Training

knn::model<> run_training(const table& data,
const table& labels) {

const std::int64_t class_count = 10;
const std::int64_t neighbor_count = 5;
const auto knn_desc = knn::descriptor<float>{class_count, neighbor_count};

const auto result = train(knn_desc, data, labels);

return result.get_model();
}

Inference

table run_inference(const knn::model<>& model,
const table& new_data) {

const std::int64_t class_count = 10;
const std::int64_t neighbor_count = 5;
const auto knn_desc = knn::descriptor<float>{class_count, neighbor_count};

const auto result = infer(knn_desc, model, new_data);

print_table("labels", result.get_labels());
}

Programming Interface

All types and functions in this section shall be declared in the oneapi::dal::knn namespace and be available via
inclusion of the oneapi/dal/algo/knn.hpp header file.

Descriptor

template <typename Float = float,
typename Method = method::by_default,
typename Task = task::by_default>

class descriptor {
public:
explicit descriptor(std::int64_t class_count,

std::int64_t neighbor_count);

std::int64_t get_class_count() const;
descriptor& set_class_count(std::int64_t);

std::int64_t get_neighbor_count() const;
(continues on next page)

8.7. Algorithms 302

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

descriptor& set_neighbor_count(std::int64_t);
};

template<typename Float = float, typename Method = method::by_default, typename Task = task::by_default>
class descriptor

Template Parameters
• Float – The floating-point type that the algorithm uses for intermediate computations. Can

be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be
method::bruteforce or method::kd_tree.

• Task – Tag-type that specifies type of the problem to solve. Can be
task::classification.

Constructors
descriptor(std::int64_t class_count, std::int64_t neighbor_count)

Creates a new instance of the class with the given class_count and neighbor_count property values.

Properties
std::int64_t neighbor_count

The number of neighbors 𝑘.

Getter & Setter
std::int64_t get_neighbor_count() const

descriptor & set_neighbor_count(std::int64_t)

Invariants
neighbor_count > 0

std::int64_t class_count
The number of classes 𝑐.

Getter & Setter
std::int64_t get_class_count() const

descriptor & set_class_count(std::int64_t)

Invariants
class_count > 1

Method tags

namespace method {
struct bruteforce {};
struct kd_tree {};
using by_default = bruteforce;

} // namespace method

struct bruteforce
Tag-type that denotes brute-force computational method.

8.7. Algorithms 303

oneAPI Specification, Release 1.1-rev-1

struct kd_tree
Tag-type that denotes k-d tree computational method.

using by_default = bruteforce
Alias tag-type for brute-force computational method.

Task tags

namespace task {
struct classification {};
using by_default = classification;

} // namespace task

struct classification
Tag-type that parameterizes entities used for solving classification problem.

using by_default = classification
Alias tag-type for classification task.

Model

template <typename Task = task::by_default>
class model {
public:

model();
};

template<typename Task = task::by_default>
class model

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::classification.

Constructors
model()

Creates a new instance of the class with the default property values.

Training train(...)

Input

template <typename Task = task::by_default>
class train_input {
public:

train_input(const table& data = table{},
const table& labels = table{});

const table& get_data() const;
train_input& set_data(const table&);

(continues on next page)

8.7. Algorithms 304

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const table& get_labels() const;
train_input& set_labels(const table&);

};

template<typename Task = task::by_default>
class train_input

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::classification.

Constructors
train_input(const table &data = table{}, const table &labels = table{})

Creates a new instance of the class with the given data and labels property values.

Properties
const table &data

The training set 𝑋 . Default value: table{}.

Getter & Setter
const table & get_data() const

train_input & set_data(const table &)

const table &labels
Vector of labels 𝑦 for the training set 𝑋 . Default value: table{}.

Getter & Setter
const table & get_labels() const

train_input & set_labels(const table &)

Result

template <typename Task = task::by_default>
class train_result {
public:

train_result();

const model<Task>& get_model() const;
};

template<typename Task = task::by_default>
class train_result

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::classification.

Constructors
train_result()

Creates a new instance of the class with the default property values.

Public Methods
const model<Task> &get_model() const

The trained 𝑘-NN model.

8.7. Algorithms 305

oneAPI Specification, Release 1.1-rev-1

Operation

template <typename Float, typename Method, typename Task>
train_result<Task> train(const descriptor<Float, Method, Task>& desc,

const train_input<Task>& input);

template<typename Float, typename Method, typename Task>
train_result<Task> train(const descriptor<Float, Method, Task> &desc, const train_input<Task> &input)

Runs the training operation for 𝑘-NN classifier. For more details see oneapi::dal::train.

Template Parameters
• Float – The floating-point type that the algorithm uses for intermediate computations. Can

be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be
method::bruteforce or method::kd_tree.

• Task – Tag-type that specifies type of the problem to solve. Can be
task::classification.

Parameters
• desc – Descriptor of the algorithm.

• input – Input data for the training operation.

Preconditions
input.data.has_data == true

input.labels.has_data == true

input.data.row_count == input.labels.row_count

input.labels.column_count == 1

input.labels[i] >= 0

input.labels[i] < desc.class_count

Inference infer(...)

Input

template <typename Task = task::by_default>
class infer_input {
public:

infer_input(const model<Task>& m = model<Task>{},
const table& data = table{});

const model<Task>& get_model() const;
infer_input& set_model(const model&);

const table& get_data() const;
infer_input& set_data(const table&);

};

template<typename Task = task::by_default>
class infer_input

8.7. Algorithms 306

oneAPI Specification, Release 1.1-rev-1

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::classification.

Constructors
infer_input(const model<Task> &m = model<Task>{}, const table &data = table{})

Creates a new instance of the class with the given model and data property values.

Properties
const model<Task> &model

The trained 𝑘-NN model. Default value: model<Task>{}.

Getter & Setter
const model< Task > & get_model() const

infer_input & set_model(const model &)

const table &data
The dataset for inference 𝑋 ′. Default value: table{}.

Getter & Setter
const table & get_data() const

infer_input & set_data(const table &)

Result

template <typename Task = task::by_default>
class infer_result {
public:

infer_result();

const table& get_labels() const;
};

template<typename Task = task::by_default>
class infer_result

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::classification.

Constructors
infer_result()

Creates a new instance of the class with the default property values.

Public Methods
const table &get_labels() const

The predicted labels.

8.7. Algorithms 307

oneAPI Specification, Release 1.1-rev-1

Operation

template <typename Float, typename Method, typename Task>
infer_result<Task> infer(const descriptor<Float, Method, Task>& desc,

const infer_input<Task>& input);

template<typename Float, typename Method, typename Task>
infer_result<Task> infer(const descriptor<Float, Method, Task> &desc, const infer_input<Task> &input)

Runs the inference operation for 𝑘-NN classifier. For more details see oneapi::dal::infer.

Template Parameters
• Float – The floating-point type that the algorithm uses for intermediate computations. Can

be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be
method::bruteforce or method::kd_tree.

• Task – Tag-type that specifies type of the problem to solve. Can be
task::classification.

Parameters
• desc – Descriptor of the algorithm.

• input – Input data for the inference operation.

Preconditions
input.data.has_data == true

Postconditions
result.labels.row_count == input.data.row_count

result.labels.column_count == 1

result.labels[i] >= 0

result.labels[i] < desc.class_count

8.7.3 Decomposition

Principal Components Analysis (PCA)

Principal Component Analysis (PCA) is an algorithm for exploratory data analysis and dimensionality reduction. PCA
transforms a set of feature vectors of possibly correlated features to a new set of uncorrelated features, called principal
components. Principal components are the directions of the largest variance, that is, the directions where the data is
mostly spread out.

Operation Computational methods Programming Interface
Training Covariance SVD train(. . .) train_input train_result
Inference Covariance SVD infer(. . .) infer_input infer_result

8.7. Algorithms 308

oneAPI Specification, Release 1.1-rev-1

Mathematical formulation

Training

Given the training set 𝑋 = {𝑥1, . . . , 𝑥𝑛} of 𝑝-dimensional feature vectors and the number of principal components
𝑟, the problem is to compute 𝑟 principal directions (𝑝-dimensional eigenvectors [Lang87]) for the training set. The
eigenvectors can be grouped into the 𝑟 × 𝑝 matrix 𝑇 that contains one eigenvector in each row.

Training method: Covariance

This method uses eigenvalue decomposition of the covariance matrix to compute the principal components of the
datasets. The method relies on the following steps:

1. Computation of the covariance matrix

2. Computation of the eigenvectors and eigenvalues

3. Formation of the matrices storing the results

Covariance matrix computation shall be performed in the following way:

1. Compute the vector-column of sums 𝑠𝑖 =
∑︀𝑛

𝑗=1 𝑥𝑖,𝑗 , 1 ≤ 𝑖 ≤ 𝑝.

2. Compute the cross-product 𝑃 = 𝑋𝑇𝑋 − 𝑠𝑇 𝑠.

3. Compute the covariance matrix Σ = 1
𝑛−1𝑃 .

To compute eigenvalues 𝜆𝑖 and eigenvectors 𝜐𝑖, the implementer can choose an arbitrary method such as [Ping14].

The final step is to sort the set of pairs (𝜆𝑖, 𝜐𝑖) in the descending order by 𝜆𝑖 and form the resulting matrix 𝑇 =
(𝜐𝑖,1, · · · , 𝜐𝑖,𝑟), 1 ≤ 𝑖 ≤ 𝑝. Additionally, the means and variances of the initial dataset shall be returned.

Training method: SVD

This method uses singular value decomposition of the dataset to compute its principal components. The method relies
on the following steps:

1. Computation of the singular values and singular vectors

2. Formation of the matrices storing the results

To compute singular values 𝜆𝑖 and singular vectors 𝑢𝑖 and 𝑣𝑖, the implementer can choose an arbitrary method such as
[Demmel90].

The final step is to sort the set of pairs (𝜆𝑖, 𝑣𝑖) in the descending order by 𝜆𝑖 and form the resulting matrix 𝑇 =
(𝑣𝑖,1, · · · , 𝑣𝑖,𝑟), 1 ≤ 𝑖 ≤ 𝑝. Additionally, the means and variances of the initial dataset shall be returned.

Sign-flip technique

Eigenvectors computed by some eigenvalue solvers are not uniquely defined due to sign ambiguity. To get the deter-
ministic result, a sign-flip technique should be applied. One of the sign-flip techniques proposed in [Bro07] requires
the following modification of matrix 𝑇 :

𝑇𝑖 = 𝑇𝑖 · sgn(max
1≤𝑗≤𝑝

|𝑇𝑖𝑗 |), 1 ≤ 𝑖 ≤ 𝑟,

8.7. Algorithms 309

oneAPI Specification, Release 1.1-rev-1

where 𝑇𝑖 is 𝑖-th row, 𝑇𝑖𝑗 is the element in the 𝑖-th row and 𝑗-th column, sgn(·) is the signum function,

sgn(𝑥) =

⎧⎪⎨⎪⎩
−1, 𝑥 < 0,

0, 𝑥 = 0,

1, 𝑥 > 0.

Note: The sign-flip technique described above is an example. oneDAL spec does not require implementation of this
sign-flip technique. Implementer can choose an arbitrary technique that modifies the eigenvectors’ signs.

Inference

Given the inference set 𝑋 ′ = {𝑥′1, . . . , 𝑥′𝑚} of 𝑝-dimensional feature vectors and the 𝑟 × 𝑝 matrix 𝑇 produced at the
training stage, the problem is to transform 𝑋 ′ to the set 𝑋 ′′ = {𝑥′′1 , . . . , 𝑥′′𝑚}, where 𝑥′′𝑗 is an 𝑟-dimensional feature
vector, 1 ≤ 𝑗 ≤ 𝑚.

The feature vector 𝑥′′𝑗 is computed through applying linear transformation [Lang87] defined by the matrix 𝑇 to the
feature vector 𝑥′𝑗 ,

𝑥′′𝑗 = 𝑇𝑥′𝑗 , 1 ≤ 𝑗 ≤ 𝑚. (8.3)

Inference methods: Covariance and SVD

Covariance and SVD inference methods compute 𝑥′′𝑗 according to (8.3).

Usage example

Training

pca::model<> run_training(const table& data) {
const auto pca_desc = pca::descriptor<float>{}

.set_component_count(5)

.set_deterministic(true);

const auto result = train(pca_desc, data);

print_table("means", result.get_means());
print_table("variances", result.get_variances());
print_table("eigenvalues", result.get_eigenvalues());
print_table("eigenvectors", result.get_eigenvectors());

return result.get_model();
}

8.7. Algorithms 310

oneAPI Specification, Release 1.1-rev-1

Inference

table run_inference(const pca::model<>& model,
const table& new_data) {

const auto pca_desc = pca::descriptor<float>{}
.set_component_count(model.get_component_count());

const auto result = infer(pca_desc, model, new_data);

print_table("labels", result.get_transformed_data());
}

Programming Interface

All types and functions in this section shall be declared in the oneapi::dal::pca namespace and be available via
inclusion of the oneapi/dal/algo/pca.hpp header file.

Descriptor

template <typename Float = float,
typename Method = method::by_default,
typename Task = task::by_default>

class descriptor {
public:
explicit descriptor(std::int64_t component_count = 0);

int64_t get_component_count() const;
descriptor& set_component_count(int64_t);

bool get_deterministic() const;
descriptor& set_deterministic(bool);

};

template<typename Float = float, typename Method = method::by_default, typename Task = task::by_default>
class descriptor

Template Parameters
• Float – The floating-point type that the algorithm uses for intermediate computations. Can

be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be method::cov or
method::svd .

• Task – Tag-type that specifies type of the problem to solve. Can be task::dim_reduction.

Constructors
descriptor(std::int64_t component_count = 0)

Creates a new instance of the class with the given component_count property value.

Properties

8.7. Algorithms 311

oneAPI Specification, Release 1.1-rev-1

int64_t component_count
The number of principal components 𝑟. If it is zero, the algorithm computes the eigenvectors for all features,
𝑟 = 𝑝. Default value: 0.

Getter & Setter
int64_t get_component_count() const

descriptor & set_component_count(int64_t)

Invariants
component_count >= 0

bool deterministic
Specifies whether the algorithm applies the Sign-flip technique. If it is true, the directions of the eigenvectors
must be deterministic. Default value: true.

Getter & Setter
bool get_deterministic() const

descriptor & set_deterministic(bool)

Method tags

namespace method {
struct cov {};
struct svd {};
using by_default = cov;

} // namespace method

struct cov
Tag-type that denotes Covariance computational method.

struct svd
Tag-type that denotes SVD computational method.

using by_default = cov
Alias tag-type for Covariance computational method.

Task tags

namespace task {
struct dim_reduction {};
using by_default = dim_reduction;

} // namespace task

struct dim_reduction
Tag-type that parameterizes entities used for solving dimensionality reduction problem.

using by_default = dim_reduction
Alias tag-type for dimensionality reduction task.

8.7. Algorithms 312

oneAPI Specification, Release 1.1-rev-1

Model

template <typename Task = task::by_default>
class model {
public:

model();

const table& get_eigenvectors() const;

int64_t get_component_count() const;
};

template<typename Task = task::by_default>
class model

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::dim_reduction.

Constructors
model()

Creates a new instance of the class with the default property values.

Public Methods
const table &get_eigenvectors() const

An 𝑟 × 𝑝 table with the eigenvectors. Each row contains one eigenvector.

int64_t get_component_count() const
The number of components 𝑟 in the trained model.

Training train(...)

Input

template <typename Task = task::by_default>
class train_input {
public:

train_input(const table& data = table{});

const table& get_data() const;
train_input& set_data(const table&);

};

template<typename Task = task::by_default>
class train_input

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::dim_reduction.

Constructors
train_input(const table &data = table{})

Creates a new instance of the class with the given data property value.

Properties

8.7. Algorithms 313

oneAPI Specification, Release 1.1-rev-1

const table &data
An 𝑛× 𝑝 table with the training data, where each row stores one feature vector. Default value: table{}.

Getter & Setter
const table & get_data() const

train_input & set_data(const table &)

Result

template <typename Task = task::by_default>
class train_result {
public:

train_result();

const model<Task>& get_model() const;

const table& get_means() const;

const table& get_variances() const;

const table& get_eigenvalues() const;

const table& get_eigenvectors() const;
};

template<typename Task = task::by_default>
class train_result

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::dim_reduction.

Constructors
train_result()

Creates a new instance of the class with the default property values.

Public Methods
const model<Task> &get_model() const

The trained PCA model.

const table &get_means() const
A 1× 𝑟 table that contains the mean values for the first 𝑟 features.

const table &get_variances() const
A 1× 𝑟 table that contains the variances for the first 𝑟 features.

const table &get_eigenvalues() const
A 1× 𝑟 table that contains the eigenvalues for for the first 𝑟 features.

const table &get_eigenvectors() const
An 𝑟 × 𝑝 table with the eigenvectors. Each row contains one eigenvector.

8.7. Algorithms 314

oneAPI Specification, Release 1.1-rev-1

Operation

template <typename Float, typename Method, typename Task>
train_result<Task> train(const descriptor<Float, Method, Task>& desc,

const train_input<Task>& input);

template<typename Float, typename Method, typename Task>
train_result<Task> train(const descriptor<Float, Method, Task> &desc, const train_input<Task> &input)

Runs the training operation for PCA. For more details, see oneapi::dal::train.

Template Parameters
• Float – The floating-point type that the algorithm uses for intermediate computations. Can

be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be method::cov or
method::svd .

• Task – Tag-type that specifies type of the problem to solve. Can be task::dim_reduction.

Parameters
• desc – Descriptor of the algorithm.

• input – Input data for the training operation.

Preconditions
input.data.has_data == true

input.data.column_count >= desc.component_count

Postconditions
result.means.row_count == 1

result.means.column_count == desc.component_count

result.variances.row_count == 1

result.variances.column_count == desc.component_count

result.variances[i] >= 0.0

result.eigenvalues.row_count == 1

result.eigenvalues.column_count == desc.component_count

result.model.eigenvectors.row_count == 1

result.model.eigenvectors.column_count == desc.component_count

Inference infer(...)

Input

template <typename Task = task::by_default>
class infer_input {
public:

infer_input(const model<Task>& m = model<Task>{},
const table& data = table{});

const model<Task>& get_model() const;
(continues on next page)

8.7. Algorithms 315

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

infer_input& set_model(const model&);

const table& get_data() const;
infer_input& set_data(const table&);

};

template<typename Task = task::by_default>
class infer_input

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::dim_reduction.

Constructors
infer_input(const model<Task> &m = model<Task>{}, const table &data = table{})

Creates a new instance of the class with the given model and data property values.

Properties
const model<Task> &model

The trained PCA model. Default value: model<Task>{}.

Getter & Setter
const model< Task > & get_model() const

infer_input & set_model(const model &)

const table &data
The dataset for inference 𝑋 ′. Default value: table{}.

Getter & Setter
const table & get_data() const

infer_input & set_data(const table &)

Result

template <typename Task = task::by_default>
class infer_result {
public:

infer_result();

const table& get_transformed_data() const;
};

template<typename Task = task::by_default>
class infer_result

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::dim_reduction.

Constructors
infer_result()

Creates a new instance of the class with the default property values.

Public Methods

8.7. Algorithms 316

oneAPI Specification, Release 1.1-rev-1

const table &get_transformed_data() const
An 𝑛× 𝑟 table that contains data projected to the 𝑟 principal components.

Operation

template <typename Float, typename Method, typename Task>
infer_result<Task> infer(const descriptor<Float, Method, Task>& desc,

const infer_input<Task>& input);

template<typename Float, typename Method, typename Task>
infer_result<Task> infer(const descriptor<Float, Method, Task> &desc, const infer_input<Task> &input)

Runs the inference operation for PCA. For more details see oneapi::dal::infer.

Template Parameters
• Float – The floating-point type that the algorithm uses for intermediate computations. Can

be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be method::cov or
method::svd .

• Task – Tag-type that specifies type of the problem to solve. Can be task::dim_reduction.

Parameters
• desc – Descriptor of the algorithm.

• input – Input data for the inference operation.

Preconditions
input.data.has_data == true

input.model.eigenvectors.row_count == desc.component_count

input.model.eigenvectors.column_count == input.data.column_count

Postconditions
result.transformed_data.row_count == input.data.row_count

result.transformed_data.column_count == desc.component_count

8.8 Appendix

8.8.1 k-d Tree

𝑘-𝑑 tree is a space-partitioning binary tree [Bentley80], where

• Each non-leaf node induces the hyperplane that splits the feature space into two parts. To define the splitting
hyperplane explicitly, a non-leaf node stores the identifier of the feature (that defines axis in the feature space)
and a cut-point

• Each leaf node of the tree has an associated subset (a bucket) of elements of the training data set. Feature vectors
from a bucket belong to the region of the space defined by tree nodes on the path from the root node to the
respective leaf.

8.8. Appendix 317

oneAPI Specification, Release 1.1-rev-1

Related terms

A cut-point A feature value that corresponds to a non-leaf node of a 𝑘-𝑑 tree and defines the splitting hyperplane
orthogonal to the axis specified by the given feature.

8.9 Bibliography

For more information about algorithms implemented in oneAPI Data Analytics Library (oneDAL), refer to the following
publications:

8.9. Bibliography 318

CHAPTER

NINE

ONETBB

9.1 General Information

9.1.1 Introduction

[intro]
This document specifies requirements for implementations of oneAPI Threading Building Blocks (oneTBB).

oneTBB is a programming model for scalable parallel programming using standard ISO C++ code. A program uses
oneTBB to specify logical parallelism in algorithms, while a oneTBB implementation maps that parallelism onto
execution threads.

oneTBB employs generic programming via C++ templates, with most of its interfaces defined by requirements on types
and not specific types. Generic programming makes oneTBB flexible yet efficient through customizing APIs to specific
needs of an application.

Here is the list of specific requirements for oneTBB implementations: * An implementation should use the C++11
version of the standard and should not require newer versions except where explicitly specified; it also should not require
any non-standard language extensions. * An implementation can use platform-specific APIs if they are compatible with
the C++ execution and memory models. For example, a platform-specific implementation of threads can be used if
that implementation provides the same execution guarantees as C++ threads. * An implementation should support
execution on single-core and multi-core CPUs, including those that provide simultaneous multithreading capabilities.
* On CPU, an implementation should support nested parallelism to enable building larger parallel components from
smaller ones.

9.1.2 Notational Conventions

[notational_conventions]
The following conventions are used in this document.

319

oneAPI Specification, Release 1.1-rev-1

Convention Explanation Example
Italic Used for introducing new terms, de-

notation of terms, placeholders, or
titles of documents.

The filename consists of the base-
name and the extension. For more
information, refer to the TBB Devel-
oper Guide.

Monospace Indicates directory paths and file-
names, commands and command
line options, function names, meth-
ods, classes, data structures in body
text, source code.

oneapi/tbb.h
\alt\include
Use the okCreateObjs() function
to. . .
printf("hello, world\n");

Monospace italic Indicates source code placeholders. blocked_range<Type>
Monospace bold Emphasizes parts of source code. x = (h > 0 ? sizeof(m) :

0xF) + min;
[] Square brackets indicate that the

items enclosed in brackets are op-
tional.

Fa[c]
Indicates Fa or Fac.

{ | } Braces and vertical bars indicate the
choice of one item from a selection
of two or more items.

X{K | W | P}
Indicates XK, XW, or XP.

“[” “]” “{“” }” “|” Writing a metacharacter in quotation
marks negates the syntactical mean-
ing stated above; the character is
taken as a literal.

“[” X “]” [Y]
Denotes the letter X enclosed in
brackets, optionally followed by the
letter Y.

. . . The ellipsis indicates that the pre-
vious item can be repeated several
times.

filename . . .
Indicates that one or more filenames
can be specified.

,. . . The ellipsis preceded by a comma
indicates that the previous item can
be repeated several times, separated
by commas.

word ,. . .
Indicates that one or more words can
be specified. If more than one word
is specified, the words are comma-
separated.

Class members are summarized by informal class declarations that describe the class as it seems to clients, not how it
is actually implemented. For example, here is an informal declaration of class Foo:

class Foo {
public:

int x();
int y;
~Foo();

};

The actual implementation might look like:

namespace internal {
class FooBase {
protected:

int x();
};

class Foo_v3: protected FooBase {
private:

(continues on next page)

9.1. General Information 320

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

int internal_stuff;
public:

using FooBase::x;
int y;

};
}

typedef internal::Foo_v3 Foo;

The example shows two cases where the actual implementation departs from the informal declaration:

• Foo is actually a typedef to Foo_v3.

• Method x() is inherited from a protected base class.

• The destructor is an implicit method generated by the compiler.

The informal declarations are intended to show you what you need to know to use the class without the distraction of
irrelevant clutter particular to the implementation.

9.1.3 Identifiers

[identifiers]
This section describes the identifier conventions used by oneTBB.

Case

The identifier convention in the library follows the style of the ISO C++ standard library. Identifiers are written in
underscore_style, and concepts - in PascalCase.

Reserved Identifier Prefixes

The library reserves the __TBB prefix for internal identifiers and macros that should never be directly referenced by
your code.

9.1.4 Named Requirements

[named_requirements]
This section describes named requirements used in the oneTBB Specification.

A named requirement is a set of requirements on a type. The requirements may be syntactic or semantic. The
named_requirement term is similar to “Requirements on types and expressions” term which is defined by the ISO
C++ Standard (chapter “Library Introduction”) or “Named Requirements” section on the cppreference.com site.

For example, the named requirement of sortable could be defined as a set of requirements that enable an array to be
sorted. A type T would be sortable if:

• x < y returns a boolean value, and represents a total order on items of type T.

• swap(x,y) swaps items x and y

9.1. General Information 321

https://en.cppreference.com/w/cpp/named_req

oneAPI Specification, Release 1.1-rev-1

You can write a sorting template function in C++ that sorts an array of any type that is sortable.

Two approaches for defining named requirements are valid expressions and pseudo-signatures. The ISO C++ standard
follows the valid expressions approach, which shows what the usage pattern looks like for a requirement. It has the
drawback of relegating important details to notational conventions. This document uses pseudo-signatures because
they are concise and can be cut-and-pasted for an initial implementation.

For example, the table below shows pseudo-signatures for a sortable type T:

Sortable Requirements : Pseudo-Signature, Semantics
bool operator<(const T &x, const T &y)

Compare x and y.

void swap(T &x, T &y)
Swap x and y.

A real signature may differ from the pseudo-signature that it implements in ways where implicit conversions would
deal with the difference. For an example type U, the real signature that implements operator< in the table above
can be expressed as int operator<(U x, U y), because C++ permits implicit conversion from int to bool,
and implicit conversion from U to (const U&). Similarly, the real signature bool operator<(U& x, U& y) is
acceptable because C++ permits implicit addition of a const qualifier to a reference type.

Algorithms

Range

[req.range]
A Range can be recursively subdivided into two parts. Subdivision is done by calling splitting constructor of a Range.
There are two types of splitting constructors:

• Basic splitting constructor. In this constructor, it is recommended that the division is done into nearly equal parts,
but it is not required. Splitting as evenly as possible typically yields the best parallelism.

• Proportional splitting constructor. This constructor is optional and can be omitted. When using this type of
constructor, for the best results, follow the given proportion with rounding to the nearest integer if necessary.

Ideally, a range is recursively splittable until the parts represent portions of work that are more efficient to execute
serially rather than split further. The amount of work represented by Range typically depends on higher level context,
therefore a typical type that models a Range should provide a way to control the degree of splitting. For example, the
template class blocked_range has the grainsize parameter that specifies the biggest range considered indivisible.

If the set of values has a sense of direction, by convention the splitting constructor should construct the second part of
the range and update its argument to be the first part of the range. This causes the parallel_for, parallel_reduce, and
parallel_scan algorithms, when running sequentially, to work across a range in the increasing order, which is typical
of an ordinary sequential loop.

Because a Range declares splitting and copy constructors, the default constructor for it is not generated automatically.
You need to explicitly define the default constructor or add any other constructor to create an instance of a Range type
in the program.

A type R meets Range if it satisfies the following requirements:

Range Requirements: Pseudo-Signature, Semantics

9.1. General Information 322

oneAPI Specification, Release 1.1-rev-1

R::R(const R&)
Copy constructor.

R::~R()
Destructor.

bool R::empty() const
True if range is empty.

bool R::is_divisible() const
True if range can be partitioned into two subranges.

R::R(R &r, split)
Basic splitting constructor. Splits r into two subranges.

R::R(R &r, proportional_split proportion)
Optional. Proportional splitting constructor. Splits r into two subranges in accordance with proportion.

See also:

• blocked_range class

• blocked_range2d class

• blocked_range3d class

• parallel_reduce algorithm

• parallel_for algorithm

• split class

Splittable

[req.splittable]
A type is splittable if it has a splitting constructor that allows an instance to be split into two pieces. The splitting
constructor takes as arguments a reference to the original object, and a dummy argument of type split, which is
defined by the library. The dummy argument distinguishes the splitting constructor from a copy constructor. After the
constructor runs, x and the newly constructed object should represent the two pieces of the original x. The library uses
splitting constructors in two contexts:

• Partitioning a range into two subranges that can be processed concurrently.

• Forking a body (function object) into two bodies that can run concurrently.

Types that meet the Range requirements may additionally define an optional proportional splitting constructor, distin-
guished by an argument of type proportional_split Class.

A type X satisfies Splittable if it meets the following requirements:

Splittable Requirements: Pseudo-Signature, Semantics
X::X(X &x, split)

Split x into x and newly constructed object.

See also:

• Range requirements

9.1. General Information 323

oneAPI Specification, Release 1.1-rev-1

ParallelForBody

[req.parallel_for_body]
A type Body satisfies ParallelForBody if it meets the following requirements:

ParallelForBody Requirements: Pseudo-Signature, Semantics
Body::Body(const Body&)

Copy constructor.

Body::~Body()
Destructor.

void Body::operator()(Range &range) const
Applies body to a range. Range type must meet the Range requirements.

See also:

• parallel_for algorithm

ParallelForFunc

[req.parallel_for_func]
A type F satisfies ParallelForFunc if it meets the following requirements:

ParallelForFunc Requirements: Pseudo-Signature, Semantics
void F::operator()(Index index) const

Applies the function to the index. Index type must be the same as corresponding template parameter of the
parallel_for algorithm.

See also:

• parallel_for algorithm

• ParallelForIndex named requirement

ParallelForIndex

[req.parallel_for_index]
A type Index satisfies ParallelForIndex if it meets the following requirements:

ParallelForIndex Requirements: Pseudo-Signature, Semantics
Index::Index(int)

Constructor from an int value.

Index::Index(const Index&)
Copy constructor.

Index::~Index()
Destructor.

9.1. General Information 324

oneAPI Specification, Release 1.1-rev-1

void operator=(const Index&)
Assignment.

Note: The return type void in the pseudo-signature denotes that operator= is not required to return a value.
The actual operator= can return a value, which will be ignored.

bool operator<(const Index &i, const Index &j)
Value of i precedes value of j.

D operator-(const Index &i, const Index &j)
Number of values in range [i,j).

Index operator+(const Index &i, D k)
k-th value after i.

D is the type of the expression j-i. It can be any integral type that is convertible to size_t. Examples that model the
Index requirements are integral types and pointers.

See also:

• parallel_for algorithm

ParallelReduceBody

[req.parallel_reduce_body]
A type Body satisfies ParallelReduceBody if it meets the following requirements:

ParallelReduceBody Requirements: Pseudo-Signature, Semantics
Body::Body(Body&, split)

Splitting constructor. Must be able to run concurrently with operator() and method join.

Body::~Body()
Destructor.

void Body::operator()(const Range &range)
Accumulates result for a subrange. Range type must meet the Range requirements.

void Body::join(Body &rhs)
Joins results. The result in rhs should be merged into the result of this.

See also:

• parallel_reduce algorithm

• parallel_determinstic_reduce algorithm

9.1. General Information 325

oneAPI Specification, Release 1.1-rev-1

ParallelReduceFunc

[req.parallel_reduce_body]
A type Func satisfies ParallelReduceFunc if it meets the following requirements:

ParallelReduceFunc Requirements: Pseudo-Signature, Semantics
Value Func::operator()(const Range &range, const Value &x) const

Accumulates result for a subrange, starting with initial value x. Range type must meet the Range requirements.
Value type must be the same as a corresponding template parameter for the parallel_reduce algorithm algorithm.

See also:

• parallel_reduce algorithm

• parallel_determinstic_reduce algorithm

ParallelReduceReduction

[req.parallel_reduce_reduction]
A type Reduction satisfies ParallelReduceReduction if it meets the following requirements:

ParallelReduceReduction Requirements: Pseudo-Signature, Semantics
Value Reduction::operator()(const Value &x, const Value &y) const

Combines results x and y. Value type must be the same as a corresponding template parameter for the paral-
lel_reduce algorithm algorithm.

See also:

• parallel_reduce algorithm

• parallel_determinstic_reduce algorithm

ParallelForEachBody

[req.parallel_for_each_body]
A type Body satisfies ParallelForBody if it meets the Function Objects requirements described in the [function.objects]
section of the ISO C++ standard. It should also meet one of the following requirements:

ParallelForEachBody Requirements: Pseudo-Signature, Semantics
Body::operator()(ItemType item) const

Process the received item.

Body::operator()(ItemType item, oneapi::tbb::feeder<ItemType> &feeder) const
Process the received item. May invoke the feeder.add(T) function to spawn additional items.

Note: ItemTypemay be optionally passed to Body::operator() by reference. const and volatile type qualifiers
are also applicable.

9.1. General Information 326

oneAPI Specification, Release 1.1-rev-1

Terms

• iterator determines the type of the iterator passed into the parallel_for_each algorithm, which
is decltype(std::begin(c)) for the overloads that accept the Container template argument or
InputIterator.

• value_type - the type std::iterator_traits<iterator>::value_type.

• reference - the type std::iterator_traits<iterator>::reference.

oneapi::tbb::parallel_for_each requires the Body::operator() call with an object of the reference type to
be well-formed if the iterator meets the Forward iterator requirements described in the [forward.iterators] section
of the ISO C++ Standard.

oneapi::tbb::parallel_for_each algorithm requires the Body::operator() call with an object of type const
value_type& or value_type&& to be well-formed if following requirements are met:

• the iterator meets the Input iterator requirements described in the [input.iterators] section of the ISO C++ Stan-
dard

• the iterator does not meet the Forward iterator requirements described in the [forward.iterators] section of the
ISO C++ Standard

Caution: If the Body only takes non-const lvalue reference to the value_type, the requirements described above
are violated, and the program can be ill-formed.

Additional elements submitted into oneapi::tbb::parallel_for_each through the feeder::add are passed to
the Body as rvalues. In this case, the corresponding execution of the Body is required to be well-formed.

See also:

• parallel_for_each algorithm

• feeder class

ContainerBasedSequence

[req.container_based_sequence]
A type C satisfies ContainerBasedSequence if it meets the following requirements:

ContainerBasedSequence Requirements: Pseudo-Signature, Semantics

Note: In this page c is an object of type (possibly const) C.

Templates that use the named requirement can impose stricter requirements on the iterator concept.

std::begin(c)
Returns an input iterator to the beginning of the sequence represented by c.

std::end(c)
Returns an input iterator one past the end of the sequence represented by c.

See also:

• parallel_for_each algorithm

9.1. General Information 327

oneAPI Specification, Release 1.1-rev-1

• parallel_sort algorithm

ParallelScanBody

[req.parallel_scan]
A type Body satisfies ParallelScanBody if it meets the following requirements:

ParallelScanBody Requirements: Pseudo-Signature, Semantics
void Body::operator()(const Range &r, pre_scan_tag)

Accumulates summary for range r. For example, when computing a running sum of an array, the summary for
a range r is the sum of the array elements corresponding to r.

void Body::operator()(const Range &r, final_scan_tag)
Computes scan result and summary for range r.

Body::Body(Body &b, split)
Splits b so that this and b can accumulate summaries separately.

void Body::reverse_join(Body &b)
Merges the summary accumulated by b into the summary accumulated by this, where this was created earlier
from b by splitting constructor.

void Body::assign(Body &b)
Assigns summary of b to this.

See also:

• parallel_scan algorithm

ParallelScanCombine

[req.parallel_scan_combine]
A type Combine satisfies ParallelScanCombine if it meets the following requirements:

ParallelScanCombine Requirements: Pseudo-Signature, Semantics
Value Combine::operator()(const Value &left, const Value &right) const

Combines summaries left and right and returns the result Value type must be the same as a corresponding
template parameter for the parallel_scan algorithm.

See also:

• parallel_scan algorithm

9.1. General Information 328

oneAPI Specification, Release 1.1-rev-1

ParallelScanFunc

[req.parallel_scan_func]
A type Scan satisfies ParallelScanFunc if it meets the following requirements:

ParallelScanFunc Requirements: Pseudo-Signature, Semantics
Value Scan::operator()(const Range &r, const Value &sum, bool is_final) const

Starting with sum, computes the summary and, for is_final == true, the scan result for range r. Re-
turns the computed summary. Value type must be the same as a corresponding template parameter for the
parallel_scan algorithm.

See also:

• parallel_scan algorithm

BlockedRangeValue

[req.blocked_range_value]
A type Value satisfies BlockedRangeValue if it meets the following requirements:

BlockedRangeValue Requirements: Pseudo-Signature, Semantics
Value::Value(const Value&)

Copy constructor.

Value::~Value()
Destructor.

void operator=(const Value&)
Assignment.

Note: The return type void in the pseudo-signature denotes that operator= is not required to return a value.
The actual operator= can return a value, which will be ignored by blocked_range .

bool operator<(const Value &i, const Value &j)
Value i precedes value j.

D operator-(const Value &i, const Value &j)
Number of values in range [i,j).

Value operator+(const Value &i, D k)
k-th value after i.

D is the type of the expression j-i. It can be any integral type that is convertible to size_t. Examples that model the
Value requirements are integral types, pointers, and STL random-access iterators whose difference can be implicitly
converted to a size_t.

See also:

• blocked_range class

• blocked_range2d class

• blocked_range3d class

9.1. General Information 329

oneAPI Specification, Release 1.1-rev-1

• parallel_reduce algorithm

• parallel_for algorithm

FilterBody

[req.filter_body]
A type Body should meet one of the following requirements depending on the filter type:

MiddleFilterBody Requirements: Pseudo-Signature, Semantics
OutputType Body::operator()(InputType item) const

Processes the received item and then returns it.

FirstFilterBody Requirements: Pseudo-Signature, Semantics
OutputType Body::operator()(oneapi::tbb::flow_control fc) const

Returns the next item from an input stream. Calls fc.stop() at the end of an input stream.

LastFilterBody Requirements: Pseudo-Signature, Semantics
void Body::operator()(InputType item) const

Processes the received item.

SingleFilterBody Requirements: Pseudo-Signature, Semantics
void Body::operator()(oneapi::tbb::flow_control fc) const

Processes an element from an input stream. Calls fc.stop() at the end of an input stream.

See also:

• filter class

Mutexes

Mutex

[req.mutex]
The mutexes and locks have relatively spartan interfaces that are designed for high performance. The interfaces enforce
the scoped locking pattern, which is widely used in C++ libraries because:

• Does not require to remember to release the lock

• Releases the lock if an exception is thrown out of the mutual exclusion region protected by the lock

There are two parts of the pattern: a mutex object, for which construction of a lock object acquires a lock on the mutex
and destruction of the lock object releases the lock. Here is an example:

9.1. General Information 330

oneAPI Specification, Release 1.1-rev-1

{
// Construction of myLock acquires lock on myMutex
M::scoped_lock myLock(myMutex);
// ... actions to be performed while holding the lock ...
// Destruction of myLock releases lock on myMutex

}

If the actions throw an exception, the lock is automatically released as the block is exited.

class M {
// Implementation specifics
// ...

// Represents acquisition of a mutex
class scoped_lock {
public:

constexpr scoped_lock() noexcept;
scoped_lock(M& m);
~scoped_lock();

scoped_lock(const scoped_lock&) = delete;
scoped_lock& operator=(const scoped_lock&) = delete;

void acquire(M& m);
bool try_acquire(M& m);
void release();

};
};

A type M satisfies the Mutex requirements if it meets the following conditions:

type M::scoped_lock
Corresponding scoped lock type.

M::scoped_lock()
Constructs scoped_lock without acquiring mutex.

M::scoped_lock(M&)
Constructs scoped_lock and acquire the lock on a provided mutex.

M::~scoped_lock()
Releases a lock (if acquired).

void M::scoped_lock::acquire(M&)
Acquires a lock on a provided mutex.

bool M::scoped_lock::try_acquire(M&)
Attempts to acquire a lock on a provided mutex. Returns true if the lock is acquired, false otherwise.

void M::scoped_lock::release()
Releases an acquired lock.

Also, the Mutex type requires a set of traits to be defined:

static constexpr bool M::is_rw_mutex
True if mutex is a reader-writer mutex; false, otherwise.

static constexpr bool M::is_recursive_mutex
True if mutex is a recursive mutex; false, otherwise.

9.1. General Information 331

oneAPI Specification, Release 1.1-rev-1

static constexpr bool M::is_fair_mutex
True if mutex is fair; false, otherwise.

A mutex type and an M::scoped_lock type are neither copyable nor movable.

The following table summarizes the library classes that model the Mutex requirement and provided guarantees.

Table 1: Provided guarantees for Mutexes that model the Mutex require-
ment

. Fair Reentrant
mutex No No
spin_mutex No No
speculative_spin_mutex No No
queuing_mutex Yes No
null_mutex Yes Yes

Note: Implementation is allowed to have an opposite guarantees (positive) in case of negative statements from the
table above.

See the oneAPI Threading Building Blocks Developer Guide for description of the mutex properties and the rationale
for null mutexes.

See also:

• mutex

• spin_mutex

• speculative_spin_mutex

• queuing_mutex

• null_mutex

ReaderWriterMutex

[req.rw_mutex]
The ReaderWriterMutex requirement extends the Mutex Requirement to include the notion of reader-writer locks. It
introduces a boolean parameter write that specifies whether a writer lock (write = true) or reader lock (write =
false) is being requested. Multiple reader locks can be held simultaneously on a ReaderWriterMutex if it does not
have a writer lock on it. A writer lock on a ReaderWriterMutex excludes all other threads from holding a lock on the
mutex at the same time.

class RWM {
// Implementation specifics
// ...

// Represents acquisition of a mutex.
class scoped_lock {
public:

constexpr scoped_lock() noexcept;
scoped_lock(RWM& m, bool write = true);
~scoped_lock();

(continues on next page)

9.1. General Information 332

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

scoped_lock(const scoped_lock&) = delete;
scoped_lock& operator=(const scoped_lock&) = delete;

void acquire(RWM& m, bool write = true);
bool try_acquire(RWM& m, bool write = true);
void release();

bool upgrade_to_writer();
bool downgrade_to_reader();

};
};

A type RWM satisfies ReaderWriterMutex if it meets the following requirements. They form a superset of the Mutex
requirements.

type RWM::scoped_lock
Corresponding scoped-lock type.

RWM::scoped_lock()
Constructs scoped_lock without acquiring any mutex.

RWM::scoped_lock(RWM&, bool write = true)
Constructs scoped_lock and acquires a lock on a given mutex. The lock is a writer lock if write is true; a
reader lock otherwise.

RWM::~scoped_lock()
Releases a lock (if acquired).

void RWM::scoped_lock::acquire(RWM&, bool write = true)
Acquires a lock on a given mutex. The lock is a writer lock if write is true; it is a reader lock, otherwise.

bool RWM::scoped_lock::try_acquire(RWM&, bool write = true)
Attempts to acquire a lock on a given mutex. The lock is a writer lock if write is true; it is a reader lock,
otherwise. Returns true if the lock is acquired, false otherwise.

RWM::scoped_lock::release()
Releases a lock. The effect is undefined if no lock is held.

bool RWM::scoped_lock::upgrade_to_writer()
Changes a reader lock to a writer lock. Returns false if lock was released and reacquired. Otherwise, returns
true, including the case when the lock was already a writer lock.

bool RWM::scoped_lock::downgrade_to_reader()
Changes a writer lock to a reader lock. Returns false if lock was released and reacquired. Otherwise, returns
true, including the case when the lock was already a reader lock.

Like the Mutex requirement, ReaderWriterMutex also requires a set of traits to be defined.

static constexpr bool M::is_rw_mutex
True if mutex is a reader-writer mutex; false, otherwise.

static constexpr bool M::is_recursive_mutex
True if mutex is a recursive mutex; false, otherwise.

static constexpr bool M::is_fair_mutex
True if mutex is fair; false, otherwise.

The following table summarizes the library classes that model the ReaderWriterMutex requirement and provided guar-
antees.

9.1. General Information 333

oneAPI Specification, Release 1.1-rev-1

Table 2: Provided guarantees for Mutexes that model the ReaderWriter-
Mutex requirement

. Fair Reentrant
rw_mutex No No
spin_rw_mutex No No
speculative_spin_rw_mutex No No
queuing_rw_mutex Yes No
null_rw_mutex Yes Yes

Note: Implementation is allowed to have an opposite guarantees (positive) in case of negative statements from the
table above.

Note: For all currently provided reader-writer mutexes,

• is_recursive_mutex is false

• scoped_lock::downgrade_to_reader always returns true

However, other implementations of the ReaderWriterMutex requirement are not required to do the same.

See also:

• rw_mutex

• spin_rw_mutex

• speculative_spin_rw_mutex

• queuing_rw_mutex

• null_rw_mutex

Containers

HashCompare

[req.hash_compare]
HashCompare is an object which is used to calculate hash code for an object and compare two objects for equality.

The type H satisfies HashCompare if it meets the following requirements:

HashCompare Requirements: Pseudo-Signature, Semantics
H::H(const H&)

Copy constructor.

H::~H()
Destructor.

std::size_t H::hash(const KeyType &k) const
Calculates the hash for a provided key.

ReturnType H::equal(const KeyType &k1, const KeyType &k2) const
Requirements:

9.1. General Information 334

oneAPI Specification, Release 1.1-rev-1

• The type ReturnType should be implicitly convertible to bool.

Compares k1 and k2 for equality.

If this function returns true, H::hash(k1) should be equal to H::hash(k2).

ContainerRange

[req.container_range]
ContainerRange is a range that represents a concurrent container or a part of the container.

The ContainerRange object can be used to traverse the container in parallel algorithms like parallel_for.

The type CR satisfies the ContainerRange requirements if:

• The type CR meets the requirements of Range requirements.

• The type CR provides the following member types and functions:

type CR::value_type
The type of the item in the range.

type CR::reference
Reference type to the item in the range.

type CR::const_reference
Constant reference type to the item in the range.

type CR::iterator
Iterator type for range traversal.

type CR::size_type
Unsigned integer type for obtaining grain size.

type CR::difference_type
The type of the difference between two iterators.

iterator CR::begin()
Returns an iterator to the beginning of the range.

iterator CR::end()
Returns an iterator to the position that follows the last element in the range.

size_type CR::grainsize() const
Returns the range grain size.

Task scheduler

SuspendFunc

[req.suspend_func]
A type Func satisfies SuspendFunc if it meets the following requirements:

SuspendFunc Requirements: Pseudo-Signature, Semantics
Func::Func(const Func&)

Copy constructor.

9.1. General Information 335

oneAPI Specification, Release 1.1-rev-1

void Func::operator()(oneapi::tbb::task::suspend_point)
Body that accepts the current task execution point to resume later.

See also:

• resumable tasks

Flow Graph

AsyncNodeBody

[req.async_node_body]
A type Body satisfies AsyncNodeBody if it meets the following requirements:

AsyncNodeBody Requirements: Pseudo-Signature, Semantics
Body::Body(const Body&)

Copy constructor.

Body::~Body()
Destructor.

void Body::operator()(const Input &v, GatewayType &gateway)
Requirements:

• The Input type must be the same as the Input template type argument of the async_node instance in
which the Body object is passed during construction.

• The GatewayType type must be the same as the gateway_type member type of the async_node instance
in which the Body object is passed during construction.

The input value v is submitted by the flow graph to an external activity. The gateway interface allows the external
activity to communicate with the enclosing flow graph.

ContinueNodeBody

[req.continue_node_body]
A type Body satisfies ContinueNodeBody if it meets the following requirements:

ContinueNodeBody Requirements: Pseudo-Signature, Semantics
Body::Body(const Body&)

Copy constructor.

Body::~Body()
Destructor.

Output Body::operator()(const continue_msg &v)
Requirements: The type Output must be the same as the template type argument Output of the
continue_node instance in which the Body object is passed during construction.

Performs operation and returns a value of type Output.

See also:

• continue_node class

9.1. General Information 336

oneAPI Specification, Release 1.1-rev-1

• continue_msg class

GatewayType

[req.gateway_type]
A type T satisfies GatewayType if it meets the following requirements:

GatewayType Requirements: Pseudo-Signature, Semantics
bool T::try_put(const Output &v)

Requirements: The type Output must be the same as the template type argument Output of the corresponding
async_node instance.

Broadcasts v to all successors of the corresponding async_node instance.

void T::reserve_wait()
Notifies a flow graph that work has been submitted to an external activity.

void T::release_wait()
Notifies a flow graph that work submitted to an external activity has completed.

FunctionNodeBody

[req.function_node_body]
A type Body satisfies FunctionNodeBody if it meets the following requirements:

FunctionNodeBody Requirements: Pseudo-Signature, Semantics
Body::Body(const Body&)

Copy constructor.

Body::~Body()
Destructor.

Output Body::operator()(const Input &v)
Requirements: The Input and Output types must be the same as the Input and Output template type argu-
ments of the fucntion_node instance in which the Body object is passed during construction.

Performs operation on v and returns a value of type Output.

JoinNodeFunctionObject

[req.join_node_function_object]
A type Func satisfies JoinNodeFunctionObject if it meets the following requirements:

JoinNodeFunctionObject Requirements: Pseudo-Signature, Semantics
Func::Func(const Func&)

Copy constructor.

9.1. General Information 337

oneAPI Specification, Release 1.1-rev-1

Func::~Func()
Destructor.

Key Func::operator()(const Input &v)
Requirements: The Key and Input types must be the same as the K and the corresponding element of the
OutputTuple template arguments of the join_node instance to which the Func object is passed during con-
struction.

Returns key to be used for hashing input messages.

InputNodeBody

[req.input_node_body]
A type Body satisfies InputNodeBody if it meets the following requirements:

InputNodeBody Requirements: Pseudo-Signature, Semantics
Body::Body(const Body&)

Copy constructor.

Body::~Body()
Destructor.

Output Body::operator()(oneapi::tbb::flow_control &fc)
Requirements: The type Output must be the same as the template type argument Output of the input_node
instance in which the Body object is passed during construction.

Applies body to generate the next item. Call fc.stop() when new element cannot be generated. Because
Output needs to be returned, Body may return any valid value of Output, to be immediately discarded.

MultifunctionNodeBody

[req.multifunction_node_body]
A type Body satisfies MultifunctionNodeBody if it meets the following requirements:

MultifunctionNodeBody Requirements: Pseudo-Signature, Semantics
Body::Body(const Body&)

Copy constructor.

Body::~Body()
Destructor.

void Body::operator()(const Input &v, OutputPortsType &p)
Requirements:

• The Input type must be the same as the Input template type argument of the multifunction_node
instance in which the Body object is passed during construction.

• The OutputPortsType type must be the same as the output_ports_type member type of the
multifunction_node instance in which the Body object is passed during construction.

Performs operation on v. May call try_put() on zero or more of the output ports. May call try_put() on any
output port multiple times.

9.1. General Information 338

oneAPI Specification, Release 1.1-rev-1

Sequencer

[req.sequencer]
A type S satisfies Sequencer if it meets the following requirements:

Sequencer Requirements: Pseudo-Signature, Semantics
S::S(const S&)

Copy constructor.

S::~S()
Destructor.

size_t S::operator()(const T &v)
Requirements: The type T must be the same as the template type argument T of the sequencer_node instance
in which the S object is passed during construction.

Returns the sequence number for the provided message v.

See also:

• sequencer_node class

9.1.5 Thread Safety

[thread_safety]
Unless otherwise stated, the thread safety rules for the library are as follows:

• Two threads can invoke a method or function concurrently on different objects, but not the same object.

• It is unsafe for two threads to invoke concurrently methods or functions on the same object.

Departures from this convention are noted in the classes descriptions. For example, the concurrent containers are more
liberal. By their nature, they do permit some concurrent operations on the same container object.

9.2 oneTBB Interfaces

9.2.1 Configuration

[configuration]
This section describes the most general features of oneAPI Threading Building Blocks (oneTBB) such as namespaces,
versioning, and macros.

9.2. oneTBB Interfaces 339

oneAPI Specification, Release 1.1-rev-1

Namespaces

[configuration.namespaces]
This section describes the oneTBB namespace conventions.

tbb Namespace

The tbb namespace contains public identifiers defined by the library that you can reference in your program.

tbb::flow Namespace

The tbb::flow namespace contains public identifiers defined by the library that you can reference in your program
related to the flow graph feature. See Flow Graph for more information.

oneapi::tbb Namespace

The tbb namespace is a part of the top level oneapi namespace. Therefore, all API from the tbb namespace (incl.
the tbb::flow namespace) are available in the oneapi::tbb namespace. The oneapi::tbb namespace can be
considered as an alias for the tbb namespace:

namespace oneapi { namespace tbb = ::tbb; }

Version Information

[configuration.version_information]
oneTBB has macros, an environment variable, and a function that reveal version and runtime information.

// Defined in header <oneapi/tbb/version.h>

#define TBB_VERSION_MAJOR /*implementation-defined*/
#define TBB_VERSION_MINOR /*implementation-defined*/
#define TBB_VERSION_STRING /*implementation-defined*/

#define TBB_INTERFACE_VERSION_MAJOR /*implementation-defined*/
#define TBB_INTERFACE_VERSION_MINOR /*implementation-defined*/
#define TBB_INTERFACE_VERSION /*implementation-defined*/

const char* TBB_runtime_version();
int TBB_runtime_interface_version();

Version Macros
oneTBB defines macros related to versioning, as described below.

• TBB_VERSION_MAJOR macro defined to integral value that represents major library version.

• TBB_VERSION_MINOR macro defined to integral value that represents minor library version.

• TBB_VERSION_STRING macro defined to the string representation of the full library version.

9.2. oneTBB Interfaces 340

oneAPI Specification, Release 1.1-rev-1

• TBB_INTERFACE_VERSION macro defined to current interface version. The value is a decimal numeral of the
form xyyz where x is the major interface version number and y is the minor interface version number. This
macro is increased in each release.

• TBB_INTERFACE_VERSION_MAJOR macro defined to TBB_INTERFACE_VERSION/1000, which is the major in-
terface version number.

• TBB_INTERFACE_VERSION_MINOR macro defined to TBB_INTERFACE_VERSION%1000/10, which is the minor
interface version number.

TBB_runtime_interface_version Function

Function that returns the interface version of the oneTBB library that was loaded at runtime.

The value returned by TBB_runtime_interface_version() may differ from the value of
TBB_INTERFACE_VERSION obtained at compile time. This can be used to identify whether an application was
compiled against a compatible version of the oneTBB headers.

In general, the run-time value TBB_runtime_interface_version() must be greater than or equal to the compile-
time value of TBB_INTERFACE_VERSION. Otherwise, the application may fail to resolve all symbols at run time.

TBB_runtime_version Function

Function that returns the version string of the oneTBB library that was loaded at runtime.

The value returned by TBB_runtime_version() may differ from the value of TBB_VERSION_STRING obtained at
compile time.

TBB_VERSION Environment Variable

Set the environment variable TBB_VERSION to 1 to cause the library to print information on stderr. Each line is of
the form “TBB: tag value”, where tag and value provide additional library information below.

Caution: This output is implementation specific and may change at any time.

Enabling Debugging Features

[configuration.debug_features]
The following macros control certain debugging features. In general, it is useful to compile with these features on
for development code, and off for production code, because the features may decrease performance. The table below
summarizes the macros and their default values. A value of 1 enables the corresponding feature; a value of 0 disables
the feature.

9.2. oneTBB Interfaces 341

oneAPI Specification, Release 1.1-rev-1

Table 3: Debugging Macros
Macro Default Value Feature
TBB_USE_DEBUG

• Windows* OS: 1 if _DEBUG is
defined, 0, otherwise.

• All other systems: 0.

Default value for all other macros in
this table.

TBB_USE_ASSERT TBB_USE_DEBUG Enable internal assertion checking.
Can significantly slow down perfor-
mance.

TBB_USE_PROFILING_TOOLS TBB_USE_DEBUG Enable full support for analysis
tools.

TBB_USE_ASSERT Macro

The TBB_USE_ASSERT macro controls whether error checking is enabled in the header files. Define TBB_USE_ASSERT
as 1 to enable error checking.

If an error is detected, the library prints an error message on stderr and calls the standard C routine abort. To stop a
program when internal error checking detects a failure, place a breakpoint on oneapi::tbb::assertion_failure.

TBB_USE_PROFILING_TOOLS Macro

The TBB_USE_PROFILING_TOOLS macro controls support for Intel® Inspector XE, Intel® VTune™ Amplifier XE and
Intel® Advisor.

Define TBB_USE_PROFILING_TOOLS as 1 to enable full support for these tools. Leave TBB_USE_PROFILING_TOOLS
undefined or equal to zero to enable top performance in release builds, at the expense of turning off some support for
tools.

Feature Macros

[configuration.feature_macros]
Macros in this section control optional features of the library.

TBB_USE_EXCEPTIONS macro

The TBB_USE_EXCEPTIONSmacro controls whether the library headers use exception-handling constructs such as try,
catch, and throw. The headers do not use these constructs when TBB_USE_EXCEPTIONS=0.

For the Microsoft Windows*, Linux*, and macOS* operating systems, the default value is 1 if exception handling
constructs are enabled in the compiler, and 0, otherwise.

Caution: The runtime library may still throw an exception when TBB_USE_EXCEPTIONS=0.

9.2. oneTBB Interfaces 342

oneAPI Specification, Release 1.1-rev-1

TBB_USE_GLIBCXX_VERSION macro

The TBB_USE_GLIBCXX_VERSION macro can be used to specify the proper version of GNU libstdc++ if the detection
fails. Define the value of the macro equal to Major*10000 + Minor*100 + Patch, where Major.Minor.Patch is
the actual GCC/libstdc++ version (if unknown, it can be obtained with the 'gcc -dumpversion' command). For
example, if you use libstdc++ from GCC 4.9.2, define TBB_USE_GLIBCXX_VERSION=40902.

9.2.2 Algorithms

[algorithms]
oneAPI Threading Building Blocks provides a set of generic parallel algorithms.

Parallel Functions

collaborative_call_once

[algorithms.collaborative_call_once]
Function template that executes function exactly once.

// Defined in header <oneapi/tbb/collaborative_call_once.h>

namespace oneapi {
namespace tbb {

template<typename Func, typename... Args>
void collaborative_call_once(collaborative_once_flag& flag, Func&& func, Args&&..

→˓. args);

} // namespace tbb
} // namespace oneapi

Requirements:

• Func type must meet the Function Objects requirements described in the [function.objects] section of the ISO
C++ standard.

Executes the Func object only once, even if it is called concurrently. It allows other threads blocked on the same
collaborative_once_flag to join oneTBB parallel construction called within the Func object.

In case of the exception thrown from the Func object, the thread calling the Func object receives this exception. One
of the threads blocked on the same collaborative_once_flag calls the Func object again.

9.2. oneTBB Interfaces 343

oneAPI Specification, Release 1.1-rev-1

collaborative_once_flag Class

collaborative_once_flag

[algorithms.collaborative_call_once.collaborative_once_flag]
Special class that collaborative_call_once uses to perform a call only once.

// Defined in header <oneapi/tbb/collaborative_call_once.h>

namespace oneapi {
namespace tbb {

class collaborative_once_flag {
public:

collaborative_once_flag();
collaborative_once_flag(const collaborative_once_flag&) = delete;

};
} // namespace tbb

} // namespace oneapi

Member functions

collaborative_once_flag()
Constructs an collaborative_once_flag object. The initial state indicates that no function has been called.

Example

The following example shows a class in which the “Lazy initialization” pattern is implemented on the “cachedProperty”
field.

#include "oneapi/tbb/collaborative_call_once.h"
#include "oneapi/tbb/parallel_reduce.h"
#include "oneapi/tbb/blocked_range.h"

extern double foo(int i);

class LazyData {
oneapi::tbb::collaborative_once_flag flag;
double cachedProperty;

public:
double getProperty() {

oneapi::tbb::collaborative_call_once(flag, [&] {
// serial part
double result{};

// parallel part where threads can collaborate
result = oneapi::tbb::parallel_reduce(oneapi::tbb::blocked_range<int>(0,␣

→˓1000), 0.,
[] (auto r, double val) {

for(int i = r.begin(); i != r.end(); ++i) {
(continues on next page)

9.2. oneTBB Interfaces 344

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

val += foo(i);
}
return val;

},
std::plus<double>{}

);

// continue serial part
cachedProperty = result;

});

return cachedProperty;
}

};

parallel_for

[algorithms.parallel_for]
Function template that performs parallel iteration over a range of values.

// Defined in header <oneapi/tbb/parallel_for.h>

namespace oneapi {
namespace tbb {

template<typename Index, typename Func>
void parallel_for(Index first, Index last, const Func& f, /* see-below */␣

→˓partitioner, task_group_context& context);
template<typename Index, typename Func>
void parallel_for(Index first, Index last, const Func& f, task_group_context&␣

→˓context);
template<typename Index, typename Func>
void parallel_for(Index first, Index last, const Func& f, /* see-below */␣

→˓partitioner);
template<typename Index, typename Func>
void parallel_for(Index first, Index last, const Func& f);

template<typename Index, typename Func>
void parallel_for(Index first, Index last, Index step, const Func& f, /* see-

→˓below */ partitioner, task_group_context& context);
template<typename Index, typename Func>
void parallel_for(Index first, Index last, Index step, const Func& f, task_group_

→˓context& context);
template<typename Index, typename Func>
void parallel_for(Index first, Index last, Index step, const Func& f, /* see-

→˓below */ partitioner);
template<typename Index, typename Func>
void parallel_for(Index first, Index last, Index step, const Func& f);

template<typename Range, typename Body>
(continues on next page)

9.2. oneTBB Interfaces 345

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

void parallel_for(const Range& range, const Body& body, /* see-below */␣
→˓partitioner, task_group_context& context);

template<typename Range, typename Body>
void parallel_for(const Range& range, const Body& body, task_group_context&␣

→˓context);
template<typename Range, typename Body>
void parallel_for(const Range& range, const Body& body, /* see-below */␣

→˓partitioner);
template<typename Range, typename Body>
void parallel_for(const Range& range, const Body& body);

} // namespace tbb
} // namespace oneapi

A partitioner type may be one of the following entities:

• const auto_partitioner&

• const simple_partitioner&

• const static_partitioner&

• affinity_partitioner&

Requirements:

• The Range type must meet the Range requirements.

• The Body type must meet the ParallelForBody requirements.

• The Index type must meet the ParallelForIndex requirements.

• The Func type must meet the ParallelForFunc requirements.

The oneapi::tbb::parallel_for(first, last, step, f) overload represents parallel execution of the loop:

for (auto i = first; i < last; i += step) f(i);

The loop must not wrap around. The step value must be positive. If omitted, it is implicitly 1. There is no guarantee that
the iterations run in parallel. A deadlock may occur if a lesser iteration waits for a greater iteration. The partitioning
strategy is auto_partitioner when the parameter is not specified.

The parallel_for(range,body,partitioner) overload provides a more general form of parallel iteration. It
represents parallel execution of body over each value in range. The optional partitioner parameter specifies a
partitioning strategy.

parallel_for recursively splits the range into subranges to the point such that is_divisible() is false for each
subrange, and makes copies of the body for each of these subranges. For each such body/subrange pair, it invokes
Body::operator().

Some of the copies of the range and body may be destroyed after parallel_for returns. This late destruction is not
an issue in typical usage, but is something to be aware of when looking at execution traces or writing range or body
objects with complex side effects.

parallel_for may execute iterations in non-deterministic order. Do not rely on any particular execution order for
correctness. However, for efficiency, do expect parallel_for to tend towards operating on consecutive runs of values.

In case of serial execution, parallel_for performs iterations from left to right in the following sense.

All overloads can accept a task_group_context object so that the algorithm’s tasks are executed in this context. By
default, the algorithm is executed in a bound context of its own.

9.2. oneTBB Interfaces 346

oneAPI Specification, Release 1.1-rev-1

Complexity
If the range and body take O(1) space, and the range splits into nearly equal pieces, the space complexity is O(P log(N)),
where N is the size of the range and P is the number of threads.

See also:

• Partitioners

parallel_reduce

[algorithms.parallel_reduce]
Function template that computes reduction over a range.

// Defined in header <oneapi/tbb/parallel_reduce.h>

namespace oneapi {
namespace tbb {

template<typename Range, typename Value, typename Func, typename Reduction>
Value parallel_reduce(const Range& range, const Value& identity, const Func&␣

→˓func, const Reduction& reduction, /* see-below */ partitioner, task_group_context&␣
→˓context);

template<typename Range, typename Value, typename Func, typename Reduction>
Value parallel_reduce(const Range& range, const Value& identity, const Func&␣

→˓func, const Reduction& reduction, /* see-below */ partitioner);
template<typename Range, typename Value, typename Func, typename Reduction>
Value parallel_reduce(const Range& range, const Value& identity, const Func&␣

→˓func, const Reduction& reduction, task_group_context& context);
template<typename Range, typename Value, typename Func, typename Reduction>
Value parallel_reduce(const Range& range, const Value& identity, const Func&␣

→˓func, const Reduction& reduction);

template<typename Range, typename Body>
void parallel_reduce(const Range& range, Body& body, /* see-below */ partitioner,

→˓ task_group_context& context);
template<typename Range, typename Body>
void parallel_reduce(const Range& range, Body& body, /* see-below */␣

→˓partitioner);
template<typename Range, typename Body>
void parallel_reduce(const Range& range, Body& body, task_group_context&␣

→˓context);
template<typename Range, typename Body>
void parallel_reduce(const Range& range, Body& body);

} // namespace tbb
} // namespace oneapi

A partitioner type may be one of the following entities:

• const auto_partitioner&

• const simple_partitioner&

• const static_partitioner&

9.2. oneTBB Interfaces 347

oneAPI Specification, Release 1.1-rev-1

• affinity_partitioner&

Requirements:

• The Range type must meet the Range requirements.

• The Body type must meet the ParallelReduceBody requirements.

• The Func type must meet the ParallelReduceFunc requirements.

• The Reduction types must meet :ParallelReduceReduction requirements.

The function template parallel_reduce has two forms: The functional form is designed to be easy to use in con-
junction with lambda expressions. The imperative form is designed to minimize copying of data.

The functional form parallel_reduce(range, identity, func, reduction) performs a parallel reduction by
applying func to subranges in range and reducing the results with the binary operator reduction. It returns the result of
the reduction. The identity parameter specifies the left identity element for func’s operator(). Parameters func and
reduction can be lambda expressions.

The imperative form parallel_reduce(range,body) performs parallel reduction of body over each value in range.

A parallel_reduce recursively splits the range into subranges to the point such that is_divisible() is false for
each subrange. A parallel_reduce uses the splitting constructor to make one or more copies of the body for each
thread. It may copy a body while the body’s operator() or method join runs concurrently. You are responsible for
ensuring the safety of such concurrency. In typical usage, the safety requires no extra effort.

parallel_reduce may invoke the splitting constructor for the body. For each such split of the body, it invokes the
join method to merge the results from the bodies. Define join to update this to represent the accumulated result for
this and rhs. The reduction operation should be associative, but does not have to be commutative. For a noncommutative
operation op, left.join(right) should update left to be the result of left op right.

A body is split only if the range is split, but the converse is not necessarily to be so. The user must neither rely
on a particular choice of body splitting nor on the subranges processed by a given body object being consecutive.
parallel_reduce makes the choice of body splitting nondeterministically.

When executed serially parallel_reduce run sequentially from left to right in the same sense as for parallel_for.
Sequential execution never invokes the splitting constructor or method join.

All overloads can accept a task_group_context object so that the algorithm’s tasks are executed in this context. By
default, the algorithm is executed in a bound context of its own.

Complexity
If the range and body take O(1) space, and the range splits into nearly equal pieces, the space complexity is O(P×log(N)),
where N is the size of the range and P is the number of threads.

Example (Imperative Form)

The following code sums the values in an array.

#include "oneapi/tbb/parallel_reduce.h"
#include "oneapi/tbb/blocked_range.h"

using namespace oneapi::tbb;

struct Sum {
float value;
Sum() : value(0) {}
Sum(Sum& s, split) {value = 0;}

(continues on next page)

9.2. oneTBB Interfaces 348

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

void operator()(const blocked_range<float*>& r) {
float temp = value;
for(float* a=r.begin(); a!=r.end(); ++a) {

temp += *a;
}
value = temp;

}
void join(Sum& rhs) {value += rhs.value;}

};

float ParallelSum(float array[], size_t n) {
Sum total;
parallel_reduce(blocked_range<float*>(array, array+n), total);
return total.value;

}

The example generalizes to reduction for any associative operation op as follows:

• Replace occurrences of 0 with the identity element for op

• Replace occurrences of += with op= or its logical equivalent.

• Change the name Sum to something more appropriate for op.

The operation may be noncommutative. For example, op could be matrix multiplication.

Example with Lambda Expressions

The following is similar to the previous example, but written using lambda expressions and the functional form of
parallel_reduce.

#include "oneapi/tbb/parallel_reduce.h"
#include "oneapi/tbb/blocked_range.h"

using namespace oneapi::tbb;

float ParallelSum(float array[], size_t n) {
return parallel_reduce(

blocked_range<float*>(array, array+n),
0.f,
[](const blocked_range<float*>& r, float init)->float {

for(float* a=r.begin(); a!=r.end(); ++a)
init += *a;

return init;
},
[](float x, float y)->float {

return x+y;
}

);
}

See also:

• Partitioners

9.2. oneTBB Interfaces 349

oneAPI Specification, Release 1.1-rev-1

parallel_deterministic_reduce

[algorithms.parallel_deterministic_reduce]
Function template that computes reduction over a range, with deterministic split/join behavior.

// Defined in header <oneapi/tbb/parallel_reduce.h>

namespace oneapi {
namespace tbb {

template<typename Range, typename Value, typename Func, typename Reduction>
Value parallel_deterministic_reduce(const Range& range, const Value& identity,␣

→˓const Func& func, const Reduction& reduction, /* see-below */ partitioner, task_group_
→˓context& context);

template<typename Range, typename Value, typename Func, typename Reduction>
Value parallel_deterministic_reduce(const Range& range, const Value& identity,␣

→˓const Func& func, const Reduction& reduction, /* see-below */ partitioner);
template<typename Range, typename Value, typename Func, typename Reduction>
Value parallel_deterministic_reduce(const Range& range, const Value& identity,␣

→˓const Func& func, const Reduction& reduction, task_group_context& context);
template<typename Range, typename Value, typename Func, typename Reduction>
Value parallel_deterministic_reduce(const Range& range, const Value& identity,␣

→˓const Func& func, const Reduction& reduction);

template<typename Range, typename Body>
void parallel_deterministic_reduce(const Range& range, Body& body, /* see-below␣

→˓*/ partitioner, task_group_context& context);
template<typename Range, typename Body>
void parallel_deterministic_reduce(const Range& range, Body& body, /* see-below␣

→˓*/ partitioner);
template<typename Range, typename Body>
void parallel_deterministic_reduce(const Range& range, Body& body, task_group_

→˓context& context);
template<typename Range, typename Body>
void parallel_deterministic_reduce(const Range& range, Body& body);

} // namespace tbb
} // namespace oneapi

A partitioner type may be one of the following entities:

• const simple_partitioner&

• const static_partitioner&

The function template parallel_deterministic_reduce is very similar to the parallel_reduce template. It also
has the functional and imperative forms and has similar requirements.

Unlike parallel_reduce, parallel_deterministic_reduce has deterministic behavior with regard to splits of
both Body and Range and joins of the bodies. For the functional form, Func is applied to a deterministic set of Ranges,
and Reduction merges partial results in a deterministic order. To achieve that, parallel_deterministic_reduce
uses a simple_partitioner or a static_partitioner only because other partitioners react to random work steal-
ing behavior.

9.2. oneTBB Interfaces 350

oneAPI Specification, Release 1.1-rev-1

Caution: Since simple_partitioner does not automatically coarsen ranges, make sure to specify an appropriate
grain size. See Partitioners section for more information.

parallel_deterministic_reduce always invokes the Body splitting constructor for each range split.

As a result, parallel_deterministic_reduce recursively splits a range until it is no longer divisible, and creates
a new body (by calling the Body splitting constructor) for each new subrange. Like parallel_reduce, for each body
split the method join is invoked in order to merge the results from the bodies.

Therefore, for given arguments, parallel_deterministic_reduce executes the same set of split and join operations
no matter how many threads participate in execution and how tasks are mapped to the threads. If the user-provided
functions are also deterministic (that is, different runs with the same input result in the same output), multiple calls
to parallel_deterministic_reduce produce the same result. Note however that the result might differ from that
obtained with an equivalent sequential (linear) algorithm.

Complexity
If the range and body take O(1) space, and the range splits into nearly equal pieces, the space complexity is O(P log(N)),
where N is the size of the range and P is the number of threads.

See also:

• parallel_reduce

• Partitioners

parallel_scan

[algorithms.parallel_scan]
Function template that computes a parallel prefix.

// Defined in header <oneapi/tbb/parallel_scan.h>

template<typename Range, typename Body>
void parallel_scan(const Range& range, Body& body);
template<typename Range, typename Body>
void parallel_scan(const Range& range, Body& body, /* see-below */ partitioner);

template<typename Range, typename Value, typename Scan, typename Combine>
Value parallel_scan(const Range& range, const Value& identity, const Scan& scan, const␣
→˓Combine& combine);
template<typename Range, typename Value, typename Scan, typename Combine>
Value parallel_scan(const Range& range, const Value& identity, const Scan& scan, const␣
→˓Combine& combine, /* see-below */ partitioner);

A partitioner type may be one of the following entities:

• const auto_partitioner&

• const simple_partitioner&

Requirements:

• The Range type must meet the Range requirement.

• The Body type must meet the ParallelScanBody requirements.

• The Scan type must meet the ParallelScanFunc requirements.

9.2. oneTBB Interfaces 351

oneAPI Specification, Release 1.1-rev-1

• The Combine type must meet the ParallelScanCombine requirements.

The function template parallel_scan computes a parallel prefix, also known as a parallel scan. This computation is
an advanced concept in parallel computing that is sometimes useful in scenarios that appear to have inherently serial
dependences.

A mathematical definition of the parallel prefix is as follows. Let × be an associative operation with left-identity element
id×. The parallel prefix of × over a sequence z0, z1, . . . *z*n-1 is a sequence y0, y1, y2, . . . *y*n-1 where:

• y0 = id× × z0

• yi = yi-1 × zi

For example, if × is addition, the parallel prefix corresponds to a running sum. A serial implementation of a parallel
prefix is:

T temp = id;
for(int i=1; i<=n; ++i) {

temp = temp + z[i];
y[i] = temp;

}

Parallel prefix performs this in parallel by reassociating the application of × (+ in example) and using two passes. It
may invoke × up to twice as many times as the serial prefix algorithm. Even though it does more work, given the right
grain size the parallel algorithm can outperform the serial one because it distributes the work across multiple hardware
threads.

The function template parallel_scan has two forms. The imperative form parallel_scan(range, body) imple-
ments parallel prefix generically.

A summary (refer to ParallelScanBody requirements) contains enough information such that for two consecutive sub-
ranges r and s:

• If r has no preceding subrange, the scan result for s can be computed from knowing s and the summary for r.

• A summary of r concatenated with s can be computed from the summaries of r and s.

The functional form parallel_scan(range, identity, scan, combine) is designed to use with functors and
lambda expressions, hiding some complexities of the imperative form. It uses the same scan functor in both passes,
differentiating them via a boolean parameter, combines summaries with combine functor, and returns the summary
computed over the whole range. The identity argument is the left identity element for Scan::operator().

pre_scan and final_scan Classes

pre_scan_tag and final_scan_tag

[algorithms.parallel_scan.scan_tags]
Types that distinguish the phases of parallel_scan.

Types pre_scan_tag and final_scan_tag are dummy types used in conjunction with parallel_scan. See the
example in the parallel_scan section for demonstration of how they are used in the signature of operator().

// Defined in header <oneapi/tbb/parallel_scan.h>

namespace oneapi {
namespace tbb {

(continues on next page)

9.2. oneTBB Interfaces 352

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

struct pre_scan_tag {
static bool is_final_scan();
operator bool();

};

struct final_scan_tag {
static bool is_final_scan();
operator bool();

};

} // namespace tbb
} // namespace oneapi

Member functions

bool is_final_scan()
true for a final_scan_tag, false, otherwise.

operator bool()
true for a final_scan_tag, false, otherwise.

The parallel_scan template makes an effort to avoid prescanning where possible. When executed serially,
parallel_scan processes the subranges without any pre-scans by processing the subranges from left to right us-
ing final scans. That is why final scans must compute a summary as well as the final scan result. The summary might
be needed to process the next subrange if no other thread has pre-scanned it yet.

Example (Imperative Form)

The following code demonstrates how Body could be implemented for parallel_scan to compute the same result as
in the earlier sequential example.

class Body {
T sum;
T* const y;
const T* const z;

public:
Body(T y_[], const T z_[]) : sum(id), z(z_), y(y_) {}
T get_sum() const { return sum; }

template<typename Tag>
void operator()(const oneapi::tbb::blocked_range<int>& r, Tag) {

T temp = sum;
for(int i=r.begin(); i<r.end(); ++i) {

temp = temp + z[i];
if(Tag::is_final_scan())

y[i] = temp;
}
sum = temp;

}
Body(Body& b, oneapi::tbb::split) : z(b.z), y(b.y), sum(id) {}
void reverse_join(Body& a) { sum = a.sum + sum; }

(continues on next page)

9.2. oneTBB Interfaces 353

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

void assign(Body& b) { sum = b.sum; }
};

T DoParallelScan(T y[], const T z[], int n) {
Body body(y,z);
oneapi::tbb::parallel_scan(oneapi::tbb::blocked_range<int>(0,n), body);
return body.get_sum();

}

The definition of operator() demonstrates typical patterns when using parallel_scan.

• A single template defines both versions. Doing so is not required, but usually saves coding effort, because two
versions are usually similar. The library defines the static method is_final_scan to enable differentiation
between the versions.

• The prescan variant computes the × reduction, but does not update y. The prescan is used by parallel_scan
to generate look-ahead partial reductions.

• The final scan variant computes the × reduction and updates y.

The reverse_join operation is similar to the join operation used by parallel_reduce, except that the arguments
are reversed. That is, this is the right argument of ×. The template function parallel_scan decides if and when
to generate parallel work. Thus, it is crucial that × is associative and that the methods of Body faithfully represent
it. Operations such as floating-point addition, which are somewhat associative, can be used with the understanding
that the results may be rounded differently depending on the association used by parallel_scan. The reassociation
may differ between runs even on the same machine. However, when executed serially, parallel_scan associates
identically to the serial form shown at the beginning of this section.

If you change the example to use a simple_partitioner, be sure to provide a grain size. The code below shows how
to do this for the grain size of 1000:

parallel_scan(blocked_range<int>(0,n,1000), total, simple_partitioner());

Example with Lambda Expressions

The following is analogous to the previous example, but written using lambda expressions and the functional form of
parallel_scan:

T DoParallelScan(T y[], const T z[], int n) {
return oneapi::tbb::parallel_scan(

oneapi::tbb::blocked_range<int>(0,n),
id,
[](const oneapi::tbb::blocked_range<int>& r, T sum, bool is_final_scan)->T {

T temp = sum;
for(int i=r.begin(); i<r.end(); ++i) {

temp = temp + z[i];
if(is_final_scan)

y[i] = temp;
}
return temp;

},
[](T left, T right) {

return left + right;
(continues on next page)

9.2. oneTBB Interfaces 354

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

}
);

}

See also:

• blocked_range class

• parallel_reduce algorithm

parallel_for_each

[algorithms.parallel_for_each]
Function template that processes work items in parallel.

// Defined in header <oneapi/tbb/parallel_for_each.h>

namespace oneapi {
namespace tbb {

template<typename InputIterator, typename Body>
void parallel_for_each(InputIterator first, InputIterator last, Body body);
template<typename InputIterator, typename Body>
void parallel_for_each(InputIterator first, InputIterator last, Body body, task_

→˓group_context& context);

template<typename Container, typename Body>
void parallel_for_each(Container& c, Body body);
template<typename Container, typename Body>
void parallel_for_each(Container& c, Body body, task_group_context& context);

template<typename Container, typename Body>
void parallel_for_each(const Container& c, Body body);
template<typename Container, typename Body>
void parallel_for_each(const Container& c, Body body, task_group_context&␣

→˓context);

} // namespace tbb
} // namespace oneapi

Requirements:

• The Body type must meet the ParallelForEachBody requirements.

• The InputIterator type must meet the Input Iterator requirements from the [input.iterators] ISO C++ Standard
section.

• The Container type must meet the ContainerBasedSequence requirements.

The parallel_for_each template has two forms.

The sequence form parallel_for_each(first, last, body) applies a function object body over a sequence
[first,last). Items may be processed in parallel.

9.2. oneTBB Interfaces 355

oneAPI Specification, Release 1.1-rev-1

The container form parallel_for_each(c, body) is equivalent to parallel_for_each(std::begin(c),
std::end(c), body).

All overloads can accept a task_group_context object so that the algorithm’s tasks are executed in this context. By
default, the algorithm is executed in a bound context of its own.

feeder Class

Additional work items can be added by body if it has a second argument of type feeder. The function terminates
when body(x) returns for all items x that were in the input sequence or added by method feeder::add.

feeder

[algorithms.parallel_for_each.feeder]
Inlet into which additional work items for a parallel_for_each can be fed.

// Defined in header <oneapi/tbb/parallel_for_each.h>

namespace oneapi {
namespace tbb {

template<typename Item>
class feeder {
public:

void add(const Item& item);
void add(Item&& item);

};

} // namespace tbb
} //namespace oneapi

Member functions

void add(const Item &item)
Adds item to a collection of work items to be processed.

void add(Item &&item)
Same as the above but uses the move constructor of Item, if available.

Caution: Must be called from a Body::operator() created by the parallel_for_each function. Otherwise,
the termination semantics of method operator() are undefined.

9.2. oneTBB Interfaces 356

oneAPI Specification, Release 1.1-rev-1

Example

The following code sketches a body with the two-argument form of operator().

struct MyBody {
void operator()(item_t item, parallel_do_feeder<item_t>& feeder) {

for each new piece of work implied by item do {
item_t new_item = initializer;
feeder.add(new_item);

}
}

};

parallel_invoke

[algortihms.parallel_invoke]
Function template that evaluates several functions in parallel.

// Defined in header <oneapi/tbb/parallel_invoke.h>

namespace oneapi {
namespace tbb {

template<typename... Functions>
void parallel_invoke(Functions&&... fs);

} // namespace tbb
} // namespace oneapi

Requirements:

• All members of Functions parameter pack must meet Function Objects requirements described in the [func-
tion.objects] section of the ISO C++ standard.

• Last member of Functions parameter pack may be a task_group_context& type.

Evaluates each member passed to parallel_invoke possibly in parallel. Return values are ignored.

The algorithm can accept a task_group_context object so that the algorithm’s tasks are executed in this context. By
default, the algorithm is executed in a bound context of its own.

Example

The following example evaluates f(), g(), h(), and bar(1) in parallel.

#include "oneapi/tbb/parallel_invoke.h"

extern void f();
extern void bar(int);

class MyFunctor {
int arg;

(continues on next page)

9.2. oneTBB Interfaces 357

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

public:
MyFunctor(int a) : arg(a) {}
void operator()() const { bar(arg); }

};

void RunFunctionsInParallel() {
MyFunctor g(2);
MyFunctor h(3);

oneapi::tbb::parallel_invoke(f, g, h, []{bar(1);});
}

parallel_pipeline

[algorithms.parallel_pipeline]
Strongly-typed interface for pipelined execution.

// Defined in header <oneapi/tbb/parallel_pipeline.h>

namespace oneapi {
namespace tbb {

void parallel_pipeline(size_t max_number_of_live_tokens, const filter<void,void>
→˓& filter_chain);

void parallel_pipeline(size_t max_number_of_live_tokens, const filter<void,void>
→˓& filter_chain, task_group_context& context);

} // namespace tbb
} // namespace oneapi

A parallel_pipeline algorithm represents pipelined application of a series of filters to a stream of items. Each
filter operates in a particular mode: parallel, serial in-order, or serial out-of-order.

To build and run a pipeline from functors g0, g1, g2, . . . , gn, write:

parallel_pipeline(max_number_of_live_tokens,
make_filter<void,I1>(mode0,g0) &
make_filter<I1,I2>(mode1,g1) &
make_filter<I2,I3>(mode2,g2) &
...
make_filter<In,void>(moden,gn));

In general, the gi functor should define its operator() to map objects of type I i to objects of type I i+1. Functor g0 is
a special case, because it notifies the pipeline when the end of an input stream is reached. Functor g0 must be defined
such that for a flow_control object fc, the expression g0 (fc) either returns the next value in the input stream, or invokes
fc.stop() if the end of the input stream is reached and returns a dummy value.

Each filter should be specified by two template arguments. These arguments define filters input and output types. The
first and last filters are special cases. Input type of the first filter must be void, output type of the last filter must be void
too.

Before passing to parallel_pipeline, concatenate all filters to one(filter<void, void>) with filter::operator&().
The operator requires that the second template argument of its left operand matches the first template argument of its

9.2. oneTBB Interfaces 358

oneAPI Specification, Release 1.1-rev-1

second operand.

The number of items processed in parallel depends on the structure of the pipeline and number of available threads.
max_number_of_live_tokens sets the threshold for concurrently processed items.

If the context argument is specified, pipeline’s tasks are executed in this context. By default, the algorithm is executed
in a bound context of its own.

Example

The following example uses parallel_pipeline to compute the root-mean-square of a sequence defined by [first ,
last).

float RootMeanSquare(float* first, float* last) {
float sum=0;
parallel_pipeline(/*max_number_of_live_token=*/16,

make_filter<void,float*>(
filter::serial,
[&](flow_control& fc)-> float*{

if(first<last) {
return first++;

} else {
fc.stop();
return nullptr;

}
}

) &
make_filter<float*,float>(

filter::parallel,
[](float* p){return (*p)*(*p);}

) &
make_filter<float,void>(

filter::serial,
[&](float x) {sum+=x;}

)
);
return sqrt(sum);

}

filter Class Template

filter

[algorithms.parallel_pipeline.filter]
A filter class template represents a strongly-typed filter in a parallel_pipeline algorithm, with its template
parameters specifying the filter input and output types. A filter can be constructed from a functor or by composing
two filter objects with operator&(). The same filter object can be reused in multiple & expressions.

The filter class should only be used in conjunction with parallel_pipeline functions.

// Defined in header <oneapi/tbb/parallel_pipeline.h>

(continues on next page)

9.2. oneTBB Interfaces 359

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

namespace oneapi {
namespace tbb {

template<typename InputType, typename OutputType>
class filter {
public:

filter() = default;
filter(const filter& rhs) = default;
filter(filter&& rhs) = default;
void operator=(const filter& rhs) = default;
void operator=(filter&& rhs) = default;

template<typename Body>
filter(filter_mode mode, const Body& body);

filter& operator&=(const filter<OutputType,OutputType>& right);

void clear();
}

template<typename T, typename U, typename Body>
filter<T,U> make_filter(filter::mode mode, const Body& f);
template<typename T, typename V, typename U>
filter<T,U> operator&(const filter<T,V>& left, const filter<V,U>& right);

} // namespace tbb
} // namespace oneapi

Requirements:

• If InputType is void, a Body type must meet the StartFilterBody requirements.

• If OutputType is void, a Body type must meet the OutputFilterBody requirements.

• If InputType and OutputType are not void, a Body type must meet the MiddleFilterBody requirements.

• If InputType and OutputType are void, a Body type must meet the SingleFilterBody requirements.

filter_mode Enumeration

filter_mode

[algorithms.parallel_pipeline.filter_mode]
A filter_mode enumeration represents an execution mode of a filter in a parallel_pipeline algorithm.

Its enumerated values and their meanings are as follows:

• A parallel filter can process multiple items in parallel and without a particular order.

• A serial_out_of_order filter processes items one at a time and without a particular order.

• A serial_in_order filter processes items one at a time. The order in which items are processed is implicitly
set by the first serial_in_order filter and respected by all other such filters in the pipeline.

9.2. oneTBB Interfaces 360

oneAPI Specification, Release 1.1-rev-1

// Defined in header <oneapi/tbb/parallel_pipeline.h>

namespace oneapi {
namespace tbb {

enum class filter_mode {
parallel = /*implementation-defined*/,
serial_in_order = /*implementation-defined*/,
serial_out_of_order = /*implementation-defined*/

};

} // namespace tbb
} // namespace oneapi

Member functions

filter()
Constructs an undefined filter.

Caution: The effect of using an undefined filter by operator&() or parallel_pipeline is undefined.

template<typename Body>
filter(filter_mode mode, const Body &body)

Constructs a filter that uses a copy of a provided body to map an input value of type InputType to an output
value of type OutputType, and that operates in the specified mode.

void clear()
Sets *this to an undefined filter.

Non-member functions

template<typename T, typename U, typename Func>
filter<T , U> make_filter(filter::mode mode, const Func &f)

Returns filter<T, U>(mode, f).

template<typename T, typename V, typename U>
filter<T , U> operator&(const filter<T , V> &left, const filter<V , U> &right)

Returns a filter representing the composition of filters left and right. The composition behaves as if the output
value of left becomes the input value of right.

9.2. oneTBB Interfaces 361

oneAPI Specification, Release 1.1-rev-1

Deduction Guides

template<typename Body>
filter(filter_mode, Body) -> filter<filter_input<Body>, filter_output<Body>>;

Where:

• filter_input<Body> is an alias to the Body::operator() input parameter type. If Body::operator()
input parameter type is flow_control then filter_input<Body> is void.

• filter_output<Body> is an alias to the Body::operator() return type.

flow_control Class

flow_control

[algorithms.parallel_pipeline.flow_control]
Enables the first filter in a composite filter to indicate when the end of input stream is reached.

Template function parallel_pipeline passes a flow_control object to the functor of the first filter. When the
functor reaches the end of its input stream, it should invoke fc.stop() and return a dummy value that will not be
passed to the next filter.

// Defined in header <oneapi/tbb/parallel_pipeline.h>

namespace oneapi {
namespace tbb {

class flow_control {
public:

void stop();
};

} // namespace tbb
} namespace oneapi

Member functions

void stop()
Indicates that first filter of the pipeline reaches the end of its output.

See also:

• FilterBody requiremnts

• filter class

See also:

• task_group_context

9.2. oneTBB Interfaces 362

oneAPI Specification, Release 1.1-rev-1

parallel_sort

[algorithms.parallel_sort]
Function template that sorts a sequence.

// Defined in header <oneapi/tbb/parallel_sort.h>

namespace oneapi {
namespace tbb {

template<typename RandomAccessIterator>
void parallel_sort(RandomAccessIterator begin, RandomAccessIterator end);
template<typename RandomAccessIterator, typename Compare>
void parallel_sort(RandomAccessIterator begin, RandomAccessIterator end, const␣

→˓Compare& comp);

template<typename Container>
void parallel_sort(Container&& c);
template<typename Container>
void parallel_sort(Container&& c, const Compare& comp);

} // namespace tbb
} // namespace oneapi

Requirements:

• The RandomAccessIterator type must meet the Random Access Iterators requirements from [ran-
dom.access.iterators] and ValueSwappable requirements from the [swappable.requirements] ISO C++ Standard
section.

• The Compare type must meet the Compare type requirements from the [alg.sorting] ISO C++ Standard section.

• The Container type must meet the ContainerBasedSequence requirements which iterators must meet the Ran-
dom Access Iterators requirements from [random.access.iterators] and Swappable requirements from the [swap-
pable.requirements] ISO C++ Standard section.

Sorts a sequence or a container. The sort is neither stable nor deterministic: relative ordering of elements with equal
keys is not preserved and not guaranteed to repeat if the same sequence is sorted again.

A call parallel_sort(begin, end, comp) sorts the sequence [begin, end) using the argument comp to deter-
mine relative orderings. If comp(x, y) returns true, x appears before y in the sorted sequence.

A call parallel_sort(begin, end) is equivalent to parallel_sort(begin, end, comp), where comp
uses operator< to determine relative orderings.

A call parallel_sort(c, comp) is equivalent to parallel_sort(std::begin(c), std::end(c), comp
).

A call parallel_sort(c) is equivalent to parallel_sort(c, comp), where comp uses operator< to deter-
mine relative orderings.

Complexity
parallel_sort is a comparison sort with an average time complexity of O(N×log(N)), where N is the number of
elements in the sequence. parallel_sort may be executed concurrently to improve execution time.

9.2. oneTBB Interfaces 363

oneAPI Specification, Release 1.1-rev-1

Blocked Ranges

Types that meet the Range requirements.

blocked_range

[algorithms.blocked_range]
Class template for a recursively divisible half-open interval.

A blocked_range represents a half-open range [i,*j*) that can be recursively split.

A blocked_range meets the Range requirements.

A blocked_range specifies a grain size of type size_t.

A blocked_range is splittable into two subranges if the size of the range exceeds its grain size. The ideal grain size
depends on the context of the blocked_range, which is typically passed as the range argument to the loop templates
parallel_for, parallel_reduce, or parallel_scan.

// Defined in header <oneapi/tbb/blocked_range.h>

namespace oneapi {
namespace tbb {

template<typename Value>
class blocked_range {
public:

// types
using size_type = size_t;
using const_iterator = Value;

// constructors
blocked_range(Value begin, Value end, size_type grainsize=1);
blocked_range(blocked_range& r, split);
blocked_range(blocked_range& r, proportional_split& proportion);

// capacity
size_type size() const;
bool empty() const;

// access
size_type grainsize() const;
bool is_divisible() const;

// iterators
const_iterator begin() const;
const_iterator end() const;

};

} // namespace tbb
} // namespace oneapi

Requirements:

• The Value type must meet the BlockedRangeValue requirements.

9.2. oneTBB Interfaces 364

oneAPI Specification, Release 1.1-rev-1

Member functions

type size_type
The type for measuring the size of a blocked_range. The type is always a size_t.

type const_iterator
The type of a value in the range. Despite its name, the const_iterator type is not necessarily an STL iterator; it
merely needs to meet the BlockedRangeValue requirements. However, it is convenient to call it const_iterator
so that if it is a const_iterator, the blocked_range behaves like a read-only STL container.

blocked_range(Value begin, Value end, size_type grainsize = 1)
Requirements: The parameter grainsizemust be positive. The debug version of the library raises an assertion
failure if this requirement is not met.

Effects: Constructs a blocked_range representing the half-open interval [begin, end) with the given
grainsize.

Example: The statement "blocked_range<int> r(5, 14, 2);" constructs a range of int that contains the
values 5 through 13 inclusive, with the grain size of 2. Afterwards, r.begin()==5 and r.end()==14.

blocked_range(blocked_range &range, split)
Basic splitting constructor.

Requirements: is_divisible() is true.

Effects: Partitions range into two subranges. The newly constructed blocked_range is approximately the
second half of the original range, and range is updated to be the remainder. Each subrange has the same
grainsize as the original range.

Example: Let r be a blocked_range that represents a half-open interval [i, j) with a grain size g. Running
the statement blocked_range<int> s(r, split); subsequently causes r to represent [i, i+(j-i)/2) and
s to represent [i+(j-i)/2, j), both with grain size g.

blocked_range(blocked_range &range, proportional_split proportion)
Proportional splitting constructor.

Requirements: is_divisible() is true.

Effects: Partitions range into two subranges such that the ratio of their sizes is close to the ratio of proportion.
left() to proportion.right(). The newly constructed blocked_range is the subrange at the right, and
range is updated to be the subrange at the left.

Example: Let r be a blocked_range that represents a half-open interval [i, j) with a grain size g. Run-
ning the statement blocked_range<int> s(r, proportional_split(2, 3)); subsequently causes r to
represent [i, i+2*(j-i)/(2+3)) and s to represent [i+2*(j-i)/(2+3), j), both with grain size g.

size_type size() const
Requirements: end()<begin() is false.

Effects: Determines size of range.

Returns: end()-begin().

bool empty() const
Effects: Determines if range is empty.

Returns: !(begin()<end())
size_type grainsize() const

Returns: Grain size of range.

bool is_divisible() const
Requirements: end()<begin() is false.

9.2. oneTBB Interfaces 365

oneAPI Specification, Release 1.1-rev-1

Effects: Determines if the range can be split into subranges.

Returns: True if size()>grainsize(); false, otherwise.

const_iterator begin() const
Returns: Inclusive lower bound of the range.

const_iterator end() const
Returns: Exclusive upper bound of the range.

See also:

• parallel_reduce

• parallel_for

• parallel_scan

blocked_range2d

[algorithms.blocked_range2d]
Class template that represents a recursively divisible two-dimensional half-open interval.

A blocked_range2d represents a half-open two-dimensional range [i0,j0)×[i1,j1). Each axis of the range has
its own splitting threshold. A blocked_range2d is divisible if either axis is divisible.

A blocked_range2d meets the Range requirements.

// Defined in header <oneapi/tbb/blocked_range2d.h>

namespace oneapi {
namespace tbb {

template<typename RowValue, typename ColValue=RowValue>
class blocked_range2d {
public:

// Types
using row_range_type = blocked_range<RowValue>;
using col_range_type = blocked_range<ColValue>;

// Constructors
blocked_range2d(

RowValue row_begin, RowValue row_end,
typename row_range_type::size_type row_grainsize,
ColValue col_begin, ColValue col_end,
typename col_range_type::size_type col_grainsize);

blocked_range2d(RowValue row_begin, RowValue row_end,
ColValue col_begin, ColValue col_end);

// Splitting constructors
blocked_range2d(blocked_range2d& r, split);
blocked_range2d(blocked_range2d& r, proportional_split proportion);

// Capacity
bool empty() const;

// Access
(continues on next page)

9.2. oneTBB Interfaces 366

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

bool is_divisible() const;
const row_range_type& rows() const;
const col_range_type& cols() const;

};

} // namespace tbb
} // namespace oneapi

Requirements:

• The RowValue and ColValue must meet the blocked_range requirements

Member types

using row_range_type = blocked_range<RowValue>;

The type of the row values.

using col_range_type = blocked_range<ColValue>;

The type of the column values.

Member functions

blocked_range2d(
RowValue row_begin, RowValue row_end,
typename row_range_type::size_type row_grainsize,
ColValue col_begin, ColValue col_end,
typename col_range_type::size_type col_grainsize);

Effects: Constructs a blocked_range2d representing a two-dimensional space of values. The space is the half-open
Cartesian product [row_begin, row_end) x [col_begin, col_end), with the given grain sizes for the rows and
columns.

Example: The statement blocked_range2d<char,int> r('a', 'z'+1, 3, 0, 10, 2); constructs a two-
dimensional space that contains all value pairs of the form (i, j), where i ranges from 'a' to 'z' with a grain
size of 3, and j ranges from 0 to 9 with a grain size of 2.

blocked_range2d(RowValue row_begin, RowValue row_end,
ColValue col_begin, ColValue col_end);

Same as blocked_range2d(row_begin,row_end,1,col_begin,col_end,1).

blocked_range2d(blocked_range2d& range, split);

Basic splitting constructor.

Requirements: is_divisible() is true.

Effects: Partitions range into two subranges. The newly constructed blocked_range2d is approximately the second
half of the original range, and range is updated to be the remainder. Each subrange has the same grain size as the
original range. Splitting is done either by rows or columns. The choice of which axis to split is intended to cause,
after repeated splitting, the subranges to approach the aspect ratio of the respective row and column grain sizes.

9.2. oneTBB Interfaces 367

oneAPI Specification, Release 1.1-rev-1

blocked_range2d(blocked_range2d& range, proportional_split proportion);

Proportional splitting constructor.

Requirements: is_divisible() is true.

Effects: Partitions range into two subranges in the given proportion across one of its axes. The choice of which
axis to split is made in the same way as for the basic splitting constructor; then, proportional splitting is done for the
chosen axis. The second axis and the grain sizes for each subrange remain the same as in the original range.

bool empty() const;

Effects: Determines if range is empty.

Returns: rows().empty()||cols().empty()

bool is_divisible() const;

Effects: Determines if range can be split into subranges.

Returns: rows().is_divisible()||cols().is_divisible()

const row_range_type& rows() const;

Returns: Range containing the rows of the value space.

const col_range_type& cols() const;

Returns: Range containing the columns of the value space.

See also:

• blocked_range

blocked_range3d

[algorithms.blocked_range3d]
Class template that represents a recursively divisible three-dimensional half-open interval.

A blocked_range3d is the three-dimensional extension of blocked_range2d.

namespace oneapi {
namespace tbb {

template<typename PageValue, typename RowValue=PageValue, typename␣
→˓ColValue=RowValue>

class blocked_range3d {
public:

// Types
using page_range_type = blocked_range<PageValue>;
using row_range_type = blocked_range<RowValue>;
using col_range_type = blocked_range<ColValue>;

// Constructors
blocked_range3d(

PageValue page_begin, PageValue page_end,
typename page_range_type::size_type page_grainsize,

(continues on next page)

9.2. oneTBB Interfaces 368

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

RowValue row_begin, RowValue row_end,
typename row_range_type::size_type row_grainsize,
ColValue col_begin, ColValue col_end,
typename col_range_type::size_type col_grainsize);

blocked_range3d(PageValue page_begin, PageValue page_end
RowValue row_begin, RowValue row_end,
ColValue col_begin, ColValue col_end);

blocked_range3d(blocked_range3d& r, split);
blocked_range3d(blocked_range3d& r, proportional_split& proportion);

// Capacity
bool empty() const;

// Access
bool is_divisible() const;
const page_range_type& pages() const;
const row_range_type& rows() const;
const col_range_type& cols() const;

};

} // namespace tbb
} // namespace oneapi

Requirements:

• The PageValue, RowValue and ColValue must meet the blocked_range requirements

Member types

using page_range_type = blocked_range<PageValue>;

The type of the page values.

using row_range_type = blocked_range<RowValue>;

The type of the row values.

using col_range_type = blocked_range<ColValue>;

The type of the column values.

Member functions

blocked_range3d(PageValue page_begin, PageValue page_end,
typename page_range_type::size_type page_grainsize,
RowValue row_begin, RowValue row_end,
typename row_range_type::size_type row_grainsize,
ColValue col_begin, ColValue col_end,
typename col_range_type::size_type col_grainsize);

9.2. oneTBB Interfaces 369

oneAPI Specification, Release 1.1-rev-1

Effects: Constructs a blocked_range3d representing a three-dimensional space of values. The space is the half-open
Cartesian product [page_begin, page_end) x [row_begin, row_end) x [col_begin, col_end), with the
given grain sizes for the pages, rows and columns.

Example: The statement blocked_range3d<int,char,int> r(0, 6, 2, 'a', 'z'+1, 3, 0, 10, 2);
constructs a three-dimensional space that contains all value pairs of the form (i, j, k), where i ranges from 0
to 6 with a grain size of 2, j ranges from 'a' to 'z' with a grain size of 3, and k ranges from 0 to 9 with a grain size
of 2.

blocked_range3d(PageValue page_begin, PageValue page_end,
RowValue row_begin, RowValue row_end,
ColValue col_begin, ColValue col_end);

Same as blocked_range3d(page_begin,page_end,1,row_begin,row_end,1,col_begin,col_end,1).

blocked_range3d(blocked_range3d& range, split);

Basic splitting constructor.

Requirements: is_divisible() is true.

Effects: Partitions range into two subranges. The newly constructed blocked_range3d is approximately the second
half of the original range, and range is updated to be the remainder. Each subrange has the same grain size as the
original range. Splitting is done either by pages, rows, or columns. The choice of which axis to split is intended to
cause, after repeated splitting, the subranges to approach the aspect ratio of the respective page, row, and column grain
sizes.

blocked_range3d(blocked_range3d& range, proportional_split proportion);

Proportional splitting constructor.

Requirements: is_divisible() is true.

Effects: Partitions range into two subranges in the given proportion across one of its axes. The choice of which
axis to split is made in the same way as for the basic splitting constructor; then, proportional splitting is done for the
chosen axis. The second axis and the grain sizes for each subrange remain the same as in the original range.

bool empty() const;

Effects: Determines if range is empty.

Returns: pages.empty()||rows().empty()||cols().empty()

bool is_divisible() const;

Effects: Determines if the range can be split into subranges.

Returns: pages().is_divisible()||rows().is_divisible()||cols().is_divisible()

const page_range_type& pages() const;

Returns: Range containing the pages of the value space.

const row_range_type& rows() const;

Returns: Range containing the rows of the value space.

const col_range_type& cols() const;

9.2. oneTBB Interfaces 370

oneAPI Specification, Release 1.1-rev-1

Returns: Range containing the columns of the value space.

See also:

• blocked_range

• blocked_range2d

Partitioners

A partitioner specifies how a loop template should partition its work among threads.

auto_partitioner

[algorithms.auto_partitioner]
Specifies that a parallel loop should optimize its range subdivision based on work-stealing events.

A loop template with an auto_partitioner attempts to minimize range splitting while providing ample opportunities
for work stealing.

The range subdivision is initially limited to S subranges, where S is proportional to the number of threads specified by
the global_contol or task_arena. Each of these subranges is not divided further unless it is stolen by an idle thread.
If stolen, it is further subdivided to create additional subranges. Thus a loop template with an auto_partitioner
creates additional subranges only when it is necessary to balance a load.

An auto_partitioner performs sufficient splitting to balance load, not necessarily splitting as finely as
Range::is_divisible permits. When used with classes such as blocked_range, the selection of an appropriate
grain size is less important, and often acceptable performance can be achieved with the default grain size of 1.

The auto_partitioner class satisfies the CopyConstructibe requirement from the ISO C++ [utility.arg.requirements]
section.

Tip: When using auto_partitioner and a blocked_range for a parallel loop, the body may receive a subrange
larger than the grain size of the blocked_range. Therefore, do not assume that the grain size is an upper bound of the
subrange size. Use simple_partitioner if an upper bound is required.

// Defined in header <oneapi/tbb/partitioner.h>

namespace oneapi {
namespace tbb {

class auto_partitioner {
public:

auto_partitioner() = default;
~auto_partitioner() = default;

};

} // namespace tbb
} // namespace oneapi

9.2. oneTBB Interfaces 371

oneAPI Specification, Release 1.1-rev-1

affinity_partitioner

[algorithms.affinity_partitioner]
Hints that loop iterations should be assigned to threads in a way that optimizes for cache affinity.

An affinity_partitioner hints that execution of a loop template should use the same task affinity pattern for
splitting the work as used by previous execution of the loop (or another loop) with the same affinity_partitioner
object.

affinity_partitioner uses proportional splitting when it is enabled for a Range type.

Unlike the other partitioners, it is important that the same affinity_partitioner object be passed to the loop
templates to be optimized for affinity.

The affinity_partitioner class satisfies the CopyConstructibe requirement from the ISO C++ [util-
ity.arg.requirements] section.

// Defined in header <oneapi/tbb/partitioner.h>

namespace oneapi {
namespace tbb {

class affinity_partitioner {
public:

affinity_partitioner() = default;
~affinity_partitioner() = default;

};

} // namespace tbb
} // namespace oneapi

See also:

• Range named requirement

static_partitioner

[algorithms.static_partitioner]
Specifies that a parallel algorithm should distribute the work uniformly across threads and should not do additional
load balancing.

An algorithm with a static_partitioner distributes the range across threads in subranges of approximately equal
size. The number of subranges is equal to the number of threads that can possibly participate in task execution, as
specified by global_contol or task_arena classes. These subranges are not further split.

Caution: The regularity of subrange sizes is not guaranteed if the range type does not support proportional
splitting, or if the grain size is set larger than the size of the range divided by the number of threads participating in
task execution.

In addition, static_partitioner uses a deterministic task affinity pattern to hint the task scheduler how the sub-
ranges should be assigned to threads.

The static_partitioner class satisfies the CopyConstructibe requirement from the ISO C++ [util-
ity.arg.requirements] section.

9.2. oneTBB Interfaces 372

oneAPI Specification, Release 1.1-rev-1

Tip: Use static_partitioner to:

• Parallelize small well-balanced workloads where enabling additional load balancing opportunities brings more
overhead than performance benefits.

• Port OpenMP* parallel loops with schedule(static) if deterministic work partitioning across threads is im-
portant.

// Defined in header <oneapi/tbb/partitioner.h>

namespace oneapi {
namespace tbb {

class static_partitioner {
public:

static_partitioner() = default;
~static_partitioner() = default;

};

} // namespace tbb
} // namespace oneapi

See also:

• Range named requirement

simple_partitioner

[algorithms.simple_partitioner]
Specifies that a parallel loop should recursively split its range until it cannot be further subdivided.

A simple_partitioner specifies that a loop template should recursively divide its range until for each subrange r, the
condition !r.is_divisible() holds. This is the default behavior of the loop templates that take a range argument.

The simple_partitioner class satisfies the CopyConstructibe requirement from the ISO C++ [util-
ity.arg.requirements] section.

Tip: When using simple_partitioner and a blocked_range for a parallel loop, make sure to specify an appro-
priate grain size for the blocked_range. The default grain size is 1, which may make the subranges much too small
for efficient execution.

// Defined in header <oneapi/tbb/partitioner.h>

namespace oneapi {
namespace tbb {

class simple_partitioner {
public:

simple_partitioner() = default;
~simple_partitioner() = default;

};
(continues on next page)

9.2. oneTBB Interfaces 373

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

} // namespace tbb
} // namespace oneapi

See also:

• Range named requirement

Split Tags

proportional split

[algorithms.proportional_split]
Type of an argument for a proportional splitting constructor of Range.

An argument of type proportional_split may be used by classes that satisfy Range requirements to distinguish a
proportional splitting constructor from a basic splitting constructor and from a copy constructor, and to suggest a ratio
in which a particular instance of the class should be split.

// Defined in header <oneapi/tbb/blocked_range.h>
// Defined in header <oneapi/tbb/blocked_range2d.h>
// Defined in header <oneapi/tbb/blocked_range3d.h>
// Defined in header <oneapi/tbb/partitioner.h>
// Defined in header <oneapi/tbb/parallel_for.h>
// Defined in header <oneapi/tbb/parallel_reduce.h>
// Defined in header <oneapi/tbb/parallel_scan.h>

namespace oneapi {
namespace tbb {
class proportional_split {
public:

proportional_split(std::size_t _left = 1, std::size_t _right = 1);

std::size_t left() const;
std::size_t right() const;

explicit operator split() const;
};

} // namespace tbb
} // namespace oneapi

Member functions

proportional_split(std::size_t _left = 1, std::size_t _right = 1)
Constructs a proportion with the ratio specified by coefficients _left and _right.

std::size_t left() const
Returns the size of the left part of the proportion.

std::size_t right() const
Returns the size of the right part of the proportion.

9.2. oneTBB Interfaces 374

oneAPI Specification, Release 1.1-rev-1

explicit operator split() const
Makes proportional_split convertible to the split type to use with ranges that do not support proportional
splitting.

See also:

• split

• Range requirements

split

[algorithms.split]
Type of an argument for a splitting constructor of Range. An argument of type split is used to distinguish a splitting
constructor from a copy constructor.

// Defined in header <oneapi/tbb/blocked_range.h>
// Defined in header <oneapi/tbb/blocked_range2d.h>
// Defined in header <oneapi/tbb/blocked_range3d.h>
// Defined in header <oneapi/tbb/partitioner.h>
// Defined in header <oneapi/tbb/parallel_for.h>
// Defined in header <oneapi/tbb/parallel_reduce.h>
// Defined in header <oneapi/tbb/parallel_scan.h>

class split;

See also:

• Range requirements

9.2.3 Flow Graph

[flow_graph]
In addition to loop parallelism, the oneAPI Threading Building Blocks (oneTBB) library also supports graph paral-
lelism. With this feature, highly scalable and completely sequential graphs can be created.

There are three types of components used to implement a graph:

• A graph class instance

• Nodes

• Ports and edges

Graph Class

The graph class instance owns all the tasks created on behalf of the flow graph. Users can wait on the graph if they
need to wait for the completion of all of the tasks related to the flow graph execution. Users can also register external
interactions with the graph and run tasks under the ownership of the flow graph.

9.2. oneTBB Interfaces 375

oneAPI Specification, Release 1.1-rev-1

graph

[flow_graph.graph]
Class that serves as a handle to a flow graph of nodes and edges.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

class graph {
public:

graph();
graph(task_group_context& context);
~graph();

void wait_for_all();

void reset(reset_flags f = rf_reset_protocol);
void cancel();
bool is_cancelled();
bool exception_thrown();

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

reset_flags enumeration

reset_flags Enumeration

[flow_graph.reset_flags]
A reset_flags enumeration represents flags that can be passed to the graph::reset() function.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

enum reset_flags {
rf_reset_protocol = /*implementation-defined*/,
rf_reset_bodies = /*implementation-defined*/,
rf_clear_edges = /*implementation-defined*/

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

9.2. oneTBB Interfaces 376

oneAPI Specification, Release 1.1-rev-1

Its enumerated values and their meanings are as follows:

• rf_reset_protocol - All buffers are emptied, internal state of nodes reinitialized. All calls to reset() per-
form these actions.

• rf_reset_bodies - When nodes with bodies are created, the body specified in the constructor is copied and
preserved. When rf_reset_bodies is specified, the current body of the node is deleted and replaced with a
copy of the body saved during construction.

Caution: If the body contains state which has an external component (such as a file descriptor), the node
may not behave the same on re-execution of the graph after body replacement. In this case, the node should
be re-created.

• rf_clear_edges - All edges are removed from the graph.

Member functions

graph(task_group_context &context)
Constructs a graph with no nodes. If context is specified, the graph tasks are executed in this context. By
default, the graph is executed in a bound context of its own.

~graph()
Calls wait_for_all() on the graph, then destroys the graph.

void wait_for_all()
Blocks execution until all tasks associated with the graph have completed or cancelled.

void reset(reset_flags f = rf_reset_protocol)
Resets the graph according to the specified flags. Flags to reset() can be combined with bitwise-or.

Note: reset() is a thread-unsafe operation, don’t call it concurrently.

void cancel()
Cancels all tasks in the graph.

bool is_cancelled()
Returns: true if the graph was cancelled during the last call to wait_for_all(); false, otherwise.

bool exception_thrown()
Returns: true if during the last call to wait_for_all() an exception was thrown; false, otherwise.

Nodes

Abstract Interfaces

To be used as a graph node type, a class needs to inherit certain abstract types and implement the corresponding
interfaces. graph_node is the base class for any other node type; its interfaces always have to be implemented. If a
node sends messages to other nodes, it has to implement the sender interface, while with the receiver interface the
node may accept messages. For nodes that have multiple inputs and/or outputs, each input port is a receiver and each
output port is a sender.

9.2. oneTBB Interfaces 377

oneAPI Specification, Release 1.1-rev-1

graph_node

[flow_graph.graph_node]
A base class for all graph nodes.

namespace oneapi {
namespace tbb {
namespace flow {

class graph_node {
public:

explicit graph_node(graph &g);
virtual ~graph_node();

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

The graph_node class is a base class for all flow graph nodes. The virtual destructor allows flow graph nodes to
be destroyed through pointers to graph_node. For example, a vector< graph_node * > can be used to hold the
addresses of flow graph nodes that will need to be destroyed later.

sender

[flow_graph.sender]
A base class for all nodes that may send messages.

namespace oneapi {
namespace tbb {
namespace flow {

template< typename T >
class sender { /*unspecified*/ };

} // namespace flow
} // namespace tbb
} // namespace oneapi

The T type is a message type.

receiver

[flow_graph.receiver]
A base class for all nodes that may receive messages.

namespace oneapi {
namespace tbb {
namespace flow {

(continues on next page)

9.2. oneTBB Interfaces 378

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

template< typename T >
class receiver { /*unspecified*/ };

} // namespace flow
} // namespace tbb
} // namespace oneapi

The T type is a message type.

Properties

Every node in a flow graph has its own properties.

Forwarding and Buffering

[flow_graph.forwarding_and_buffering]

Forwarding

In a flow::graph, nodes that forward messages to successors have one of two possible forwarding policies, which are
a property of the node:

• broadcast-push - the message will be pushed to as many successors as will accept the message. If no successor
accepts the message, the fate of the message depends on the output buffering policy of the node.

• single-push - if the message is accepted by a successor, no further push of that message will occur. If a successor
rejects the message, the next successor in the set is tried. This continues until a successor accepts the message, or
all successors have been attempted. If no successor accepts the message, it will be retained for a possible future
resend. Message that is successfully transferred to a successor is removed from the node.

Buffering

There are two policies for handling a message that cannot be pushed to any successor:

• buffering - if no successor accepts a message, it is stored so subsequent node processing can use it. Nodes that
buffer outputs have “yes” in the “try_get()?” column below.

• discarding - if no successor accepts a message, it is discarded and has no further effect on graph execution.
Nodes that discard outputs have “no” in the “try_get()?” column below.

The following table lists the policies of each node:

9.2. oneTBB Interfaces 379

oneAPI Specification, Release 1.1-rev-1

Table 4: Buffering and Forwarding properties summary
Node try_get()? Forwarding
Functional Nodes
input_node yes broadcast-push
function_node<rejecting> no broadcast-push
function_node<queueing> no broadcast-push
continue_node no broadcast-push
multifunction_node<rejecting> no broadcast-push
multifunction_node<queueing> no broadcast-push
Buffering Nodes
buffer_node yes single-push
priority_queue_node yes single-push
queue_node yes single-push
sequencer_node yes single-push
overwrite_node yes broadcast-push
write_once_node yes broadcast-push
Split/Join Nodes
join_node<queueing> yes broadcast-push
join_node<reserving> yes broadcast-push
join_node<tag_matching> yes broadcast-push
split_node no broadcast-push
indexer_node no broadcast-push
Other Nodes
broadcast_node no broadcast-push
limiter_node no broadcast-push

Functional Nodes

Functional nodes do computations in response to input messages (if any), and send the result or a signal to their suc-
cessors.

continue_node

[flow_graph.continue_node]
A node that executes a specified body object when triggered.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template< typename Output, typename Policy = /*implementation-defined*/ >
class continue_node : public graph_node, public receiver<continue_msg>, public sender

→˓<Output> {
public:

template<typename Body>
continue_node(graph &g, Body body, node_priority_t priority = no_priority);
template<typename Body>

(continues on next page)

9.2. oneTBB Interfaces 380

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

continue_node(graph &g, Body body, Policy /*unspecified*/ = Policy(),
node_priority_t priority = no_priority);

template<typename Body>
continue_node(graph &g, int number_of_predecessors, Body body,

node_priority_t priority = no_priority);
template<typename Body>
continue_node(graph &g, int number_of_predecessors, Body body,

Policy /*unspecified*/ = Policy(), node_priority_t priority = no_
→˓priority);

continue_node(const continue_node &src);
~continue_node();

bool try_put(const input_type &v);
bool try_get(output_type &v);

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The type Output must meet the CopyConstructible requirements from [copyconstructible] ISO C++ Standard
section.

• The type Policy can be specified as lightweight policy or defaulted.

• The type Body must meet the ContinueNodeBody requirements.

A continue_node is a graph_node, receiver<continue_msg>, and sender<Output>.

This node is used for nodes that wait for their predecessors to complete before executing, but no explicit data is passed
across the incoming edges.

A continue_nodemaintains an internal threshold that defines the number of predecessors. This value can be provided
at construction. Call of the make_edge function with continue_node as a receiver increases its threshold. Call of the
remove_edge function with continue_node as a receiver decreases it.

Each time the number of try_put() calls reaches the defined threshold, node’s body is called and the node starts
counting the number of try_put() calls from the beginning.

continue_node has a discarding and broadcast-push properties.

The body object passed to a continue_node is copied. Updates to member variables do not affect the original object
used to construct the node. If the state held within a body object must be inspected from outside of the node, the
copy_body function can be used to obtain an updated copy.

9.2. oneTBB Interfaces 381

oneAPI Specification, Release 1.1-rev-1

Member functions

template<typename Body>
continue_node(graph &g, Body body, node_priority_t priority = no_priority);

Constructs a continue_node that invokes body. The internal threshold is set to 0.

This function specifies node priority.

template<typename Body>
continue_node(graph &g, Body body, Policy /*unspecified*/ = Policy(),

node_priority_t priority = no_priority);

Constructs a continue_node that invokes body. The internal threshold is set to 0.

This function specifies lightweight policy and node priority.

template<typename Body>
continue_node(graph &g, int number_of_predecessors, Body body,

node_priority_t priority = no_priority);

Constructs a continue_node that invokes body. The internal threshold is set to number_of_predecessors.

This function specifies node priority.

template<typename Body>
continue_node(graph &g, int number_of_predecessors, Body body,

Policy /*unspecified*/ = Policy(), node_priority_t priority = no_priority␣
→˓);

Constructs a continue_node that invokes body. The internal threshold is set to number_of_predecessors.

This function specifies lightweight policy and node priority.

template<typename Body>
continue_node(graph &g, int number_of_predecessors, Body body);

Constructs a continue_node that invokes body. The internal threshold is set to number_of_predecessors.

continue_node(const continue_node &src)

Constructs a continue_node that has the same initial state that src had after its construction. It does not copy the
current count of try_puts received, or the current known number of predecessors. The continue_node that is
constructed has a reference to the same graph object as src, has a copy of the initial body used by src, and only has
a non-zero threshold if src is constructed with a non-zero threshold.

The new body object is copy-constructed from a copy of the original body provided to src at its construction.

9.2. oneTBB Interfaces 382

oneAPI Specification, Release 1.1-rev-1

bool try_put(const Input &v)

Increments the count of try_put() calls received. If the incremented count is equal to the number of known prede-
cessors, performs the body function object execution. It does not wait for the execution of the body to complete.

Returns: true

bool try_get(Output &v)

Returns: false

Deduction Guides

template <typename Body, typename Policy>
continue_node(graph&, Body, Policy, node_priority_t = no_priority)

-> continue_node<continue_output_t<std::invoke_result_t<Body, continue_msg>>, Policy>
→˓;

template <typename Body, typename Policy>
continue_node(graph&, int, Body, Policy, node_priority_t = no_priority)

-> continue_node<continue_output_t<std::invoke_result_t<Body, continue_msg>>, Policy>
→˓;

template <typename Body>
continue_node(graph&, Body, node_priority_t = no_priority)

-> continue_node<continue_output_t<std::invoke_result_t<Body, continue_msg>>, /
→˓*default-policy*/>;

template <typename Body>
continue_node(graph&, int, Body, node_priority_t = no_priority)

-> continue_node<continue_output_t<std::invoke_result_t<Body, continue_msg>>, /
→˓*default-policy*/>;

Where:

• continue_output_t<Output> is an alias to Output template argument type. If Output specified as void,
continue_output_t<Output> is an alias to continue_msg type.

Example

A set of continue_nodes forms a Dependency Flow Graph.

9.2. oneTBB Interfaces 383

oneAPI Specification, Release 1.1-rev-1

function_node

[flow_graph.function_node]
A node that executes a user-provided body on incoming messages.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template < typename Input, typename Output = continue_msg, typename Policy = /
→˓*implementation-defined*/ >
class function_node : public graph_node, public receiver<Input>, public sender

→˓<Output> {
public:

template<typename Body>
function_node(graph &g, size_t concurrency, Body body, Policy /*unspecified*/ =␣

→˓Policy(),
node_priority_t priority = no_priority);

template<typename Body>
function_node(graph &g, size_t concurrency, Body body,

node_priority_t priority = no_priority);
~fuction_node();

function_node(const function_node &src);

bool try_put(const Input &v);
bool try_get(Output &v);

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The Input type must meet the DefaultConstructible requirements from [defaultconstructible] and the CopyCon-
structible requirements from [copyconstructible] ISO C++ Standard sections.

• The Output type must meet the CopyConstructible requirements from [copyconstructible] ISO C++ Standard
section.

• The type Policy may be specified as lightweight, queueing and rejecting policies or defaulted.

• The type Body must meet the FunctionNodeBody requirements.

function_node has a user-settable concurrency limit. It can be set to one of predefined values. The user can also
provide a value of type std::size_t to limit concurrency to a value between 1 and tbb::flow::unlimited.

Messages that cannot be immediately processed due to concurrency limits are handled according to the Policy template
argument.

function_node is a graph_node, receiver<Input>, and sender<Output>.

function_node has a discarding and broadcast-push properties.

9.2. oneTBB Interfaces 384

oneAPI Specification, Release 1.1-rev-1

The body object passed to a function_node is copied. Updates to member variables do not affect the original object
used to construct the node. If the state held within a body object must be inspected from outside of the node, the
copy_body function can be used to obtain an updated copy.

Member functions

template<typename Body>
function_node(graph &g, size_t concurrency, Body body,

node_priority_t priority = no_priority);

Constructs a function_node that invokes a copy of body. Most of concurrency calls to body can be made concur-
rently.

Use this function to specify node priority.

template<typename Body>
function_node(graph &g, size_t concurrency, Body body, Policy /*unspecified*/ =␣
→˓Policy(),

node_priority_t priority = no_priority);

Constructs a function_node that invokes a copy of body. Most of concurrency calls to body can be made concur-
rently.

Use this function to specify policy and node priority.

function_node(const function_node &src)

Constructs a function_node that has the same initial state that src had when it was constructed. The function_node
that is constructed has a reference to the same graph object as src, has a copy of the initial body used by src, and has
the same concurrency threshold as src. The predecessors and successors of src are not copied.

The new body object is copy-constructed from a copy of the original body provided to src at its construction.
Changes made to member variables in src’s body after the construction of src do not affect the body of the new
function_node.

bool try_put(const Input &v)

If the concurrency limit allows, executes the user-provided body on the incoming message v. Otherwise, depending on
the policy of the node, either queues the incoming message v or rejects it.

Returns: true if the input was accepted; and false, otherwise.

bool try_get(Output &v)

Returns: false

9.2. oneTBB Interfaces 385

oneAPI Specification, Release 1.1-rev-1

Deduction Guides

template <typename Body, typename Policy>
function_node(graph&, size_t, Body, Policy, node_priority_t = no_priority)

->function_node<std::decay_t<input_t<Body>>, output_t<Body>, Policy>;

template <typename Body>
function_node(graph&, size_t, Body, node_priority_t = no_priority)

->function_node<std::decay_t<input_t<Body>>, output_t<Body>, /*default-policy*/>;

Where:

• input_t is an alias to Body input argument type.

• output_t is an alias to Body return type.

Example

Data Flow Graph example illustrates how function_node performs computation on input data and passes the result
to successors.

input_node

[flow_graph.input_node]
A node that generates messages by invoking the user-provided functor and broadcasts the result to all of its successors.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template < typename Output >
class input_node : public graph_node, public sender<Output> {
public:

template< typename Body >
input_node(graph &g, Body body);
input_node(const input_node &src);
~input_node();

void activate();
bool try_get(Output &v);

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The Output type must meet the DefaultConstructible requirements from [defaultconstructible], CopyCon-
structible requirements from [copyconstructible] and CopyAssignable requirements from [copyassignable] ISO
C++ Standard sections.

9.2. oneTBB Interfaces 386

oneAPI Specification, Release 1.1-rev-1

• The type Body must meet the InputNodeBody requirements.

This node can have no predecessors. It executes a user-provided body function object to generate messages that are
broadcast to all successors. It is a serial node and never calls its body concurrently. This node can buffer a single item.
If no successor accepts an item that it has generated, the message is buffered and provided to successors before a new
item is generated.

input_node is a graph_node and sender<Output>.

input_node has a buffering and broadcast-push properties.

An input_node continues to invoke body and broadcast messages until the body toggles fc.stop() or it has no valid
successors. A message may be generated and then rejected by all successors. In this case, the message is buffered and
will be the next message sent once a successor is added to the node or try_get is called. Calls to try_get return a
message from the buffer, or invoke body to attempt to generate a new message. A call to body is made only when the
buffer is empty.

The body object passed to an input_node is copied. Updates to member variables do not affect the original object used
to construct the node. If the state held within a body object must be inspected from outside of the node, the copy_body
function can be used to obtain an updated copy.

Member functions

template<typename Body>
input_node(graph &g, Body body)

Constructs an input_node that invokes body. By default, the node is created in an inactive state, which means
that messages are not generated until a call to activate is made.

input_node(const input_node &src)
Constructs an input_node that has the same initial state that src had when it was constructed. The input_node
that is constructed has a reference to the same graph object as src, has a copy of the initial body used by src,
and has the same initial active state as src. The successors of src are not copied.

The new body object is copy-constructed from a copy of the original body provided to src at its construction.
Changes made to member variables in src body after the construction of src do not affect the body of the new
input_node.

void activate()
Sets the input_node to the active state, which enables messages generation.

bool try_get(Output &v)
Copies the message from the buffer to v if available, or, if the node is in active state, invokes body to attempt to
generate a new message that will be copied into v.

Returns: true if a message is copied to v; false, otherwise.

Deduction Guides

template <typename Body>
input_node(graph&, Body) -> input_node<std::decay_t<input_t<Body>>>;

Where:

• input_t is an alias to Body input argument type.

9.2. oneTBB Interfaces 387

oneAPI Specification, Release 1.1-rev-1

multifunction_node

[flow_graph.multifunction_node]
A node that used for nodes that receive messages at a single input port and may generate one or more messages that
are broadcast to successors.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template < typename Input, typename Output, typename Policy = /*implementation-
→˓defined*/ >
class multifunction_node : public graph_node, public receiver<Input> {
public:

template<typename Body>
multifunction_node(graph &g, size_t concurrency, Body body, Policy /

→˓*unspecified*/ = Policy(),
node_priority_t priority = no_priority);

template<typename Body>
multifunction_node(graph &g, size_t concurrency, Body body,

node_priority_t priority = no_priority);

multifunction_node(const multifunction_node& other);
~multifunction_node();

bool try_put(const Input &v);

using output_ports_type = /*implementation-defined*/;
output_ports_type& output_ports();

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The Input type must meet the DefaultConstructible requirements from [defaultconstructible] and the CopyCon-
structible requirements from [copyconstructible] ISO C++ Standard sections.

• The type Policy can be specified as lightweight, queueing and rejecting policies or defaulted.

• The type Body must meet the MultifunctionNodeBody requirements.

multifunction_node has a user-settable concurrency limit. It can be set to one of predefined values. The user can
also provide a value of type std::size_t to limit concurrency to a value between 1 and tbb::flow::unlimited.

When the concurrency limit allows, it executes the user-provided body on incoming messages. The body can create
one or more output messages and broadcast them to successors.

multifunction_node is a graph_node, receiver<InputType> and has a tuple of sender<Output> outputs.

multifunction_node has a discarding and broadcast-push properties.

The body object passed to a multifunction_node is copied. Updates to member variables do not affect the original

9.2. oneTBB Interfaces 388

oneAPI Specification, Release 1.1-rev-1

object used to construct the node. If the state held within a body object must be inspected from outside of the node, the
copy_body function can be used to obtain an updated copy.

Member types

output_ports_type is an alias to a std::tuple of output ports.

Member functions

template<typename Body>
multifunction_node(graph &g, size_t concurrency, Body body,

node_priority_t priority = no_priority);

Constructs a multifunction_node that invokes a copy of body. Most concurrency calls to body can be made
concurrently.

Use this function to specify node priority.

template<typename Body>
multifunction_node(graph &g, size_t concurrency, Body body, Policy /*unspecified*/ =␣
→˓Policy(),

node_priority_t priority = no_priority);

Constructs a multifunction_node that invokes a copy of body. Most concurrency calls to body can be made
concurrently.

Use this function to specify a policy and node priority.

multifunction_node(const multifunction_node &src)

Constructs a multifunction_node that has the same initial state that other had when it was constructed. The
multifunction_node that is constructed has a reference to the same graph object as other, has a copy of the initial
body used by other, and has the same concurrency threshold as other. The predecessors and successors of other
are not copied.

The new body object is copy-constructed from a copy of the original body provided to other at its construction.
Changes made to member variables in other body after the construction of other do not affect the body of the new
multifunction_node.

bool try_put(const input_type &v)

If the concurrency limit allows, executes the user-provided body on the incoming message v. Otherwise, depending on
the policy of the node, either queues the incoming message v or rejects it.

Returns: true if the input was accepted; false, otherwise.

output_ports_type& output_ports();

Returns: a std::tuple of output ports.

9.2. oneTBB Interfaces 389

oneAPI Specification, Release 1.1-rev-1

async_node

[flow_graph.async_node]
A node that enables communication between a flow graph and an external activity managed by the user or another
runtime.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template < typename Input, typename Output, typename Policy = /*implemetation-
→˓defined*/ >
class async_node : public graph_node, public receiver<Input>, public sender<Output> {
public:

template<typename Body>
async_node(graph &g, size_t concurrency, Body body, Policy /*unspecified*/ =␣

→˓Policy(),
node_priority_t priority = no_priority);

template<typename Body>
async_node(graph &g, size_t concurrency, Body body, node_priority_t priority =␣

→˓no_priority);

async_node(const async_node& src);
~async_node();

using gateway_type = /*implementation-defined*/;
gateway_type& gateway();

bool try_put(const input_type& v);
bool try_get(output_type& v);

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The Input type must meet the DefaultConstructible requirements from [defaultconstructible] and the CopyCon-
structible requirements from [copyconstructible] ISO C++ Standard sections.

• The type Policy can be specified as lightweight, queueing and rejecting policies or defaulted.

• The type Body must meet the AsyncNodeBody requirements.

async_node executes a user-provided body on incoming messages. The body typically submits the messages to an
external activity for processing outside of the graph. It is responsibility of body to be able to pass the message to an
external activity. This node also provides the gateway_type interface that allows an external activity to communicate
with the flow graph.

async_node is a graph_node, receiver<Input>, and a sender<Output>.

async_node has a discarding and broadcast-push properties.

9.2. oneTBB Interfaces 390

oneAPI Specification, Release 1.1-rev-1

async_node has a user-settable concurrency limit, which can be set to one of predefined values. The user can also
provide a value of type std::size_t to limit concurrency to a value between 1 and tbb::flow::unlimited.

The body object passed to a async_node is copied. Updates to member variables do not affect the original object used
to construct the node. If the state held within a body object must be inspected from outside of the node, the copy_body
function can be used to obtain an updated copy.

Member types

gateway_type meets the GatewayType requirements.

Member functions

template<typename Body>
async_node(graph &g, size_t concurrency, Body body,

node_priority_t priority = no_priority);

Constructs an async_node that invokes a copy of body. The concurrency value limits the number of simultaneous
body invocations for the node.

This function specifies node priority.

template<typename Body>
async_node(graph &g, size_t concurrency, Body body, Policy /*unspecified*/ = Policy(),

node_priority_t priority = no_priority);

Constructs a async_node that invokes a copy of body. Most concurrency calls to body can be made concurrently.

This function specifies a policy and node priority.

async_node(const async_node &src)

Constructs an async_node that has the same initial state that src had when it was constructed. The async_node that
is constructed has a reference to the same graph object as src, has a copy of the initial body used by src, and has the
same concurrency threshold as src. The predecessors and successors of src are not copied.

The new body object is copy-constructed from a copy of the original body provided to src at its construction. Changes
made to member variables in src’s body after the construction of src do not affect the body of the new async_node.

gateway_type& gateway()

Returns reference to the gateway_type interface.

bool try_put(const input_type& v)

9.2. oneTBB Interfaces 391

oneAPI Specification, Release 1.1-rev-1

If the concurrency limit allows, executes the user-provided body on the incoming message v. Otherwise, depending on
the policy of the node, either queues the incoming message v or rejects it.

Returns: true if the input was accepted; and false, otherwise.

bool try_get(output_type& v)

Returns: false
Auxiliary

Function Nodes Policies

[flow_graph.function_node_policies]
function_node, multifunction_node, async_node and continue_node can be specified by the Policy param-
eter, which is represented as a set of tag classes. This parameter affects behavior of node execution.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

class queueing { /*unspecified*/ };
class rejecting { /*unspecified*/ };
class lightweight { /*unspecified*/ };
class queueing_lightweight { /*unspecified*/ };
class rejecting_lightweight { /*unspecified*/ };

} // namespace flow
} // namespace tbb
} // namespace oneapi

Each policy class satisfies the CopyConstructible requirements from [copyconstructible] ISO C++ Standard sections.

Queueing

This policy defines behavior for input messages acceptance. The queueing policy means that input messages that
cannot be processed right away are kept to be processed when possible.

Rejecting

This policy defines behavior for input messages acceptance. The rejecting policy means that input messages that
cannot be processed right away are not accepted by the node and it is responsibility of a predecessor to handle this.

9.2. oneTBB Interfaces 392

oneAPI Specification, Release 1.1-rev-1

Lightweight

This policy helps to reduce the overhead associated with the execution scheduling of the node.

For functional nodes that have a default value for the Policy template parameter, specifying the lightweight policy
results in extending the behavior of the default value of Policy with the behavior defined by the lightweight policy.
For example, if the default value of Policy is queueing, specifying lightweight as the Policy value is equivalent
to specifying queueing_lightweight.

Example

The example below shows the application of the lightweight policy to a graph with a pipeline topology. It is rea-
sonable to apply the lightweight policy to the second and third nodes because the bodies of these nodes are small.
This allows the second and third nodes to execute without task scheduling overhead. The lightweight policy is not
specified for the first node in order to permit concurrent invocations of the graph.

#include "oneapi/tbb/flow_graph.h"

int main() {
using namespace oneapi::tbb::flow;

graph g;

function_node< int, int > add(g, unlimited, [](const int &v) {
return v+1;

});
function_node< int, int, lightweight > multiply(g, unlimited, [](const int &v) {

return v*2;
});
function_node< int, int, lightweight > cube(g, unlimited, [](const int &v) {

return v*v*v;
});

make_edge(add, multiply);
make_edge(multiply, cube);

for(int i = 1; i <= 10; ++i)
add.try_put(i);

g.wait_for_all();

return 0;
}

9.2. oneTBB Interfaces 393

oneAPI Specification, Release 1.1-rev-1

Nodes Priorities

[flow_graph.node_priorities]
Flow graph provides interface for setting relative priorities at construction of flow graph functional nodes, guiding
threads that execute the graph to prefer nodes with higher priority.

namespace oneapi {
namespace tbb {
namespace flow {

typedef unsigned int node_priority_t;

const node_priority_t no_priority = node_priority_t(0);

} // namespace flow
} // namespace tbb
} // namespace oneapi

function_node, multifunction_node, async_node and continue_node has a constructor with parameter of
node_priority_t type, which sets the node priority in the graph: the larger the specified value for the parameter, the
higher the priority. The special constant value no_priority, which is also the default value of the parameter, switches
priority off for a particular node.

For a particular graph, tasks to execute the nodes whose priority is specified have precedence over tasks for the nodes
with lower or no priority value set. When looking for a task to execute, a thread chooses the one with the highest
priority from those in the graph that are available for execution.

Example

The following basic example demonstrates prioritization of one path in the graph over the other, which may help to
improve overall performance of the graph.

Consider executing the graph from the picture above using two threads. Assume that the nodes f1 and f3 take equal
time to execute, while the node f2 takes longer. That makes the nodes bs, f2, and fe constitute the critical path in
this graph. Due to the non-deterministic behavior in selection of the tasks, oneTBB might execute nodes f1 and f3
in parallel first, which would make the whole graph execution time last longer than the case when one of the threads
chooses the node f2 just after the broadcast node. By setting a higher priority on node f2, threads are guided to take
the critical path task earlier, thus reducing overall execution time.

#include <iostream>
#include <cmath>

#include "oneapi/tbb/tick_count.h"
#include "oneapi/tbb/global_control.h"

#include "oneapi/tbb/flow_graph.h"

void spin_for(double delta_seconds) {
oneapi::tbb::tick_count start = oneapi::tbb::tick_count::now();
while((oneapi::tbb::tick_count::now() - start).seconds() < delta_seconds) ;

}

static const double unit_of_time = 0.1;
(continues on next page)

9.2. oneTBB Interfaces 394

oneAPI Specification, Release 1.1-rev-1

Fig. 1: Dependency flow graph with a critical path.

(continued from previous page)

struct Body {
unsigned factor;
Body(unsigned times) : factor(times) {}
void operator()(const oneapi::tbb::flow::continue_msg&) {

// body execution takes 'factor' units of time
spin_for(factor * unit_of_time);

}
};

int main() {
using namespace oneapi::tbb::flow;

const int max_threads = 2;
oneapi::tbb::global_control control(oneapi::tbb::global_control::max_allowed_

→˓parallelism, max_threads);

graph g;

broadcast_node<continue_msg> bs(g);

continue_node<continue_msg> f1(g, Body(5));

// f2 is a heavy one and takes the most execution time as compared to the other␣
→˓nodes in the

// graph. Therefore, let the graph start this node as soon as possible by␣
→˓prioritizing it over

(continues on next page)

9.2. oneTBB Interfaces 395

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

// the other nodes.
continue_node<continue_msg> f2(g, Body(10), node_priority_t(1));

continue_node<continue_msg> f3(g, Body(5));

continue_node<continue_msg> fe(g, Body(7));

make_edge(bs, f1);
make_edge(bs, f2);
make_edge(bs, f3);

make_edge(f1, fe);
make_edge(f2, fe);
make_edge(f3, fe);

oneapi::tbb::tick_count start = oneapi::tbb::tick_count::now();

bs.try_put(continue_msg());
g.wait_for_all();

double elapsed = std::floor((oneapi::tbb::tick_count::now() - start).seconds() /␣
→˓unit_of_time);

std::cout << "Elapsed approximately " << elapsed << " units of time" << std::endl;

return 0;
}

Predefined Concurrency Limits

[flow_graph.concurrency_limits]
Predefined constants that can be used as function_node, multifunction_node, and async_node constructors
arguments to define concurrency limit.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

std::size_t unlimited = /*implementation-defined*/;
std::size_t serial = /*implementation-defined*/;

} // namespace flow
} // namespace tbb
} // namespace oneapi

unlimited concurrency allows an unlimited number of invocations of the body to execute concurrently.

serial concurrency allows only a single call of body to execute concurrently.

9.2. oneTBB Interfaces 396

oneAPI Specification, Release 1.1-rev-1

copy_body

[flow_graph.copy_body]
copy_body is a function template that returns a copy of the body function object from the following nodes:

• continue_node

• function_node

• multifunction_node

• input_node

• async_node

namespace oneapi {
namespace tbb {
namespace flow {

// Defined in header <oneapi/tbb/flow_graph.h>

template< typename Body, typename Node >
Body copy_body(Node &n);

} // namespace flow
} // namespace tbb
} // namespace oneapi

Buffering Nodes

Buffering nodes are designed to accumulate input messages and pass them to successors in a predefined order, depend-
ing on the node type.

overwrite_node

[flow_graph.overwrite_node]
A node that is a buffer of a single item that can be overwritten.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template<typename T>
class overwrite_node : public graph_node, public receiver<T>, public sender<T> {
public:

explicit overwrite_node(graph &g);
overwrite_node(const overwrite_node &src);
~overwrite_node();

bool try_put(const T &v);
(continues on next page)

9.2. oneTBB Interfaces 397

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

bool try_get(T &v);

bool is_valid();
void clear();

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The type T must meet the DefaultConstructible requirements from [defaultconstructible] and CopyAssignable
requirements from [copyassignable] ISO C++ Standard sections.

This type of node buffers a single item of type T. The value is initially invalid. Gets from the node are non-destructive.

overwrite_node is a graph_node, receiver<T> and sender<T>.

overwrite_node has a buffering and broadcast-push properties.

overwrite_node allows overwriting its single item buffer.

Member functions

explicit overwrite_node(graph &g)
Constructs an object of type overwrite_node that belongs to the graph g with an invalid internal buffer item.

overwrite_node(const overwrite_node &src)
Constructs an object of type overwrite_node that belongs to the graph g with an invalid internal buffer item.
The buffered value and list of successors and predecessors are not copied from src.

~overwrite_node()
Destroys the overwrite_node.

bool try_put(const T &v)
Stores v in the internal single item buffer and calls try_put(v) on all successors.

Returns: true
bool try_get(T &v)

If the internal buffer is valid, assigns the value to v.

Returns:true if v is assigned to; false, otherwise.

bool is_valid()
Returns: true if the buffer holds a valid value; false, otherwise.

void clear()
Invalidates the value held in the buffer.

9.2. oneTBB Interfaces 398

oneAPI Specification, Release 1.1-rev-1

Examples

The example demonstrates overwrite_node as a single-value storage that might be updated. Data can be accessed
with direct try_get() call.

#include "oneapi/tbb/flow_graph.h"

int main() {
const int data_limit = 20;
int count = 0;

oneapi::tbb::flow::graph g;

oneapi::tbb::flow::function_node< int, int > data_set_preparation(g,
oneapi::tbb::flow::unlimited, [](int data) {

printf("Prepare large data set and keep it inside node storage\n");
return data;

});

oneapi::tbb::flow::overwrite_node< int > overwrite_storage(g);

oneapi::tbb::flow::source_node<int> data_generator(g,
[&](int& v) -> bool {

if (count < data_limit) {
++count;
v = count;
return true;

} else {
return false;

}
});

oneapi::tbb::flow::function_node< int > process(g, oneapi::tbb::flow::unlimited,
[&](const int& data) {

int data_from_storage = 0;
overwrite_storage.try_get(data_from_storage);
printf("Data from a storage: %d\n", data_from_storage);
printf("Data to process: %d\n", data);

});

oneapi::tbb::flow::make_edge(data_set_preparation, overwrite_storage);
oneapi::tbb::flow::make_edge(data_generator, process);

data_set_preparation.try_put(1);
data_generator.activate();

g.wait_for_all();

return 0;
}

overwrite_node supports reserving join_node as its successor. See the example in the example section of
write_once_node.

9.2. oneTBB Interfaces 399

oneAPI Specification, Release 1.1-rev-1

write_once_node

[flow_graph.write_once_node]
A node that is a buffer of a single item that cannot be overwritten.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template< typename T >
class write_once_node : public graph_node, public receiver<T>, public sender<T> {
public:

explicit write_once_node(graph &g);
write_once_node(const write_once_node &src);
~write_once_node();

bool try_put(const T &v);
bool try_get(T &v);

bool is_valid();
void clear();

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The T type must meet the DefaultConstructible requirements from [defaultconstructible] and CopyAssignable
requirements from [copyassignable] ISO C++ Standard sections.

This type of node buffers a single item of type T. The value is initially invalid. Gets from the node are non-destructive.

write_once_node is a graph_node, receiver<T> and sender<T>.

write_once_node has a buffering and broadcast-push properties.

write_once_node does not allow overwriting its single item buffer.

Member functions

explicit write_once_node(graph &g)
Constructs an object of type write_once_node that belongs to the graph g, with an invalid internal buffer item.

write_once_node(const write_once_node &src)
Constructs an object of type write_once_node with an invalid internal buffer item. The buffered value and list
of successors is not copied from src.

~write_once_node()
Destroys the write_once_node.

9.2. oneTBB Interfaces 400

oneAPI Specification, Release 1.1-rev-1

bool try_put(const T &v)
Stores v in the internal single item buffer if it does not contain a valid value already. If a new value is set, the
node broadcast it to all successors.

Returns: true for the first time after construction or a call to clear(); false, otherwise.

bool try_get(T &v)
If the internal buffer is valid, assigns the value to v.

Returns: true if v is assigned to; false, otherwise.

bool is_valid()
Returns: true if the buffer holds a valid value; false, otherwise.

void clear()
Invalidates the value held in the buffer.

Example

Usage scenario is similar to overwrite_node but an internal buffer can be updated only after clear() call. The following
example shows the possibility to connect the node to a reserving join_node, avoiding direct calls to the try_get()
method from the body of the successor node.

#include "oneapi/tbb/flow_graph.h"

typedef int data_type;

int main() {
using namespace oneapi::tbb::flow;

graph g;

function_node<data_type, data_type> static_result_computer_n(
g, serial,
[&](const data_type& msg) {

// compute the result using incoming message and pass it further, e.g.:
data_type result = data_type((msg << 2 + 3) / 4);
return result;

});
write_once_node<data_type> write_once_n(g); // for buffering once computed value

buffer_node<data_type> buffer_n(g);
join_node<tuple<data_type, data_type>, reserving> join_n(g);

function_node<tuple<data_type, data_type>> consumer_n(
g, unlimited,
[&](const tuple<data_type, data_type>& arg) {

// use the precomputed static result along with dynamic data
data_type precomputed_result = get<0>(arg);
data_type dynamic_data = get<1>(arg);

});

make_edge(static_result_computer_n, write_once_n);
make_edge(write_once_n, input_port<0>(join_n));
make_edge(buffer_n, input_port<1>(join_n));

(continues on next page)

9.2. oneTBB Interfaces 401

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

make_edge(join_n, consumer_n);

// do one-time calculation that will be reused many times further in the graph
static_result_computer_n.try_put(1);

for (int i = 0; i < 100; i++) {
buffer_n.try_put(1);

}

g.wait_for_all();

return 0;
}

buffer_node

[flow_graph.buffer_node]
A node that is an unbounded buffer of messages. Messages are forwarded in an arbitrary order.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template< typename T>
class buffer_node : public graph_node, public receiver<T>, public sender<T> {
public:

explicit buffer_node(graph &g);
buffer_node(const buffer_node &src);
~buffer_node();

bool try_put(const T &v);
bool try_get(T &v);

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The type T must meet the CopyConstructible requirements from [copyconstructible] and CopyAssignable re-
quirements from [copyassignable] ISO C++ Standard sections.

buffer_node is a graph_node, receiver<T>, and sender<T>.

buffer_node has a buffering and single-push properties.

buffer_node forwards messages in an arbitrary order to a single successor in its successor set.

9.2. oneTBB Interfaces 402

oneAPI Specification, Release 1.1-rev-1

Member functions

explicit buffer_node(graph &g)
Constructs an empty buffer_node that belongs to the graph g.

explicit buffer_node(const buffer_node &src)
Constructs an empty buffer_node that belongs to the same graph g as src. Any intermediate state of src,
including its links to predecessors and successors, is not copied.

bool try_put(const T &v)
Adds v to the set of items managed by the node, and tries forwarding it to a successor.

Returns: true
bool try_get(T &v)

Returns: true if an item can be removed from the node and assigned to v. Returns false if there is no non-
reserved item currently in the node.

queue_node

[flow_graph.queue_node]
A node that forwards messages in a first-in first-out (FIFO) order.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template <typename T >
class queue_node : public graph_node, public receiver<T>, public sender<T> {
public:

explicit queue_node(graph &g);
queue_node(const queue_node &src);
~queue_node();

bool try_put(const T &v);
bool try_get(T &v);

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The type T must meet the CopyConstructible requirements from [copyconstructible] and CopyAssignable re-
quirements from [copyassignable] ISO C++ Standard sections.

queue_node forwards messages in a FIFO order to a single successor in its successor set.

queue_node is a graph_node, receiver and sender.

queue_node has a buffering and single-push properties.

9.2. oneTBB Interfaces 403

oneAPI Specification, Release 1.1-rev-1

Member functions

explicit queue_node(graph &g)
Constructs an empty queue_node that belongs to the graph g.

queue_node(const queue_node &src)
Constructs an empty queue_node that belongs to the same graph g as src. Any intermediate state of src,
including its links to predecessors and successors, is not copied.

bool try_put(const T &v)
Adds v to the set of items managed by the node, and tries forwarding the least recently added item to a successor.

Returns: true.

bool try_get(T &v)
Returns: true if an item can be taken from the node and assigned to v. Returns false if there is no item
currently in the queue_node or if the node is reserved.

Example

Usage scenario is similar to buffer_node except that messages are passed in first-in first-out (FIFO) order.

priority_queue_node

[flow_graph.priority_queue_node]
A class template that forwards messages in a priority order.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template< typename T, typename Compare = std::less<T>>
class priority_queue_node : public graph_node, public receiver<T>, public sender<T> {
public:

explicit priority_queue_node(graph &g);
priority_queue_node(const priority_queue_node &src);
~priority_queue_node();

bool try_put(const T &v);
bool try_get(T &v);

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The type T must meet the CopyConstructible requirements from [copyconstructible] and CopyAssignable re-
quirements from [copyassignable] ISO C++ Standard sections.

9.2. oneTBB Interfaces 404

oneAPI Specification, Release 1.1-rev-1

• The type Compare must meet the Compare type requirements from [alg.sorting] ISO C++ Standard section. If
Compare instance throws an exception, then behavior is undefined.

The next message to be forwarded has the largest priority as determined by the Compare template argument.

priority_queue_node is a graph_node, receiver<T>, and sender<T>.

priority_queue_node has a buffering and single-push properties.

Member functions

explicit priority_queue_node(graph &g)
Constructs an empty priority_queue_node that belongs to the graph g.

priority_queue_node(const priority_queue_node &src)
Constructs an empty priority_queue_node that belongs to the same graph g as src. Any intermediate state
of src, including its links to predecessors and successors, is not copied.

bool try_put(const T &v)
Adds v to the priority_queue_node and tries forwarding to a successor the item with the largest priority
among all of the items that were added to the node and have not been yet forwarded to successors.

Returns: true
bool try_get(T &v)

Returns: true if a message is available in the node and the node is not currently reserved. Otherwise, returns
false. If the node returns true, the message with the largest priority is copied to v.

Example

Usage scenario is similar to sequencer_node except that the priority_queue_node provides local order, passing the
message with highest priority of all stored at the moment, while sequencer_node enforces global order and does not
allow a “smaller priority” message to pass through before all preceding messages.

sequencer_node

[flow_graph.sequencer_node]
A node that forwards messages in a sequence order.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template< typename T >
class sequencer_node : public graph_node, public receiver<T>, public sender<T> {
public:

template< typename Sequencer >
sequencer_node(graph &g, const Sequencer &s);
sequencer_node(const sequencer_node &src);

bool try_put(const T &v);
(continues on next page)

9.2. oneTBB Interfaces 405

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

bool try_get(output_type &v);
};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The type T must meet the CopyConstructible requirements from [copyconstructible] and CopyAssignable re-
quirements from [copyassignable] ISO C++ Standard sections.

• The type Sequencer must meet the Sequencer requirements If Sequencer instance throws an exception, be-
havior is undefined.

sequencer_node forwards messages in a sequence order to a single successor in its successor set.

sequencer_node is a graph_node, receiver<T> and sender<T>.

Each item that passes through a sequencer_node is ordered by its sequencer order number. These sequence order
numbers range from 0 to the largest integer representable by the std::size_t type. Sequencer order number of an
item is determined by passing the item to a user-provided Sequencer function object.

Note: The sequencer_node rejects duplicate sequencer numbers.

Member functions

template<typename Sequencer>
sequencer_node(graph &g, const Sequencer &s)

Constructs an empty sequencer_node that belongs to the graph g and uses s to compute sequence numbers for
items.

sequencer_node(const sequencer_node &src)
Constructs an empty sequencer_node that belongs to the same graph g as src and uses a copy of the Sequencer
s used to construct src. The list of predecessors, the list of successors, and the messages inside are not copied.

Caution: The new sequencer object is copy-constructed from a copy of the original sequencer object pro-
vided to src at its construction. Changes made to member variables in the src object do not affect the
sequencer of the new sequencer_node.

bool try_put(const T &v)
Adds v to the sequencer_node and tries forwarding the next item in the sequence to a successor.

Returns: true
bool try_get(T &v)

Returns: true if the next item in the sequence is available in the sequencer_node. If so, it is removed from
the node and assigned to v. Returns false if the next item in sequencer order is not available or if the node is
reserved.

9.2. oneTBB Interfaces 406

oneAPI Specification, Release 1.1-rev-1

Deduction Guides

template <typename Body>
sequencer_node(graph&, Body) -> input_node<std::decay_t<input_t<Body>>>;

Where:

• input_t is an alias to Body input argument type.

Example

The example demonstrates ordering capabilities of the sequencer_node. While being processed in parallel, the data
is passed to the successor node in the exact same order it was read.

#include "oneapi/tbb/flow_graph.h"

struct Message {
int id;
int data;

};

int main() {
oneapi::tbb::flow::graph g;

// Due to parallelism the node can push messages to its successors in any order
oneapi::tbb::flow::function_node< Message, Message > process(g,␣

→˓oneapi::tbb::flow::unlimited, [] (Message msg) -> Message {
msg.data++;
return msg;

});

oneapi::tbb::flow::sequencer_node< Message > ordering(g, [](const Message& msg) ->␣
→˓int {

return msg.id;
});

oneapi::tbb::flow::function_node< Message > writer(g, oneapi::tbb::flow::serial, []␣
→˓(const Message& msg) {

printf("Message recieved with id: %d\n", msg.id);
});

oneapi::tbb::flow::make_edge(process, ordering);
oneapi::tbb::flow::make_edge(ordering, writer);

for (int i = 0; i < 100; ++i) {
Message msg = { i, 0 };
process.try_put(msg);

}

g.wait_for_all();
}

9.2. oneTBB Interfaces 407

oneAPI Specification, Release 1.1-rev-1

Service Nodes

These nodes are designed for advanced control of the message flow, such as combining messages from different paths
in a graph or limiting the number of simultaneously processed messages, as well as for creating reusable custom nodes.

limiter_node

[flow_graph.limiter_node]
A node that counts and limits the number of messages that pass through it.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template< typename T, typename DecrementType=continue_msg >
class limiter_node : public graph_node, public receiver<T>, public sender<T> {
public:

limiter_node(graph &g, size_t threshold);
limiter_node(const limiter_node &src);

receiver<DecrementType>& decrementer();

bool try_put(const T &v);
bool try_get(T &v);

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• T type must meet the DefaultConstructible requirements from [defaultconstructible] ISO C++ Standard section.

• The DecrementType type must be an integral type or continue_msg.

limiter_node is a graph_node, receiver<T>, and sender<T>

limiter_node has a discarding and broadcast-push properties.

This node does not accept new messages once the user-specified threshold is reached. The internal counter of broad-
casts is adjusted through use of the decrementer, a receiver object embedded into the node that can be obtained by
calling the decrementer method. The counter values are truncated to be inside the [0, threshold] interval.

The template parameter DecrementType specifies the type of the message that can be sent to the decrementer. This
template parameter is defined to continue_msg by default. If an integral type is specified, positive values sent to the
decrementer determine the value by which the internal counter of broadcasts will be decreased, while negative values
determine the value by which the internal counter of broadcasts will be increased.

If continue_msg is used as an argument for the DecrementType template parameter, the decrementer’s port of the
limiter_node also acquires the behavior of the continue_node. This behavior requires the number of messages
sent to it to be equal to the number of connected predecessors before decrementing the internal counter of broadcasts
by one.

9.2. oneTBB Interfaces 408

oneAPI Specification, Release 1.1-rev-1

When try_put call on the decrementer results in the new value of the counter of broadcasts to be less than the
threshold, the limiter_node tries to get a message from one of its known predecessors and forward that message
to all its successors. If it cannot obtain a message from a predecessor, it decrements the counter of broadcasts.

Member functions

limiter_node(graph &g, size_t threshold)
Constructs a limiter_node that allows up to threshold items to pass through before rejecting try_put’s.

limiter_node(const limiter_node &src)
Constructs a limiter_node that has the same initial state that src had at its construction. The new
limiter_node belongs to the same graph g as src, has the same threshold. The list of predecessors, the
list of successors, and the current count of broadcasts are not copied from src.

receiver<DecrementType> &decrementer()
Obtains a reference to the embedded receiver object that is used for the internal counter adjustments.

bool try_put(const T &v)
If the broadcast count is below the threshold, v is broadcast to all successors.

Returns: true if v is broadcast; false if v is not broadcast because the threshold has been reached.

bool try_get(T &v)
Returns: false.

broadcast_node

[flow_graph.broadcast_node]
A node that broadcasts incoming messages to all of its successors.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template< typename T >
class broadcast_node :
public graph_node, public receiver<T>, public sender<T> {
public:

explicit broadcast_node(graph &g);
broadcast_node(const broadcast_node &src);

bool try_put(const T &v);
bool try_get(T &v);

};

} // namespace flow
} // namespace tbb
} //namespace oneapi

broadcast_node is a graph_node, receiver<T>, and sender<T>.

broadcast_node has a discarding and broadcast-push properties.

9.2. oneTBB Interfaces 409

oneAPI Specification, Release 1.1-rev-1

All messages are forwarded immediately to all successors.

Member functions

explicit broadcast_node(graph &g)
Constructs an object of type broadcast_node that belongs to the graph g.

broadcast_node(const broadcast_node &src)
Constructs an object of type broadcast_node that belongs to the same graph g as src. The list of predecessors
and the list of successors are not copied.

bool try_put(const input_type &v)
Broadcasts v to all successors.

Returns: always returns true, even if it was unable to successfully forward the message to any of its successors.

bool try_get(output_type &v)
Returns: false.

join_node

[flow_graph.join_node]
A node that creates a tuple from a set of messages received at its input ports and broadcasts the tuple to all of its
successors.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

using tag_value = /*implementation-specific*/;

template<typename OutputTuple, class JoinPolicy = /*implementation-defined*/>
class join_node : public graph_node, public sender< OutputTuple > {
public:

using input_ports_type = /*implementation-defined*/;

explicit join_node(graph &g);
join_node(const join_node &src);

input_ports_type &input_ports();

bool try_get(OutputTuple &v);
};

template<typename OutputTuple, typename K, class KHash=tbb_hash_compare<K> >
class join_node< OutputTuple, key_matching<K,KHash> > : public graph_node, public␣

→˓sender< OutputTuple > {
public:

using input_ports_type = /*implementation-defined*/;

explicit join_node(graph &g);
join_node(const join_node &src);

(continues on next page)

9.2. oneTBB Interfaces 410

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

template<typename B0, typename B1>
join_node(graph &g, B0 b0, B1 b1);
template<typename B0, typename B1, typename B2>
join_node(graph &g, B0 b0, B1 b1, B2 b2);
template<typename B0, typename B1, typename B2, typename B3>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3);
template<typename B0, typename B1, typename B2, typename B3, typename B4>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4);
template<typename B0, typename B1, typename B2, typename B3, typename B5>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5);
template<typename B0, typename B1, typename B2, typename B3, typename B5,␣

→˓typename B6>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6);
template<typename B0, typename B1, typename B2, typename B3, typename B5,␣

→˓typename B6, typename B6>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7);
template<typename B0, typename B1, typename B2, typename B3, typename B5,␣

→˓typename B6, typename B7>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7);
template<typename B0, typename B1, typename B2, typename B3, typename B5,␣

→˓typename B6, typename B7, typename B8>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7, B8␣

→˓b8);
template<typename B0, typename B1, typename B2, typename B3, typename B5,␣

→˓typename B6, typename B7, typename B8, typename B9>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7, B8␣

→˓b8, B9 b9);

input_ports_type &input_ports();

bool try_get(OutputTuple &v);
};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The type OutputTuple must be an instantiation of std::tuple. Each type that the tuple stores must meet the
DefaultConstructible requirements from [defaultconstructible], CopyConstructible requirements from [copycon-
structible] and CopyAssignable requirements from [copyassignable] ISO C++ Standard sections.

• The JoinPolicy type must be specified as one of buffering policies for join_node.

• The KHash type must meet the HashCompare requirements.

• The Bi types must meet the JoinNodeFunctionObject requirements.

A join_node is a graph_node and a sender<OutputTuple>. It contains a tuple of input ports, each of which
is a receiver<Type> for each Type in OutputTuple. It supports multiple input receivers with distinct types and
broadcasts a tuple of received messages to all of its successors. All input ports of a join_node must use the same
buffering policy.

The behavior of a join_node is based on its buffering policy.

9.2. oneTBB Interfaces 411

oneAPI Specification, Release 1.1-rev-1

join_node Policies

[flow_graph.join_node_policies]
join_node supports three buffering policies at its input ports: reserving, queueing, and key_matching.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

struct reserving;
struct queueing;
template<typename K, class KHash=tbb_hash_compare<K> > struct key_matching;
using tag_matching = key_matching<tag_value>;

} // namespace flow
} // namespace tbb
} // namespace oneapi

• queueing - As each input port is put to, the incoming message is added to an unbounded first-in first-out queue
in the port. When there is at least one message at each input port, the join_node broadcasts a tuple containing
the head of each queue to all successors. If at least one successor accepts the tuple, the head of each input port’s
queue is removed; otherwise, the messages remain in their respective input port queues.

• reserving - As each input port is put to, the join_node marks that an input may be available at that port and
returns false. When all ports have been marked as possibly available, the join_node tries to reserve a message
at each port from their known predecessors. If it is unable to reserve a message at a port, it unmarks that port,
and releases all previously acquired reservations. If it is able to reserve a message at all ports, it broadcasts a
tuple containing these messages to all successors. If at least one successor accepts the tuple, the reservations are
consumed; otherwise, they are released.

• key_matching<typename K, class KHash=tbb_hash_compare<K>> - As each input port is put to, a user-
provided function object is applied to the message to obtain its key. The message is then added to a hash table of
the input port. When there is a message at each input port for a given key, the join_node removes all matching
messages from the input ports, constructs a tuple containing the matching messages and attempts to broadcast it
to all successors. If no successor accepts the tuple, it is saved and will be forwarded on a subsequent try_get.

• tag_matching - A specialization of key_matching that accepts keys of type tag_value.

The function template input_port simplifies the syntax for getting a reference to a specific input port.

join_node has a buffering and broadcast-push properties.

Member types

input_ports_type is an alias to a tuple of input ports.

9.2. oneTBB Interfaces 412

oneAPI Specification, Release 1.1-rev-1

Member functions

explicit join_node(graph &g);

Constructs an empty join_node that belongs to the graph g.

template<typename B0, typename B1>
join_node(graph &g, B0 b0, B1 b1);
template<typename B0, typename B1, typename B2>
join_node(graph &g, B0 b0, B1 b1, B2 b2);
template<typename B0, typename B1, , typename B2, typename B3>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3);
template<typename B0, typename B1, , typename B2, typename B3, typename B4>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4);
template<typename B0, typename B1, , typename B2, typename B3, typename B5>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5);
template<typename B0, typename B1, , typename B2, typename B3, typename B5, typename B6>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6);
template<typename B0, typename B1, , typename B2, typename B3, typename B5, typename B6,␣
→˓typename B6>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7);
template<typename B0, typename B1, , typename B2, typename B3, typename B5, typename B6,␣
→˓typename B7>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7);
template<typename B0, typename B1, , typename B2, typename B3, typename B5, typename B6,␣
→˓typename B7, typename B8>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7, B8 b8);
template<typename B0, typename B1, , typename B2, typename B3, typename B5, typename B6,␣
→˓typename B7, typename B8, typename B9>
join_node(graph &g, B0 b0, B1 b1, B2 b2, B3 b3, B4 b4, B5 b5, B6 b6, B7 b7, B8 b8, B9␣
→˓b9);

A constructor only available in the key_matching specialization of join_node.

Creates a join_node that uses the function objects b0, b1, . . . , bN to determine the tags for the input ports 0 through
N.

Caution: Function objects passed to the join_node constructor must not throw. They are called in parallel, and
should be pure, take minimal time, and be non-blocking.

join_node(const join_node &src)

Creates a join_node that has the same initial state that src had at its construction. The list of predecessors, messages
in the input ports, and successors are not copied.

input_ports_type &input_ports()

9.2. oneTBB Interfaces 413

oneAPI Specification, Release 1.1-rev-1

Returns: a std::tuple of receivers. Each element inherits values from receiver<T>, where T is the type of message
expected at that input. Each tuple element can be used like any other receiver<T>. The behavior of the ports is based
on the selected join_node policy.

bool try_get(output_type &v)

Attempts to generate a tuple based on the buffering policy of the join_node.

If it can successfully generate a tuple, it copies it to v and returns true. Otherwise, it returns false.

Non-Member Types

using tag_value = /*implementation-specific*/;

tag_value is an unsigned integral type for defining the tag_matching policy.

Deduction Guides

template <typename Body, typename... Bodies>
join_node(graph&, Body, Bodies...)

->join_node<std::tuple<std::decay_t<input_t<Body>>, std::decay_t<input_t<Bodies>>...>
→˓, key_matching<output_t<Body>>>;

Where:

• input_t is an alias to the input argument type of the passed function object.

• output_t is an alias to the return type of the passed function object.

split_node

[flow_graph.split_node]
A split_node sends each element of the incoming std::tuple to the output port that matches the element index in
the incoming tuple.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template < typename TupleType >
class split_node : public graph_node, public receiver<TupleType> {
public:

explicit split_node(graph &g);
split_node(const split_node &other);
~split_node();

bool try_put(const TupleType &v);
(continues on next page)

9.2. oneTBB Interfaces 414

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

using output_ports_type = /*implementation-defined*/ ;
output_ports_type& output_ports();

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The type TupleType must be an instantiation of std::tuple.

split_node is a receiver<TupleType> and has a tuple of sender output ports. Each of output ports is specified
by corresponding tuple element type. This node receives a tuple at its single input port and generates a message from
each element of the tuple, passing each to the corresponding output port.

split_node has a discarding and broadcast-push properties.

split_node has unlimited concurrency, and behaves as a broadcast_node with multiple output ports.

Member functions

explicit split_node(graph &g)
Constructs a split_node registered with graph g.

split_node(const split_node &other)
Constructs a split_node that has the same initial state that other had when it was constructed. The
split_node that is constructed has a reference to the same graph object as other. The predecessors and
successors of other are not copied.

~split_node()
Destructor

bool try_put(const TupleType &v)
Broadcasts each element of the incoming tuple to the nodes connected to the split_node output ports. The
element at index i of v will be broadcast through the ith output port.

Returns: true
output_ports_type &output_ports()

Returns: a std::tuple of output ports.

indexer_node

[flow_graph.indexer_node]
indexer_node broadcasts messages received at input ports to all of its successors. The messages are broadcast in-
dividually as they are received at each port. The output is a tagged message that contains a tag and a value; the tag
identifies the input port on which the message was received.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {

(continues on next page)

9.2. oneTBB Interfaces 415

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

namespace flow {

template<typename T0, typename... TN>
class indexer_node : public graph_node, public sender</*implementation_defined*/> {
public:

indexer_node(graph &g);
indexer_node(const indexer_node &src);

using input_ports_type = /*implementation_defined*/;
input_ports_type &input_ports();

using output_type = tagged_msg<size_t, T0, TN...>;
bool try_get(output_type &v);

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The T0 type and all types in TN template parameter pack must meet the CopyConstructible requirements from
[copyconstructible] ISO C++ Standard section.

An indexer_node is a graph_node and sender<tagged_msg<size_t, T0, TN...>>. It contains a tuple of input
ports, each of which is a receiver specified by corresponding input template parameter pack element. It supports
multiple input receivers with distinct types and broadcasts each received message to all of its successors. Unlike a
join_node, each message is broadcast individually to all successors of the indexer_node as it arrives at an input
port. Before broadcasting, a message is tagged with the index of the port on which the message arrived.

indexer_node has a discarding and broadcast-push properties.

The function template input_port simplifies the syntax for getting a reference to a specific input port.

Member types

• input_ports_type is an alias to a std::tuple of input ports.

• output_type is an alias to the message of type tagged_msg, which is sent to successors.

Member functions

indexer_node(graph &g)
Constructs an indexer_node that belongs to the graph g.

indexer_node(const indexer_node &src)
Constructs an indexer_node. The list of predecessors, messages in the input ports, and successors are not
copied.

input_ports_type &input_ports()
Returns: A std::tuple of receivers. Each element inherits from receiver<T> where T is the type of message
expected at that input. Each tuple element can be used like any other receiver<T>.

bool try_get(output_type &v)
An indexer_node contains no buffering and therefore does not support gets.

9.2. oneTBB Interfaces 416

oneAPI Specification, Release 1.1-rev-1

Returns: false.

See also:

• input_port function template

• tagged_msg template class

composite_node

[flow_graph.composite_node]
A node that encapsulates a collection of other nodes as a first class graph node.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template< typename InputTuple, typename OutputTuple > class composite_node;

// composite_node with both input ports and output ports
template< typename... InputTypes, typename... OutputTypes>
class composite_node <std::tuple<InputTypes...>, std::tuple<OutputTypes...> > :␣

→˓public graph_node {
public:

typedef std::tuple< receiver<InputTypes>&... > input_ports_type;
typedef std::tuple< sender<OutputTypes>&... > output_ports_type;

composite_node(graph &g);
virtual ~composite_node();

void set_external_ports(input_ports_type&& input_ports_tuple, output_ports_type&&
→˓ output_ports_tuple);

input_ports_type& input_ports();
output_ports_type& output_ports();

};

// composite_node with only input ports
template< typename... InputTypes>
class composite_node <std::tuple<InputTypes...>, std::tuple<> > : public graph_node{
public:

typedef std::tuple< receiver<InputTypes>&... > input_ports_type;

composite_node(graph &g);
virtual ~composite_node();

void set_external_ports(input_ports_type&& input_ports_tuple);
input_ports_type& input_ports();

};

// composite_nodes with only output_ports
template<typename... OutputTypes>

(continues on next page)

9.2. oneTBB Interfaces 417

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

class composite_node <std::tuple<>, std::tuple<OutputTypes...> > : public graph_node{
public:

typedef std::tuple< sender<OutputTypes>&... > output_ports_type;

composite_node(graph &g);
virtual ~composite_node();

void set_external_ports(output_ports_type&& output_ports_tuple);
output_ports_type& output_ports();

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

• The InputTuple and OutputTuple must be instantiations of std::tuple.

composite_node is a graph_node, receiver<T>, and sender<T>.

The composite_node can package any number of other nodes. It maintains input and output port references to nodes
in the package that border the composite_node. This allows the references to be used to make edges to other nodes
outside of the composite_node. The InputTuple is a tuple of input types. The composite_node has an input port
for each type in InputTuple. Likewise, the OutputTuple is a tuple of output types. The composite_node has an
output port for each type in OutputTuple.

The composite_node is a multi-port node with three specializations.

• A multi-port node with multi-input ports and multi-output ports: This specialization has a tuple of input
ports, each of which is a receiver of a type in InputTuple. Each input port is a reference to a port of a
node that the composite_node encapsulates. Similarly, this specialization also has a tuple of output ports, each
of which is a sender of a type in OutputTuple. Each output port is a reference to a port of a node that the
composite_node encapsulates.

• A multi-port node with only input ports and no output ports: This specialization only has a tuple of input
ports.

• A multi-port node with only output ports and no input_ports: This specialization only has a tuple of output
ports.

The function template input_port can be used to get a reference to a specific input port and the function template
output_port can be used to get a reference to a specific output port.

Construction of a composite_node is done in two stages:

• Defining the composite_node with specification of InputTuple and OutputTuple.

• Making aliases from the encapsulated nodes that border the composite_node to the input and output ports of
the composite_node. This step is mandatory as without it the composite_node input and output ports are not
bound to any actual nodes. Making the aliases is achieved by calling the method set_external_ports.

The composite_node does not meet the CopyConstructible requirements from [copyconstructible] ISO C++ Standard
section.

9.2. oneTBB Interfaces 418

oneAPI Specification, Release 1.1-rev-1

Member functions

composite_node(graph &g)
Constructs a composite_node that belongs to the graph g.

void set_external_ports(input_ports_type &&input_ports_tuple, output_ports_type &&output_ports_tuple)
Creates input and output ports of the composite_node as aliases to the ports referenced by
input_ports_tuple and output_ports_tuple, respectively. That is, a port referenced at position N
in input_ports_tuple is mapped as the Nth input port of the composite_node, similarly for output ports.

input_ports_type &input_ports()

Returns: A std::tuple of receivers. Each element is a reference to the actual node or input port
that was aliased to that position in set_external_ports().

Caution: Calling input_ports() without a prior call to set_external_ports() results in undefined
behavior.

output_ports_type &output_ports()
Returns: A std::tuple of senders. Each element is a reference to the actual node or output port that was
aliased to that position in set_external_ports().

Caution: Calling output_ports() without a prior call to set_external_ports() results in undefined
behavior.

See also:

• input_port function template

• output_port function template

Ports and Edges

Flow Graph provides an API to manage connections between the nodes. For nodes that have more than one input or
output ports (for example, join_node), making a connection requires to specify a certain port by using special helper
functions.

input_port

[flow_graph.input_port]
A template function that returns a reference to a specific input port of a given join_node, indexer_node or
composite_node.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template<size_t N, typename NodeType>
(continues on next page)

9.2. oneTBB Interfaces 419

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

/*implementation-defined*/& input_port(NodeType &n);

} // namespace flow
} // namespace tbb
} // namespace oneapi

See also:

• join_node template class

• indexer_node template class

• composite_node template class

output_port

[flow_graph.output_port]
A template function that returns a reference to a specific output port of a given split_node, indexer_node, or
composite_node.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template<size_t N, typename NodeType>
/*implementation-defined*/& output_port(NodeType &n);

} // namespace flow
} // namespace tbb
} // namespace oneapi

See also:

• split_node Template Class

• multifunction_node Template Class

• composite_node Template Class

make_edge

[flow_graph.make_edge]
A function template for building edges between nodes.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

(continues on next page)

9.2. oneTBB Interfaces 420

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

template<typename Message>
inline void make_edge(sender<Message> &p, receiver<Message> &s);

template< typename MultiOutputNode, typename MultiInputNode >
inline void make_edge(MultiOutputNode& output, MultiInputNode& input);

template<typename MultiOutputNode, typename Message>
inline void make_edge(MultiOutputNode& output, receiver<Message> input);

template<typename Message, typename MultiInputNode>
inline void make_edge(sender<Message> output, MultiInputNode& input);

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The MultiOutputNode type must have a valid MultiOutputNode::output_ports_type qualified-id that de-
notes a type.

• The MultiInputNode type must have a valid MultiInputNode::input_ports_type qualified-id that denotes
a type.

The common form of make_edge(sender, receiver) creates an edge between provided sender and receiver
instances.

Overloads that accept a MultiOutputNode type instance make an edge from port 0 of a multi-output predecessor.

Overloads that accept a MultiInputNode type instance make an edge to port 0 of a multi-input successor.

remove_edge

[flow_graph.remove_edge]
A function template for building edges between nodes.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

template<typename Message>
inline void remove_edge(sender<Message> &p, receiver<Message> &s);

template< typename MultiOutputNode, typename MultiInputNode >
inline void remove_edge(MultiOutputNode& output, MultiInputNode& input);

template<typename MultiOutputNode, typename Message>
inline void remove_edge(MultiOutputNode& output, receiver<Message> input);

template<typename Message, typename MultiInputNode>
inline void remove_edge(sender<Message> output, MultiInputNode& input);

(continues on next page)

9.2. oneTBB Interfaces 421

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• The MultiOutputNode type must have a valid MultiOutputNode::output_ports_type qualified-id that de-
notes a type.

• The MultiInputNode type must have a valid MultiInputNode::input_ports_type qualified-id that denotes
a type.

The common form of remove_edge(sender, receiver) creates an edge between provided sender and receiver
instances.

Overloads that accept a MultiOutputNode type instance remove an edge from port 0 of a multi-output predecessor.

Overloads that accept a MultiInputNode type instance remove an edge to port 0 of a multi-input successor.

Special Messages Types

Flow Graph supports a set of specific message types.

continue_msg

[flow_graph.continue_msg]
An empty class that represents a continue message. An object of this class is used to indicate that the sender has
completed.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {
namespace flow {

class continue_msg {};

} // namespace flow
} // namespace tbb
} // namespace oneapi

tagged_msg

[flow_graph.tagged_msg]
A class template composed of a tag and a message. The message is a value that can be one of several defined types.

// Defined in header <oneapi/tbb/flow_graph.h>

namespace oneapi {
namespace tbb {

(continues on next page)

9.2. oneTBB Interfaces 422

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

namespace flow {

template<typename TagType, typename... TN>
class tagged_msg {
public:

template<typename T, typename R>
tagged_msg(T const &index, R const &val);

TagType tag() const;

template<typename V>
const V& cast_to() const;

template<typename V>
bool is_a() const;

};

} // namespace flow
} // namespace tbb
} // namespace oneapi

Requirements:

• All types in TN template parameter pack must meet the CopyConstructible requirements from [copyconstructible]
ISO C++ Standard section.

• The type TagType must be an integral unsigned type.

The tagged_msg class template is intended for messages whose type is determined at runtime. A message of one of
the types TN is tagged with a tag of type TagType. The tag then can serve to identify the message. In the flow graph,
tagged_msg is used as the output of indexer_node.

Member functions

template<typename T, typename R>
tagged_msg(T const &index, R const &value)

Requirements:

• The type R must be the same as one of the TN types.

• The type T must be acceptable as a TagType constructor parameter.

Constructs a tagged_msg with tag index and value val.

TagType tag() const
Returns the current tag.

template<typename V>
const V &cast_to() const

Requirements:

• The type V must be the same as one of the TN types.

Returns the value stored in tagged_msg. If the value is not of type V, the std::runtime_error exception is
thrown.

9.2. oneTBB Interfaces 423

oneAPI Specification, Release 1.1-rev-1

template<typename V>
bool is_a() const

Requirements:

• The type V must be the same as one of the TN types.

Returns true if V is the type of the value held by the tagged_msg. Returns false, otherwise.

Non-member functions

template<typename V, typename T>
const V& cast_to(T const &t) {

return t.cast_to<V>();
}

template<typename V, typename T>
bool is_a(T const &t);

Requirements:

• The type T must be an instantiated tagged_msg class template.

• The type V must be the same as one of the corresponding template arguments for tagged_msg.

The free-standing template functions cast_to and is_a applied to a tagged_msg object are equivalent to the calls of
the corresponding methods of that object.

See also:

• indexer_node class template

Examples

Dependency Flow Graph Example

In the following example, five computations A-E are set up with the partial ordering shown below in “A simple depen-
dency graph.”. For each edge in the flow graph, the node at the tail of the edge must complete its execution before the
node at the head may begin.

#include <cstdio>
#include "oneapi/tbb/flow_graph.h"

using namespace oneapi::tbb::flow;

struct body {
std::string my_name;
body(const char *name) : my_name(name) {}
void operator()(continue_msg) const {

printf("%s\n", my_name.c_str());
}

};

int main() {
graph g;

(continues on next page)

9.2. oneTBB Interfaces 424

oneAPI Specification, Release 1.1-rev-1

Fig. 2: A simple dependency graph.

9.2. oneTBB Interfaces 425

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

broadcast_node< continue_msg > start(g);
continue_node<continue_msg> a(g, body("A"));
continue_node<continue_msg> b(g, body("B"));
continue_node<continue_msg> c(g, body("C"));
continue_node<continue_msg> d(g, body("D"));
continue_node<continue_msg> e(g, body("E"));

make_edge(start, a);
make_edge(start, b);
make_edge(a, c);
make_edge(b, c);
make_edge(c, d);
make_edge(a, e);

for (int i = 0; i < 3; ++i) {
start.try_put(continue_msg());
g.wait_for_all();

}

return 0;
}

In this example, nodes A-E print out their names. All of these nodes are therefore able to use struct body to construct
their body objects.

In function main, the flow graph is set up once and then run three times. All of the nodes in this example pass around
continue_msg objects. This type is used to communicate that a node has completed execution.

The first line in function main instantiates a graph object g. On the next line, a broadcast_node named start is
created. Anything passed to this node will be broadcast to all of its successors. The node start is used in the for
loop at the bottom of main to launch the execution of the rest of the flow graph.

In the example, five continue_node objects are created, named a - e. Each node is constructed with a reference to
graph g and the function object to invoke when it runs. The successor / predecessor relationships are set up by the
make_edge calls that follow the declaration of the nodes.

After the nodes and edges are set up, the try_put in each iteration of the for loop results in a broadcast of a
continue_msg to both a and b. Both a and b are waiting for a single continue_msg, since they both have only
a single predecessor, start.

When they receive the message from start, they execute their body objects. When complete, each of them forwards
a message to a successor, and so on. The graph uses tasks to execute the node bodies as well as to forward messages
between the nodes, allowing computation to execute concurrently when possible.

See also:

• continue_msg class

• continue_node class

9.2. oneTBB Interfaces 426

oneAPI Specification, Release 1.1-rev-1

Message Flow Graph Example

This example calculates the sum x*x + x*x*x for all x = 1 to 10. The layout of this example is shown in the figure
below.

Fig. 3: A simple message flow graph.

Each value enters through the broadcast_node<int> input. This node broadcasts the value to both squarer and
cuber, which calculate x*x and x*x*x, respectively. The output of each of these nodes is put to one of join’s ports.
A tuple containing both values is created by join_node<std::tuple<int,int>> join and forwarded to summer,
which adds both values to the running total. Both squarer and cuber allow unlimited concurrency, that is they each
may process multiple values simultaneously. The final summer, which updates a shared total, is only allowed to process
a single incoming tuple at a time, eliminating the need for a lock around the shared value.

#include <cstdio>
#include "oneapi/tbb/flow_graph.h"

using namespace oneapi::tbb::flow;

struct square {
int operator()(int v) { return v*v; }

};

struct cube {
int operator()(int v) { return v*v*v; }

};

class sum {
int &my_sum;

public:
sum(int &s) : my_sum(s) {}
int operator()(std::tuple<int, int> v) {
my_sum += get<0>(v) + get<1>(v);
return my_sum;

}
};

(continues on next page)

9.2. oneTBB Interfaces 427

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

int main() {
int result = 0;

graph g;
broadcast_node<int> input(g);
function_node<int,int> squarer(g, unlimited, square());
function_node<int,int> cuber(g, unlimited, cube());
join_node<std::tuple<int,int>, queueing> join(g);
function_node<std::tuple<int,int>,int>

summer(g, serial, sum(result));

make_edge(input, squarer);
make_edge(input, cuber);
make_edge(squarer, get<0>(join.input_ports()));
make_edge(cuber, get<1>(join.input_ports()));
make_edge(join, summer);

for (int i = 1; i <= 10; ++i)
input.try_put(i);

g.wait_for_all();

printf("Final result is %d\n", result);
return 0;

}

In the example code above, the classes square, cube, and sum define the three user-defined operations. Each class is
used to create a function_node.

In function main, the flow graph is set up and then the values 1-10 are put into the node input. All the nodes in this
example pass around values of type int. The nodes used in this example are all class templates and therefore can be
used with any type that supports copy construction, including pointers and objects.

9.2.4 Task Scheduler

[scheduler]
oneAPI Threading Building Blocks (oneTBB) provides a task scheduler, which is the engine that drives the algorithm
templates and task groups. The exact tasking API depends on the implementation.

The tasks are quanta of computation. The scheduler implements worker thread pool and maps tasks onto these threads.
The mapping is non-preemptive. Once a thread starts running a task, the task is bound to that thread until completion.
During that time, the thread services other tasks only when it waits for completion of nested parallel constructs, as
described below. While waiting, either user or worker thread may run any available task, including unrelated tasks
created by this or other threads.

The task scheduler is intended for parallelizing computationally intensive work. Because task objects are not scheduled
preemptively, they should generally avoid making calls that might block a thread for long periods during which the
thread cannot service other tasks.

Caution: There is no guarantee that potentially parallel tasks actually execute in parallel, because the scheduler
adjusts actual parallelism to fit available worker threads. For example, given a single worker thread, the scheduler

9.2. oneTBB Interfaces 428

oneAPI Specification, Release 1.1-rev-1

creates no actual parallelism. For example, it is generally unsafe to use tasks in a producer consumer relationship,
because there is no guarantee that the consumer runs at all while the producer is running.

Scheduling controls

task_group_context

[scheduler.task_group_context]
task_group_context represents a set of properties used by task scheduler for execution of the associated tasks. Each
task is associated with only one task_group_context object.

The task_group_context objects form a forest of trees. Each tree’s root is a task_group_context constructed as
isolated.

task_group_context is cancelled explicitly by the user request, or implicitly when an exception is thrown out of an
associated task. Canceling task_group_context causes the entire subtree rooted at it to be cancelled.

The task_group_context carries floating point settings inherited from the parent task_group_context object or
captured with a dedicated interface.

// Defined in header <oneapi/tbb/task_group.h>

namespace oneapi {
namespace tbb {

class task_group_context {
public:

enum kind_t {
isolated = /* implementation-defined */,
bound = /* implementation-defined */

};
enum traits_type {

fp_settings = /* implementation-defined */,
default_traits = 0

};

task_group_context(kind_t relation_with_parent = bound,
uintptr_t traits = default_traits);

~task_group_context();

void reset();
bool cancel_group_execution();
bool is_group_execution_cancelled() const;
void capture_fp_settings();
uintptr_t traits() const;

};

} // namespace tbb;
} // namespace oneapi

9.2. oneTBB Interfaces 429

oneAPI Specification, Release 1.1-rev-1

Member types and constants

enum kind_t::isolated
When passed to the specific constructor, the created task_group_context object has no parent.

enum kind_t::bound
When passed to the specific constructor, the created task_group_context object becomes a child of the in-
nermost running task’s group when the first task associated to the task_group_context is passed to the task
scheduler. If there is no innermost running task on the current thread, the task_group_context becomes
isolated.

enum traits_type::fp_settings
When passed to the specific constructor, the flag forces the context to capture floating-point settings from the
current thread.

Member functions

task_group_context(kind_t relation_to_parent = bound, uintptr_t traits = default_traits)
Constructs an empty task_group_context.

~task_group_context()
Destroys an empty task_group_context. The behavior is undefined if there are still extant tasks associated with
this task_group_context.

bool cancel_group_execution()
Requests that tasks associated with this task_group_context are not executed.

Returns false if this task_group_context is already cancelled; true, otherwise. If concurrently called by
multiple threads, exactly one call returns true and the rest return false.

bool is_group_execution_cancelled() const
Returns true if this task_group_context has received the cancellation request.

void reset()
Reinitializes this task_group_context to the uncancelled state.

Caution: This method is only safe to call once all tasks associated with the group’s subordinate groups have
completed. This method must not be invoked concurrently by multiple threads.

void capture_fp_settings()
Captures floating-point settings from the current thread.

Caution: This method is only safe to call once all tasks associated with the group’s subordinate groups have
completed. This method must not be invoked concurrently by multiple threads.

uintptr_t traits() const
Returns traits of this task_group_context.

9.2. oneTBB Interfaces 430

oneAPI Specification, Release 1.1-rev-1

global_control

[scheduler.global_control]
Use this class to control certain settings or behavior of the oneTBB dynamic library.

An object of class global_control, or a “control variable”, affects one of several behavioral aspects, or parameters, of
TBB. The global_control class is primarily intended for use at the application level, to control the whole application
behavior.

The current set of parameters that you can modify is defined by the global_control::parameter enumeration. The
parameter and the value it should take are specified as arguments to the constructor of a control variable. The impact
of the control variable ends when its lifetime is complete.

Control variables can be created in different threads, and may have nested or overlapping scopes. However, at any point
in time each controlled parameter has a single active value that applies to the whole process. This value is selected
from all currently existing control variables by applying a parameter-specific selection rule.

// Defined in header <oneapi/tbb/global_control.h>

namespace oneapi {
namespace tbb {

class global_control {
public:

enum parameter {
max_allowed_parallelism,
thread_stack_size,
terminate_on_exception

};

global_control(parameter p, size_t value);
~global_control();

static size_t active_value(parameter param);
};

} // namespace tbb
} // namespace oneapi

Member types and constants

enum parameter::max_allowed_parallelism
Selection rule: minimum

Limits total number of worker threads that can be active in the task scheduler to parameter_value - 1.

Note: With max_allowed_parallelism set to 1, global_control enforces serial execution of all tasks by
the application thread(s), that is, the task scheduler does not allow worker threads to run. There is one exception:
if some work is submitted for execution via task_arena::enqueue, a single worker thread will still run ignoring
the max_allowed_parallelism restriction.

enum parameter::thread_stack_size
Selection rule: maximum

9.2. oneTBB Interfaces 431

oneAPI Specification, Release 1.1-rev-1

Set stack size for threads created by the library, including working threads in the task scheduler and threads
controlled by thread wrapper classes.

enum parameter::terminate_on_exception
Selection rule: logical disjunction

Setting the parameter to 1 causes termination in any condition that would throw or rethrow an exception. If set
to 0 (default), the parameter does not affect the implementation behavior.

Member functions

global_control(parameter param, size_t value)
Constructs a global_control object with a specified control parameter and it’s value.

~global_control()
Destructs a control variable object and ends it’s impact.

static size_t active_value(parameter param)
Returns the currently active value of the setting defined by param.

See also:

• task_arena

Resumable tasks

[scheduler.resumable_tasks]
Functions to suspend task execution at a specific point and signal to resume it later.

// Defined in header <oneapi/tbb/task.h>

using oneapi::tbb::task::suspend_point = /* implementation-defined */;
template < typename Func > void oneapi::tbb::task::suspend(Func);
void oneapi::tbb::task::resume(oneapi::tbb::task::suspend_point);

Requirements:

• The Func type must meet the SuspendFunc requirements.

The oneapi::tbb::task::suspend function called within a running task suspends execution of the task and
switches the thread to participate in other oneTBB parallel work. This function accepts a user callable object with
the current execution context oneapi::tbb::task::suspend_point as an argument.

The oneapi::tbb::task::suspend_point context tag must be passed to the oneapi::tbb::task::resume func-
tion to trigger a program execution at the suspended point. The oneapi::tbb::task::resume function can be called
at any point of an application, even on a separate thread. In this regard, this function acts as a signal for the task sched-
uler.

Note: There are no guarantees that the same thread that called oneapi::tbb::task::suspend contin-
ues execution after the suspended point. However, these guarantees are provided for the outermost blocking
oneTBB calls (such as oneapi::tbb::parallel_for and oneapi::tbb::flow::graph::wait_for_all) and
oneapi::tbb::task_arena::execute calls.

9.2. oneTBB Interfaces 432

oneAPI Specification, Release 1.1-rev-1

Example

// Parallel computation region
oneapi::tbb::parallel_for(0, N, [&](int) {

// Suspend the current task execution and capture the context
oneapi::tbb::task::suspend([&] (oneapi::tbb::task::suspend_point tag) {

// Dedicated user-managed activity that processes async requests.
async_activity.submit(tag); // could be OpenCL/IO/Database/Network etc.

}); // execution will be resumed after this function
});

// Dedicated user-managed activity:

// Signal to resume execution of the task referenced by the oneapi::tbb::task::suspend_
→˓point
// from a dedicated user-managed activity
oneapi::tbb::task::resume(tag);

task_scheduler_handle

[scheduler.task_scheduler_handle]
The oneapi::tbb::task_scheduler_handle class and the oneapi::tbb::finalize function allow user to wait
for completion of worker threads.

When the oneapi::tbb::finalize function is called with an oneapi::tbb::task_scheduler_handle instance,
it blocks the calling thread until the completion of all worker threads that were implicitly created by the library.

// Defined in header <oneapi/tbb/global_control.h>

namespace oneapi {
namespace tbb {

class task_scheduler_handle {
public:

task_scheduler_handle() = default;
task_scheduler_handle(oneapi::tbb::attach);
~task_scheduler_handle();

task_scheduler_handle(const task_scheduler_handle& other) = delete;
task_scheduler_handle(task_scheduler_handle&& other) noexcept;
task_scheduler_handle& operator=(const task_scheduler_handle& other) =␣

→˓delete;
task_scheduler_handle& operator=(task_scheduler_handle&& other) noexcept;

explicit operator bool() const noexcept;

void release();
};

void finalize(task_scheduler_handle& handle);
bool finalize(task_scheduler_handle& handle, const std::nothrow_t&) noexcept;

(continues on next page)

9.2. oneTBB Interfaces 433

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

} // namespace tbb
} // namespace oneapi

Member Functions

task_scheduler_handle()
Effects: Creates an empty instance of the task_scheduler_handle class that does not contain any references
to the task scheduler.

task_scheduler_handle(oneapi::tbb::attach)
Effects: Creates an instance of the task_scheduler_handle class that holds a reference to the task scheduler
preventing its premature destruction.

~task_scheduler_handle()
Effects: Destroys an instance of the task_scheduler_handle class. If not empty, releases a reference to the
task scheduler and deactivates an instance of the task_scheduler_handle class.

task_scheduler_handle(task_scheduler_handle &&other) noexcept
Effects: Creates an instance of the task_scheduler_handle class that references the task scheduler referenced
by other. In turn, other releases its reference to the task scheduler.

task_scheduler_handle &operator=(task_scheduler_handle &&other) noexcept
Effects: If not empty, releases a reference to the task scheduler referenced by this. Adds a reference to the task
scheduler referenced by other. In turn, other releases its reference to the task scheduler. Returns: A reference
to *this.

explicit operator bool() const noexcept
Returns: true if this is not empty and refers to some task scheduler; false otherwise.

void release()
Effects: If not empty, releases a reference to the task scheduler and deactivates an instance of the
task_scheduler_handle class; otherwise, does nothing. Non-blocking method.

Non-member Functions

void finalize(task_scheduler_handle &handle)
Effects: If handle is not empty, blocks the program execution until all worker threads have been completed;
otherwise, does nothing. Throws the oneapi::tbb::unsafe_wait exception if it is not safe to wait for the
completion of the worker threads.

The following conditions should be met for finalization to succeed:

• No active, not yet terminated, instances of task_arena class exist in the whole program.

9.2. oneTBB Interfaces 434

oneAPI Specification, Release 1.1-rev-1

• task_scheduler_handle::release is called for each other active instance of task_scheduler_handle
class, possibly by different application threads.

Under these conditions, it is guaranteed that at least one finalize call succeeds, at which point all worker threads
have been completed. If calls are performed simultaneously, more than one call might succeed.

Note: If user knows how many active task_scheduler_handle instances exist in the program, it is necessary to
release all but the last one, then call finalize for the last instance.

Caution: The method always fails if called within a task, a parallel algorithm, or a flow graph node.

bool finalize(task_scheduler_handle &handle, const std::nothrow_t&) noexcept
Effects: If handle is not empty, blocks the program execution until all worker threads have been completed;
otherwise, does nothing. The behavior is the same as finalize(handle); however, false is returned instead of
exception or true if no exception.

Examples

#include <oneapi/tbb/global_control.h>
#include <oneapi/tbb/parallel_for.h>

#include <iostream>

int main() {
oneapi::tbb::task_scheduler_handle handle;

handle = oneapi::tbb::task_scheduler_handle{oneapi::tbb::attach{}};

// Do some parallel work here, e.g.
oneapi::tbb::parallel_for(0, 10000, [](int){});
try {

oneapi::tbb::finalize(handle);
// oneTBB worker threads are terminated at this point.

} catch (const oneapi::tbb::unsafe_wait&) {
std::cerr << "Failed to terminate the worker threads." << std::endl;

}
return 0;

}

See also:

• attach

9.2. oneTBB Interfaces 435

oneAPI Specification, Release 1.1-rev-1

Task Group

task_group

[scheduler.task_group]
A task_group represents concurrent execution of a group of tasks. Tasks can be dynamically added to the group while
it is executing.

// Defined in header <oneapi/tbb/task_group.h>

namespace oneapi {
namespace tbb {

class task_group {
public:

task_group();
task_group(task_group_context& context);

~task_group();

template<typename Func>
void run(Func&& f);

template<typename Func>
task_handle defer(Func&& f);

void run(task_handle&& h);

template<typename Func>
task_group_status run_and_wait(const Func& f);

task_group_status run_and_wait(task_handle&& h);

task_group_status wait();
void cancel();

};

bool is_current_task_group_canceling();

} // namespace tbb
} // namespace oneapi

Member functions

task_group()
Constructs an empty task_group.

task_group(task_group_context &context)
Constructs an empty task_group. All tasks added into the task_group are associated with the context.

~task_group()
Destroys the task_group.

9.2. oneTBB Interfaces 436

oneAPI Specification, Release 1.1-rev-1

Requires: Method wait must be called before destroying a task_group, otherwise, the destructor throws an
exception.

template<typename F>
task_handle defer(F &&f)

Creates a deferred task to compute f() and returns task_handle pointing to it.

The task is not scheduled for the execution until it is explicitly requested, for example, with the
task_group::runmethod. However, the task is still added into the task_group, thus the task_group::wait
method waits until the task_handle is either scheduled or destroyed.

The F type must meet the Function Objects requirements described in the [function.objects] section of the ISO
C++ standard.

Returns: task_handle object pointing to a task to compute f().

template<typename Func>
void run(Func &&f)

Adds a task to compute f() and returns immediately. The Func type must meet the Function Objects require-
ments described in the [function.objects] section of the ISO C++ standard.

void run(task_handle &&h)
Schedules the task object pointed by the h for the execution.

Note:
The failure to satisfy the following conditions leads to undefined behavior:

• h is not empty.

• *this is the same task_group that h is created with.

template<typename Func>
task_group_status run_and_wait(const Func &f)

Equivalent to {run(f); return wait();}. The Func type must meet the Function Objects requirements
described in the [function.objects] section of the ISO C++ standard.

Returns: The status of task_group. See task_group_status.

task_group_status wait()
Waits for all tasks in the group to complete or be cancelled.

Returns: The status of task_group. See task_group_status.

void cancel()
Cancels all tasks in this task_group.

Non-member functions

bool is_current_task_group_canceling()
Returns true if an innermost task_group executing on this thread is cancelling its tasks.

9.2. oneTBB Interfaces 437

oneAPI Specification, Release 1.1-rev-1

task_group_status

[scheduler.task_group_status]
A task_group_status type represents the status of a task_group.

namespace oneapi {
namespace tbb {

enum task_group_status {
not_complete,
complete,
canceled

};
} // namespace tbb
} // namespace oneapi

Member constants

not_complete
Not cancelled and not all tasks in a group have completed.

complete
Not cancelled and all tasks in a group have completed.

canceled
Task group received cancellation request.

task_handle

[scheduler.task_handle]
An instance of task_handle type owns a deferred task object.

namespace oneapi {
namespace tbb {

class task_handle {
public:

task_handle();
task_handle(task_handle&& src);

~task_handle();

task_handle& operator=(task_handle&& src);

explicit operator bool() const noexcept;
};

bool operator==(task_handle const& h, std::nullptr_t) noexcept;
bool operator==(std::nullptr_t, task_handle const& h) noexcept;

bool operator!=(task_handle const& h, std::nullptr_t) noexcept;
bool operator!=(std::nullptr_t, task_handle const& h) noexcept;

(continues on next page)

9.2. oneTBB Interfaces 438

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

} // namespace tbb
} // namespace oneapi

Member Functions

task_handle()
Creates an empty task_handle object.

task_handle(task_handle &&src)
Constructs task_handle object with the content of src using move semantics. src becomes empty after the
construction.

~task_handle()
Destroys the task_handle object and associated task if it exists.

task_handle &operator=(task_handle &&src)
Replaces the content of task_handle object with the content of src using move semantics. src becomes empty
after the assignment. The previously associated task object, if any, is destroyed before the assignment.

Returns: Reference to *this.

explicit operator bool() const noexcept
Checks if *this has an associated task object.

Returns: true if *this is not empty, false otherwise.

Non-Member Functions

bool operator==(task_handle const& h, std::nullptr_t) noexcept
bool operator==(std::nullptr_t, task_handle const& h) noexcept

Returns: true if h is empty, false otherwise.

bool operator!=(task_handle const& h, std::nullptr_t) noexcept
bool operator!=(std::nullptr_t, task_handle const& h) noexcept

Returns: true if h is not empty, false otherwise.

Task Arena

task_arena

[scheduler.task_arena]
A class that represents an explicit, user-managed task scheduler arena.

// Defined in header <oneapi/tbb/task_arena.h>

namespace oneapi {
namespace tbb {

(continues on next page)

9.2. oneTBB Interfaces 439

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

class task_arena {
public:

static const int automatic = /* unspecified */;
static const int not_initialized = /* unspecified */;
enum class priority : /* unspecified type */ {

low = /* unspecified */,
normal = /* unspecified */,
high = /* unspecified */

};

struct constraints {
numa_node_id numa_node;
int max_concurrency;

constraints(numa_node_id numa_node_ = task_arena::automatic,
int max_concurrency_ = task_arena::automatic);

};

task_arena(int max_concurrency = automatic, unsigned reserved_for_masters =␣
→˓1,

priority a_priority = priority::normal);
task_arena(constraints a_constraints, unsigned reserved_for_masters = 1,

priority a_priority = priority::normal);
task_arena(const task_arena &s);
explicit task_arena(oneapi::tbb::attach);
~task_arena();

void initialize();
void initialize(int max_concurrency, unsigned reserved_for_masters = 1,

priority a_priority = priority::normal);
void initialize(constraints a_constraints, unsigned reserved_for_masters = 1,

priority a_priority = priority::normal);
void initialize(oneapi::tbb::attach);

void terminate();

bool is_active() const;
int max_concurrency() const;

template<typename F> auto execute(F&& f) -> decltype(f());
template<typename F> void enqueue(F&& f);

void enqueue(task_handle&& h);
};

} // namespace tbb
} // namespace oneapi

A task_arena class represents a place where threads may share and execute tasks.

The number of threads that may simultaneously execute tasks in a task_arena is limited by its concurrency level.

Each user thread that invokes any parallel construction outside an explicit task_arena uses an implicit task arena
representation object associated with the calling thread.

9.2. oneTBB Interfaces 440

oneAPI Specification, Release 1.1-rev-1

The tasks spawned or enqueued into one arena cannot be executed in another arena.

Each task_arena has a priority. The tasks from task_arena with higher priority are given a precedence in
execution over the tasks from task_arena with lower priority.

Note: The task_arena constructors do not create an internal task arena representation object. It may already exist in
case of the “attaching” constructor; otherwise, it is created by an explicit call to task_arena::initialize or lazily
on first use.

Member types and constants

static const int automatic
When passed as max_concurrency to the specific constructor, arena concurrency is automatically set based on
the hardware configuration.

static const int not_initialized
When returned by a method or function, indicates that there is no active task_arena or that the task_arena
object has not yet been initialized.

enum priority::low
When passed to a constructor or the initialize method, the initialized task_arena has a lowered priority.

enum priority::normal
When passed to a constructor or the initialize method, the initialized task_arena has regular priority.

enum priority::high
When passed to a constructor or the initialize method, the initialized task_arena has a raised priority.

struct constraints
Represents limitations applied to threads within task_arena.

numa_node - An integral logical index uniquely identifying a NUMA node. All threads joining the task_arena
are bound to this NUMA node.

Note: NUMA node ID is considered valid if it was obtained through tbb::info::numa_nodes().

max_concurrency - The maximum number of threads that can participate in work processing within the
task_arena at the same time.

Member functions

task_arena(int max_concurrency = automatic, unsigned reserved_for_masters = 1, priority a_priority =
priority::normal)

Creates a task_arenawith a certain concurrency limit (max_concurrency) and priority (a_priority). Some
portion of the limit can be reserved for application threads with reserved_for_masters. The amount for
reservation cannot exceed the limit.

Caution: If max_concurrency and reserved_for_masters are explicitly set to be equal and greater
than 1, oneTBB worker threads will never join the arena. As a result, the execution guarantee for enqueued
tasks is not valid in such arena. Do not use task_arena::enqueue() with an arena set to have no worker
threads.

9.2. oneTBB Interfaces 441

oneAPI Specification, Release 1.1-rev-1

task_arena(constraints a_constraints, unsigned reserved_for_masters = 1, priority a_priority = priority::normal)
Creates a task_arena with a certain constraints(a_constraints) and priority (a_priority). Some portion
of the limit can be reserved for application threads with reserved_for_masters. The amount for reservation
cannot exceed the concurrency limit specified in constraints.

Caution: If constraints::max_concurrency and reserved_for_masters are explicitly set to be
equal and greater than 1, oneTBB worker threads will never join the arena. As a result, the execution guarantee
for enqueued tasks is not valid in such arena. Do not use task_arena::enqueue() with an arena set to
have no worker threads.

If constraints::numa_node is specified, then all threads that enter the arena are automatically pinned to
corresponding NUMA node.

task_arena(const task_arena&)
Copies settings from another task_arena instance.

explicit task_arena(oneapi::tbb::attach)
Creates an instance of task_arena that is connected to the internal task arena representation currently used by
the calling thread. If no such arena exists yet, creates a task_arena with default parameters.

Note: Unlike other constructors, this one automatically initializes the new task_arena when connecting to an
already existing arena.

~task_arena()
Destroys the task_arena instance, but the destruction may not be synchronized with any task execution inside
this task_arena. It means that an internal task arena representation associated with this task_arena instance
can be destroyed later. Not thread-safe for concurrent invocations of other methods.

void initialize()
Performs actual initialization of internal task arena representation.

Note: After the call to initialize, the arena parameters are fixed and cannot be changed.

void initialize(int max_concurrency, unsigned reserved_for_masters = 1, priority a_priority = priority::normal)
Same as above, but overrides previous arena parameters.

void initialize(constraints a_constraints, unsigned reserved_for_masters = 1, priority a_priority =
priority::normal)

Same as above.

void initialize(oneapi::tbb::attach)
If an internal task arena representation currently used by the calling thread, the method ignores arena parameters
and connects task_arena to that internal task arena representation. The method has no effect when called for
an already initialized task_arena.

void terminate()
Removes the reference to the internal task arena representation without destroying the task_arena object, which
can then be re-used. Not thread safe for concurrent invocations of other methods.

bool is_active() const
Returns true if the task_arena has been initialized; false, otherwise.

int max_concurrency() const
Returns the concurrency level of the task_arena. Does not require the task_arena to be initialized and does
not perform initialization.

9.2. oneTBB Interfaces 442

oneAPI Specification, Release 1.1-rev-1

template<F>
void enqueue(F &&f)

Enqueues a task into the task_arena to process the specified functor and immediately returns. The F type must
meet the Function Objects requirements described in the [function.objects] section of the ISO C++ standard. The
task is scheduled for eventual execution by a worker thread even if no thread ever explicitly waits for the task to
complete. If the total number of worker threads is zero, a special additional worker thread is created to execute
enqueued tasks.

Note: The method does not require the calling thread to join the arena; that is, any number of threads outside
of the arena can submit work to it without blocking.

Caution: There is no guarantee that tasks enqueued into an arena execute concurrently with respect to any
other tasks there.

Caution: An exception thrown and not caught in the functor results in undefined behavior.

template<F>
auto execute(F &&f) -> decltype(f ())

Executes the specified functor in the task_arena and returns the value returned by the functor. The F type must
meet the Function Objects requirements described in the [function.objects] section of the ISO C++ standard.

The calling thread joins the task_arena if possible, and executes the functor. Upon return it restores the previous
task scheduler state and floating-point settings.

If joining the task_arena is not possible, the call wraps the functor into a task, enqueues it into the arena, waits
using an OS kernel synchronization object for another opportunity to join, and finishes after the task completion.

An exception thrown in the functor will be captured and re-thrown from execute.

Note: Any number of threads outside of the arena can submit work to the arena and be blocked. However, only
the maximal number of threads specified for the arena can participate in executing the work.

void enqueue(task_handle &&h)
Enqueues a task owned by h into the task_arena for processing.

The behavior of this function is identical to the generic version (template<typename F> void
task_arena::enqueue(F&& f)), except parameter type.

Note: h should not be empty to avoid an undefined behavior.

9.2. oneTBB Interfaces 443

oneAPI Specification, Release 1.1-rev-1

Example

The example demonstrates task_arena NUMA support API. Each constructed task_arena is pinned to the corre-
sponding NUMA node.

#include "oneapi/tbb/task_group.h"
#include "oneapi/tbb/task_arena.h"

#include <vector>

int main() {
std::vector<oneapi::tbb::numa_node_id> numa_nodes = oneapi::tbb::info::numa_nodes();
std::vector<oneapi::tbb::task_arena> arenas(numa_nodes.size());
std::vector<oneapi::tbb::task_group> task_groups(numa_nodes.size());

for (int i = 0; i < numa_nodes.size(); i++) {
arenas[i].initialize(oneapi::tbb::task_arena::constraints(numa_nodes[i]));

}

for (int i = 0; i < numa_nodes.size(); i++) {
arenas[i].execute([&task_groups, i] {

task_groups[i].run([] {
/* executed by the thread pinned to specified NUMA node */

});
});

}

for (int i = 0; i < numa_nodes.size(); i++) {
arenas[i].execute([&task_groups, i] {

task_groups[i].wait();
});

}

return 0;
}

See also:

• attach

• task_group

• task_scheduler_observer

this_task_arena

[scheduler.this_task_arena]
The namespace for functions applicable to the current task_arena.

The namespace this_task_arena contains global functions for interaction with the task_arena currently used by
the calling thread.

// Defined in header <oneapi/tbb/task_arena.h>

(continues on next page)

9.2. oneTBB Interfaces 444

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

namespace oneapi {
namespace tbb {

namespace this_task_arena {
int current_thread_index();
int max_concurrency();
template<typename F> auto isolate(F&& f) -> decltype(f());

void enqueue(task_handle&& h);

template<typename F> void enqueue(F&& f) ;
}

} // namespace tbb
} // namespace oneapi

int current_thread_index()
Returns the thread index in a task_arena currently used by the calling thread, or
task_arena::not_initialized if the thread has not yet initialized the task scheduler.

A thread index is an integer number between 0 and the task_arena concurrency level. Thread indexes are
assigned to both application threads and worker threads on joining an arena and are kept until exiting the arena.
Indexes of threads that share an arena are unique, that is, no two threads within the arena can have the same index
at the same time - but not necessarily consecutive.

Note: Since a thread may exit the arena at any time if it does not execute a task, the index of a thread may change
between any two tasks, even those belonging to the same task group or algorithm.

Note: Threads that use different arenas may have the same current index value.

Note: Joining a nested arena in execute() may change current index value while preserving the index in the
outer arena which will be restored on return.

int max_concurrency()
Returns the concurrency level of the task_arena currently used by the calling thread. If the thread has not yet
initialized the task scheduler, returns the concurrency level determined automatically for the hardware configu-
ration.

template<F>
auto isolate(F &&f) -> decltype(f ())

Runs the specified functor in isolation by restricting the calling thread to process only tasks scheduled in the
scope of the functor (also called the isolation region). The function returns the value returned by the functor.
The F type must meet the Function Objects requirements described in the [function.objects] section of the ISO
C++ standard.

Caution: The object returned by the functor cannot be a reference. std::reference_wrapper can be
used instead.

template<typename F>

9.2. oneTBB Interfaces 445

oneAPI Specification, Release 1.1-rev-1

void enqueue(F &&f)
Enqueues a task into the task_arena currently used by the calling thread to process the specified functor, then
returns immediately. The F type must meet the Function Objects requirements described in the [function.objects]
section of the ISO C++ standard.

Behavior of this function is identical to template<typename F> void task_arena::enqueue(F&& f) ap-
plied to the task_arena object constructed with attach parameter.

void enqueue(task_handle &&h)
Enqueues a task owned by h into the task_arena that is currently used by the calling thread.

The behavior of this function is identical to the generic version (template<typename F> void enqueue(F&&
f)), except the parameter type.

Note: h should not be empty to avoid an undefined behavior.

task_scheduler_observer

[scheduler.task_scheduler_observer]
Class that represents thread interest in task scheduling services.

// Defined in header <oneapi/tbb/task_scheduler_observer.h>

namespace oneapi {
namespace tbb {

class task_scheduler_observer {
public:

task_scheduler_observer();
explicit task_scheduler_observer(task_arena& a);
virtual ~task_scheduler_observer();

void observe(bool state=true);
bool is_observing() const;

virtual void on_scheduler_entry(bool is_worker) {}
virtual void on_scheduler_exit(bool is_worker } {}

};

} // namespace tbb
} // namespace oneapi

A task_scheduler_observer permits clients to observe when a thread starts and stops processing tasks,
either globally or in a certain task scheduler arena. You typically derive your own observer class from
task_scheduler_observer, and override virtual methods on_scheduler_entry or on_scheduler_exit. Obser-
vation can be enabled and disabled for an observer instance; it is disabled on creation. Remember to call observe()
to enable observation.

Exceptions thrown and not caught in the overridden methods of task_scheduler_observer result in undefined
behavior.

9.2. oneTBB Interfaces 446

oneAPI Specification, Release 1.1-rev-1

Member functions

task_scheduler_observer()
Constructs a task_scheduler_observer object in the inactive state (observation is disabled). For a created
observer, entry/exit notifications are invoked whenever a worker thread joins/leaves the arena of the observer’s
owner thread. If a thread is already in the arena when the observer is activated, the entry notification is called
before it executes the first stolen task.

explicit task_scheduler_observer(task_arena&)
Constructs a task_scheduler_observer object for a given arena in inactive state (observation is disabled).
For created observer, entry/exit notifications are invoked whenever a thread joins/leaves arena. If a thread is
already in the arena when the observer is activated, the entry notification is called before it executes the first
stolen task.

Constructs a task_scheduler_observer object in the inactive state (observation is disabled), which receives
notifications from threads entering and exiting the specified task_arena.

~task_scheduler_observer()
Disables observing and destroys the observer instance. Waits for extant invocations of on_scheduler_entry
and on_scheduler_exit to complete.

void observe(bool state = true)
Enables observing if state is true; disables observing if state is false.

bool is_observing() const
Returns: True if observing is enabled; false, otherwise.

virtual void on_scheduler_entry(bool is_worker)
The task scheduler invokes this method for each thread that starts participating in oneTBB work or enters an arena
after the observation is enabled. For threads that already execute tasks, the method is invoked before executing
the first task stolen after enabling the observation.

If a thread enables the observation and then spawns a task, it is guaranteed that the task, as well as all the tasks
it creates, will be executed by threads which have invoked on_scheduler_entry.

The flag is_worker is true if the thread was created by oneTBB; false, otherwise.

Effects: The default behavior does nothing.

virtual void on_scheduler_exit(bool is_worker)
The task scheduler invokes this method when a thread stops participating in task processing or leaves an arena.

Caution: A process does not wait for the worker threads to clean up, and can terminate before
on_scheduler_exit is invoked.

Effects: The default behavior does nothing.

9.2. oneTBB Interfaces 447

oneAPI Specification, Release 1.1-rev-1

Example

The following example sketches the code of an observer that pins oneTBB worker threads to hardware threads.

class pinning_observer : public oneapi::tbb::task_scheduler_observer {
public:

affinity_mask_t m_mask; // HW affinity mask to be used for threads in an arena
pinning_observer(oneapi::tbb::task_arena &a, affinity_mask_t mask)

: oneapi::tbb::task_scheduler_observer(a), m_mask(mask) {
observe(true); // activate the observer

}
void on_scheduler_entry(bool worker) override {

set_thread_affinity(oneapi::tbb::this_task_arena::current_thread_index(), m_
→˓mask);

}
void on_scheduler_exit(bool worker) override {

restore_thread_affinity();
}

};

Helper types

attach tag type

[scheduler.attach]
An attach tag type is specifically used with task_arena and task_scheduler_handle interfaces. It is guaranteed
to be constructible by default.

namespace oneapi {
namespace tbb {

using attach = /* unspecified */
}

}

See also:

• task_arena

• task_scheduler_handle

9.2.5 Containers

[containers]
The container classes provided by oneAPI Threading Building Blocks (oneTBB) permit multiple threads to simulta-
neously invoke certain methods on the same container.

9.2. oneTBB Interfaces 448

oneAPI Specification, Release 1.1-rev-1

Sequences

concurrent_vector

[containers.concurrent_vector]
concurrent_vector is a class template for a vector that can be concurrently grown and accessed.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_vector.h>

namespace oneapi {
namespace tbb {

template <typename T,
typename Allocator = cache_aligned_allocator<T>>

class concurrent_vector {
using value_type = T;
using allocator_type = Allocator;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;

using reference = value_type&;
using const_reference = const value_type&;

using pointer = typename std::allocator_traits<allocator_type>::pointer;
using const_pointer = typename std::allocator_traits<allocator_type>::const_

→˓pointer;

using iterator = <implementation-defined RandomAccessIterator>;
using const_iterator = <implementation-defined constant RandomAccessIterator>

→˓;

using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;

using range_type = <implementation-defined ContainerRange>;
using const_range_type = <implementation-defined constant ContainerRange>;

// Construction, destruction, copying
concurrent_vector();
explicit concurrent_vector(const allocator_type& alloc) noexcept;

explicit concurrent_vector(size_type count, const value_type& value,
const allocator_type& alloc = allocator_type());

explicit concurrent_vector(size_type count,
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
(continues on next page)

9.2. oneTBB Interfaces 449

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

concurrent_vector(InputIterator first, InputIterator last,
const allocator_type& alloc = allocator_type());

concurrent_vector(std::initializer_list<value_type> init,
const allocator_type& alloc = allocator_type());

concurrent_vector(const concurrent_vector& other);
concurrent_vector(const concurrent_vector& other, const allocator_type&␣

→˓alloc);

concurrent_vector(concurrent_vector&& other) noexcept;
concurrent_vector(concurrent_vector&& other, const allocator_type& alloc);

~concurrent_vector();

concurrent_vector& operator=(const concurrent_vector& other);

concurrent_vector& operator=(concurrent_vector&& other) noexcept(/*See␣
→˓details*/);

concurrent_vector& operator=(std::initializer_list<value_type> init);

void assign(size_type count, const value_type& value);

template <typename InputIterator>
void assign(InputIterator first, InputIterator last);

void assign(std::initializer_list<value_type> init);

// Concurrent growth
iterator grow_by(size_type delta);
iterator grow_by(size_type delta, const value_type& value);

template <typename InputIterator>
iterator grow_by(InputIterator first, InputIterator last);

iterator grow_by(std::initializer_list<value_type> init);

iterator grow_to_at_least(size_type n);
iterator grow_to_at_least(size_type n, const value_type& value);

iterator push_back(const value_type& value);
iterator push_back(value_type&& value);

template <typename... Args>
iterator emplace_back(Args&&... args);

// Element access
value_type& operator[](size_type index);
const value_type& operator[](size_type index) const;

value_type& at(size_type index);

(continues on next page)

9.2. oneTBB Interfaces 450

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const value_type& at(size_type index) const;

value_type& front();
const value_type& front() const;

value_type& back();
const value_type& back() const;

// Iterators
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;

iterator end();
const_iterator end() const;
const_iterator cend() const;

reverse_iterator rbegin();
const_reverse_iterator rbegin() const;
const_reverse_iterator crbegin() const;

reverse_iterator rend();
const_reverse_iterator rend() const;
const_reverse_iterator crend() const;

// Size and capacity
size_type size() const noexcept;

bool empty() const noexcept;

size_type max_size() const noexcept;

size_type capacity() const noexcept;

// Concurrently unsafe operations
void reserve(size_type n);

void resize(size_type n);
void resize(size_type n, const value_type& value);

void shrink_to_fit();

void swap(concurrent_vector& other) noexcept(/*See details*/);

void clear();

allocator_type get_allocator() const;

// Parallel iteration
range_type range(size_type grainsize = 1);
const_range_type range(size_type grainsize = 1) const;

}; // class concurrent_vector

(continues on next page)

9.2. oneTBB Interfaces 451

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

} // namespace tbb
} // namespace oneapi

Requirements

• The type T must meet the following requirements:

– Requirements of Erasable from the [container.requirements] ISO C++ Standard section.

– Its destructor must not throw an exception.

– If its default constructor can throw an exception, the destructor must be non-virtual and work correctly on
zero-filled memory.

– Member functions can impose stricter requirements depending on the type of the operation.

• The type Allocatormust meet the Allocator requirements from the [allocator.requirements] ISO C++ section.

Description

oneapi::tbb::concurrent_vector is a class template that represents a sequence container with the following fea-
tures:

• Multiple threads can concurrently grow the container and append new elements.

• Random access by index. The index of the first element is zero.

• Growing the container does not invalidate any existing iterators or indices.

Exception Safety

Concurrent growing is fundamentally incompatible with ideal exception safety. Nonetheless,
oneapi::tbb::concurrent_vector offers a practical level of exception safety.

Growth and vector assignment append a sequence of elements to a vector. If an exception occurs, the impact on the
vector depends on the cause of the exception:

• If the exception is thrown by the constructor of an element, all subsequent elements in the appended sequence
will be zero-filled.

• Otherwise, the exception is thrown by the vector allocator. The vector becomes broken. Each element in the
appended sequence will be in one of three states:

– constructed

– zero-filled

– unallocated in memory

Once a vector becomes broken, note the following when accessing it:

• Accessing an unallocated element with the method at causes an exception std::range_error. Accessing an
unallocated element using any other method has undefined behavior.

• The values of capacity() and size() may be less than expected.

• Access to a broken vector via back() has undefined behavior.

9.2. oneTBB Interfaces 452

oneAPI Specification, Release 1.1-rev-1

However, the following guarantees hold for broken or unbroken vectors:

• Let k be an index of an unallocated element. Then size() <= capacity() <= k.

• Growth operations never cause size() or capacity() to decrease.

If a concurrent growth operation successfully completes, the appended sequence remains valid and accessible even if
a subsequent growth operations fails.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_vector();

explicit concurrent_vector(const allocator_type& alloc);

Constructs an empty concurrent_vector.

If provided, uses the allocator alloc to allocate the memory.

Constructors from the sequence of elements

explicit concurrent_vector(size_type count, const value_type& value,
const allocator_type& alloc = allocator_type());

Constructs a concurrent_vector containing count copies of the value using the allocator alloc.

explicit concurrent_vector(size_type count,
const allocator_type& alloc = allocator_type());

Constructs a concurrent_vector containing n default constructed in-place elements using the allocator
alloc.

template <typename InputIterator>
concurrent_vector(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

Constructs a concurrent_vector contains all elements from the half-open interval [first, last)
using the allocator alloc.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [in-
put.iterators] ISO C++ Standard section.

concurrent_vector(std::initializer_list<value_type> init,
const allocator_type& alloc = allocator_type());

Equivalent to concurrent_vector(init.begin(), init.end(), alloc).

9.2. oneTBB Interfaces 453

oneAPI Specification, Release 1.1-rev-1

Copying constructors

concurrent_vector(const concurrent_vector& other);

concurrent_vector(const concurrent_vector& other,
const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Moving constructors

concurrent_vector(concurrent_vector&& other);

concurrent_vector(concurrent_vector&& other,
const allocator_type& alloc);

Constructs a concurrent_vector with the contents of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_vector();

Destroys the concurrent_vector. Calls destructors of the stored elements and deallocates the used
storage.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_vector& operator=(const concurrent_vector& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

9.2. oneTBB Interfaces 454

oneAPI Specification, Release 1.1-rev-1

concurrent_vector& operator=(concurrent_vector&& other) noexcept(/*See␣
→˓below*/);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

Exceptions: noexcept specification:

noexcept(std::allocator_traits<allocator_type>::propagate_on_container_
→˓move_assignment::value ||

std::allocator_traits<allocator_type>::is_always_equal::value)

concurrent_vector& operator=(std::initializer_list<value_type> init);

Replaces all elements in *this by the elements in init.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

assign

void assign(size_type count, const value_type& value);

Replaces all elements in *this by count copies of value.

template <typename InputIterator>
void assign(InputIterator first, InputIterator last);

Replaces all elements in *this by the elements from the half-open interval [first, last).

This overload only participates in overload resolution if the type InputIterator meets the requirements
of InputIterator from the [input.iterators] ISO C++ Standard section.

void assign(std::initializer_list<value_type> init);

Equivalent to assign(init.begin(), init.end()).

9.2. oneTBB Interfaces 455

oneAPI Specification, Release 1.1-rev-1

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

Concurrent growth

All member functions in this section can be performed concurrently with each other, element access methods and while
traversing the container.

grow_by

iterator grow_by(size_type delta);

Appends a sequence comprising delta new default-constructed in-place elements to the end of the vector.

Returns: iterator to the beginning of the appended sequence.

Requirements: the type value_type must meet the DefaultConstructible and
EmplaceConstructible requirements from [defaultconstructible] and [container.requirements]
ISO C++ sections.

iterator grow_by(size_type delta, const value_type& value);

Appends a sequence comprising delta copies of value to the end of the vector.

Returns: iterator to the beginning of the appended sequence.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

template <typename InputIterator>
iterator grow_by(InputIterator first, InputIterator last);

Appends a sequence comprising all elements from the half-open interval [first, last) to the end of
the vector.

Returns: iterator to the beginning of the appended sequence.

This overload participates in overload resolution only if the type InputIterator meets the requirements
of InputIterator from the [input.iterators] ISO C++ Standard section.

iterator grow_by(std::initializer_list<value_type> init);

Equivalent to grow_by(init.begin(), init.end()).

9.2. oneTBB Interfaces 456

oneAPI Specification, Release 1.1-rev-1

grow_to_at_least

iterator grow_to_at_least(size_type n);

Appends minimal sequence of default constructed in-place elements such that size() >= n.

Returns: iterator to the beginning of the appended sequence.

Requirements: the type value_type must meet the DefaultConstructible and
EmplaceConstructible requirements from [defaultconstructible] and [container.requirements]
ISO C++ sections.

iterator grow_to_at_least(size_type n, const value_type& value);

Appends minimal sequence of comprising copies of value such that size() >= n.

Returns: iterator to the beginning of the appended sequence.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

push_back

iterator push_back(const value_type& value);

Appends a copy of value to the end of the vector.

Returns: iterator to the appended element.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator push_back(value_type&& value);

Appends value to the end of the vector using move semantics.

value is left in a valid, but unspecified state.

Returns: iterator to the appended element.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

emplace_back

template <typename... Args>
iterator emplace_back(Args&&... args);

Appends an element constructed in-place from args to the end of the vector.

Returns: iterator to the appended element.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

9.2. oneTBB Interfaces 457

oneAPI Specification, Release 1.1-rev-1

Element access

All member functions in this section can be performed concurrently with each other, concurrent growth methods and
while traversing the container.

In case of concurrent growth, the element returned by the access method can refer to the element that is under con-
struction of the other thread.

Access by index

value_type& operator[](size_type index);

const value_type& operator[](size_type index) const;

Returns: a reference to the element on the position index.

The behavior is undefined if index() >= size().

value_type& at(size_type index);

const value_type& at(size_type index) const;

Returns: a reference to the element on the position index.

Throws:
• std::out_of_range if index >= size().

• std::range_error if the vector is broken and the element on the position index unallocated.

Access the first and the last element

value_type& front();

const value_type& front() const;

Returns: a reference to the first element in the vector.

value_type& back();

const value_type& back() const;

Returns: a reference to the last element in the vector.

9.2. oneTBB Interfaces 458

oneAPI Specification, Release 1.1-rev-1

Iterators

The types concurrent_vector::iterator and concurrent_vector::const_iterator meet the requirements
of RandomAccessIterator from the [random.access.iterators] ISO C++ Standard section.

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the vector.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the vector.

rbegin and crbegin

reverse_iterator rbegin();

const_reverse_iterator rbegin() const;

const_reverse_iterator crbegin() const;

Returns: a reverse iterator to the first element of the reversed vector.

rend and crend

reverse_iterator rend();

const_reverse_iterator rend() const;

const_reverse_iterator crend() const;

Returns: a reverse iterator that follows the last element of the reversed vector.

9.2. oneTBB Interfaces 459

oneAPI Specification, Release 1.1-rev-1

Size and capacity

size

size_type size() const noexcept;

Returns: the number of elements in the vector.

empty

bool empty() const noexcept;

Returns: true if the vector is empty; false, otherwise.

max_size

size_type max_size() const noexcept;

Returns: the maximum number of elements that the vector can hold.

capacity

size_type capacity() const noexcept;

Returns: the maximum number of elements that the vector can hold without allocating more memory.

Concurrently unsafe operations

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

Reserving

void reserve(size_type n);

Reserves memory for at least n elements.

Throws: std::length_error if n > max_size().

9.2. oneTBB Interfaces 460

oneAPI Specification, Release 1.1-rev-1

Resizing

void resize(size_type n);

If n < size(), the vector is reduced to its first n elements.

Otherwise, appends n - size() new elements default-constructed in-place to the end of the vector.

void resize(size_type n, const value_type& value);

If n < size(), the vector is reduced to its first n elements.

Otherwise, appends n - size() copies of value to the end of the vector.

shrink_to_fit

void shrink_to_fit();

Removes the unused capacity of the vector.

Call for this method can also reorganize the internal vector representation in the memory.

clear

void clear();

Removes all elements from the container.

swap

void swap(concurrent_vector& other) noexcept(/*See below*/);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

Exceptions: noexcept specification:

noexcept(std::allocator_traits<allocator_type>::propagate_on_container_
→˓swap::value ||

std::allocator_traits<allocator_type>::is_always_equal::value

9.2. oneTBB Interfaces 461

oneAPI Specification, Release 1.1-rev-1

Parallel iteration

Member types concurrent_vector::range_type and concurrent_vector::const_range_typemeet the Con-
tainerRange requirements.

These types differ only in that the bounds for a concurrent_vector::const_range_type are of type
concurrent_vector::const_iterator, whereas the bounds for a concurrent_vector::range_type are of
type concurrent_vector::iterator.

range member function

range_type range(size_type grainsize = 1);

const_range_type range(size_type grainsize = 1) const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provide binary and lexicographical comparison and swap operations on
oneapi::tbb::concurrent_vector objects.

The exact namespace where these functions are defined is unspecified, as long as they can be used in respective compar-
ison operations. For example, an implementation can define the classes and functions in the same internal namespace
and define oneapi::tbb::concurrent_vector as a type alias, for which the non-member functions are reachable
only via argument-dependent lookup.

template <typename T, typename Allocator>
bool operator==(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

template <typename T, typename Allocator>
bool operator!=(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

template <typename T, typename Allocator>
bool operator<(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

template <typename T, typename Allocator>
bool operator<=(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

template <typename T, typename Allocator>
bool operator>(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

template <typename T, typename Allocator>
bool operator>=(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

template <typename T, typename Allocator>
(continues on next page)

9.2. oneTBB Interfaces 462

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

void swap(concurrent_vector<T, Allocator>& lhs,
concurrent_vector<T, Allocator>& rhs);

Non-member binary comparisons

Two objects of concurrent_vector are equal if:

• they contains an equal number of elements.

• the elements on the same positions are equal.

template <typename T, typename Allocator>
bool operator==(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

Returns: true if lhs is equal to rhs, false otherwise.

template <typename T, typename Allocator>
bool operator!=(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

Returns: true if lhs is not equal to rhs, false otherwise.

Non-member lexicographical comparisons

template <typename T, typename Allocator>
bool operator<(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

Returns: true if lhs is lexicographically less than rhs; false, otherwise.

template <typename T, typename Allocator>
bool operator<=(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

Returns: true if lhs is lexicographically less or equal than rhs; false, otherwise.

template <typename T, typename Allocator>
bool operator>(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

Returns: true if lhs is lexicographically greater than rhs; false, otherwise.

template <typename T, typename Allocator>
bool operator>=(const concurrent_vector<T, Allocator>& lhs,

const concurrent_vector<T, Allocator>& rhs);

Returns: true if lhs is lexicographically greater or equal than rhs; false, otherwise.

9.2. oneTBB Interfaces 463

oneAPI Specification, Release 1.1-rev-1

Non-member swap

template <typename T, typename Allocator>
void swap(concurrent_vector<T, Allocator>& lhs,

concurrent_vector<T, Allocator>& rhs);

Equivalent to lhs.swap(rhs).

Other

Deduction guides

If possible, concurrent_vector constructors support class template argument deduction (since C++17). The follow-
ing constructors provide implicitly-generated deduction guides:

• Copy and move constructors, including constructors with explicit allocator_type argument

• Constructors, accepting std::initializer_list as an argument

In addition, the following explicit deduction guide is provided:

template <typename InputIterator,
typename Allocator = tbb::cache_aligned_allocator<iterator_value_t

→˓<InputIterator>>>
concurrent_vector(InputIterator, InputIterator,

Allocator = Allocator())
-> concurrent_vector<iterator_value_t<InputIterator>,

Allocator>;

Where type alias iterator_value_t defines as follows:

template <typename InputIterator>
using iterator_value_t = typename std::iterator_traits<InputIterator>::value_type;

This deduction guide only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

Example

#include <oneapi/tbb/concurrent_vector.h>
#include <array>
#include <memory>

int main() {
std::array<int, 100> arr;

// Deduces cv1 as oneapi::tbb::concurrent_vector<int>
oneapi::tbb::concurrent_vector cv1(arr.begin(), arr.end());

std::allocator<int> alloc;
(continues on next page)

9.2. oneTBB Interfaces 464

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

// Deduces cv2 as oneapi::tbb::concurrent_vector<int, std::allocator<int>>
oneapi::tbb::concurrent_vector cv2(arr.begin(), arr.end(), alloc);

}

Queues

concurrent_queue

[containers.concurrent_queue]
oneapi::tbb::concurrent_queue is a class template for an unbounded first-in-first-out data structure that permits
multiple threads to concurrently push and pop items.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_queue.h>

namespace oneapi {
namespace tbb {

template <typename T, typename Allocator = cache_aligned_allocator<T>>
class concurrent_queue {
public:

using value_type = T;
using reference = T&;
using const_reference = const T&;
using pointer = typename std::allocator_traits<Allocator>::pointer;
using const_pointer = typename std::allocator_traits<Allocator>::const_

→˓pointer;
using allocator_type = Allocator;

using size_type = <implementation-defined unsigned integer type>;
using difference-type = <implementation-defined signed integer type>;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

// Construction, destruction, copying
concurrent_queue();

explicit concurrent_queue(const allocator_type& alloc);

template <typename InputIterator>
concurrent_queue(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

concurrent_queue(const concurrent_queue& other);
concurrent_queue(const concurrent_queue& other, const allocator_type& alloc␣

→˓); (continues on next page)

9.2. oneTBB Interfaces 465

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

concurrent_queue(concurrent_queue&& other);
concurrent_queue(concurrent_queue&& other, const allocator_type& alloc);

~concurrent_queue();

void push(const value_type& value);
void push(value_type&& value);

template <typename... Args>
void emplace(Args&&... args);

bool try_pop(value_type& result);

allocator_type get_allocator() const;

size_type unsafe_size() const;
bool empty() const;

void clear();

iterator unsafe_begin();
const_iterator unsafe_begin() const;
const_iterator unsafe_cbegin() const;

iterator unsafe_end();
const_iterator unsafe_end() const;
const_iterator unsafe_cend() const;

}; // class concurrent_queue

} // namespace tbb
} // namespace oneapi

Requirements:

• The type T must meet the Erasable requirements from the [container.requirements] ISO C++ Standard section.
Member functions can impose stricter requirements depending on the type of the operation.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_queue();

explicit concurrent_queue(const allocator_type& alloc);

Constructs an empty concurrent_queue. If provided, uses the allocator alloc to allocate the memory.

9.2. oneTBB Interfaces 466

oneAPI Specification, Release 1.1-rev-1

Constructor from the sequence of elements

template <typename InputIterator>
concurrent_queue(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

Constructs a concurrent_queue containing all elements from the half-open interval [first, last)
using the allocator alloc to allocate the memory.

Requirements: the type InputIterator must meet the InputIterator requirements from the [input.
iterators] ISO C++ Standard section.

Copying constructors

concurrent_queue(const concurrent_queue& other);

concurrent_queue(const concurrent_queue& other,
const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Moving constructors

concurrent_queue(concurrent_queue&& other);

concurrent_queue(concurrent_queue&& other,
const allocator_type& alloc);

Constructs a concurrent_queue with the content of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by std::move(other.get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_queue();

Destroys the concurrent_queue. Calls destructors of the stored elements and deallocates the used stor-
age.

The behavior is undefined in case of concurrent operations with *this.

9.2. oneTBB Interfaces 467

oneAPI Specification, Release 1.1-rev-1

Concurrently safe member functions

All member functions in this section can be performed concurrently with each other.

Pushing elements

void push(const value_type& value);

Pushes a copy of value into the container.

Requirements: the type T must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

void push(value_type&& value);

Pushes value into the container using move semantics.

Requirements: the type T must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

value is left in a valid, but unspecified state.

template <typename... Args>
void emplace(Args&&... args);

Pushes a new element constructed from args into the container.

Requirements: the type T must meet the EmplaceConstructible requirements from the [con-
tainer.requirements] ISO C++ Standard section.

Popping elements

bool try_pop(value_type& value);

If the container is empty, does nothing.

Otherwise, copies the last element from the container and assigns it to value. The popped element is
destroyed.

Requirements: the type T must meet the MoveAssignable requirements from the [moveassignable] ISO
C++ Standard section.

Returns: true if the element was popped; false, otherwise.

9.2. oneTBB Interfaces 468

oneAPI Specification, Release 1.1-rev-1

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator, associated with *this.

Concurrently unsafe member functions

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these methods with other (either concurrently safe) methods.

The number of elements

size_type unsafe_size() const;

Returns: the number of elements in the container.

bool empty() const;

Returns: true if the container is empty; false, otherwise.

clear

void clear();

Removes all elements from the container.

Iterators

The types concurrent_queue::iterator and concurrent_queue::const_iterator meet the requirements of
ForwardIterator from the [forward.iterators] ISO C++ Standard section.

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these methods with other (either concurrently safe) methods.

unsafe_begin and unsafe_cbegin

iterator unsafe_begin();

const_iterator unsafe_begin() const;

const_iterator unsafe_cbegin() const;

Returns: an iterator to the first element in the container.

9.2. oneTBB Interfaces 469

oneAPI Specification, Release 1.1-rev-1

unsafe_end and unsafe_cend

iterator unsafe_end();

const_iterator unsafe_end() const;

const_iterator unsafe_cend() const;

Returns: an iterator to the element that follows the last element in the container.

Other

Deduction guides

If possible, oneapi::tbb::concurrent_queue constructors support class template argument deduction (since
C++17). Copy and move constructors, including constructors with an explicit allocator_type argument, provide
implicitly-generated deduction guides. In addition, the following explicit deduction guide is provided:

template <typename InputIterator,
typename Allocator = tbb::cache_aligned_allocator<iterator_value_t

→˓<InputIterator>>
concurrent_queue(InputIterator, InputIterator,

Allocator = Allocator())
-> concurrent_queue<iterator_value_t<InputIterator>,

Allocator>;

Where the type alias iterator_value_t is defined as follows:

template <typename InputIterator>
using iterator_value_t = typename std::iterator_traits<InputIterator>::value_type;

This deduction guide only participates in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

Example

#include <oneapi/tbb/concurrent_queue.h>
#include <vector>
#include <memory>

int main() {
std::vector<int> vec;

// Deduces cq1 as oneapi::tbb::concurrent_queue<int>
oneapi::tbb::concurrent_queue cq1(vec.begin(), vec.end());

// Deduces cq2 as oneapi::tbb::concurrent_queue<int, std::allocator<int>>
oneapi::tbb::concurrent_queue cq2(vec.begin(), vec.end(), std::allocator<int>{})

}

9.2. oneTBB Interfaces 470

oneAPI Specification, Release 1.1-rev-1

concurrent_bounded_queue

[containers.concurrent_bounded_queue]
oneapi::tbb::concurrent_bounded_queue is a class template for a bounded first-in-first-out data structure that
permits multiple threads to concurrently push and pop items.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_queue.h>

namespace oneapi {
namespace tbb {

template <typename T, typename Allocator = cache_aligned_allocator<T>>
class concurrent_bounded_queue {
public:

using value_type = T;
using reference = T&;
using const_reference = const T&;
using pointer = typename std::allocator_traits<Allocator>::pointer;
using const_pointer = typename std::allocator_traits<Allocator>::const_

→˓pointer;

using allocator_type = Allocator;

using size_type = <implementation-defined signed integer type>;
using difference_type = <implementation-defined signed integer type>;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

concurrent_bounded_queue();

explicit concurrent_bounded_queue(const allocator_type& alloc);

template <typename InputIterator>
concurrent_bounded_queue(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

concurrent_bounded_queue(const concurrent_bounded_queue& other);
concurrent_bounded_queue(const concurrent_bounded_queue& other,

const allocator_type& alloc);

concurrent_bounded_queue(concurrent_bounded_queue&& other);
concurrent_bounded_queue(concurrent_bounded_queue&& other,

const allocator_type& alloc);

~concurrent_bounded_queue();

allocator_type get_allocator() const;

(continues on next page)

9.2. oneTBB Interfaces 471

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

void push(const value_type& value);
void push(value_type&& value);

bool try_push(const value_type& value);
bool try_push(value_type&& value);

template <typename... Args>
void emplace(Args&&... args);

template <typename... Args>
bool try_emplace(Args&&... args);

void pop(value_type& result);

bool try_pop(value_type& result);

void abort();

size_type size() const;

bool empty() const;

size_type capacity() const;
void set_capacity(size_type new_capacity);

void clear();

iterator unsafe_begin();
const_iterator unsafe_begin() const;
const_iterator unsafe_cbegin() const;

iterator unsafe_end();
const_iterator unsafe_end() const;
const_iterator unsafe_cend() const;

}; // class concurrent_bounded_queue

} // namespace tbb
} // namespace oneapi

Requirements:

• The type T must meet the Erasable requirements from the [container.requirements] ISO C++ Standard section.
Member functions can impose stricter requirements depending on the type of the operation.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

9.2. oneTBB Interfaces 472

oneAPI Specification, Release 1.1-rev-1

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_bounded_queue();

explicit concurrent_bounded_queue(const allocator_type& alloc);

Constructs an empty concurrent_bounded_queue with an unbounded capacity. If provided, uses the
allocator alloc to allocate the memory.

Constructor from the sequence of elements

template <typename InputIterator>
concurrent_bounded_queue(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

Constructs a concurrent_bounded_queuewith an unbounded capacity and containing all elements from
the half-open interval [first, last) using the allocator alloc to allocate the memory.

Requirements: the type InputIterator must meet the InputIterator requirements from the [input.
iterators] ISO C++ Standard section.

Copying constructors

concurrent_bounded_queue(const concurrent_bounded_queue& other);

concurrent_bounded_queue(const concurrent_bounded_queue& other,
const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Moving constructors

concurrent_bounded_queue(concurrent_bounded_queue&& other);

concurrent_bounded_queue(concurrent_bounded_queue&& other,
const allocator_type& alloc);

Constructs a concurrent_bounded_queue with the content of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by std::move(other.get_allocator()).

9.2. oneTBB Interfaces 473

oneAPI Specification, Release 1.1-rev-1

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_bounded_queue();

Destroys the concurrent_bounded_queue. Calls destructors of the stored elements and deallocates the
used storage.

The behavior is undefined in case of concurrent operations with *this.

Concurrently safe member functions

All member functions in this section can be performed concurrently with each other.

Pushing elements

void push(const value_type& value);

Waits until the number of items in the queue is less than the capacity and pushes a copy of value into the
container.

Requirements: the type T must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

bool try_push(const value_type& value);

If the number of items in the queue is less than the capacity, pushes a copy of value into the container.

Requirements: the type T must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

Returns: true if the item was pushed; false, otherwise.

void push(value_type&& value);

Waits until the number of items in the queue is less than capacity() and pushes value into the container
using move semantics.

Requirements: the type T must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

value is left in a valid, but unspecified state.

bool try_push(value_type&& value);

9.2. oneTBB Interfaces 474

oneAPI Specification, Release 1.1-rev-1

If the number of items in the queue is less than the capacity, pushes value into the container using move
semantics.

Requirements: the type T must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

value is left in a valid, but unspecified state.

Returns: true if the item was pushed; false, otherwise.

template <typename... Args>
void emplace(Args&&... args);

Waits until the number of items in the queue is less than capacity() and pushes a new element constructed
from args into the container.

Requirements: the type T must meet the EmplaceConstructible requirements from the [con-
tainer.requirements] ISO C++ Standard section.

template <typename... Args>
bool try_emplace(Args&&... args);

If the number of items in the queue is less than the capacity, pushes a new element constructed from args
into the container.

Requirements: the type T must meet the EmplaceConstructible requirements from the [con-
tainer.requirements] ISO C++ Standard section.

Returns: true if the item was pushed; false, otherwise.

Popping elements

void pop(value_type& value);

Waits until the item becomes available, copies it from the container, and assigns it to the value. The
popped element is destroyed.

Requirements: the type T must meet the MoveAssignable requirements from the [moveassignable] ISO
C++ Standard section.

bool try_pop(value_type& value);

If the container is empty, does nothing.

Otherwise, copies the last element from the container and assigns it to the value. The popped element is
destroyed.

Requirements: the type T must meet the MoveAssignable requirements from the [moveassignable] ISO
C++ Standard section.

Returns: true if the element was popped; false, otherwise.

9.2. oneTBB Interfaces 475

oneAPI Specification, Release 1.1-rev-1

abort

void abort();

Wakes up any threads that are waiting on the queue via push, pop, or emplace operations and raises the
oneapi::tbb::user_abort exception on those threads.

Capacity of the queue

size_type capacity() const;

Returns: the maximum number of items that the queue can hold.

void set_capacity(size_type new_capacity) const;

Sets the maximum number of items that the queue can hold to new_capacity.

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator, associated with *this.

Concurrently unsafe member functions

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these methods with other (either concurrently safe) methods.

The number of elements

size_type size() const;

Returns: the number of elements in the container.

bool empty() const;

Returns: true if the container is empty; false, otherwise.

9.2. oneTBB Interfaces 476

oneAPI Specification, Release 1.1-rev-1

clear

void clear();

Removes all elements from the container.

Iterators

The types concurrent_bounded_queue::iterator and concurrent_bounded_queue::const_iterator meet
the requirements of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these methods with other (either concurrently safe) methods.

unsafe_begin and unsafe_cbegin

iterator unsafe_begin();

const_iterator unsafe_begin() const;

const_iterator unsafe_cbegin() const;

Returns: an iterator to the first element in the container.

unsafe_end and unsafe_cend

iterator unsafe_end();

const_iterator unsafe_end() const;

const_iterator unsafe_cend() const;

Returns: an iterator to the element that follows the last element in the container.

Other

Deduction guides

If possible, concurrent_bounded_queue constructors support class template argument deduction (since C++17).
Copy and move constructors, including constructors with an explicit allocator_type argument, provide implicitly-
generated deduction guides. In addition, the following explicit deduction guide is provided:

template <typename InputIterator,
typename Allocator = tbb::cache_aligned_allocator<iterator_value_t

→˓<InputIterator>>
concurrent_bounded_queue(InputIterator, InputIterator,

Allocator = Allocator())
-> concurrent_bounded_queue<iterator_value_t<InputIterator>,

Allocator>;

9.2. oneTBB Interfaces 477

oneAPI Specification, Release 1.1-rev-1

Where the type alias iterator_value_t is defined as follows:

template <typename InputIterator>
using iterator_value_t = typename std::iterator_traits<InputIterator>::value_type;

This deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

Example

#include <oneapi/tbb/concurrent_queue.h>
#include <vector>
#include <memory>

int main() {
std::vector<int> vec;

// Deduces cq1 as oneapi::tbb::concurrent_bounded_queue<int>
oneapi::tbb::concurrent_bounded_queue cq1(vec.begin(), vec.end());

// Deduces cq2 as oneapi::tbb::concurrent_bounded_queue<int, std::allocator<int>>
oneapi::tbb::concurrent_bounded_queue cq2(vec.begin(), vec.end(), std::allocator<int>

→˓{})
}

concurrent_priority_queue

[containers.concurrent_priority_queue]
oneapi::tbb::concurrent_priority_queue is a class template for an unbounded priority queue that permits
multiple threads to concurrently push and pop items. Items are popped in a priority order.

Class Template Synopsis

namespace oneapi {
namespace tbb {

template <typename T, typename Compare = std::less<T>,
typename Allocator = cache_aligned_allocator<T>>

class concurrent_priority_queue {
public:

using value_type = T;
using reference = T&;
using const_reference = const T&;
using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;
using allocator_type = Allocator;

(continues on next page)

9.2. oneTBB Interfaces 478

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

concurrent_priority_queue();
explicit concurrent_priority_queue(const allocator_type& alloc);

explicit concurrent_priority_queue(const Compare& compare,
const allocator_type& alloc = allocator_

→˓type());

explicit concurrent_priority_queue(size_type init_capacity, const allocator_
→˓type& alloc = allocator_type());

explicit concurrent_priority_queue(size_type init_capacity, const Compare&␣
→˓compare,

const allocator_type& alloc = allocator_
→˓type());

template <typename InputIterator>
concurrent_priority_queue(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_priority_queue(InputIterator first, InputIterator last,

const Compare& compare, const allocator_type&␣
→˓alloc = allocator_type());

concurrent_priority_queue(std::initializer_list<value_type> init,
const allocator_type& alloc = allocator_type());

concurrent_priority_queue(std::initializer_list<value_type> init,
const Compare& compare, const allocator_type&␣

→˓alloc = allocator_type());

concurrent_priority_queue(const concurrent_priority_queue& other);
concurrent_priority_queue(const concurrent_priority_queue& other, const␣

→˓allocator_type& alloc);

concurrent_priority_queue(concurrent_priority_queue&& other);
concurrent_priority_queue(concurrent_priority_queue&& other, const␣

→˓allocator_type& alloc);

~concurrent_priority_queue();

concurrent_priority_queue& operator=(const concurrent_priority_queue& other␣
→˓);

concurrent_priority_queue& operator=(concurrent_priority_queue&& other);
concurrent_priority_queue& operator=(std::initializer_list<value_type> init␣

→˓);

template <typename InputIterator>
void assign(InputIterator first, InputIterator last);

void assign(std::initializer_list<value_type> init);

(continues on next page)

9.2. oneTBB Interfaces 479

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

void swap(concurrent_priority_queue& other);

allocator_type get_allocator() const;

void clear();

bool empty() const;
size_type size() const;

void push(const value_type& value);
void push(value_type&& value);

template <typename... Args>
void emplace(Args&&... args);

bool try_pop(value_type& value);
}; // class concurrent_priority_queue

}; // namespace tbb
} // namespace oneapi

Requirements:

• The type T must meet the Erasable requirements from [container.requirements] ISO C++ Standard section.
Member functions can impose stricter requirements depending on the type of the operation.

• The type Compare must meet the Compare requirements from [alg.sorting] ISO C++ Standard section.

• The type Allocator must meet the Allocator requirements from [allocator.requirements] ISO C++ Standard
section.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_priority_queue();

explicit concurrent_priority_queue(const allocator_type& alloc);

explicit concurrent_priority_queue(const Compare& compare, const allocator_
→˓type& alloc);

Constructs an empty concurrent_priority_queue. The initial capacity is unspecified. If provided,
uses the predicate compare for priority comparisons and the allocator alloc to allocate the memory.

concurrent_priority_queue(size_type init_capacity,
const allocator_type& alloc = allocator_type());

concurrent_priority_queue(size_type init_capacity,
(continues on next page)

9.2. oneTBB Interfaces 480

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const Compare& compare,
const allocator_type& alloc = allocator_type());

Constructs an empty concurrent_priority_queue with the initial capacity init_capacity. If pro-
vided, uses the predicate compare for priority comparisons and the allocator alloc to allocate the mem-
ory.

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_priority_queue(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_priority_queue(InputIterator first, InputIterator last,

const Compare& compare,
const allocator_type& alloc = allocator_type());

Constructs a concurrent_priority_queue containing all elements from the half-open interval
[first, last).

If provided, uses the predicate compare for priority comparisons and the allocator alloc to allocate the
memory.

Requirements: the type InputIterator must meet the InputIterator requirements from the [input.
iterators] ISO C++ Standard section.

concurrent_priority_queue(std::initializer_list<value_type> init,
const allocator_type& alloc = allocator_type());

Equivalent to concurrent_priority_queue(init.begin(), init.end(), alloc).

concurrent_priority_queue(std::initializer_list<value_type> init,
const Compare& compare,
const allocator_type& alloc = allocator_type());

Equivalent to concurrent_priority_queue(init.begin(), init.end(), compare, alloc).

Copying constructors

concurrent_priority_queue(const concurrent_priority_queue& other);

concurrent_priority_queue(const concurrent_priority_queue& other,
const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

9.2. oneTBB Interfaces 481

oneAPI Specification, Release 1.1-rev-1

Moving constructors

concurrent_priority_queue(concurrent_priority_queue&& other);

concurrent_priority_queue(concurrent_priority_queue&& other,
const allocator_type& alloc);

Constructs a copy of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by std::move(other.get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_priority_queue();

Destroys the concurrent_priority_queue. Calls destructors of the stored elements and deallocates the
used storage.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_priority_queue& operator=(const concurrent_priority_queue& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_priority_queue& operator=(concurrent_priority_queue&& other);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_priority_queue& operator=(std::initializer_list<value_type> init);

Replaces all elements in *this by the elements in init.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

9.2. oneTBB Interfaces 482

oneAPI Specification, Release 1.1-rev-1

assign

template <typename InputIterator>
void assign(InputIterator first, InputIterator last);

Replaces all elements in *this be the elements in the half-open interval [first, last).

The behavior is undefined in case of concurrent operations with *this.

Requirements: the type InputIterator must meet the InputIterator requirements from the [input.
iterators] ISO C++ Standard section.

void assign(std::initializer_list<value_type> init);

Equivalent to assign(init.begin(), init.end()).

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty; false, otherwise.

The result may differ from the actual container state in case of pending concurrent push or try_pop
operations.

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ from the actual number of elements in case of pending concurrent push or try_pop
operations.

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other.

Pushing elements

void push(const value_type& value);

Pushes a copy of value into the container.

Requirements: the type T must meet the CopyInsertable requirements from [container.requirements]
and the CopyAssignable requirements from [copyassignable] ISO C++ Standard sections.

void push(value_type&& value);

9.2. oneTBB Interfaces 483

oneAPI Specification, Release 1.1-rev-1

Pushes value into the container using move semantics.

Requirements: the type T must meet the MoveInsertable requirements from [container.requirements]
and the MoveAssignable requirements from [moveassignable] ISO C++ Standard sections.

value is left in a valid, but unspecified state.

template <typename... Args>
void emplace(Args&&... args);

Pushes a new element constructed from args into the container.

Requirements: the type T must meet the EmplaceConstructible requirements from [con-
tainer.requirements] and the MoveAssignable requirements from [moveassignable] ISO C++ Standard
sections.

Popping elements

bool try_pop(value_type& value)

If the container is empty, does nothing.

Otherwise, copies the highest priority element from the container and assigns it to value. The popped
element is destroyed.

Requirements: the type T must meet the MoveAssignable requirements from the [moveassignable] ISO
C++ Standard section.

Returns: true if the element was popped; false, otherwise.

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these methods with other (either concurrently safe) methods.

clear

void clear();

Removes all elements from the container.

swap

void swap(concurrent_priority_queue& other);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise if get_allocator() != other.get_allocator() the behavior is undefined.

9.2. oneTBB Interfaces 484

oneAPI Specification, Release 1.1-rev-1

Non-member functions

These functions provides binary comparison and swap operations on oneapi::tbb::concurrent_priority_queue
objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective
comparison operations. For example, an implementation may define the classes and functions in the same internal
namespace and define oneapi::tbb::concurrent_priority_queue as a type alias for which the non-member
functions are reachable only via argument-dependent lookup.

template <typename T, typename Compare, typename Allocator>
void swap(concurrent_priority_queue<T, Compare, Allocator>& lhs,

concurrent_priority_queue<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_priority_queue<T, Compare, Allocator>& lhs,

const concurrent_priority_queue<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_priority_queue<T, Compare, Allocator>& lhs,

const concurrent_priority_queue<T, Compare, Allocator>& rhs);

Non-member swap

template <typename T, typename Compare, typename Allocator>
void swap(concurrent_priority_queue<T, Compare, Allocator>& lhs,

concurrent_priority_queue<T, Compare, Allocator>& rhs);

Equivalent to lhs.swap(rhs).

Non-member binary comparisons

template <typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_priority_queue<T, Compare, Allocator>& lhs,

const concurrent_priority_queue<T, Compare, Allocator>& rhs);

Checks if lhs is equal to rhs, that is they have the same number of elements and lhs contains all elements from rhs
with the same priority.

Returns: true if lhs is equal to rhs; false, otherwise.

template <typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_priority_queue<T, Compare, Allocator>& lhs,

const concurrent_priority_queue<T, Compare, Allocator>& rhs);

Equivalent to !(lhs == rhs).

Returns: true if lhs is not equal to rhs; false, otherwise.

9.2. oneTBB Interfaces 485

oneAPI Specification, Release 1.1-rev-1

Other

Deduction guides

If possible, oneapi::tbb::concurrent_priority_queue constructors support class template argument deduction
(since C++17). Copy and move constructors, including constructors with an explicit allocator_type argument,
provide implicitly-generated deduction guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename Compare = std::less<iterator_value_t<InputIterator>>,
typename Allocator = tbb::cache_aligned_allocator<iterator_value_t

→˓<InputIterator>>>
concurrent_priority_queue(InputIterator, InputIterator,

Compare = Compare(),
Allocator = Allocator())

-> concurrent_priority_queue<iterator_value_t<InputIterator>,
Compare,
Allocator>;

template <typename InputIterator,
typename Allocator>

concurrent_priority_queue(InputIterator, InputIterator,
Allocator)

-> concurrent_priority_queue<iterator_value_t<InputIterator>,
std::less<iterator_value_t<InputIterator>>,
Allocator>;

template <typename T,
typename Compare = std::less<T>,
typename Allocator = tbb::cache_aligned_allocator<T>>

concurrent_priority_queue(std::initializer_list<T>,
Compare = Compare(),
Allocator = Allocator())

-> concurrent_priority_queue<T,
Compare,
Allocator>;

template <typename T,
typename Allocator>

concurrent_priority_queue(std::initializer_list<T>,
Allocator)

-> concurrent_priority_queue<T,
std::less<T>,
Allocator>;

Where the type alias iterator_value_t is defined as follows:

template <typename InputIterator>
using iterator_value_t = typename std::iterator_traits<InputIterator>::value_type;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

9.2. oneTBB Interfaces 486

oneAPI Specification, Release 1.1-rev-1

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

• The Compare type does not meet the Allocator requirements.

Example

#include <oneapi/tbb/concurrent_priority_queue.h>
#include <vector>
#include <functional>

int main() {
std::vector<int> vec;

// Deduces cpq1 as oneapi::tbb::concurrent_priority_queue<int>
oneapi::tbb::concurrent_priority_queue cpq1(vec.begin(), vec.end());

// Deduces cpq2 as oneapi::tbb::concurrent_priority_queue<int, std::greater>
oneapi::tbb::concurrent_priority_queue cpq2(vec.begin(), vec.end(), std::greater{});

}

Unordered associative containers

concurrent_hash_map

[containers.concurrent_hash_map]
concurrent_hash_map is a class template for an unordered associative container that holds key-value pairs with
unique keys and supports concurrent insertion, lookup, and erasure.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_hash_map.h>

namespace oneapi {
namespace tbb {

template <typename Key, typename T,
typename HashCompare = tbb_hash_compare<Key>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>>

class concurrent_hash_map {
public:

using key_type = Key;
using mapped_type = T;
using value_type = std::pair<const Key, T>;

using reference = value_type&;
using const_reference = const value_type&;
using pointer = typename std::allocator_traits<Allocator>

→˓::pointer;
using const_pointer = typename std::allocator_traits<Allocator>

→˓::const_pointer;
(continues on next page)

9.2. oneTBB Interfaces 487

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

using hash_compare_type = HashCompare;
using allocator_type = Allocator;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer␣

→˓type>;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant␣

→˓ForwardIterator>;

using range_type = <implementation-defined ContainerRange>;
using const_range_type = <implementation-defined constant␣

→˓ContainerRange>;

class accessor;
class const_accessor;

// Construction, destruction, copying
concurrent_hash_map();

explicit concurrent_hash_map(const hash_compare_type& compare,
const allocator_type& alloc =␣

→˓allocator_type());

explicit concurrent_hash_map(const allocator_type& alloc);

concurrent_hash_map(size_type n, const hash_compare_type&␣
→˓compare,

const allocator_type& alloc = allocator_
→˓type());

concurrent_hash_map(size_type n, const allocator_type& alloc =␣
→˓allocator_type());

template <typename InputIterator>
concurrent_hash_map(InputIterator first, InputIterator last,

const hash_compare_type& compare,
const allocator_type& alloc = allocator_

→˓type());

template <typename InputIterator>
concurrent_hash_map(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_
→˓type());

concurrent_hash_map(std::initializer_list<value_type> init,
const hash_compare_type& compare = hash_

→˓compare_type(),
const allocator_type& alloc = allocator_

→˓type());

(continues on next page)

9.2. oneTBB Interfaces 488

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

concurrent_hash_map(std::initializer_list<value_type> init,
const allocator_type& alloc);

concurrent_hash_map(const concurrent_hash_map& other);
concurrent_hash_map(const concurrent_hash_map& other,

const allocator_type& alloc);

concurrent_hash_map(concurrent_hash_map&& other);
concurrent_hash_map(concurrent_hash_map&& other,

const allocator_type& alloc);

~concurrent_hash_map();

concurrent_hash_map& operator=(const concurrent_hash_map& other␣
→˓);

concurrent_hash_map& operator=(concurrent_hash_map&& other);
concurrent_hash_map& operator=(std::initializer_list<value_type>␣

→˓init);

allocator_type get_allocator() const;

// Concurrently unsafe modifiers
void clear();

void swap(concurrent_hash_map& other);

// Hash policy
void rehash(size_type sz = 0);
size_type bucket_count() const;

// Size and capacity
size_type size() const;
bool empty() const;
size_type max_size() const;

// Lookup
bool find(const_accessor& result, const key_type& key) const;
bool find(accessor& result, const key_type& key);

template <typename K>
bool find(const_accessor& result, const K& key) const;

template <typename K>
bool find(accessor& result, const K& key);

size_type count(const key_type& key) const;

template <typename K>
size_type count(const K& key) const;

// Modifiers

(continues on next page)

9.2. oneTBB Interfaces 489

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

bool insert(const_accessor& result, const key_type& key);
bool insert(accessor& result, const key_type& key);

template <typename K>
bool insert(const_accessor& result, const K& key);

template <typename K>
bool insert(accessor& result, const K& key);

bool insert(const_accessor& result, const value_type& value);
bool insert(accessor& result, const value_type& value);
bool insert(const_accessor& result, value_type&& value);
bool insert(accessor& result, value_type&& value);

bool insert(const value_type& value);
bool insert(value_type&& value);

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

void insert(std::initializer_list<value_type> init);

template <typename... Args>
bool emplace(const_accessor& result, Args&&... args);

template <typename... Args>
bool emplace(accessor& result, Args&&... args);

template <typename... Args>
bool emplace(Args&&... args);

bool erase(const key_type& key);

template <typename K>
bool erase(const K& key);

bool erase(const_accessor& item_accessor);
bool erase(accessor& item_accessor);

// Iterators
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;

iterator end();
const_iterator end() const;
const_iterator cend() const;

std::pair<iterator, iterator> equal_range(const key_type& key);
std::pair<const_iterator, const_iterator> equal_range(const key_

→˓type& key) const;

(continues on next page)

9.2. oneTBB Interfaces 490

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K&␣

→˓key) const;

// Parallel iteration
range_type range(std::size_t grainsize = 1);
const_range_type range(std::size_t grainsize = 1) const;

}; // class concurrent_hash_map

} // namespace tbb
} // namespace oneapi

Requirements:

• The expression std::allocator_type<Allocator>::destroy(m, val), where m is an object of the type
Allocator and val is an object of type value_type, must be well-formed. Member functions can impose
stricter requirements depending on the type of the operation.

• The type HashCompare must meet the HashCompare requirements.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

Member classes

accessor and const_accessor

Member classes concurrent_hash_map::accessor and concurrent_hash_map::const_accessor are called
accessors. Accessors allow multiple threads to concurrently access the key-value pairs in concurrent_hash_map.
An accessor is called empty if it does not point to any item.

accessor member class

Member class concurrent_hash_map::accessor provides read-write access to the key-value pair in
concurrent_hash_map.

namespace oneapi {
namespace tbb {

template <typename Key, typename T, typename HashCompare, typename Allocator>
class concurrent_hash_map<Key, T, HashCompare, Allocator>::accessor {

using value_type = std::pair<const Key, T>;

accessor();
~accessor();

bool empty() const;
value_type& operator*() const;

(continues on next page)

9.2. oneTBB Interfaces 491

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

value_type* operator->() const;

void release();
}; // class accessor

} // namespace tbb
} // namespace oneapi

const_accessor member class

Member class concurrent_hash_map::const_accessor provides read only access to the key-value pair in
concurrent_hash_map.

namespace oneapi {
namespace tbb {

template <typename Key, typename T, typename HashCompare, typename Allocator>
class concurrent_hash_map<Key, T, HashCompare, Allocator>::const_accessor {

using value_type = const std::pair<const Key, T>;

const_accessor();
~const_accessor();

bool empty() const;
value_type& operator*() const;
value_type* operator->() const;

void release();
}; // class const_accessor

} // namespace tbb
} // namespace oneapi

Member functions

Construction and destruction

accessor();

const_accessor();

Constructs an empty accessor.

~accessor();

~const_accessor();

Destroys the accessor. If *this is not empty, releases the ownership of the element.

9.2. oneTBB Interfaces 492

oneAPI Specification, Release 1.1-rev-1

Emptiness

bool empty() const;

Returns: true if the accessor is empty; false, otherwise.

Key-value pair access

value_type& operator*() const;

Returns: a reference to the key-value pair to which the accessor points.

The behavior is undefined if the accessor is empty.

value_type* operator->() const;

Returns: a pointer to the key-value pair to which the accessor points.

The behavior is undefined if the accessor is empty.

Releasing

void release();

If *this is not empty, releases the ownership of the element. *this becomes empty.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_hash_map();

explicit concurrent_hash_map(const hash_compare_type& compare,
const allocator_type& alloc = allocator_type());

explicit concurrent_hash_map(const allocator_type& alloc);

Constructs an empty concurrent_hash_map. The initial number of buckets is unspecified.

If provided, uses the comparator compare to calculate hash codes and compare key_type objects for
equality and the allocator alloc to allocate the memory.

9.2. oneTBB Interfaces 493

oneAPI Specification, Release 1.1-rev-1

concurrent_hash_map(size_type n, const hash_compare_type& compare,
const allocator_type& alloc = allocator_type());

concurrent_hash_map(size_type n, const allocator_type& alloc = allocator_
→˓type());

Constructs an empty concurrent_hash_map with n preallocated buckets.

If provided, uses the comparator compare to calculate hash codes and compare key_type objects for
equality and the allocator alloc to allocate the memory.

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_hash_map(InputIterator first, InputIterator last,

const hash_compare_type& compare,
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_hash_map(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

Constructs the concurrent_hash_map which contains the elements from the half-open interval [first,
last).

If the range [first, last) contains multiple elements with equal keys, it is unspecified which element
would be inserted.

If provided, uses the comparator compare to calculate hash codes and compare key_type objects for
equality and the allocator alloc to allocate the memory.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [in-
put.iterators] ISO C++ Standard section.

concurrent_hash_map(std::initializer_list<value_type> init,
const hash_compare_type& compare = hash_compare_type(),
const allocator_type& alloc = allocator_type());

Equivalent to concurrent_hash_map(init.begin(), init.end(), compare, alloc).

concurrent_hash_map(std::initializer_list<value_type> init,
const allocator_type& alloc);

Equivalent to concurrent_hash_map(init.begin(), init.end(), alloc).

9.2. oneTBB Interfaces 494

oneAPI Specification, Release 1.1-rev-1

Copying constructors

concurrent_hash_map(const concurrent_hash_map& other);

concurrent_hash_map(const concurrent_hash_map& other,
const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Moving constructors

concurrent_hash_map(concurrent_hash_map&& other);

concurrent_hash_map(concurrent_hash_map&& other,
const allocator_type& alloc);

Constructs a concurrent_hash_map with the content of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_hash_map();

Destroys the concurrent_hash_map. Calls destructors of the stored elements and deallocates the used
storage.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_hash_map& operator=(const concurrent_hash_map& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

9.2. oneTBB Interfaces 495

oneAPI Specification, Release 1.1-rev-1

concurrent_hash_map& operator=(concurrent_hash_map&& other);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_hash_map& operator=(std::initializer_list<value_type> init);

Replaces all elements in *this by the elements in init.

If init contains multiple elements with equal keys, it is unspecified which element is inserted.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

clear

void clear();

Removes all elements from the container.

swap

void swap(concurrent_hash_map& other);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

9.2. oneTBB Interfaces 496

oneAPI Specification, Release 1.1-rev-1

Hash policy

Rehashing

void rehash(size_type n = 0);

If n > 0, sets the number of buckets to the value that is not less than n.

bucket_count

size_type bucket_count() const;

Returns: the number of buckets in the container.

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty; false, otherwise.

The result may differ with the actual container state in case of pending concurrent insertions or erasures.

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ with the actual container state in case of pending concurrent insertions or erasures.

max_size

size_type max_size() const;

Returns: The maximum number of elements that container can hold.

Lookup

All methods in this section can be executed concurrently with each other and concurrently-safe modifiers.

9.2. oneTBB Interfaces 497

oneAPI Specification, Release 1.1-rev-1

find

bool find(const_accessor& result, const key_type& key) const;

bool find(accessor& result, const key_type& key);

If the result accessor is not empty, releases the result.

If an element with the key that is equivalent to key exists, sets the result to provide access to this element.

Returns: true if an element with the key equivalent to key is found; false otherwise.

template <typename K>
bool find(const_accessor& result, const K& key) const;

template <typename K>
bool find(accessor& result, const K& key);

If the result accessor is not empty, releases the result.

If an element with the key that compares equivalent to the value key exists, sets the result to provide
access to this element.

Returns: true if an element with the key that compares equivalent to the value key is found; false
otherwise.

This overload only participates in the overload resolution if qualified-id
hash_compare_type::is_transparent is valid and denotes a type.

count

size_type count(const key_type& key) const;

Returns: 1 if an element with the key equivalent to key exists; 0 otherwise.

template <typename K>
size_type count(const K& key) const;

Returns: 1 if an element with the key that compares equivalent to the value key exists; 0 otherwise.

This overload only participates in the overload resolution if qualified-id
hash_compare_type::is_transparent is valid and denotes a type.

9.2. oneTBB Interfaces 498

oneAPI Specification, Release 1.1-rev-1

Concurrently safe modifiers

All methods in this section can be executed concurrently with each other and lookup methods.

Inserting values

bool insert(const_accessor& result, const key_type& key);

bool insert(accessor& result, const key_type& key);

If the result accessor is not empty, releases the result and attempts to insert the value constructed from
key, mapped_type() into the container.

Sets the result to provide access to the inserted element or to the element with equal key, which was
already presented in the container.

Requirements:
• the value_type type must meet the EmplaceConstructible requirements described in the [con-

tainer.requirements] section of the ISO C++ Standard.

• the mapped_type type must meet the DefaultConstructible requirements described in the [de-
faultconstructible] section of the ISO C++ Standard.

Returns: true if an element is inserted; false otherwise.

template <typename K>
bool insert(const_accessor& result, const K& key);

template <typename K>
bool insert(accessor& result, const K& key);

If the result accessor is not empty, releases the result and attempts to insert the value constructed from
key, mapped_type() into the container.

Sets the result to provide access to the inserted element or to the element with the key, that compares
equivalent to the value key, which was already presented in the container.

This overload only participates in the overload resolution if:

• qualified-id hash_compare_type::is_transparent is valid and denotes a type

• std::is_constructible<key_type, const K&>::value is true

Requirements: the mapped_type type must meet the DefaultConstructible requirements described
in the [defaultconstructible] section of the ISO C++ Standard.

Returns: true if an element is inserted; false otherwise.

bool insert(const_accessor& result, const value_type& value);

bool insert(accessor& result, const value_type& value);

9.2. oneTBB Interfaces 499

oneAPI Specification, Release 1.1-rev-1

If the result accessor is not empty, releases the result and attempts to insert the value value into the
container.

Sets the result to provide access to the inserted element or to the element with equal key, which was
already presented in the container.

Requirements: the value_type type must meet the CopyInsertable requirements described in the
[container.requirements] section of the ISO C++ Standard.

Returns: true if an element is inserted; false otherwise.

bool insert(const value_type& value);

Attempts to insert the value value into the container.

Requirements: the value_type type must meet the CopyInsertable requirements described in the
[container.requirements] section of the ISO C++ Standard.

Returns: true if an element is inserted; false otherwise.

bool insert(const_accessor& result, value_type&& value);

bool insert(accessor& result, value_type&& value);

If the result accessor is not empty, releases the result and attempts to insert the value value into the
container using move semantics.

Sets the result to provide access to the inserted element or to the element with equal key, which was
already presented in the container.

value is left in a valid, but unspecified state.

Requirements: the value_type type must meet the MoveInsertable requirements described in the
[container.requirements] section of the ISO C++ Standard.

Returns: true if an element is inserted; false otherwise.

bool insert(value_type&& value);

Attempts to insert the value value into the container using move semantics.

Requirements: the value_type type must meet the MoveInsertable requirements described in the
[container.requirements] section of the ISO C++ Standard.

Returns: true if an element is inserted; false otherwise.

Inserting sequences of elements

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

Attempts to insert all items from the half-open interval [first, last) into the container.

If the interval [first, last) contains multiple elements with equal keys, it is unspecified which element
should be inserted.

9.2. oneTBB Interfaces 500

oneAPI Specification, Release 1.1-rev-1

Requirements: the InputIterator type must meet the requirements of InputIterator described in the
[input.iterators] section of the ISO C++ Standard.

void insert(std::initializer_list<value_type> init);

Equivalent to insert(init.begin(), init.end()).

Emplacing elements

template <typename... Args>
bool emplace(const_accessor& result, Args&&... args);

template <typename... Args>
bool emplace(accessor& result, Args&&... args);

If the result accessor is not empty, releases the result and attempts to insert an element constructed
in-place from args into the container.

Sets the result to provide access to the inserted element or to the element with equal key, which was
already presented in the container.

Requirements: the type value_type must meet the EmplaceConstructible requirements described
in the [container.requirements] section of the ISO C++ Standard.

Returns: true if an element is inserted; false otherwise

template <typename... Args>
bool emplace(Args&&... args);

Attempts to insert an element constructed in-place from args into the container.

Requirements: the type value_type must meet the EmplaceConstructible requirements described
in the [container.requirements] section of the ISO C++ Standard.

Returns: true if an element is inserted; false otherwise

Erasing elements

bool erase(const key_type& key);

If an element with the key equivalent to key exists, removes it from the container.

Returns: true if an element is removed; false otherwise.

template <typename K>
bool erase(const K& key);

If an element with the key that compares equivalent to the value key exists, removes it from the container.

This overload only participates in the overload resolution if qualified-id
hash_compare_type::is_transparent is valid and denotes a type.

Returns: true if an element is removed; false otherwise.

9.2. oneTBB Interfaces 501

oneAPI Specification, Release 1.1-rev-1

bool erase(const_accessor& item_accessor);
bool erase(accessor& item_accessor);

Removes an element owned by item_accessor from the container.

Requirements: item_accessor should not be empty.

Returns: true if an element is removed by the current thread; false if it is removed by another thread.

Iterators

The types concurrent_hash_map::iterator and concurrent_hash_map::const_iterator meet the require-
ments of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the container.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the container.

equal_range

std::pair<iterator, iterator> equal_range(const key_type& key);

std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣
→˓const;

Returns: a range containing an element that is equivalent to key. If there is no such element in the
container, returns {end(), end()} .

9.2. oneTBB Interfaces 502

oneAPI Specification, Release 1.1-rev-1

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;

Returns: a range containing an element which compares equivalent to the value key. If there is no such
element in the container, returns {end(), end()}.

This overload only participates in the overload resolution if qualified-id
hash_compare_type::is_transparent is valid and denotes a type.

Parallel iteration

Member types concurrent_hash_map::range_type and concurrent_hash_map::const_range_typemeet the
ContainerRange requirements.

These types differ only in that the bounds for a concurrent_hash_map::const_range_type are of type
concurrent_hash_map::const_iterator, whereas the bounds for a concurrent_hash_map::range_type are
of type concurrent_hash_map::iterator.

Traversing the concurrent_hash_map is not thread safe. The behavior is undefined in case of concurrent execution
of any member functions while traversing the range_type or const_range_type.

range member function

range_type range(std::size_t grainsize = 1);

const_range_type range(std::size_t grainsize = 1) const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provide binary comparison and swap operations on oneapi::tbb::concurrent_hash_map objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective
comparison operations. For example, an implementation may define the classes and functions in the same internal
namespace and define oneapi::tbb::concurrent_hash_map as a type alias for which the non-member functions
are reachable only via argument-dependent lookup.

template <typename Key, typename T, typename HashCompare, typename Allocator>
bool operator==(const concurrent_hash_map<Key, T, HashCompare, Allocator>& lhs,

const concurrent_hash_map<Key, T, HashCompare, Allocator>& rhs);

template <typename Key, typename T, typename HashCompare, typename Allocator>
bool operator!=(const concurrent_hash_map<Key, T, HashCompare, Allocator>& lhs,

const concurrent_hash_map<Key, T, HashCompare, Allocator>& rhs);

template <typename Key, typename T, typename HashCompare, typename Allocator>
void swap(concurrent_hash_map<Key, T, HashCompare, Allocator>& lhs,

concurrent_hash_map<Key, T, HashCompare, Allocator>& rhs);

9.2. oneTBB Interfaces 503

oneAPI Specification, Release 1.1-rev-1

Non-member swap

template <typename Key, typename T, typename HashCompare, typename Allocator>
void swap(concurrent_hash_map<Key, T, HashCompare, Allocator>& lhs,

concurrent_hash_map<Key, T, HashCompare, Allocator>& rhs);

Equivalent to lhs.swap(rhs).

Non-member binary comparisons

Two objects of concurrent_hash_map are equal if the following conditions are true:

• They contain equal number of elements.

• Each element from one container is also available in the other.

template <typename Key, typename T, typename HashCompare, typename Allocator>
bool operator==(const concurrent_hash_map<Key, T, HashCompare, Allocator>& lhs,

const concurrent_hash_map<Key, T, HashCompare, Allocator>& rhs);

Returns: true if lhs is equivalent to rhs; false, otherwise.

template <typename Key, typename T, typename HashCompare, typename Allocator>
bool operator!=(const concurrent_hash_map<Key, T, HashCompare, Allocator>& lhs,

const concurrent_hash_map<Key, T, HashCompare, Allocator>& rhs);

Equivalent to !(lhs == rhs).

Returns: true if lhs is not equal to rhs; false, otherwise.

Other

Deduction guides

If possible, concurrent_hash_map constructors support class template argument deduction (since C++17). Copy and
move constructors, including constructors with an explicit allocator_type argument, provide implicitly-generated
deduction guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename HashCompare = tbb_hash_compare<iterator_key_t<InputIterator>>,
typename Allocator = tbb_allocator<iterator_alloc_value_t<InputIterator>>>

concurrent_hash_map(InputIterator, InputIterator,
HashCompare = HashCompare(),
Allocator = Allocator())

-> concurrent_hash_map<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
HashCompare,
Allocator>;

template <typename InputIterator,
typename Allocator>

(continues on next page)

9.2. oneTBB Interfaces 504

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

concurrent_hash_map(InputIterator, InputIterator, Allocator)
-> concurrent_hash_map<iterator_key_t<InputIterator>,

iterator_mapped_t<InputIterator>,
tbb_hash_compare<iterator_key_t<InputIterator>>,
Allocator>;

template <typename Key, typename T,
typename HashCompare = tbb_hash_compare<std::remove_const_t<Key>>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>>

concurrent_hash_map(std::initializer_list<std::pair<Key, T>>,
HashCompare = HashCompare(),
Allocator = Allocator())

-> concurrent_hash_map<std::remove_const_t<Key>,
T,
HashCompare,
Allocator>;

template <typename Key, typename T,
typename Allocator>

concurrent_hash_map(std::initializer_list<std::pair<Key, T>>,
Allocator)

-> concurrent_hash_map<std::remove_const_t<Key>,
T,
tbb_hash_compare<std::remove_const_t<Key>>,
Allocator>;

Where the type aliases iterator_key_t, iterator_mapped_t, and iterator_alloc_value_t are defined as fol-
lows:

template <typename InputIterator>
using iterator_key_t = std::remove_const_t<typename std::iterator_traits<InputIterator>
→˓::value_type::first_type>;

template <typename InputIterator>
using iterator_mapped_t = typename std::iterator_traits<InputIterator>::value_
→˓type::second_type;

template <typename InputIterator>
using iterator_alloc_value_t = std::pair<std::add_const_t<iterator_key_t<InputIterator>,

iterator_mapped_t<InputIterator>>>;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

• The HashCompare type does not meet the Allocator requirements.

Example

9.2. oneTBB Interfaces 505

oneAPI Specification, Release 1.1-rev-1

#include <oneapi/tbb/concurrent_hash_map.h>
#include <vector>

int main() {
std::vector<std::pair<const int, float>> v;

// Deduces chmap1 as oneapi::tbb::concurrent_hash_map<int, float>
oneapi::tbb::concurrent_hash_map chmap1(v.begin(), v.end());

std::allocator<std::pair<const int, float>> alloc;
// Deduces chmap2 as oneapi::tbb::concurrent_hash_map<int, float,
// tbb_hash_compare<int>,
// std::allocator<std::pair<const int,␣

→˓float>>>
oneapi::tbb::concurrent_hash_map chmap2(v.begin(), v.end(), alloc);

}

concurrent_unordered_map

[containers.concurrent_unordered_map]
oneapi::tbb::concurrent_unordered_map is a class template that represents an unordered associative container.
It stores key-value pairs with unique keys and supports concurrent insertion, lookup, and traversal, but does not support
concurrent erasure.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_unordered_map.h>

namespace oneapi {
namespace tbb {

template <typename Key,
typename T,
typename Hash = std::hash<Key>,
typename KeyEqual = std::equal_to<Key>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>>

class concurrent_unordered_map {
public:

using key_type = Key;
using mapped_type = T;
using value_type = std::pair<const Key, T>;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;

using hasher = Hash;
using key_equal = /*See below*/;

using allocator_type = Allocator;
(continues on next page)

9.2. oneTBB Interfaces 506

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

using reference = value_type&;
using const_reference = const value_type&;

using pointer = typename std::allocator_traits<Allocator>::pointer;
using const_pointer = typename std::allocator_traits<Allocator>::const_

→˓pointer;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

using local_iterator = <implementation-defined ForwardIterator>;
using const_local_iterator = <implementation-defined constant␣

→˓ForwardIterator>;

using node_type = <implementation-defined node handle>;

using range_type = <implementation-defined ContainerRange>;
using const_range_type = <implementation-defined constant ContainerRange>;

// Construction, destruction, copying
concurrent_unordered_map();

explicit concurrent_unordered_map(size_type bucket_count, const hasher&␣
→˓hash = hasher(),

const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_

→˓type());

concurrent_unordered_map(size_type bucket_count, const allocator_type&␣
→˓alloc);

concurrent_unordered_map(size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

explicit concurrent_unordered_map(const allocator_type& alloc);

template <typename InputIterator>
concurrent_unordered_map(InputIterator first, InputIterator last,

size_type bucket_count = /*implementation-defined*/
→˓,

const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type());

template <typename Inputiterator>
concurrent_unordered_map(InputIterator first, InputIterator last,

size_type bucket_count, const allocator_type& alloc);

template <typename InputIterator>
concurrent_unordered_map(InputIterator first, InputIterator last,

size_type bucket_count, const hasher& hash,

(continues on next page)

9.2. oneTBB Interfaces 507

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const allocator_type& alloc);

concurrent_unordered_map(std::initializer_list<value_type> init,
size_type bucket_count = /*implementation-defined*/

→˓,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type());

concurrent_unordered_map(std::initializer_list<value_type> init,
size_type bucket_count, const allocator_type&␣

→˓alloc);

concurrent_unordered_map(std::initializer_list<value_type> init,
size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

concurrent_unordered_map(const concurrent_unordered_map& other);
concurrent_unordered_map(const concurrent_unordered_map& other,

const allocator_type& alloc);

concurrent_unordered_map(concurrent_unordered_map&& other);
concurrent_unordered_map(concurrent_unordered_map&& other,

const allocator_type& alloc);

~concurrent_unordered_map();

concurrent_unordered_map& operator=(const concurrent_unordered_map& other);
concurrent_unordered_map& operator=(concurrent_unordered_map&& other)␣

→˓noexcept(/*See details*/);

concurrent_unordered_map& operator=(std::initializer_list<value_type> init␣
→˓);

allocator_type get_allocator() const;

// Iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
const_iterator cbegin() const noexcept;

iterator end() noexcept;
const_iterator end() const noexcept;
const_iterator cend() const noexcept;

// Size and capacity
bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// Concurrently safe modifiers
std::pair<iterator, bool> insert(const value_type& value);

(continues on next page)

9.2. oneTBB Interfaces 508

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

iterator insert(const_iterator hint, const value_type& value);

template <typename P>
std::pair<iterator, bool> insert(P&& value);

template <typename P>
iterator insert(const_iterator hint, P&& value);

std::pair<iterator, bool> insert(value_type&& value);
iterator insert(const_iterator hint, value_type&& value);

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

void insert(std::initializer_list<value_type> init);

std::pair<iterator, bool> insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_map<Key, T, SrcHash, SrcKeyEqual, Allocator>

→˓& source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_map<Key, T, SrcHash, SrcKeyEqual, Allocator>

→˓&& source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multimap<Key, T, SrcHash, SrcKeyEqual,␣

→˓Allocator>& source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multimap<Key, T, SrcHash, SrcKeyEqual,␣

→˓Allocator>&& source);

// Concurrently unsafe modifiers
void clear() noexcept;

iterator unsafe_erase(const_iterator pos);
iterator unsafe_erase(iterator pos);

iterator unsafe_erase(const_iterator first, const_iterator last);

size_type unsafe_erase(const key_type& key);

template <typename K>
(continues on next page)

9.2. oneTBB Interfaces 509

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

size_type unsafe_erase(const K& key);

node_type unsafe_extract(const_iterator pos);
node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const key_type& key);

template <typename K>
node_type unsafe_extract(const K& key);

void swap(concurrent_unordered_map& other);

// Element access
mapped_type& at(const key_type& key);
const mapped_type& at(const key_type& key) const;

mapped_type& operator[](const key_type& key);
mapped_type& operator[](key_type&& key);

// Lookup
size_type count(const key_type& key) const;

template <typename K>
size_type count(const K& key) const;

iterator find(const key_type& key);
const_iterator find(const key_type& key) const;

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

bool contains(const key_type& key) const;

template <typename K>
bool contains(const K& key) const;

std::pair<iterator, iterator> equal_range(const key_type& key);
std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣

→˓const;

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;

// Bucket interface
local_iterator unsafe_begin(size_type n);
const_local_iterator unsafe_begin(size_type n) const;

(continues on next page)

9.2. oneTBB Interfaces 510

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const_local_iterator unsafe_cbegin(size_type n) const;

local_iterator unsafe_end(size_type n);
const_local_iterator unsafe_end(size_type n) const;
const_local_iterator unsafe_cend(size_type n) const;

size_type unsafe_bucket_count() const;
size_type unsafe_max_bucket_bount() const;

size_type unsafe_bucket_size(size_type n) const;

size_type unsafe_bucket(const key_type& key) const;

// Hash policy
float load_factor() const;

float max_load_factor() const;
void max_load_factor(float ml);

void rehash(size_type count);

void reserve(size_type count);

// Observers
hasher hash_function() const;
key_equal key_eq() const;

// Parallel iteration
range_type range();
const_range_type range() const;

}; // class concurrent_unordered_map

} // namespace tbb
} // namespace oneapi

Requirements:

• The expression std::allocator_type<Allocator>::destroy(m, val), where m is an object of the type
Allocator and val is an object of type value_type, must be well-formed. Member functions can impose
stricter requirements depending on the type of the operation.

• The type Hash must meet the Hash requirements from the [hash] ISO C++ Standard section.

• The type KeyEqual must meet the BinaryPredicate requirements from the [algorithms.general] ISO C++
Standard section.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

9.2. oneTBB Interfaces 511

oneAPI Specification, Release 1.1-rev-1

Description

oneapi::tbb::concurrent_unordered_map is an unordered associative container, which elements are organized
into buckets. The value of the hash function Hash for a Key object determines the number of the bucket in which the
corresponding element will be placed.

If the qualified-id Hash::transparent_key_equal is valid and denotes a type, the member type
concurrent_unordered_map::key_equal is defined as the value of this qualified-id. In this case, the pro-
gram is ill-formed if any of the following conditions are met:

• The template parameter KeyEqual is different from std::equal_to<Key>.

• Qualified-id Hash::transparent_key_equal::is_transparent is not valid or does not denote a type.

Otherwise, the member type concurrent_unordered_map::key_equal is defined as the value of the template pa-
rameter KeyEqual.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_unordered_map();

explicit concurrent_unordered_map(const allocator_type& alloc);

Constructs an empty concurrent_unordered_map. The initial number of buckets is unspecified.

If provided, uses the allocator alloc to allocate the memory.

explicit concurrent_unordered_map(size_type bucket_count,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_

→˓type());

concurrent_unordered_map(size_type bucket_count, const allocator_type& alloc␣
→˓);

concurrent_unordered_map(size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

Constructs an empty concurrent_unordered_map with bucket_count buckets.

If provided, uses the hash function hasher, predicate equal to compare key_type objects for equality,
and the allocator alloc to allocate the memory.

9.2. oneTBB Interfaces 512

oneAPI Specification, Release 1.1-rev-1

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_unordered_map(InputIterator first, InputIterator last,

size_type bucket_count = /*implementation-defined*/,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type());

template <typename Inputiterator>
concurrent_unordered_map(InputIterator first, InputIterator last,

size_type bucket_count, const allocator_type& alloc␣
→˓);

template <typename InputIterator>
concurrent_unordered_map(InputIterator first, InputIterator last,

size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

Constructs the concurrent_unordered_map that contains the elements from the half-open interval
[first, last).

If the range [first, last) contains multiple elements with equal keys, it is unspecified which element
would be inserted.

If provided, uses the hash function hasher, predicate equal to compare key_type objects for equality,
and the allocator alloc to allocate the memory.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [in-
put.iterators] ISO C++ Standard section.

concurrent_unordered_map(std::initializer_list<value_type> init,
size_type bucket_count = /*implementation-defined*/,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type());

Equivalent to concurrent_unordered_map(init.begin(), init.end(), bucket_count,
hash, equal, alloc).

concurrent_unordered_map(std::initializer_list<value_type> init,
size_type bucket_count, const allocator_type& alloc␣

→˓);

Equivalent to concurrent_unordered_map(init.begin(), init.end(), bucket_count,
alloc).

concurrent_unordered_map(std::initializer_list<value_type> init,
size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

9.2. oneTBB Interfaces 513

oneAPI Specification, Release 1.1-rev-1

Equivalent to concurrent_unordered_map(init.begin(), init.end(), bucket_count,
hash, alloc).

Copying constructors

concurrent_unordered_map(const concurrent_unordered_map& other);

concurrent_unordered_map(const concurrent_unordered_map& other,
const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Moving constructors

concurrent_unordered_map(concurrent_unordered_map&& other);

concurrent_unordered_map(concurrent_unordered_map&& other,
const allocator_type& alloc);

Constructs a concurrent_unordered_map with the contents of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_unordered_map();

Destroys the concurrent_unordered_map. Calls destructors of the stored elements and deallocates the
used storage.

The behavior is undefined in case of concurrent operations with *this.

9.2. oneTBB Interfaces 514

oneAPI Specification, Release 1.1-rev-1

Assignment operators

concurrent_unordered_map& operator=(const concurrent_unordered_map& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_unordered_map& operator=(concurrent_unordered_map&& other)␣
→˓noexcept(/*See below*/);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

Exceptions: noexcept specification:

noexcept(std::allocator_traits<allocator_type>::is_always_equal::value␣
→˓&&

std::is_nothrow_move_assignable<hasher>::value &&
std::is_nothrow_move_assignable<key_equal>::value)

concurrent_unordered_map& operator=(std::initializer_list<value_type> init);

Replaces all elements in *this by the elements in init.

If init contains multiple elements with equal keys, it is unspecified which element would be inserted.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

Iterators

The types concurrent_unordered_map::iterator and concurrent_unordered_map::const_iterator meet
the requirements of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

9.2. oneTBB Interfaces 515

oneAPI Specification, Release 1.1-rev-1

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the container.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the container.

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty; false, otherwise.

The result may differ from the actual container state in case of pending concurrent insertions.

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ from the actual container size in case of pending concurrent insertions.

max_size

size_type max_size() const;

Returns: the maximum number of elements that container can hold.

9.2. oneTBB Interfaces 516

oneAPI Specification, Release 1.1-rev-1

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other, lookup methods and while travers-
ing the container.

Emplacing elements

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

Attempts to insert an element constructed in-place from args into the container.

Returns: std::pair<iterator, bool> where iterator points to the inserted element or to an exist-
ing element with equal key. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ Standard section.

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

Attempts to insert an element constructed in-place from args into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

Returns: an iterator to the inserted element or to an existing element with equal key.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ Standard section.

Inserting values

std::pair<iterator, bool> insert(const value_type& value);

Attempts to insert value into the container.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element or to an ex-
isting element with equal key. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, const value_type& value);

Attempts to insert value into the container.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

Returns: an iterator to the inserted element or to an existing element with equal key.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

9.2. oneTBB Interfaces 517

oneAPI Specification, Release 1.1-rev-1

template <typename P>
std::pair<iterator, bool> insert(P&& value);

Equivalent to emplace(std::forward<P>(value)).

This overload only participates in overload resolution if std::is_constructible<value_type,
P&&>::value is true.

template <typename P>
iterator insert(const_iterator hint, P&& value);

Equivalent to emplace_hint(hint, std::forward<P>(value)).

This overload only participates in overload resolution if std::is_constructible<value_type,
P&&>::value is true.

std::pair<iterator, bool> insert(value_type&& value);

Attempts to insert value into the container using move semantics.

value is left in a valid, but unspecified state.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element or to an ex-
isting element with equal key. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, value_type&& other);

Attempts to insert value into the container using move semantics.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

value is left in a valid, but unspecified state.

Returns: an iterator to the inserted element or to an existing element with equal key.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

Inserting sequences of elements

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

Attempts to insert all items from the half-open interval [first, last) into the container.

If the interval [first, last) contains multiple elements with equal keys, it is unspecified which element
should be inserted.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [input.
iterators] ISO C++ Standard section.

9.2. oneTBB Interfaces 518

oneAPI Specification, Release 1.1-rev-1

void insert(std::initializer_list<value_type> init);

Equivalent to insert(init.begin(), init.end()).

Inserting nodes

std::pair<iterator, bool> insert(node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, attempts to insert the node owned by nh into the container.

If the insertion fails, node handle nh keeps ownership of the node.

Otherwise, nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: std::pair<iterator, bool>, where iterator points to the inserted element or to an exist-
ing element with key equal to nh.key(). Boolean value is true if insertion took place; false, otherwise.

iterator insert(const_iterator hint, node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, attempts to insert the node owned by nh into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

If the insertion fails, node handle nh keeps ownership of the node.

Otherwise, nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: an iterator pointing to the inserted element or to an existing element with key equal to nh.key().

Merging containers

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_map<Key, T, SrcHash, SrcKeyEqual, Allocator>&␣
→˓source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_map<Key, T, SrcHash, SrcKeyEqual, Allocator>&&
→˓ source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multimap<Key, T, SrcHash, SrcKeyEqual,␣
→˓Allocator>& source);

(continues on next page)

9.2. oneTBB Interfaces 519

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multimap<Key, T, SrcHash, SrcKeyEqual,␣
→˓Allocator>&& source);

Transfers those elements from source which keys do not exist in the container.

In case of merging with the container with multiple elements with equal keys, it is unspecified which
element would be transferred.

No copy or move constructors of value_type are performed.

The behavior is undefined if get_allocator() != source.get_allocator().

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

Clearing

void clear();

Removes all elements from the container.

Erasing elements

iterator unsafe_erase(const_iterator pos);

iterator unsafe_erase(iterator pos);

Removes the element pointed to by pos from the container.

Invalidates all iterators and references to the removed element.

Returns: iterator that follows the removed element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

size_type unsafe_erase(const key_type& key);

Removes the element with the key equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

Returns: 1 if an element with the key equivalent to key exists; 0, otherwise.

template <typename K>
size_type unsafe_erase(const K& key);

9.2. oneTBB Interfaces 520

oneAPI Specification, Release 1.1-rev-1

Removes the element with the key equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

This overload only participates in overload resolution if all of the following conditions are met:

• The qualified-id hasher::transparent_key_equal is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: 1 if an element with the key equivalent to key exists; 0, otherwise.

Erasing sequences

iterator unsafe_erase(const_iterator first, const_iterator last);

Removes all elements from the half-open interval [first, last) from the container.

Returns: iterator that follows the last removed element.

Requirements: the range [first, last) must be a valid subrange in *this.

Extracting nodes

node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const_iterator pos);

Transfers ownership of the element pointed to by pos from the container to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

node_type unsafe_extract(const key_type& key);

If an element with the key equivalent to key exists, transfers ownership of this element from the container
to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element or an empty node handle if an element with the
key equivalent to key was not found.

9.2. oneTBB Interfaces 521

oneAPI Specification, Release 1.1-rev-1

template <typename K>
node_type unsafe_extract(const K& key);

If an element with the key equivalent to key exists, transfers ownership of this element from the container
to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

This overload only participates in overload resolution if all of the following conditions are met:

• The qualified-id hasher::transparent_key_equal is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the node handle that owns the extracted element or an empty node handle if an element with the
key equivalent to key was not found.

swap

void swap(concurrent_unordered_map& other) noexcept(/*See below*/);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

Exceptions: noexcept specification:

noexcept(std::allocator_traits<allocator_type>::is_always_equal::value␣
→˓&&

std::is_nothrow_swappable<hasher>::value &&
std::is_nothrow_swappable<key_equal>::value

Element access

at

value_type& at(const key_type& key);

const value_type& at(const key_type& key) const;

Returns: a reference to item.second, where item is the element with the key equivalent to key.

Throws: std::out_of_range exception if the element with the key equivalent to key is not presented
in the container.

9.2. oneTBB Interfaces 522

oneAPI Specification, Release 1.1-rev-1

operator[]

value_type& operator[](const key_type& key);

If the element with the key equivalent to key is not presented in the container, inserts a new el-
ement constructed in-place from std::piecewise_construct, std::forward_as_tuple(key),
std::tuple<>().

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ Standard section.

Returns: a reference to item.second, where item is the element with the key equivalent to key.

value_type& operator[](key_type&& key);

If the element with the key equivalent to key is not presented in the container,
inserts a new element constructed in-place from std::piecewise_construct,
std::forward_as_tuple(std::move(key)), std::tuple<>().

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ Standard section.

Returns: a reference to item.second where item is the element with the key equivalent to key.

Lookup

All methods in this section can be executed concurrently with each other, concurrently-safe modifiers and while travers-
ing the container.

count

size_type count(const key_type& key);

Returns: the number of elements with the key equivalent to key.

template <typename K>
size_type count(const K& key);

Returns: the number of elements with the key that is equivalent to key.

This overload only participates in overload resolution if qualified-id hasher::transparent_key_equal
is valid and denotes a type.

9.2. oneTBB Interfaces 523

oneAPI Specification, Release 1.1-rev-1

find

iterator find(const key_type& key);

const_iterator find(const key_type& key) const;

Returns: an iterator to the element with the key equivalent to key, or end() if no such element exists.

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

Returns: an iterator to the element with the key that is equivalent to key, or end() if no such element
exists.

These overloads only participate in overload resolution if qualified-id
hasher::transparent_key_equal is valid and denotes a type.

contains

bool contains(const key_type& key) const;

Returns: true if an element with the key equivalent to key exists in the container; false, otherwise.

template <typename K>
bool contains(const K& key) const;

Returns: true if an element with the key equivalent to key exists in the container; false, otherwise.

This overload only participates in overload resolution if qualified-id hasher::transparent_key_equal
is valid and denotes a type.

equal_range

std::pair<iterator, iterator> equal_range(const key_type& key);

std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣
→˓const;

Returns: if an element with the key equivalent to key exists, a pair of iterators {f, l}, where f is an
iterator to this element, l is std::next(f). Otherwise, {end(), end()}.

9.2. oneTBB Interfaces 524

oneAPI Specification, Release 1.1-rev-1

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key)

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key)

Returns: if an element with the key equivalent to key exists, a pair of iterators {f, l}, where f is an
iterator to this element, l is std::next(f). Otherwise, {end(), end()}.

These overloads only participate in overload resolution if qualified-id
hasher::transparent_key_equal is valid and denotes a type.

Bucket interface

The types concurrent_unordered_map::local_iterator and concurrent_unordered_map::const_local_iterator
meet the requirements of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

Use these iterators to traverse a certain bucket.

All methods in this section can only be executed serially. The behavior is undefined in case of concurrent execution of
these member functions with other (either concurrently safe) methods.

Bucket begin and bucket end

local_iterator unsafe_begin(size_type n);

const_local_iterator unsafe_begin(size_type n) const;

const_local_iterator unsafe_cbegin(size_type n) const;

Returns: an iterator to the first element in the bucket number n.

local_iterator unsafe_end(size_type n);

const_local_iterator unsafe_end(size_type n) const;

const_local_iterator unsafe_cend(size_type n) const;

Returns: an iterator to the element that follows the last element in the bucket number n.

The number of buckets

size_type unsafe_bucket_count() const;

Returns: the number of buckets in the container.

size_type unsafe_max_bucket_count() const;

Returns: the maximum number of buckets that container can hold.

9.2. oneTBB Interfaces 525

oneAPI Specification, Release 1.1-rev-1

Size of the bucket

size_type unsafe_bucket_size(size_type n) const;

Returns: the number of elements in the bucket number n.

Bucket number

size_type unsafe_bucket(const key_type& key) const;

Returns: the number of the bucket in which the element with the key key is stored.

Hash policy

Hash policy of concurrent_unordered_map manages the number of buckets in the container and the allowed maxi-
mum number of elements per bucket (load factor). If the maximum load factor is exceeded, the container can automat-
ically increase the number of buckets.

Load factor

float load_factor() const;

Returns: the average number of elements per bucket, which is size()/unsafe_bucket_count().

float max_load_factor() const;

Returns: the maximum number of elements per bucket.

void max_load_factor(float ml);

Sets the maximum number of elements per bucket to ml.

Manual rehashing

void rehash(size_type n);

Sets the number of buckets to n and rehashes the container.

void reserve(size_type n);

Sets the number of buckets to the value that is needed to store n elements.

9.2. oneTBB Interfaces 526

oneAPI Specification, Release 1.1-rev-1

Observers

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

hash_function

hasher hash_function() const;

Returns: a copy of the hash function associated with *this.

key_eq

key_equal key_eq() const;

Returns: a copy of the key equality predicate associated with *this.

Parallel iteration

Member types concurrent_unordered_map::range_type and concurrent_unordered_map::const_range_type
meet the ContainerRange requirements.

These types differ only in that the bounds for a concurrent_unordered_map::const_range_type
are of type concurrent_unordered_map::const_iterator, whereas the bounds for a
concurrent_unordered_map::range_type are of type concurrent_unordered_map::iterator.

range member function

range_type range();

const_range_type range() const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provide binary comparison and swap operations on oneapi::tbb::concurrent_unordered_map
objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective compar-
ison operations. For example, an implementation may define the classes and functions in the same internal namespace
and define oneapi::tbb::concurrent_unordered_map as a type alias for which the non-member functions are
reachable only via argument-dependent lookup.

9.2. oneTBB Interfaces 527

oneAPI Specification, Release 1.1-rev-1

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

void swap(concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& lhs,
concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& rhs);

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& rhs␣

→˓);

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& rhs␣

→˓);

Non-member swap

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

void swap(concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& lhs,
concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& rhs)␣

→˓noexcept(noexcept(lhs.swap(rhs)));

Equivalent to lhs.swap(rhs).

Non-member binary comparisons

Two objects of concurrent_unordered_map are equal if the following conditions are true:

• They contains an equal number of elements.

• Each element from the one container is also available in the other.

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& rhs␣

→˓);

Returns: true if lhs is equal to rhs; false, otherwise.

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator!=(const concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_map<Key, T, Hash, KeyEqual, Allocator>& rhs␣

→˓);

Equivalent to !(lhs == rhs).

Returns: true if lhs is not equal to rhs; false, otherwise.

9.2. oneTBB Interfaces 528

oneAPI Specification, Release 1.1-rev-1

Other

Deduction guides

If possible, concurrent_unordered_map constructors support class template argument deduction (since C++17).
Copy and move constructors, including constructors with an explicit allocator_type argument, provide implicitly-
generated deduction guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename Hash = std::hash<iterator_key_t<InputIterator>>,
typename KeyEqual = std::equal_to<iterator_key_t<InputIterator>>,
typename Allocator = tbb::tbb_allocator<iterator_alloc_value_t<InputIterator>>>

concurrent_unordered_map(InputIterator, InputIterator,
map_size_type = {},
Hash = Hash(),
KeyEqual = KeyEqual(),
Allocator = Allocator())

-> concurrent_unordered_map<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
Hash,
KeyEqual,
Allocator>;

template <typename InputIterator,
typename Hash,
typename Allocator>

concurrent_unordered_map(InputIterator, InputIterator,
map_size_type,
Hash,
Allocator)

-> concurrent_unordered_map<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
Hash,
std::equal_to<iterator_key_t<InputIterator>>,
Allocator>;

template <typename InputIterator,
typename Allocator>

concurrent_unordered_map(InputIterator, InputIterator,
map_size_type,
Allocator)

-> concurrent_unordered_map<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
std::hash<iterator_key_t<InputIterator>>,
std::equal_to<iterator_key_t<InputIterator>>,
Allocator>;

template <typename Key,
typename T,
typename Hash = std::hash<std::remove_const_t<Key>>,
typename KeyEqual = std::equal_to<std::remove_const_t<Key>>,
typename Allocator = tbb::tbb_allocator<std::pair<const Key, T>>>

concurrent_unordered_map(std::initializer_list<std::pair<Key, T>>,
(continues on next page)

9.2. oneTBB Interfaces 529

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

map_size_type = {},
Hash = Hash(),
KeyEqual = KeyEqual(),
Allocator = Allocator())

-> concurrent_unordered_map<std::remove_const_t<Key>,
T,
Hash,
KeyEqual,
Allocator>;

template <typename Key,
typename T,
typename Allocator>

concurrent_unordered_map(std::initializer_list<std::pair<Key, T>>,
map_size_type,
Allocator)

-> concurrent_unordered_map<std::remove_const_t<Key>,
T,
std::hash<std::remove_const_t<Key>>,
std::equal_to<std::remove_const_t<Key>>,
Allocator>;

template <typename Key,
typename T,
typename Allocator>

concurrent_unordered_map(std::initializer_list<std::pair<Key, T>>,
Allocator)

-> concurrent_unordered_map<std::remove_const_t<Key>,
T,
std::hash<std::remove_const_t<Key>>,
std::equal_to<std::remove_const_t<Key>>,
Allocator>;

template <typename Key,
typename T,
typename Hash,
typename Allocator>

concurrent_unordered_map(std::initializer_list<std::pair<Key, T>>,
map_size_type,
Hash,
Allocator)

-> concurrent_unordered_map<std::remove_const_t<Key>,
T,
Hash,
std::equal_to<std::remove_const_t<Key>>,
Allocator>;

Where the map_size_type type refers to the size_typemember type of the deduced concurrent_unordered_map
and the type aliases iterator_key_t, iterator_mapped_t, and iterator_alloc_value_t are defined as follows:

template <typename InputIterator>
using iterator_key_t = std::remove_const_t<typename std::iterator_traits<InputIterator>
→˓::value_type::first_type>; (continues on next page)

9.2. oneTBB Interfaces 530

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

template <typename InputIterator>
using iterator_mapped_t = typename std::iterator_traits<InputIterator>::value_
→˓type::second_type;

template <typename InputIterator>
using iterator_alloc_value_t = std::pair<std::add_const_t<iterator_key_t<InputIterator>,

iterator_mapped_t<InputIterator>>>;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

• The Hash type does not meet the Allocator requirements.

• The KeyEqual type does not meet the Allocator requirements.

Example

#include <oneapi/tbb/concurrent_unordered_map.h>
#include <vector>
#include <functional>

struct CustomHasher {...};

int main() {
std::vector<std::pair<int, float>> v;

// Deduces m1 as concurrent_unordered_map<int, float>
oneapi::tbb::concurrent_unordered_map m1(v.begin(), v.end());

// Deduces m2 as concurrent_unordered_map<int, float, CustomHasher>;
oneapi::tbb::concurrent_unordered_map m2(v.begin(), v.end(), CustomHasher{});

}

9.2. oneTBB Interfaces 531

oneAPI Specification, Release 1.1-rev-1

concurrent_unordered_multimap

[containers.concurrent_unordered_multimap]
oneapi::tbb::concurrent_unordered_multimap is a class template that represents an unordered associative con-
tainer. It stores key-value pairs and supports concurrent insertion, lookup, and traversal, but does not support concurrent
erasure. In this container, multiple elements with equal keys can be stored.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_unordered_map.h>

namespace oneapi {
namespace tbb {

template <typename Key,
typename T,
typename Hash = std::hash<Key>,
typename KeyEqual = std::equal_to<Key>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>>

class concurrent_unordered_multimap {
public:

using key_type = Key;
using mapped_type = T;
using value_type = std::pair<const Key, T>;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;

using hasher = Hash;
using key_equal = /*See below*/;

using allocator_type = Allocator;

using reference = value_type&;
using const_reference = const value_type&;

using pointer = typename std::allocator_traits<Allocator>::pointer;
using const_pointer = typename std::allocator_traits<Allocator>::const_

→˓pointer;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

using local_iterator = <implementation-defined ForwardIterator>;
using const_local_iterator = <implementation-defined constant␣

→˓ForwardIterator>;

using node_type = <implementation-defined node handle>;

using range_type = <implementation-defined ContainerRange>;
using const_range_type = <implementation-defined constant ContainerRange>;

(continues on next page)

9.2. oneTBB Interfaces 532

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

// Construction, destruction, copying
concurrent_unordered_multimap();

explicit concurrent_unordered_multimap(size_type bucket_count, const hasher&
→˓ hash = hasher(),

const key_equal& equal = key_equal(),
const allocator_type& alloc =␣

→˓allocator_type());

concurrent_unordered_multimap(size_type bucket_count, const allocator_type&␣
→˓alloc);

concurrent_unordered_multimap(size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

explicit concurrent_unordered_multimap(const allocator_type& alloc);

template <typename InputIterator>
concurrent_unordered_multimap(InputIterator first, InputIterator last,

size_type bucket_count = /*implementation-
→˓defined*/,

const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_

→˓type());

template <typename Inputiterator>
concurrent_unordered_multimap(InputIterator first, InputIterator last,

size_type bucket_count, const allocator_type&␣
→˓alloc);

template <typename InputIterator>
concurrent_unordered_multimap(InputIterator first, InputIterator last,

size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

concurrent_unordered_multimap(std::initializer_list<value_type> init,
size_type bucket_count = /*implementation-

→˓defined*/,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_

→˓type());

concurrent_unordered_multimap(std::initializer_list<value_type> init,
size_type bucket_count, const allocator_type&␣

→˓alloc);

concurrent_unordered_multimap(std::initializer_list<value_type> init,
size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

(continues on next page)

9.2. oneTBB Interfaces 533

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

concurrent_unordered_multimap(const concurrent_unordered_multimap& other);
concurrent_unordered_multimap(const concurrent_unordered_multimap& other,

const allocator_type& alloc);

concurrent_unordered_multimap(concurrent_unordered_multimap&& other);
concurrent_unordered_multimap(concurrent_unordered_multimap&& other,

const allocator_type& alloc);

~concurrent_unordered_multimap();

concurrent_unordered_multimap& operator=(const concurrent_unordered_
→˓multimap& other);

concurrent_unordered_multimap& operator=(concurrent_unordered_multimap&&␣
→˓other) noexcept(/*See details*/);

concurrent_unordered_multimap& operator=(std::initializer_list<value_type>␣
→˓init);

allocator_type get_allocator() const;

// Iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
const_iterator cbegin() const noexcept;

iterator end() noexcept;
const_iterator end() const noexcept;
const_iterator cend() const noexcept;

// Size and capacity
bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// Concurrently safe modifiers
std::pair<iterator, bool> insert(const value_type& value);
iterator insert(const_iterator hint, const value_type& value);

template <typename P>
std::pair<iterator, bool> insert(P&& value);

template <typename P>
iterator insert(const_iterator hint, P&& value);

std::pair<iterator, bool> insert(value_type&& value);
iterator insert(const_iterator hint, value_type&& value);

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

void insert(std::initializer_list<value_type> init);

(continues on next page)

9.2. oneTBB Interfaces 534

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::pair<iterator, bool> insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_map<Key, T, SrcHash, SrcKeyEqual, Allocator>

→˓& source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_map<Key, T, SrcHash, SrcKeyEqual, Allocator>

→˓&& source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multimap<Key, T, SrcHash, SrcKeyEqual,␣

→˓Allocator>& source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multimap<Key, T, SrcHash, SrcKeyEqual,␣

→˓Allocator>&& source);

// Concurrently unsafe modifiers
void clear() noexcept;

iterator unsafe_erase(const_iterator pos);
iterator unsafe_erase(iterator pos);

iterator unsafe_erase(const_iterator first, const_iterator last);

size_type unsafe_erase(const key_type& key);

template <typename K>
size_type unsafe_erase(const K& key);

node_type unsafe_extract(const_iterator pos);
node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const key_type& key);

template <typename K>
node_type unsafe_extract(const K& key);

void swap(concurrent_unordered_multimap& other);

// Lookup
size_type count(const key_type& key) const;

template <typename K>
(continues on next page)

9.2. oneTBB Interfaces 535

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

size_type count(const K& key) const;

iterator find(const key_type& key);
const_iterator find(const key_type& key) const;

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

bool contains(const key_type& key) const;

template <typename K>
bool contains(const K& key) const;

std::pair<iterator, iterator> equal_range(const key_type& key);
std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣

→˓const;

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;

// Bucket interface
local_iterator unsafe_begin(size_type n);
const_local_iterator unsafe_begin(size_type n) const;
const_local_iterator unsafe_cbegin(size_type n) const;

local_iterator unsafe_end(size_type n);
const_local_iterator unsafe_end(size_type n) const;
const_local_iterator unsafe_cend(size_type n) const;

size_type unsafe_bucket_count() const;
size_type unsafe_max_bucket_bount() const;

size_type unsafe_bucket_size(size_type n) const;

size_type unsafe_bucket(const key_type& key) const;

// Hash policy
float load_factor() const;

float max_load_factor() const;
void max_load_factor(float ml);

void rehash(size_type count);

void reserve(size_type count);

(continues on next page)

9.2. oneTBB Interfaces 536

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

// Observers
hasher hash_function() const;
key_equal key_eq() const;

// Parallel iteration
range_type range();
const_range_type range() const;

}; // class concurrent_unordered_multimap
} // namespace tbb

} // namespace oneapi

Requirements:

• The expression std::allocator_type<Allocator>::destroy(m, val), where m is an object of the type
Allocator and val is an object of type value_type, must be well-formed. Member functions can impose
stricter requirements depending on the type of the operation.

• The type Hash must meet the Hash requirements from the [hash] ISO C++ Standard section.

• The type KeyEqual must meet the BinaryPredicate requirements from the [algorithms.general] ISO C++
Standard section.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

Description

oneapi::tbb::concurrent_unordered_multimap is an unordered associative container, which elements are or-
ganized into buckets. The value of the hash function Hash for a Key object determines the number of the bucket in
which the corresponding element will be placed.

If the qualified-id Hash::transparent_key_equal is valid and denotes a type, the member type
concurrent_unordered_multimap::key_equal is defined as the value of this qualified-id. In this case, the
program is ill-formed if any of the following conditions are met:

• The template parameter KeyEqual is different from std::equal_to<Key>.

• Qualified-id Hash::transparent_key_equal::is_transparent is not valid or does not denote a type.

Otherwise, the type concurrent_unordered_multimap::key_equal is defined as the value of the template param-
eter KeyEqual.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_unordered_multimap();

explicit concurrent_unordered_multimap(const allocator_type& alloc);

Constructs an empty concurrent_unordered_multimap. The initial number of buckets is unspecified.

9.2. oneTBB Interfaces 537

oneAPI Specification, Release 1.1-rev-1

If provided uses the allocator alloc to allocate the memory.

explicit concurrent_unordered_multimap(size_type bucket_count,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc =␣

→˓allocator_type());

concurrent_unordered_multimap(size_type bucket_count, const allocator_type&␣
→˓alloc);

concurrent_unordered_multimap(size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

Constructs an empty concurrent_unordered_multimap with bucket_count buckets.

If provided uses the hash function hasher, predicate equal to compare key_type objects for equality,
and the allocator alloc to allocate the memory.

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_unordered_multimap(InputIterator first, InputIterator last,

size_type bucket_count = /*implementation-
→˓defined*/,

const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type()␣

→˓);

template <typename Inputiterator>
concurrent_unordered_multimap(InputIterator first, InputIterator last,

size_type bucket_count, const allocator_type&␣
→˓alloc);

template <typename InputIterator>
concurrent_unordered_multimap(InputIterator first, InputIterator last,

size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

Constructs the concurrent_unordered_multimap that contains all elements from the half-open interval
[first, last)`.

If provided, uses the hash function hasher, predicate equal to compare key_type objects for equality
and the allocator alloc to allocate the memory.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [in-
put.iterators] ISO C++ Standard section.

9.2. oneTBB Interfaces 538

oneAPI Specification, Release 1.1-rev-1

concurrent_unordered_multimap(std::initializer_list<value_type> init,
size_type bucket_count = /*implementation-

→˓defined*/,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type()␣

→˓);

Equivalent to concurrent_unordered_multimap(init.begin(), init.end(), bucket_count,
hash, equal, alloc).

concurrent_unordered_multimap(std::initializer_list<value_type> init,
size_type bucket_count, const allocator_type&␣

→˓alloc);

Equivalent to concurrent_unordered_multimap(init.begin(), init.end(), bucket_count,
alloc).

concurrent_unordered_multimap(std::initializer_list<value_type> init,
size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

Equivalent to concurrent_unordered_multimap(init.begin(), init.end(), bucket_count,
hash, alloc).

Copying constructors

concurrent_unordered_multimap(const concurrent_unordered_multimap& other);

concurrent_unordered_multimap(const concurrent_unordered_multimap& other,
const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Moving constructors

concurrent_unordered_multimap(concurrent_unordered_multimap&& other);

concurrent_unordered_multimap(concurrent_unordered_multimap&& other,
const allocator_type& alloc);

Constructs a concurrent_unordered_multimap with the contents of other using move semantics.

other is left in a valid, but unspecified state.

9.2. oneTBB Interfaces 539

oneAPI Specification, Release 1.1-rev-1

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_unordered_multimap();

Destroys the concurrent_unordered_multimap. Calls destructors of the stored elements and deallo-
cates the used storage.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_unordered_multimap& operator=(const concurrent_unordered_multimap&␣
→˓other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_unordered_multimap& operator=(concurrent_unordered_multimap&&␣
→˓other) noexcept(/*See below*/);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

Exceptions: noexcept specification:

noexcept(std::allocator_traits<allocator_type>::is_always_equal::value␣
→˓&&

std::is_nothrow_move_assignable<hasher>::value &&
std::is_nothrow_move_assignable<key_equal>::value)

concurrent_unordered_multimap& operator=(std::initializer_list<value_type>␣
→˓init);

9.2. oneTBB Interfaces 540

oneAPI Specification, Release 1.1-rev-1

Replaces all elements in *this by the elements in init.

If init contains multiple elements with equal keys, it is unspecified which element would be inserted.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

Iterators

The types concurrent_unordered_multimap::iterator and concurrent_unordered_multimap::const_iterator
meet the requirements of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the container.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the container.

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty; false, otherwise.

The result may differ from the actual container state in case of pending concurrent insertions.

9.2. oneTBB Interfaces 541

oneAPI Specification, Release 1.1-rev-1

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ from the actual container size in case of pending concurrent insertions.

max_size

size_type max_size() const;

Returns: the maximum number of elements that container can hold.

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other, lookup methods and while travers-
ing the container.

Emplacing elements

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args)

Inserts an element constructed in-place from args into the container.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)

Inserts an element constructed in-place from args into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

Returns: an iterator to the inserted element.

Inserting values

std::pair<iterator, bool> insert(const value_type& value)

Inserts the value value into the container.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

9.2. oneTBB Interfaces 542

oneAPI Specification, Release 1.1-rev-1

iterator insert(const_iterator hint, const value_type& other)

Inserts the value value into the container.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

Returns: an iterator to the inserted element.

template <typename P>
std::pair<iterator, bool> insert(P&& value)

Equivalent to emplace(std::forward<P>(value)).

This overload only participates in overload resolution if std::is_constructible<value_type,
P&&>::value is true.

template <typename P>
iterator insert(const_iterator hint, P&& value)

Equivalent to emplace_hint(hint, std::forward<P>(value)).

This overload only participates in overload resolution if std::is_constructible<value_type,
P&&>::value is true.

std::pair<iterator, bool> insert(value_type&& value)

Inserts the value value into the container using move semantics.

value is left in a valid, but unspecified state.

Returns: std::pair<iterator, bool>where iterator points to the inserted element. Boolean value
is always true.

iterator insert(const_iterator hint, value_type&& other)

Inserts the value value into the container using move semantics.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

value is left in a valid, but unspecified state.

Returns: an iterator to the inserted element.

Inserting sequences of elements

template <typename InputIterator>
void insert(InputIterator first, InputIterator last)

Inserts all items from the half-open interval [first, last) into the container.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [input.
iterators] ISO C++ Standard section.

9.2. oneTBB Interfaces 543

oneAPI Specification, Release 1.1-rev-1

void insert(std::initializer_list<value_type> init)

Equivalent to insert(init.begin(), init.end()).

Inserting nodes

std::pair<iterator, bool> insert(node_type&& nh)

If the node handle nh is empty, does nothing.

Otherwise, inserts the node owned by nh into the container.

nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

iterator insert(const_iterator hint, node_type&& nh)

If the node handle nh is empty, does nothing.

Otherwise, inserts the node owned by nh into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: an iterator pointing to the inserted element.

Merging containers

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_map<Key, T, SrcHash, SrcKeyEqual, Allocator>&␣
→˓source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_map<Key, T, SrcHash, SrcKeyEqual, Allocator>&&
→˓ source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multimap<Key, T, SrcHash, SrcKeyEqual,␣
→˓Allocator>& source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multimap<Key, T, SrcHash, SrcKeyEqual,␣
→˓Allocator>&& source);

9.2. oneTBB Interfaces 544

oneAPI Specification, Release 1.1-rev-1

Transfers all elements from source to *this.

No copy or move constructors of value_type are performed.

The behavior is undefined if get_allocator() != source.get_allocator().

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

Clearing

void clear();

Removes all elements from the container.

Erasing elements

iterator unsafe_erase(const_iterator pos);

iterator unsafe_erase(iterator pos);

Removes the element pointed to by pos from the container.

Invalidates all iterators and references to the removed element.

Returns: iterator that follows the removed element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

size_type unsafe_erase(const key_type& key);

Removes all elements with the key equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed elements.

Returns: the number of removed elements.

template <typename K>
size_type unsafe_erase(const K& key);

Removes all elements with the key equivalent to key if they exist in the container.

Invalidates all iterators and references to the removed elements.

This overload only participates in overload resolution if all of the following statements are true:

• The qualified-id hasher::transparent_key_equal is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the number of removed elements.

9.2. oneTBB Interfaces 545

oneAPI Specification, Release 1.1-rev-1

Erasing sequences

iterator unsafe_erase(const_iterator first, const_iterator last);

Removes all elements from the half-open interval [first, last) from the container.

Returns: iterator that follows the last removed element.

Requirements: the range [first, last) must be a valid subrange in *this.

Extracting nodes

node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const_iterator pos);

Transfers ownership of the element pointed to by pos from the container to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

node_type unsafe_extract(const key_type& key);

If at least one element with the key equivalent to key exists, transfers ownership of one of these element
from the container to the node handle.

No copy or move constructors of value_type are performed.

If there are multiple elements with the key equivalent to key, it is unspecified which element should be
transferred.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element or an empty node handle if an element with the
key equivalent to key was not found.

template <typename K>
node_type unsafe_extract(const K& key);

If at least one element with the key equivalent to key exists, transfers ownership of this element from the
container to the node handle.

No copy or move constructors of value_type are performed.

If there are multiple elements with the key equivalent to key exists, it is unspecified which element should
be transferred.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

9.2. oneTBB Interfaces 546

oneAPI Specification, Release 1.1-rev-1

This overload only participates in overload resolution if all of the following statements are true:

• The qualified-id hasher::transparent_key_equal is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the node handle that owns the extracted element or an empty node handle if an element with the
key equivalent to key was not found.

swap

void swap(concurrent_unordered_multimap& other) noexcept(/*See below*/);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

Exceptions: noexcept specification:

noexcept(std::allocator_traits<allocator_type>::is_always_equal::value␣
→˓&&

std::is_nothrow_swappable<hasher>::value &&
std::is_nothrow_swappable<key_equal>::value

Lookup

All methods in this section can be executed concurrently with each other, concurrently-safe modifiers and while travers-
ing the container.

count

size_type count(const key_type& key);

Returns: the number of elements with the key equivalent to key.

template <typename K>
size_type count(const K& key);

Returns: the number of elements with the key equivalent to key.

This overload only participates in overload resolution if qualified-id hasher::transparent_key_equal
is valid and denotes a type.

9.2. oneTBB Interfaces 547

oneAPI Specification, Release 1.1-rev-1

find

iterator find(const key_type& key);

const_iterator find(const key_type& key) const;

Returns: an iterator to the element with the key equivalent to key, or end() if no such element exists.

If there are multiple elements with the key equivalent to key, it is unspecified which element should be
found.

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

Returns: an iterator to the element with the key equivalent to key, or end() if no such element exists.

If there are multiple elements with the key equivalent to key, it is unspecified which element should be
found.

These overloads only participates in overload resolution if qualified-id
hasher::transparent_key_equal is valid and denotes a type.

contains

bool contains(const key_type& key) const;

Returns: true if at least one element with the key equivalent to key exists in the container; false,
otherwise.

template <typename K>
bool contains(const K& key) const;

Returns: true if at least one element with the key equivalent to key exists in the container; false,
otherwise.

This overload only participates in overload resolution if qualified-id hasher::transparent_key_equal
is valid and denotes a type.

equal_range

std::pair<iterator, iterator> equal_range(const key_type& key);

std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣
→˓const;

Returns: if at least one element with the key equivalent to key exists, a pair of iterators {f, l}, where
f is an iterator to the first element with the key equivalent to key, l is an iterator to the element which
follows the last element with the key equivalent to key. Otherwise, {end(), end()}.

9.2. oneTBB Interfaces 548

oneAPI Specification, Release 1.1-rev-1

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key)

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key)

Returns: if at least one element with the key equivalent to key exists - a pair of iterators {f, l}, where f
is an iterator to the first element with the key equivalent to key, l is an iterator to the element that follows
the last element with the key equivalent to key. Otherwise,``{end(), end()}``.

These overloads only participates in overload resolution if qualified-id
hasher::transparent_key_equal is valid and denotes a type.

Bucket interface

The types concurrent_unordered_multimap::local_iterator and concurrent_unordered_multimap::const_local_iterator
meet the requirements of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

These iterators are used to traverse the certain bucket.

All methods in this section can only be executed serially. The behavior is undefined in case of concurrent execution of
these member functions with other (either concurrently safe) methods.

Bucket begin and bucket end

local_iterator unsafe_begin(size_type n);

const_local_iterator unsafe_begin(size_type n) const;

const_local_iterator unsafe_cbegin(size_type n) const;

Returns: an iterator to the first element in the bucket number n.

local_iterator unsafe_end(size_type n);

const_local_iterator unsafe_end(size_type n) const;

const_local_iterator unsafe_cend(size_type n) const;

Returns: an iterator to the element that follows the last element in the bucket number n.

9.2. oneTBB Interfaces 549

oneAPI Specification, Release 1.1-rev-1

The number of buckets

size_type unsafe_bucket_count() const;

Returns: the number of buckets in the container.

size_type unsafe_max_bucket_count() const;

Returns: the maximum number of buckets that container can hold.

Size of the bucket

size_type unsafe_bucket_size(size_type n) const;

Returns: the number of elements in the bucket number n.

Bucket number

size_type unsafe_bucket(const key_type& key) const;

Returns: the number of the bucket in which the element with the key key is stored.

Hash policy

Hash policy of concurrent_unordered_multimap manages the number of buckets in the container and the allowed
maximum number of elements per bucket (load factor). If the maximum load factor is exceeded, the container can
automatically increase the number of buckets.

Load factor

float load_factor() const;

Returns: the average number of elements per bucket, which is size()/unsafe_bucket_count().

float max_load_factor() const;

Returns: the maximum number of elements per bucket.

void max_load_factor(float ml);

Sets the maximum number of elements per bucket to ml.

9.2. oneTBB Interfaces 550

oneAPI Specification, Release 1.1-rev-1

Manual rehashing

void rehash(size_type n);

Sets the number of buckets to n and rehashes the container.

void reserve(size_type n);

Sets the number of buckets to the value that is needed to store n elements.

Observers

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

hash_function

hasher hash_function() const;

Returns: a copy of the hash function associated with *this.

key_eq

key_equal key_eq() const;

Returns: a copy of the key equality predicate associated with *this.

Parallel iteration

Member types concurrent_unordered_multimap::range_type and concurrent_unordered_multimap::const_range_type
meet the ContainerRange requirements.

These types differ only in that the bounds for a concurrent_unordered_multimap::const_range_type
are of type concurrent_unordered_multimap::const_iterator, whereas the bounds for a
concurrent_unordered_multimap::range_type are of type concurrent_unordered_multimap::iterator.

9.2. oneTBB Interfaces 551

oneAPI Specification, Release 1.1-rev-1

range member function

range_type range();

const_range_type range() const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provides binary comparison and swap operations on oneapi::tbb::concurrent_unordered_multimap
objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective
comparison operations. For example, an implementation may define the classes and functions in the same internal
namespace and define oneapi::tbb::concurrent_unordered_multimap as a type alias for which the non-member
functions are reachable only via argument-dependent lookup.

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

void swap(concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>& lhs,
concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>& rhs);

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>&␣
→˓lhs,

const concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>&␣
→˓rhs);

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>&␣
→˓lhs,

const concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>&␣
→˓rhs);

Non-member swap

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

void swap(concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>& lhs,
concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>& rhs)␣

→˓noexcept(noexcept(lhs.swap(rhs)));

Equivalent to lhs.swap(rhs).

9.2. oneTBB Interfaces 552

oneAPI Specification, Release 1.1-rev-1

Non-member binary comparisons

Two objects of concurrent_unordered_multimap are equal if the following conditions are true:

• They contain an equal number of elements.

• Each group of elements with the same key in one container has the corresponding group of equivalent elements
in the other container (not necessary in the same order).

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>&␣
→˓lhs,

const concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>&␣
→˓rhs);

Returns: true if lhs is equal to rhs; false, otherwise.

template <typename Key, typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator!=(const concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>&␣
→˓lhs,

const concurrent_unordered_multimap<Key, T, Hash, KeyEqual, Allocator>&␣
→˓rhs);

Equivalent to !(lhs == rhs).

Returns: true if lhs is not equal to rhs; false, otherwise.

Other

Deduction guides

If possible, concurrent_unordered_multimap constructors support class template argument deduction (since
C++17). Copy and move constructors, including constructors with an explicit allocator_type argument, provide
implicitly-generated deduction guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename Hash = std::hash<iterator_key_t<InputIterator>>,
typename KeyEqual = std::equal_to<iterator_key_t<InputIterator>>,
typename Allocator = tbb::tbb_allocator<iterator_alloc_value_t<InputIterator>>>

concurrent_unordered_multimap(InputIterator, InputIterator,
map_size_type = {},
Hash = Hash(),
KeyEqual = KeyEqual(),
Allocator = Allocator())

-> concurrent_unordered_multimap<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
Hash,
KeyEqual,
Allocator>;

(continues on next page)

9.2. oneTBB Interfaces 553

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

template <typename InputIterator,
typename Hash,
typename Allocator>

concurrent_unordered_multimap(InputIterator, InputIterator,
map_size_type,
Hash,
Allocator)

-> concurrent_unordered_multimap<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
Hash,
std::equal_to<iterator_key_t<InputIterator>>,
Allocator>;

template <typename InputIterator,
typename Allocator>

concurrent_unordered_multimap(InputIterator, InputIterator,
map_size_type,
Allocator)

-> concurrent_unordered_multimap<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
std::hash<iterator_key_t<InputIterator>>,
std::equal_to<iterator_key_t<InputIterator>>,
Allocator>;

template <typename Key,
typename T,
typename Hash = std::hash<std::remove_const_t<Key>>,
typename KeyEqual = std::equal_to<std::remove_const_t<Key>>,
typename Allocator = tbb::tbb_allocator<std::pair<const Key, T>>>

concurrent_unordered_multimap(std::initializer_list<std::pair<Key, T>>,
map_size_type = {},
Hash = Hash(),
KeyEqual = KeyEqual(),
Allocator = Allocator())

-> concurrent_unordered_multimap<std::remove_const_t<Key>,
T,
Hash,
KeyEqual,
Allocator>;

template <typename Key,
typename T,
typename Allocator>

concurrent_unordered_multimap(std::initializer_list<std::pair<Key, T>>,
map_size_type,
Allocator)

-> concurrent_unordered_multimap<std::remove_const_t<Key>,
T,
std::hash<std::remove_const_t<Key>>,
std::equal_to<std::remove_const_t<Key>>,
Allocator>;

(continues on next page)

9.2. oneTBB Interfaces 554

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

template <typename Key,
typename T,
typename Allocator>

concurrent_unordered_multimap(std::initializer_list<std::pair<Key, T>>,
Allocator)

-> concurrent_unordered_multimap<std::remove_const_t<Key>,
T,
std::hash<std::remove_const_t<Key>>,
std::equal_to<std::remove_const_t<Key>>,
Allocator>;

template <typename Key,
typename T,
typename Hash,
typename Allocator>

concurrent_unordered_multimap(std::initializer_list<std::pair<Key, T>>,
map_size_type,
Hash,
Allocator)

-> concurrent_unordered_multimap<std::remove_const_t<Key>,
T,
Hash,
std::equal_to<std::remove_const_t<Key>>,
Allocator>;

Where the map_size_type type refers to the size_type member type of the deduced
concurrent_unordered_multimap and the type aliases iterator_key_t, iterator_mapped_t, and
iterator_alloc_value_t are defined as follows:

template <typename InputIterator>
using iterator_key_t = std::remove_const_t<typename std::iterator_traits<InputIterator>
→˓::value_type::first_type>;

template <typename InputIterator>
using iterator_mapped_t = typename std::iterator_traits<InputIterator>::value_
→˓type::second_type;

template <typename InputIterator>
using iterator_alloc_value_t = std::pair<std::add_const_t<iterator_key_t<InputIterator>,

iterator_mapped_t<InputIterator>>>;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

• The Hash type does not meet the Allocator requirements.

• The KeyEqual type does not meet the Allocator requirements.

Example

9.2. oneTBB Interfaces 555

oneAPI Specification, Release 1.1-rev-1

#include <oneapi/tbb/concurrent_unordered_map.h>
#include <vector>
#include <functional>

struct CustomHasher {...};

int main() {
std::vector<std::pair<int, float>> v;

// Deduces m1 as concurrent_unordered_multimap<int, float>
oneapi::tbb::concurrent_unordered_multimap m1(v.begin(), v.end());

// Deduces m2 as concurrent_unordered_multimap<int, float, CustomHasher>;
oneapi::tbb::concurrent_unordered_multimap m2(v.begin(), v.end(), CustomHasher{});

}

concurrent_unordered_set

[containers.concurrent_unordered_set]
oneapi::tbb::concurrent_unordered_set is a class template that represents an unordered sequence of unique
elements. It supports concurrent insertion, lookup, and traversal, but does not support concurrent erasure.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_unordered_set.h>

namespace oneapi {
namespace tbb {

template <typename T,
typename Hash = std::hash<Key>,
typename KeyEqual = std::equal_to<Key>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>>

class concurrent_unordered_set {
public:

using key_type = Key;
using value_type = Key;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;

using hasher = Hash;
using key_equal = /*See below*/;

using allocator_type = Allocator;

using reference = value_type&;
using const_reference = const value_type&;

using pointer = typename std::allocator_traits<Allocator>::pointer;
(continues on next page)

9.2. oneTBB Interfaces 556

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

using const_pointer = typename std::allocator_traits<Allocator>::const_
→˓pointer;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

using local_iterator = <implementation-defined ForwardIterator>;
using const_local_iterator = <implementation-defined constant␣

→˓ForwardIterator>;

using node_type = <implementation-defined node handle>;

using range_type = <implementation-defined ContainerRange>;
using const_range_type = <implementation-defined constant ContainerRange>;

// Construction, destruction, copying
concurrent_unordered_set();

explicit concurrent_unordered_set(size_type bucket_count, const hasher&␣
→˓hash = hasher(),

const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_

→˓type());

concurrent_unordered_set(size_type bucket_count, const allocator_type&␣
→˓alloc);

concurrent_unordered_set(size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

explicit concurrent_unordered_set(const allocator_type& alloc);

template <typename InputIterator>
concurrent_unordered_set(InputIterator first, InputIterator last,

size_type bucket_count = /*implementation-defined*/
→˓,

const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type());

template <typename Inputiterator>
concurrent_unordered_set(InputIterator first, InputIterator last,

size_type bucket_count, const allocator_type&␣
→˓alloc);

template <typename InputIterator>
concurrent_unordered_set(InputIterator first, InputIterator last,

size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

concurrent_unordered_set(std::initializer_list<value_type> init,
size_type bucket_count = /*implementation-defined*/

→˓, (continues on next page)

9.2. oneTBB Interfaces 557

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type());

concurrent_unordered_set(std::initializer_list<value_type> init,
size_type bucket_count, const allocator_type&␣

→˓alloc);

concurrent_unordered_set(std::initializer_list<value_type> init,
size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

concurrent_unordered_set(const concurrent_unordered_set& other);
concurrent_unordered_set(const concurrent_unordered_set& other,

const allocator_type& alloc);

concurrent_unordered_set(concurrent_unordered_set&& other);
concurrent_unordered_set(concurrent_unordered_set&& other,

const allocator_type& alloc);

~concurrent_unordered_set();

concurrent_unordered_set& operator=(const concurrent_unordered_set& other);
concurrent_unordered_set& operator=(concurrent_unordered_set&& other)␣

→˓noexcept(/*See details*/);

concurrent_unordered_set& operator=(std::initializer_list<value_type> init␣
→˓);

allocator_type get_allocator() const;

// Iterators
iterator begin() noexcept;
const_iterator begin() const noexcept;
const_iterator cbegin() const noexcept;

iterator end() noexcept;
const_iterator end() const noexcept;
const_iterator cend() const noexcept;

// Size and capacity
bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// Concurrently safe modifiers
std::pair<iterator, bool> insert(const value_type& value);
iterator insert(const_iterator hint, const value_type& value);

std::pair<iterator, bool> insert(value_type&& value);
iterator insert(const_iterator hint, value_type&& value);

(continues on next page)

9.2. oneTBB Interfaces 558

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

void insert(std::initializer_list<value_type> init);

std::pair<iterator, bool> insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_set<T, SrcHash, SrcKeyEqual, Allocator>&␣

→˓source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_set<T, SrcHash, SrcKeyEqual, Allocator>&&␣

→˓source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multiset<T, SrcHash, SrcKeyEqual, Allocator>

→˓& source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multiset<T, SrcHash, SrcKeyEqual, Allocator>

→˓&& source);

// Concurrently unsafe modifiers
void clear() noexcept;

iterator unsafe_erase(const_iterator pos);
iterator unsafe_erase(iterator pos);

iterator unsafe_erase(const_iterator first, const_iterator last);

size_type unsafe_erase(const key_type& key);

template <typename K>
size_type unsafe_erase(const K& key);

node_type unsafe_extract(const_iterator pos);
node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const key_type& key);

template <typename K>
node_type unsafe_extract(const K& key);

void swap(concurrent_unordered_set& other);

(continues on next page)

9.2. oneTBB Interfaces 559

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

// Lookup
size_type count(const key_type& key) const;

template <typename K>
size_type count(const K& key) const;

iterator find(const key_type& key);
const_iterator find(const key_type& key) const;

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

bool contains(const key_type& key) const;

template <typename K>
bool contains(const K& key) const;

std::pair<iterator, iterator> equal_range(const key_type& key);
std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣

→˓const;

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;

// Bucket interface
local_iterator unsafe_begin(size_type n);
const_local_iterator unsafe_begin(size_type n) const;
const_local_iterator unsafe_cbegin(size_type n) const;

local_iterator unsafe_end(size_type n);
const_local_iterator unsafe_end(size_type n) const;
const_local_iterator unsafe_cend(size_type n) const;

size_type unsafe_bucket_count() const;
size_type unsafe_max_bucket_bount() const;

size_type unsafe_bucket_size(size_type n) const;

size_type unsafe_bucket(const key_type& key) const;

// Hash policy
float load_factor() const;

float max_load_factor() const;
void max_load_factor(float ml);

(continues on next page)

9.2. oneTBB Interfaces 560

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

void rehash(size_type count);

void reserve(size_type count);

// Observers
hasher hash_function() const;
key_equal key_eq() const;

// Parallel iteration
range_type range();
const_range_type range() const;

}; // class concurrent_unordered_set
} // namespace tbb

} // namespace oneapi

Requirements:

• The expression std::allocator_type<Allocator>::destroy(m, val), where m is an object of the type
Allocator and val is an object of type value_type, must be well-formed. Member functions can impose
stricter requirements depending on the type of the operation.

• The type Hash must meet the Hash requirements from the [hash] ISO C++ Standard section.

• The type KeyEqual must meet the BinaryPredicate requirements from the [algorithms.general] ISO C++
Standard section.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

Description

oneapi::tbb::concurrent_unordered_set is an unordered sequence, which elements are organized into buckets.
The value of the hash function Hash for Key object determines the number of the bucket in which the corresponding
element will be placed.

If the qualified-id Hash::transparent_key_equal is valid and denotes a type, the member type
concurrent_unordered_set::key_equal is defined as the value of this qualified-id. In this case, the pro-
gram is ill-formed if any of the following conditions are met:

• The template parameter KeyEqual is different from std::equal_to<Key>.

• Qualified-id Hash::transparent_key_equal::is_transparent is not valid or does not denote a type.

Otherwise, the member type concurrent_unordered_set::key_equal is defined as the value of the template pa-
rameter KeyEqual.

9.2. oneTBB Interfaces 561

oneAPI Specification, Release 1.1-rev-1

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_unordered_set();

explicit concurrent_unordered_set(const allocator_type& alloc);

Constructs an empty concurrent_unordered_set. The initial number of buckets is unspecified.

If provided, uses the allocator alloc to allocate the memory.

explicit concurrent_unordered_set(size_type bucket_count,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_

→˓type());

concurrent_unordered_set(size_type bucket_count, const allocator_type& alloc␣
→˓);

concurrent_unordered_set(size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

Constructs an empty concurrent_unordered_set with bucket_count buckets.

If provided, uses the hash function hasher, predicate equal to compare key_type objects for equality,
and the allocator alloc to allocate the memory.

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_unordered_set(InputIterator first, InputIterator last,

size_type bucket_count = /*implementation-defined*/,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type());

template <typename Inputiterator>
concurrent_unordered_set(InputIterator first, InputIterator last,

size_type bucket_count, const allocator_type& alloc␣
→˓);

template <typename InputIterator>
concurrent_unordered_set(InputIterator first, InputIterator last,

size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

9.2. oneTBB Interfaces 562

oneAPI Specification, Release 1.1-rev-1

Constructs the concurrent_unordered_set that contains the elements from the half-open interval
[first, last).

If the range [first, last) contains multiple equal elements, it is unspecified which element would be
inserted.

If provided, uses the hash function hasher, predicate equal to compare key_type objects for equality,
and the allocator alloc to allocate the memory.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [in-
put.iterators] ISO C++ Standard section.

concurrent_unordered_set(std::initializer_list<value_type> init,
size_type bucket_count = /*implementation-defined*/,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type());

Equivalent to concurrent_unordered_set(init.begin(), init.end(), bucket_count,
hash, equal, alloc).

concurrent_unordered_set(std::initializer_list<value_type> init,
size_type bucket_count, const allocator_type& alloc␣

→˓);

Equivalent to concurrent_unordered_set(init.begin(), init.end(), bucket_count,
alloc).

concurrent_unordered_set(std::initializer_list<value_type> init,
size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

Equivalent to concurrent_unordered_set(init.begin(), init.end(), bucket_count,
hash, alloc).

Copying constructors

concurrent_unordered_set(const concurrent_unordered_set& other);

concurrent_unordered_set(const concurrent_unordered_set& other,
const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

9.2. oneTBB Interfaces 563

oneAPI Specification, Release 1.1-rev-1

Moving constructors

concurrent_unordered_set(concurrent_unordered_set&& other);

concurrent_unordered_set(concurrent_unordered_set&& other,
const allocator_type& alloc);

Constructs a concurrent_unordered_set with the contents of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_unordered_set();

Destroys the concurrent_unordered_set. Calls destructors of the stored elements and deallocates the
used storage.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_unordered_set& operator=(const concurrent_unordered_set& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_unordered_set& operator=(concurrent_unordered_set&& other)␣
→˓noexcept(/*See below*/);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

Exceptions: noexcept specification:

9.2. oneTBB Interfaces 564

oneAPI Specification, Release 1.1-rev-1

noexcept(std::allocator_traits<allocator_type>::is_always_equal::value␣
→˓&&

std::is_nothrow_move_assignable<hasher>::value &&
std::is_nothrow_move_assignable<key_equal>::value)

concurrent_unordered_set& operator=(std::initializer_list<value_type> init);

Replaces all elements in *this by the elements in init.

If init contains multiple equal elements, it is unspecified which element would be inserted.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

Iterators

The types concurrent_unordered_set::iterator and concurrent_unordered_set::const_iterator meet
the requirements of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the container.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the container.

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty; false, otherwise.

The result may differ from the actual container state in case of pending concurrent insertions.

9.2. oneTBB Interfaces 565

oneAPI Specification, Release 1.1-rev-1

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ from the actual container size in case of pending concurrent insertions.

max_size

size_type max_size() const;

Returns: the maximum number of elements that container can hold.

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other, lookup methods and while travers-
ing the container.

Inserting values

std::pair<iterator, bool> insert(const value_type& value);

Attempts to insert the value value into the container.

Returns: std::pair<iterator, bool> where iterator points to the inserted element or to an exist-
ing equal element. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, const value_type& other);

Attempts to insert the value value into the container.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

Returns: an iterator to the inserted element or to an existing equal element.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

std::pair<iterator, bool> insert(value_type&& value);

Attempts to insert the value value into the container using move semantics.

value is left in a valid, but unspecified state.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element or to an ex-
isting equal element. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

9.2. oneTBB Interfaces 566

oneAPI Specification, Release 1.1-rev-1

iterator insert(const_iterator hint, value_type&& other);

Attempts to insert the value value into the container using move semantics.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

value is left in a valid, but unspecified state.

Returns: an iterator to the inserted element or to an existing equal element.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

Inserting sequences of elements

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

Attempts to insert all items from the half-open interval [first, last) into the container.

If the interval [first, last) contains multiple equal elements, it is unspecified which element should
be inserted.

Requirements: the type InputIterator must meet the requirements of InputIterator from [input.
iterators] ISO C++ Standard section.

void insert(std::initializer_list<value_type> init);

Equivalent to insert(init.begin(), init.end()).

Inserting nodes

std::pair<iterator, bool> insert(node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, attempts to insert the node owned by nh into the container.

If the insertion fails, node handle nh keeps ownership of the node.

Otherwise, nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: std::pair<iterator, bool>, where iterator points to the inserted element or to an ex-
isting element equal to nh.value(). Boolean value is true if insertion took place; false, otherwise.

iterator insert(const_iterator hint, node_type&& nh);

9.2. oneTBB Interfaces 567

oneAPI Specification, Release 1.1-rev-1

If the node handle nh is empty, does nothing.

Otherwise, attempts to insert the node owned by nh into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

If the insertion fails, node handle nh keeps ownership of the node.

Otherwise, nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: an iterator pointing to the inserted element or to an existing element equal to nh.value().

Emplacing elements

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

Attempts to insert an element constructed in-place from args into the container.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element or to an ex-
isting equal element. Boolean value is true if insertion took place, false otherwise.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ Standard section.

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

Attempts to insert an element constructed in-place from args into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

Returns: an iterator to the inserted element or to an existing equal element.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ Standard section.

Merging containers

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_set<T, SrcHash, SrcKeyEqual, Allocator>&␣
→˓source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_set<T, SrcHash, SrcKeyEqual, Allocator>&&␣
→˓source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multiset<T, SrcHash, SrcKeyEqual, Allocator>&␣
→˓source);

(continues on next page)

9.2. oneTBB Interfaces 568

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multiset<T, SrcHash, SrcKeyEqual, Allocator>&&
→˓ source);

Transfers those elements from source that do not exist in the container.

In case of merging with the container with multiple equal elements, it is unspecified which element would
be transferred.

No copy or move constructors of value_type are performed.

The behavior is undefined if get_allocator() != source.get_allocator().

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

Clearing

void clear();

Removes all elements from the container.

Erasing elements

iterator unsafe_erase(const_iterator pos);

iterator unsafe_erase(iterator pos);

Removes the element pointed to by pos from the container.

Invalidates all iterators and references to the removed element.

Returns: iterator that follows the removed element.

Requirements: the iterator pos should be valid, dereferenceable, and point to the element in *this.

size_type unsafe_erase(const key_type& key);

Removes the element equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

Returns: 1 if an element equivalent to key exists; 0, otherwise.

template <typename K>
size_type unsafe_erase(const K& key);

9.2. oneTBB Interfaces 569

oneAPI Specification, Release 1.1-rev-1

Removes the element equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

This overload only participates in overload resolution if all of the following statements are true:

• The qualified-id hasher::transparent_key_equal is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: 1 if an element equivalent to key exists; 0, otherwise.

Erasing sequences

iterator unsafe_erase(const_iterator first, const_iterator last);

Removes all elements from the half-open interval [first, last) from the container.

Returns: iterator that follows the last removed element.

Requirements: the range [first, last) must be a valid subrange in *this.

Extracting nodes

node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const_iterator pos);

Transfers ownership of the element pointed to by pos from the container to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element.

Requirements: the iterator pos should be valid, dereferenceable, and point to the element in *this.

node_type unsafe_extract(const key_type& key);

If an element equivalent to key exists, transfers ownership of this element from the container to the node
handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element or an empty node handle if an element equivalent
to key was not found.

9.2. oneTBB Interfaces 570

oneAPI Specification, Release 1.1-rev-1

template <typename K>
node_type unsafe_extract(const K& key);

If an element equivalent to key exists, transfers ownership of this element from the container to the node
handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

This overload participates in overload resolution only if all of the following statements are true:

• The qualified-id hasher::transparent_key_equal is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the node handle that owns the extracted element or an empty node handle if an element equivalent
to key was not found.

swap

void swap(concurrent_unordered_set& other) noexcept(/*See below*/);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

Exceptions: noexcept specification:

noexcept(std::allocator_traits<allocator_type>::is_always_equal::value␣
→˓&&

std::is_nothrow_swappable<hasher>::value &&
std::is_nothrow_swappable<key_equal>::value

Lookup

All methods in this section can be executed concurrently with each other, concurrently-safe modifiers and while travers-
ing the container.

count

size_type count(const key_type& key);

Returns: the number of elements equivalent to key.

9.2. oneTBB Interfaces 571

oneAPI Specification, Release 1.1-rev-1

template <typename K>
size_type count(const K& key);

Returns: the number of elements that is equivalent to key.

This overload only participates in overload resolution if qualified-id hasher::transparent_key_equal
is valid and denotes a type.

find

iterator find(const key_type& key);

const_iterator find(const key_type& key) const;

Returns: an iterator to the element equivalent to key, or end() if no such element exists.

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

Returns: an iterator to the element that is equivalent to key, or end() if no such element exists.

These overloads only participates in overload resolution if qualified-id
hasher::transparent_key_equal is valid and denotes a type.

contains

bool contains(const key_type& key) const;

Returns: true if an element equivalent to key exists in the container; false, otherwise.

template <typename K>
bool contains(const K& key) const;

Returns: true if an element equivalent to key exists in the container; false, otherwise.

This overload only participates in overload resolution if qualified-id hasher::transparent_key_equal
is valid and denotes a type.

9.2. oneTBB Interfaces 572

oneAPI Specification, Release 1.1-rev-1

equal_range

std::pair<iterator, iterator> equal_range(const key_type& key);

std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣
→˓const;

Returns: if an element equivalent to key exists, a pair of iterators {f, l}, where f is an iterator to this
element, l is std::next(f). Otherwise, {end(), end()}.

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key)

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key)

Returns: if an element equivalent to key exists, a pair of iterators {f, l}, where f is an iterator to this
element, l is std::next(f). Otherwise, {end(), end()}.

These overloads participate in overload resolution only if qualified-id
hasher::transparent_key_equal is valid and denotes a type.

Bucket interface

The types concurrent_unordered_set::local_iterator and concurrent_unordered_set::const_local_iterator
meet the requirements of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

Use these iterators to traverse the certain bucket.

All methods in this section can only be executed serially. The behavior is undefined in case of concurrent execution of
these member functions with other (either concurrently safe) methods.

Bucket begin and bucket end

local_iterator unsafe_begin(size_type n);

const_local_iterator unsafe_begin(size_type n) const;

const_local_iterator unsafe_cbegin(size_type n) const;

Returns: an iterator to the first element in the bucket number n.

local_iterator unsafe_end(size_type n);

const_local_iterator unsafe_end(size_type n) const;

const_local_iterator unsafe_cend(size_type n) const;

Returns: an iterator to the element that follows the last element in the bucket number n.

9.2. oneTBB Interfaces 573

oneAPI Specification, Release 1.1-rev-1

The number of buckets

size_type unsafe_bucket_count() const;

Returns: the number of buckets in the container.

size_type unsafe_max_bucket_count() const;

Returns: the maximum number of buckets that container can hold.

Size of the bucket

size_type unsafe_bucket_size(size_type n) const;

Returns: the number of elements in the bucket number n.

Bucket number

size_type unsafe_bucket(const key_type& key) const;

Returns: the number of the bucket in which the element with the key key is stored.

Hash policy

Hash policy of concurrent_unordered_set manages the number of buckets in the container and the allowed maxi-
mum number of elements per bucket (load factor). If the maximum load factor is exceeded, the container can automat-
ically increase the number of buckets.

Load factor

float load_factor() const;

Returns: the average number of elements per bucket, which is size()/unsafe_bucket_count().

float max_load_factor() const;

Returns: the maximum number of elements per bucket.

void max_load_factor(float ml);

Sets the maximum number of elements per bucket to ml.

9.2. oneTBB Interfaces 574

oneAPI Specification, Release 1.1-rev-1

Manual rehashing

void rehash(size_type n);

Sets the number of buckets to n and rehashes the container.

void reserve(size_type n);

Sets the number of buckets to the value that is needed to store n elements.

Observers

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

hash_function

hasher hash_function() const;

Returns: a copy of the hash function associated with *this.

key_eq

key_equal key_eq() const;

Returns: a copy of the key equality predicate associated with *this.

Parallel iteration

Member types concurrent_unordered_set::range_type and concurrent_unordered_set::const_range_type
meet the ContainerRange requirements.

These types differ only in that the bounds for a concurrent_unordered_set::const_range_type
are of type concurrent_unordered_set::const_iterator, whereas the bounds for a
concurrent_unordered_set::range_type are of type concurrent_unordered_set::iterator.

9.2. oneTBB Interfaces 575

oneAPI Specification, Release 1.1-rev-1

range member function

range_type range();

const_range_type range() const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provide binary comparison and swap operations on oneapi::tbb::concurrent_unordered_set
objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective compar-
ison operations. For example, an implementation may define the classes and functions in the same internal namespace
and define oneapi::tbb::concurrent_unordered_set as a type alias for which the non-member functions are
reachable only via argument-dependent lookup.

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

void swap(concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& lhs,
concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& rhs);

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& rhs);

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& rhs);

Non-member swap

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

void swap(concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& lhs,
concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& rhs)␣

→˓noexcept(noexcept(lhs.swap(rhs)));

Equivalent to lhs.swap(rhs).

9.2. oneTBB Interfaces 576

oneAPI Specification, Release 1.1-rev-1

Non-member binary comparisons

Two objects of concurrent_unordered_set are equal if the following conditions are true:

• They contain an equal number of elements.

• Each element from one container is also available in the other.

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& rhs);

Returns: true if lhs is equal to rhs, false otherwise.

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator!=(const concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_set<T, Hash, KeyEqual, Allocator>& rhs);

Equivalent to !(lhs == rhs).

Returns: true if lhs is not equal to rhs; false, otherwise.

Other

Deduction guides

If possible, concurrent_unordered_set constructors support class template argument deduction (since C++17).
Copy and move constructors, including constructors with an explicit allocator_type argument, provide implicitly-
generated deduction guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename Hash = std::hash<iterator_value_t<InputIterator>>,
typename KeyEqual = std::equal_to<iterator_value_t<InputIterator>>,
typename Allocator = tbb::tbb_allocator<iterator_value_t<InputIterator>>>

concurrent_unordered_set(InputIterator, InputIterator,
set_size_type = {},
Hash = Hash(),
KeyEqual = KeyEqual(),
Allocator = Allocator())

-> concurrent_unordered_set<iterator_value_t<InputIterator>,
Hash,
KeyEqual,
Allocator>;

template <typename InputIterator,
typename Allocator>

concurrent_unordered_set(InputIterator, InputIterator,
set_size_type,
Allocator)

-> concurrent_unordered_set<iterator_value_t<InputIterator>,
(continues on next page)

9.2. oneTBB Interfaces 577

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::hash<iterator_value_t<InputIterator>>,
std::equal_to<iterator_value_t<InputIterator>>,
Allocator>;

template <typename T,
typename Hash = std::hash<T>,
typename KeyEqual = std::equal_to<T>,
typename Allocator = tbb::tbb_allocator<T>>

concurrent_unordered_set(std::initializer_list<T>,
set_size_type = {},
Hash = Hash(),
KeyEqual = KeyEqual(),
Allocator = Allocator())

-> concurrent_unordered_set<T,
Hash,
KeyEqual,
Allocator>;

template <typename T,
typename Allocator>

concurrent_unordered_set(std::initializer_list<T>,
set_size_type,
Allocator)

-> concurrent_unordered_set<T,
std::hash<T>,
std::equal_to<T>,
Allocator>;

template <typename T,
typename Allocator>

concurrent_unordered_set(std::initializer_list<T>,
Allocator)

-> concurrent_unordered_set<T,
std::hash<T>,
std::equal_to<T>,
Allocator>;

template <typename T,
typename Hash,
typename Allocator>

concurrent_unordered_set(std::initializer_list<T>,
set_size_type,
Hash,
Allocator)

-> concurrent_unordered_set<T,
Hash,
std::equal_to<T>,
Allocator>;

Where the set_size_type type refers to the size_typemember type of the deduced concurrent_unordered_set
and the type alias iterator_value_t is defined as follows:

9.2. oneTBB Interfaces 578

oneAPI Specification, Release 1.1-rev-1

template <typename InputIterator>
using iterator_value_t = typename std::iterator_traits<InputIterator>::value_type;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

• The Hash type does not meet the Allocator requirements.

• The KeyEqual type does not meet the Allocator requirements.

Example

#include <oneapi/tbb/concurrent_unordered_set.h>
#include <vector>
#include <functional>

struct CustomHasher {...};

int main() {
std::vector<int> v;

// Deduces s1 as concurrent_unordered_set<int>
oneapi::tbb::concurrent_unordered_set s1(v.begin(), v.end());

// Deduces s2 as concurrent_unordered_set<int, CustomHasher>;
oneapi::tbb::concurrent_unordered_set s2(v.begin(), v.end(), CustomHasher{});

}

concurrent_unordered_multiset

[containers.concurrent_unordered_multiset]
oneapi::tbb::concurrent_unordered_multiset is a class template that represents an unordered sequence of
elements, It supports concurrent insertion, lookup, and traversal, but does not support concurrent erasure. In this
container, multiple equivalent elements can be stored.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_unordered_set.h>

namespace oneapi {
namespace tbb {

template <typename T,
typename Hash = std::hash<Key>,
typename KeyEqual = std::equal_to<Key>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>>

class concurrent_unordered_multiset {
public:

(continues on next page)

9.2. oneTBB Interfaces 579

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

using key_type = Key;
using value_type = Key;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;

using hasher = Hash;
using key_equal = /*See below*/;

using allocator_type = Allocator;

using reference = value_type&;
using const_reference = const value_type&;

using pointer = typename std::allocator_traits<Allocator>::pointer;
using const_pointer = typename std::allocator_traits<Allocator>::const_

→˓pointer;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

using local_iterator = <implementation-defined ForwardIterator>;
using const_local_iterator = <implementation-defined constant␣

→˓ForwardIterator>;

using node_type = <implementation-defined node handle>;

using range_type = <implementation-defined ContainerRange>;
using const_range_type = <implementation-defined constant ContainerRange>;

// Construction, destruction, copying
concurrent_unordered_multiset();

explicit concurrent_unordered_multiset(size_type bucket_count, const hasher&
→˓ hash = hasher(),

const key_equal& equal = key_equal(),
const allocator_type& alloc =␣

→˓allocator_type());

concurrent_unordered_multiset(size_type bucket_count, const allocator_type&␣
→˓alloc);

concurrent_unordered_multiset(size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

explicit concurrent_unordered_multiset(const allocator_type& alloc);

template <typename InputIterator>
concurrent_unordered_multiset(InputIterator first, InputIterator last,

size_type bucket_count = /*implementation-
→˓defined*/,

const hasher& hash = hasher(),

(continues on next page)

9.2. oneTBB Interfaces 580

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_

→˓type());

template <typename Inputiterator>
concurrent_unordered_multiset(InputIterator first, InputIterator last,

size_type bucket_count, const allocator_type&␣
→˓alloc);

template <typename InputIterator>
concurrent_unordered_multiset(InputIterator first, InputIterator last,

size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

concurrent_unordered_multiset(std::initializer_list<value_type> init,
size_type bucket_count = /*implementation-

→˓defined*/,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_

→˓type());

concurrent_unordered_multiset(std::initializer_list<value_type> init,
size_type bucket_count, const allocator_type&␣

→˓alloc);

concurrent_unordered_multiset(std::initializer_list<value_type> init,
size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

concurrent_unordered_multiset(const concurrent_unordered_multiset& other);
concurrent_unordered_multiset(const concurrent_unordered_multiset& other,

const allocator_type& alloc);

concurrent_unordered_multiset(concurrent_unordered_multiset&& other);
concurrent_unordered_multiset(concurrent_unordered_multiset&& other,

const allocator_type& alloc);

~concurrent_unordered_multiset();

concurrent_unordered_multiset& operator=(const concurrent_unordered_
→˓multiset& other);

concurrent_unordered_multiset& operator=(concurrent_unordered_multiset&&␣
→˓other) noexcept(/*See details*/);

concurrent_unordered_multiset& operator=(std::initializer_list<value_type>␣
→˓init);

allocator_type get_allocator() const;

// Iterators
iterator begin() noexcept;

(continues on next page)

9.2. oneTBB Interfaces 581

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const_iterator begin() const noexcept;
const_iterator cbegin() const noexcept;

iterator end() noexcept;
const_iterator end() const noexcept;
const_iterator cend() const noexcept;

// Size and capacity
bool empty() const noexcept;
size_type size() const noexcept;
size_type max_size() const noexcept;

// Concurrently safe modifiers
std::pair<iterator, bool> insert(const value_type& value);
iterator insert(const_iterator hint, const value_type& value);

std::pair<iterator, bool> insert(value_type&& value);
iterator insert(const_iterator hint, value_type&& value);

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

void insert(std::initializer_list<value_type> init);

std::pair<iterator, bool> insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_set<T, SrcHash, SrcKeyEqual, Allocator>&␣

→˓source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_set<T, SrcHash, SrcKeyEqual, Allocator>&&␣

→˓source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multiset<T, SrcHash, SrcKeyEqual, Allocator>

→˓& source);

template <typename SrcHash, typename SrcKeyEqual>
void merge(concurrent_unordered_multiset<T, SrcHash, SrcKeyEqual, Allocator>

→˓&& source);

// Concurrently unsafe modifiers
void clear() noexcept;

(continues on next page)

9.2. oneTBB Interfaces 582

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

iterator unsafe_erase(const_iterator pos);
iterator unsafe_erase(iterator pos);

iterator unsafe_erase(const_iterator first, const_iterator last);

size_type unsafe_erase(const key_type& key);

template <typename K>
size_type unsafe_erase(const K& key);

node_type unsafe_extract(const_iterator pos);
node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const key_type& key);

template <typename K>
node_type unsafe_extract(const K& key);

void swap(concurrent_unordered_multiset& other);

// Lookup
size_type count(const key_type& key) const;

template <typename K>
size_type count(const K& key) const;

iterator find(const key_type& key);
const_iterator find(const key_type& key) const;

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

bool contains(const key_type& key) const;

template <typename K>
bool contains(const K& key) const;

std::pair<iterator, iterator> equal_range(const key_type& key);
std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣

→˓const;

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;

// Bucket interface
local_iterator unsafe_begin(size_type n);

(continues on next page)

9.2. oneTBB Interfaces 583

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const_local_iterator unsafe_begin(size_type n) const;
const_local_iterator unsafe_cbegin(size_type n) const;

local_iterator unsafe_end(size_type n);
const_local_iterator unsafe_end(size_type n) const;
const_local_iterator unsafe_cend(size_type n) const;

size_type unsafe_bucket_count() const;
size_type unsafe_max_bucket_bount() const;

size_type unsafe_bucket_size(size_type n) const;

size_type unsafe_bucket(const key_type& key) const;

// Hash policy
float load_factor() const;

float max_load_factor() const;
void max_load_factor(float ml);

void rehash(size_type count);

void reserve(size_type count);

// Observers
hasher hash_function() const;
key_equal key_eq() const;

// Parallel iteration
range_type range();
const_range_type range() const;

}; // class concurrent_unordered_multiset
} // namespace tbb

} // namespace oneapi

Requirements:

• The expression std::allocator_type<Allocator>::destroy(m, val), where m is an object of the type
Allocator and val is an object of type value_type, must be well-formed. Member functions can impose
stricter requirements depending on the type of the operation.

• The type Hash must meet the Hash requirements from the [hash] ISO C++ Standard section.

• The type KeyEqual must meet the BinaryPredicate requirements from the [algorithms.general] ISO C++
Standard section.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

9.2. oneTBB Interfaces 584

oneAPI Specification, Release 1.1-rev-1

Description

oneapi::tbb::concurrent_unordered_multiset is an unordered sequence, which elements are organized into
buckets. The value of the hash function Hash for Key object determines the number of the bucket in which the corre-
sponding element will be placed.

If the qualified-id Hash::transparent_key_equal is valid and denotes a type, the member type
concurrent_unordered_multiset::key_equal is defined as the value of this qualified-id. In this case, the
program is ill-formed if any of the following conditions are met:

• The template parameter KeyEqual is different from std::equal_to<Key>.

• Qualified-id Hash::transparent_key_equal::is_transparent is not valid or does not denote a type.

Otherwise, the member type concurrent_unordered_multiset::key_equal is defined as the value of the template
parameter KeyEqual.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_unordered_multiset();

explicit concurrent_unordered_multiset(const allocator_type& alloc);

Constructs an empty concurrent_unordered_multiset. The initial number of buckets is unspecified.

If provided, uses the allocator alloc to allocate the memory.

explicit concurrent_unordered_multiset(size_type bucket_count,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc =␣

→˓allocator_type());

concurrent_unordered_multiset(size_type bucket_count, const allocator_type&␣
→˓alloc);

concurrent_unordered_multiset(size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

Constructs an empty concurrent_unordered_multiset with bucket_count buckets.

If provided, uses the hash function hasher, predicate equal to compare key_type objects for equality,
and the allocator alloc to allocate the memory.

9.2. oneTBB Interfaces 585

oneAPI Specification, Release 1.1-rev-1

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_unordered_multiset(InputIterator first, InputIterator last,

size_type bucket_count = /*implementation-
→˓defined*/,

const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type()␣

→˓);

template <typename Inputiterator>
concurrent_unordered_multiset(InputIterator first, InputIterator last,

size_type bucket_count, const allocator_type&␣
→˓alloc);

template <typename InputIterator>
concurrent_unordered_multiset(InputIterator first, InputIterator last,

size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

Constructs the concurrent_unordered_multiset, which contains the elements from the half-open in-
terval [first, last)`.

If provided uses the hash function hasher, predicate equal to compare key_type objects for equality,
and the allocator alloc to allocate the memory.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [in-
put.iterators] ISO C++ Standard section.

concurrent_unordered_multiset(std::initializer_list<value_type> init,
size_type bucket_count = /*implementation-

→˓defined*/,
const hasher& hash = hasher(),
const key_equal& equal = key_equal(),
const allocator_type& alloc = allocator_type()␣

→˓);

Equivalent to concurrent_unordered_multiset(init.begin(), init.end(), bucket_count,
hash, equal, alloc).

concurrent_unordered_multiset(std::initializer_list<value_type> init,
size_type bucket_count, const allocator_type&␣

→˓alloc);

Equivalent to concurrent_unordered_multiset(init.begin(), init.end(), bucket_count,
alloc).

concurrent_unordered_multiset(std::initializer_list<value_type> init,
size_type bucket_count, const hasher& hash,
const allocator_type& alloc);

9.2. oneTBB Interfaces 586

oneAPI Specification, Release 1.1-rev-1

Equivalent to concurrent_unordered_multiset(init.begin(), init.end(), bucket_count,
hash, alloc).

Copying constructors

concurrent_unordered_multiset(const concurrent_unordered_multiset& other);

concurrent_unordered_multiset(const concurrent_unordered_multiset& other,
const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Moving constructors

concurrent_unordered_multiset(concurrent_unordered_multiset&& other);

concurrent_unordered_multiset(concurrent_unordered_multiset&& other,
const allocator_type& alloc);

Constructs a concurrent_unordered_multiset with the contents of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_unordered_multiset();

Destroys the concurrent_unordered_multiset. Calls destructors of the stored elements and deallo-
cates the used storage.

The behavior is undefined in case of concurrent operations with *this.

9.2. oneTBB Interfaces 587

oneAPI Specification, Release 1.1-rev-1

Assignment operators

concurrent_unordered_multiset& operator=(const concurrent_unordered_multiset&␣
→˓other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_unordered_multiset& operator=(concurrent_unordered_multiset&&␣
→˓other) noexcept(/*See below*/);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

Exceptions: noexcept specification:

noexcept(std::allocator_traits<allocator_type>::is_always_equal::value␣
→˓&&

std::is_nothrow_move_assignable<hasher>::value &&
std::is_nothrow_move_assignable<key_equal>::value)

concurrent_unordered_multiset& operator=(std::initializer_list<value_type>␣
→˓init);

Replaces all elements in *this by the elements in init.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

Iterators

The types concurrent_unordered_multiset::iterator and concurrent_unordered_multiset::const_iterator
meet the requirements of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

9.2. oneTBB Interfaces 588

oneAPI Specification, Release 1.1-rev-1

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the container.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the container.

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty; false, otherwise.

The result may differ with the actual container state in case of pending concurrent insertions.

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ with the actual container size in case of pending concurrent insertions.

max_size

size_type max_size() const;

Returns: the maximum number of elements that container can hold.

9.2. oneTBB Interfaces 589

oneAPI Specification, Release 1.1-rev-1

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other, lookup methods and while travers-
ing the container.

Inserting values

std::pair<iterator, bool> insert(const value_type& value)

Inserts the value value into the container.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

iterator insert(const_iterator hint, const value_type& other)

Inserts the value value into the container.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

Returns: an iterator to the inserted element.

std::pair<iterator, bool> insert(value_type&& value)

Inserts the value value into the container using move semantics.

value is left in a valid, but unspecified state.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

iterator insert(const_iterator hint, value_type&& other)

Inserts the value value into the container using move semantics.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

value is left in a valid, but unspecified state.

Returns: an iterator to the inserted element.

Inserting sequences of elements

template <typename InputIterator>
void insert(InputIterator first, InputIterator last)

Inserts all items from the half-open interval [first, last) into the container.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [input.
iterators] ISO C++ Standard section.

9.2. oneTBB Interfaces 590

oneAPI Specification, Release 1.1-rev-1

void insert(std::initializer_list<value_type> init)

Equivalent to insert(init.begin(), init.end()).

Inserting nodes

std::pair<iterator, bool> insert(node_type&& nh)

If the node handle nh is empty, does nothing.

Otherwise - inserts the node, owned by nh into the container.

nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: std::pair<iterator, bool>where iterator points to the inserted element. Boolean value
is always true.

iterator insert(const_iterator hint, node_type&& nh)

If the node handle nh is empty, does nothing.

Otherwise - inserts the node, owned by nh into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: an iterator pointing to the inserted element.

Emplacing elements

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args)

Inserts an element ,constructed in-place from args into the container.

Returns: std::pair<iterator, bool>where iterator points to the inserted element. Boolean value
is always true.

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)

Inserts an element ,constructed in-place from args into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

Returns: an iterator to the inserted element.

9.2. oneTBB Interfaces 591

oneAPI Specification, Release 1.1-rev-1

Merging containers

template <typename SrcHash, SrcKeyEqual>
void merge(concurrent_unordered_set<T, SrcHash, SrcKeyEqual, Allocator>&␣
→˓source)

template <typename SrcHash, SrcKeyEqual>
void merge(concurrent_unordered_set<T, SrcHash, SrcKeyEqual, Allocator>&&␣
→˓source)

template <typename SrcHash, SrcKeyEqual>
void merge(concurrent_unordered_multiset<T, SrcHash, SrcKeyEqual, Allocator>&␣
→˓source)

template <typename SrcHash, SrcKeyEqual>
void merge(concurrent_unordered_multiset<T, SrcHash, SrcKeyEqual, Allocator>&&
→˓ source)

Transfers all elements from source to *this.

No copy or move constructors of value_type are performed.

The behavior is undefined if get_allocator() != source.get_allocator().

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

Clearing

void clear();

Removes all elements from the container.

Erasing elements

iterator unsafe_erase(const_iterator pos);

iterator unsafe_erase(iterator pos);

Removes the element pointed to by pos from the container.

Invalidates all iterators and references to the removed element.

Returns: iterator that follows the removed element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

size_type unsafe_erase(const key_type& key);

9.2. oneTBB Interfaces 592

oneAPI Specification, Release 1.1-rev-1

Removes the element equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

Returns: the number of removed elements.

template <typename K>
size_type unsafe_erase(const K& key);

Removes the element that is equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

This overload only participates in overload resolution if all of the following conditions are met:

• The qualified-id hasher::transparent_key_equal is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the number of removed elements.

Erasing sequences

iterator unsafe_erase(const_iterator first, const_iterator last);

Removes all elements from the half-open interval [first, last) from the container.

Returns: iterator that follows the last removed element.

Requirements: the range [first, last) must be a valid subrange in *this.

Extracting nodes

node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const_iterator pos);

Transfers ownership of the element pointed to by pos from the container to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

node_type unsafe_extract(const key_type& key);

If an element equivalent to key exists, transfers ownership of this element from the container to the node
handle.

No copy or move constructors of value_type are performed.

9.2. oneTBB Interfaces 593

oneAPI Specification, Release 1.1-rev-1

If there are multiple elements equivalent to key, it is unspecified which element should be transferred.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element or an empty node handle if an element equivalent
to key was not found.

template <typename K>
node_type unsafe_extract(const K& key);

If an element equivalent to key exists, transfers ownership of this element from the container to the node
handle.

No copy or move constructors of value_type are performed.

If there are multiple elements which are equivalent to key, it is unspecified which element should be
transferred.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

This overload only participates in overload resolution if all of the following conditions are met:

• The qualified-id hasher::transparent_key_equal is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the node handle that owns the extracted element or an empty node handle if an element equivalent
to key was not found.

swap

void swap(concurrent_unordered_multiset& other) noexcept(/*See below*/);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

Exceptions: noexcept specification:

noexcept(std::allocator_traits<allocator_type>::is_always_equal::value␣
→˓&&

std::is_nothrow_swappable<hasher>::value &&
std::is_nothrow_swappable<key_equal>::value

9.2. oneTBB Interfaces 594

oneAPI Specification, Release 1.1-rev-1

Lookup

All methods in this section can be executed concurrently with each other, concurrently-safe modifiers and while travers-
ing the container.

count

size_type count(const key_type& key);

Returns: the number of elements equivalent to key.

template <typename K>
size_type count(const K& key);

Returns: the number of elements that are equivalent to key.

This overload only participates in overload resolution if qualified-id hasher::transparent_key_equal
is valid and denotes a type.

find

iterator find(const key_type& key);

const_iterator find(const key_type& key) const;

Returns: an iterator to the element equivalent to key, or end() if no such element exists.

If there are multiple elements equivalent to key, it is unspecified which element should be found.

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

Returns: an iterator to the element equivalent to key, or end() if no such element exists.

If there are multiple elements equivalent to key, it is unspecified which element should be found.

These overloads only participate in overload resolution if qualified-id
hasher::transparent_key_equal is valid and denotes a type.

9.2. oneTBB Interfaces 595

oneAPI Specification, Release 1.1-rev-1

contains

bool contains(const key_type& key) const;

Returns: true if at least one element equivalent to key exists in the container; false, otherwise.

template <typename K>
bool contains(const K& key) const;

Returns: true if at least one element equal to key exists in the container; false, otherwise.

This overload only participates in overload resolution if qualified-id hasher::transparent_key_equal
is valid and denotes a type.

equal_range

std::pair<iterator, iterator> equal_range(const key_type& key);

std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣
→˓const;

Returns: if at least one element with the key equivalent to key exists, a pair of iterators {f, l}, where
f is an iterator to the first element equivalent to key, l is an iterator to the element that follows the last
element equivalent to key. Otherwise, {end(), end()}.

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key)

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key)

Returns: if at least one element with the key equivalent to key exists, a pair of iterators {f, l}, where
f is an iterator to the first element equivalent to key, l is an iterator to the element that follows the last
element equivalent to key. Otherwise, {end(), end()}.

These overloads participate in overload resolution only if qualified-id
hasher::transparent_key_equal is valid and denotes a type.

Bucket interface

The types concurrent_unordered_multiset::local_iterator and concurrent_unordered_multiset::const_local_iterator
meet the requirements of ForwardIterator from the [forward.iterators] ISO C++ Standard section.

These iterators are used to traverse the certain bucket.

All methods in this section can only be executed serially. The behavior is undefined in case of concurrent execution of
these member functions with other (either concurrently safe) methods.

9.2. oneTBB Interfaces 596

oneAPI Specification, Release 1.1-rev-1

Bucket begin and bucket end

local_iterator unsafe_begin(size_type n);

const_local_iterator unsafe_begin(size_type n) const;

const_local_iterator unsafe_cbegin(size_type n) const;

Returns: an iterator to the first element in the bucket number n.

local_iterator unsafe_end(size_type n);

const_local_iterator unsafe_end(size_type n) const;

const_local_iterator unsafe_cend(size_type n) const;

Returns: an iterator to the element that follows the last element in the bucket number n.

The number of buckets

size_type unsafe_bucket_count() const;

Returns: the number of buckets in the container.

size_type unsafe_max_bucket_count() const;

Returns: the maximum number of buckets that container can hold.

Size of the bucket

size_type unsafe_bucket_size(size_type n) const;

Returns: the number of elements in the bucket number n.

Bucket number

size_type unsafe_bucket(const key_type& key) const;

Returns: the number of the bucket in which the element with the key key is stored.

9.2. oneTBB Interfaces 597

oneAPI Specification, Release 1.1-rev-1

Hash policy

Hash policy of concurrent_unordered_multiset manages the number of buckets in the container and the allowed
maximum number of elements per bucket (load factor). If the maximum load factor is exceeded, the container can
automatically increase the number of buckets.

Load factor

float load_factor() const;

Returns: the average number of elements per bucket, which is size()/unsafe_bucket_count().

float max_load_factor() const;

Returns: the maximum number of elements per bucket.

void max_load_factor(float ml);

Sets the maximum number of elements per bucket to ml.

Manual rehashing

void rehash(size_type n);

Sets the number of buckets to n and rehashes the container.

void reserve(size_type n);

Sets the number of buckets to the value that is needed to store n elements.

Observers

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

9.2. oneTBB Interfaces 598

oneAPI Specification, Release 1.1-rev-1

hash_function

hasher hash_function() const;

Returns: a copy of the hash function associated with *this.

key_eq

key_equal key_eq() const;

Returns: a copy of the key equality predicate associated with *this.

Parallel iteration

Member types concurrent_unordered_multiset::range_type and concurrent_unordered_multiset::const_range_type
meet the ContainerRange requirements.

These types differ only in that the bounds for a concurrent_unordered_multiset::const_range_type
are of type concurrent_unordered_multiset::const_iterator, whereas the bounds for a
concurrent_unordered_multiset::range_type are of type concurrent_unordered_multiset::iterator.

range member function

range_type range();

const_range_type range() const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provide binary comparison and swap operations on oneapi::tbb::concurrent_unordered_multiset
objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective
comparison operations. For example, an implementation may define the classes and functions in the same internal
namespace and define oneapi::tbb::concurrent_unordered_multiset as a type alias for which the non-member
functions are reachable only via argument-dependent lookup.

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

void swap(concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& lhs,
concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& rhs);

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& rhs␣

→˓);
(continues on next page)

9.2. oneTBB Interfaces 599

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& rhs␣

→˓);

Non-member swap

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

void swap(concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& lhs,
concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& rhs)␣

→˓noexcept(noexcept(lhs.swap(rhs)));

Equivalent to lhs.swap(rhs).

Non-member binary comparisons

Two objects of concurrent_unordered_multiset are equal if the following conditions are true:

• They contain an equal number of elements.

• Each group of elements with the same key in one container has the corresponding group of equivalent elements
in the other container (not necessarily in the same order).

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator==(const concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& rhs␣

→˓);

Returns: true if lhs is equal to rhs; false, otherwise.

template <typename T, typename Hash,
typename KeyEqual, typename Allocator>

bool operator!=(const concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& lhs,
const concurrent_unordered_multiset<T, Hash, KeyEqual, Allocator>& rhs␣

→˓);

Equivalent to !(lhs == rhs).

Returns: true if lhs is not equal to rhs, false otherwise.

9.2. oneTBB Interfaces 600

oneAPI Specification, Release 1.1-rev-1

Other

Deduction guides

If possible, concurrent_unordered_multiset constructors support class template argument deduction (since
C++17). Copy and move constructors, including constructors with an explicit allocator_type argument, provide
implicitly-generated deduction guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename Hash = std::hash<iterator_value_t<InputIterator>>,
typename KeyEqual = std::equal_to<iterator_value_t<InputIterator>>,
typename Allocator = tbb::tbb_allocator<iterator_value_t<InputIterator>>>

concurrent_unordered_multiset(InputIterator, InputIterator,
set_size_type = {},
Hash = Hash(),
KeyEqual = KeyEqual(),
Allocator = Allocator())

-> concurrent_unordered_multiset<iterator_value_t<InputIterator>,
Hash,
KeyEqual,
Allocator>;

template <typename InputIterator,
typename Allocator>

concurrent_unordered_multiset(InputIterator, InputIterator,
set_size_type,
Allocator)

-> concurrent_unordered_multiset<iterator_value_t<InputIterator>,
std::hash<iterator_value_t<InputIterator>>,
std::equal_to<iterator_value_t<InputIterator>>,
Allocator>;

template <typename T,
typename Hash = std::hash<T>,
typename KeyEqual = std::equal_to<T>,
typename Allocator = tbb::tbb_allocator<T>>

concurrent_unordered_multiset(std::initializer_list<T>,
set_size_type = {},
Hash = Hash(),
KeyEqual = KeyEqual(),
Allocator = Allocator())

-> concurrent_unordered_multiset<T,
Hash,
KeyEqual,
Allocator>;

template <typename T,
typename Allocator>

concurrent_unordered_multiset(std::initializer_list<T>,
set_size_type,
Allocator)

-> concurrent_unordered_multiset<T,
std::hash<T>,

(continues on next page)

9.2. oneTBB Interfaces 601

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::equal_to<T>,
Allocator>;

template <typename T,
typename Allocator>

concurrent_unordered_multiset(std::initializer_list<T>,
Allocator)

-> concurrent_unordered_multiset<T,
std::hash<T>,
std::equal_to<T>,
Allocator>;

template <typename T,
typename Hash,
typename Allocator>

concurrent_unordered_multiset(std::initializer_list<T>,
set_size_type,
Hash,
Allocator)

-> concurrent_unordered_multiset<T,
Hash,
std::equal_to<T>,
Allocator>;

Where the set_size_type type refers to the size_type member type of the deduced
concurrent_unordered_multiset and the type alias iterator_value_t is defined as follows:

template <typename InputIterator>
using iterator_value_t = typename std::iterator_traits<InputIterator>::value_type;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

• The Hash type does not meet the Allocator requirements.

• The KeyEqual type does not meet the Allocator requirements.

Example

#include <oneapi/tbb/concurrent_unordered_set.h>
#include <vector>
#include <functional>

struct CustomHasher {...};

int main() {
std::vector<int> v;

// Deduces s1 as concurrent_unordered_multiset<int>
oneapi::tbb::concurrent_unordered_multiset s1(v.begin(), v.end());

(continues on next page)

9.2. oneTBB Interfaces 602

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

// Deduces s2 as concurrent_unordered_multiset<int, CustomHasher>;
oneapi::tbb::concurrent_unordered_multiset s2(v.begin(), v.end(), CustomHasher{});

}

Ordered associative containers

concurrent_map

[containers.concurrent_map]
oneapi::tbb::concurrent_map is a class template that represents a sorted associative container. It stores unique
elements and supports concurrent insertion, lookup, and traversal, but does not support concurrent erasure.

Class Template Synopsis

namespace oneapi {
namespace tbb {

template <typename Key,
typename T,
typename Compare = std::less<Key>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>

class concurrent_map {
public:

using key_type = Key;
using mapped_type = T;
using value_type = std::pair<const Key, T>;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;

using key_compare = Compare;
using allocator_type = Allocator;

using reference = value_type&;
using const_reference = const value_type&;
using pointer = std::allocator_traits<Allocator>::pointer;
using const_pointer = std::allocator_traits<Allocator>::const_pointer;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

using node_type = <implementation-defined node handle>;

using range_type = <implementation-defined range>;
using const_range_type = <implementation-defined constant node handle>;

class value_compare;

(continues on next page)

9.2. oneTBB Interfaces 603

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

// Construction, destruction, copying
concurrent_map();
explicit concurrent_map(const key_compare& comp,

const allocator_type& alloc = allocator_type());

explicit concurrent_map(const allocator_type& alloc);

template <typename InputIterator>
concurrent_map(InputIterator first, InputIterator last,

const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_map(InputIterator first, InputIterator last,

const allocator_type& alloc);

concurrent_map(std::initializer_list<value_type> init,
const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

concurrent_map(std::initializer_list<value_type> init, const allocator_type&
→˓ alloc);

concurrent_map(const concurrent_map& other);
concurrent_map(const concurrent_map& other,

const allocator_type& alloc);

concurrent_map(concurrent_map&& other);
concurrent_map(concurrent_map&& other,

const allocator_type& alloc);

~concurrent_map();

concurrent_map& operator=(const concurrent_map& other);
concurrent_map& operator=(concurrent_map&& other);
concurrent_map& operator=(std::initializer_list<value_type> init);

allocator_type get_allocator() const;

// Element access
value_type& at(const key_type& key);
const value_type& at(const key_type& key) const;

value_type& operator[](const key_type& key);
value_type& operator[](key_type&& key);

// Iterators
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;

iterator end();

(continues on next page)

9.2. oneTBB Interfaces 604

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const_iterator end() const;
const_iterator cend() const;

// Size and capacity
bool empty() const;
size_type size() const;
size_type max_size() const;

// Concurrently safe modifiers
std::pair<iterator, bool> insert(const value_type& value);

iterator insert(const_iterator hint, const value_type& value);

template <typename P>
std::pair<iterator, bool> insert(P&& value);

template <typename P>
iterator insert(const_iterator hint, P&& value);

std::pair<iterator, bool> insert(value_type&& value);

iterator insert(const_iterator hint, value_type&& value);

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

void insert(std::initializer_list<value_type> init);

std::pair<iterator, bool> insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

template <typename SrcCompare>
void merge(concurrent_map<Key, T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_map<Key, T, SrcCompare, Allocator>&& source);

template <typename SrcCompare>
void merge(concurrent_multimap<Key, T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_multimap<Key, T, SrcCompare, Allocator>&& source);

// Concurrently unsafe modifiers
void clear();

(continues on next page)

9.2. oneTBB Interfaces 605

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

iterator unsafe_erase(const_iterator pos);
iterator unsafe_erase(iterator pos);

iterator unsafe_erase(const_iterator first, const_iterator last);

size_type unsafe_erase(const key_type& key);

template <typename K>
size_type unsafe_erase(const K& key);

node_type unsafe_extract(const_iterator pos);
node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const key_type& key);

template <typename K>
node_type unsafe_extract(const K& key);

void swap(concurrent_map& other);

// Lookup
size_type count(const key_type& key);

template <typename K>
size_type count(const K& key);

iterator find(const key_type& key);
const_iterator find(const key_type& key) const;

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

bool contains(const key_type& key) const;

template <typename K>
bool contains(const K& key) const;

std::pair<iterator, iterator> equal_range(const key_type& key);
std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣

→˓const;

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;

iterator lower_bound(const key_type& key);
const_iterator lower_bound(const key_type& key) const;

template <typename K>
(continues on next page)

9.2. oneTBB Interfaces 606

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

iterator lower_bound(const K& key);

template <typename K>
const_iterator lower_bound(const K& key) const;

iterator upper_bound(const key_type& key);
const_iterator upper_bound(const key_type& key) const;

template <typename K>
iterator upper_bound(const K& key);

template <typename K>
const_iterator upper_bound(const K& key) const;

// Observers
key_compare key_comp() const;

value_compare value_comp() const;

// Parallel iteration
range_type range();
const_range_type range() const;

}; // class concurrent_map

} // namespace tbb
} // namespace oneapi

Requirements:

• The expression std::allocator_traits<Allocator>::destroy(m, val), where m is an object of the type
Allocator and val is an object of the type value_type, must be well-formed. Member functions can impose
stricter requirements depending on the type of the operation.

• The type Compare must meet the Compare requirements from the [alg.sorting] ISO C++ Standard section.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

Member classes

value_compare

concurrent_map::value_compare is a function object that is used to compare concurrent_map::value_type
objects by comparing their first components.

9.2. oneTBB Interfaces 607

oneAPI Specification, Release 1.1-rev-1

Class Synopsis

namespace oneapi {
namespace tbb {

template <typename Key, typename T,
typename Compare, typename Allocator>

class concurrent_map<Key, T, Compare, Allocator>::value_compare {
protected:

key_compare comp;

value_compare(key_compare c);

public:
bool operator()(const value_type& lhs, const value_type& rhs)␣

→˓const;
}; // class value_compare

} // namespace tbb
} // namespace oneapi

Member objects

key_compare comp;

The key comparison function object.

Member functions

value_compare(key_compare c);

Constructs a value_compare with the stored key comparison function object c.

bool operator()(const value_type& lhs, const value_type& rhs) const;

Compares lhs.first and rhs.first by calling the stored key comparison function comp.

Returns: true if first components of lhs and rhs are equal; false, otherwise.

Member functions

Construction, destruction, copying

Empty container constructors

9.2. oneTBB Interfaces 608

oneAPI Specification, Release 1.1-rev-1

concurrent_map();

explicit concurrent_map(const key_compare& comp,
const allocator_type& alloc = allocator_type());

explicit concurrent_map(const allocator_type& alloc);

Constructs an empty concurrent_map.

If provided, uses the comparison function object comp for all key_type comparisons and the allocator
alloc to allocate the memory.

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_map(InputIterator first, InputIterator last,

const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_map(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

Constructs the concurrent_map, which contains the elements from the half-open interval [first,
last).

If the range [first, last) contains multiple elements with equal keys, it is unspecified which element
would be inserted.

If provided, uses the comparison function object comp for all key_type comparisons and the allocator
alloc to allocate the memory.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [input.
iterators] ISO C++ Standard section.

concurrent_map(std::initializer_list<value_type> init, const key_compare&␣
→˓comp = key_compare(),

const allocator_type& alloc = allocator_type());

Equivalent to concurrent_map(init.begin(), init.end(), comp, alloc).

concurrent_map(std::initializer_list<value_type> init,
const allocator_type& alloc);

Equivalent to concurrent_map(init.begin(), init.end(), alloc).

9.2. oneTBB Interfaces 609

oneAPI Specification, Release 1.1-rev-1

Copying constructors

concurrent_map(const concurrent_map& other);

concurrent_map(const concurrent_map& other, const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Moving constructors

concurrent_map(concurrent_map&& other);

concurrent_map(concurrent_map&& other, const allocator_type& alloc);

Constructs a concurrent_map with the contents of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_map();

Destroys the concurrent_map. Calls destructors of the stored elements and deallocates the used storage.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_map& operator=(const concurrent_map& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_map& operator=(concurrent_map&& other);

9.2. oneTBB Interfaces 610

oneAPI Specification, Release 1.1-rev-1

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_map& operator=(std::initializer_list<value_type> init);

Replaces all elements in *this by the elements in init.

If init contains multiple elements with equal keys, it is unspecified which element would be inserted.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

Element access

at

value_type& at(const key_type& key);

const value_type& at(const key_type& key) const;

Returns: a reference to item.second, where item is the element with the key equivalent to key.

Throws: std::out_of_range exception if the element with the key equivalent to key is not present in
the container.

operator[]

value_type& operator[](const key_type& key);

If the element with the key equivalent to key is not present in the container, inserts a new el-
ement constructed in-place from std::piecewise_construct, std::forward_as_tuple(key),
std::tuple<>().

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

Returns: a reference to item.second, where item is the element with the key equivalent to key.

value_type& operator[](key_type&& key);

If the element with the key equivalent to key is not present in the container, in-
serts a new element, constructed in-place from std::piecewise_construct,
std::forward_as_tuple(std::move(key)), std::tuple<>().

9.2. oneTBB Interfaces 611

oneAPI Specification, Release 1.1-rev-1

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

Returns: a reference to item.second, where item is the element with the key equivalent to key.

Iterators

The types concurrent_map::iterator and concurrent_map::const_iterator meet the requirements of
ForwardIterator from the [forward.iterators] ISO C++ standard section.

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the container.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the container.

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty; false, otherwise.

The result may differ with the actual container state in case of pending concurrent insertions.

9.2. oneTBB Interfaces 612

oneAPI Specification, Release 1.1-rev-1

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ with the actual container size in case of pending concurrent insertions.

max_size

size_type max_size() const;

Returns: the maximum number of elements that container can hold.

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other, lookup methods and while travers-
ing the container.

Inserting values

std::pair<iterator, bool> insert(const value_type& value);

Attempts to insert the value value into the container.

Returns: std::pair<iterator, bool, where iterator points to the inserted element or to an existing
element with equal key. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, const value_type& other);

Attempts to insert the value value into the container.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

Returns: an iterator to the inserted element or to an existing element with equal key.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

template <typename P>
std::pair<iterator, bool> insert(P&& value);

Equivalent to emplace(std::forward<P>(value)).

This overload only participates in overload resolution if std::is_constructible<value_type,
P&&>::value is true.

9.2. oneTBB Interfaces 613

oneAPI Specification, Release 1.1-rev-1

template <typename P>
iterator insert(const_iterator hint, P&& value);

Equivalent to emplace_hint(hint, std::forward<P>(value)).

This overload only participates in overload resolution if std::is_constructible<value_type,
P&&>::value is true.

std::pair<iterator, bool> insert(value_type&& value);

Attempts to insert the value value into the container using move semantics.

value is left in a valid, but unspecified state.

Returns: std::pair<iterator, bool, where iterator points to the inserted element or to an existing
element with equal key. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, value_type&& other);

Attempts to insert the value value into the container using move semantics.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

value is left in a valid, but unspecified state.

Returns: an iterator to the inserted element or to an existing element with equal key.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

Inserting sequences of elements

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

Attempts to insert all items from the half-open interval [first, last) into the container.

If the interval [first, last) contains multiple elements with equal keys, it is unspecified which element
should be inserted.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [input.
iterators] ISO C++ Standard section.

void insert(std::initializer_list<value_type> init);

Equivalent to insert(init.begin(), init.end()).

9.2. oneTBB Interfaces 614

oneAPI Specification, Release 1.1-rev-1

Inserting nodes

std::pair<iterator, bool> insert(node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, attempts to insert the node owned by nh into the container.

If the insertion fails, node handle nh keeps ownership of the node.

Otherwise, nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: std::pair<iterator, bool, where iterator points to the inserted element or to an existing
element with key equivalent to nh.key(). Boolean value is true if insertion took place; false, otherwise.

iterator insert(const_iterator hint, node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, attempts to insert the node owned by nh into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

If the insertion fails, node handle nh keeps ownership of the node.

Otherwise - nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: an iterator pointing to the inserted element or to an existing element with key equivalent to
nh.key().

Emplacing elements

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

Attempts to insert an element ,constructed in-place from args into the container.

Returns: std::pair<iterator, bool, where iterator points to the inserted element or to an existing
element with equal key. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

9.2. oneTBB Interfaces 615

oneAPI Specification, Release 1.1-rev-1

Attempts to insert an element constructed in-place from args into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

Returns: an iterator to the inserted element or to an existing element with equal key.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

Merging containers

template <typename SrcCompare>
void merge(concurrent_map<Key, T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_map<Key, T, SrcCompare, Allocator>&& source);

template <typename SrcCompare>
void merge(concurrent_multimap<Key, T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_multimap<Key, T, SrcCompare, Allocator>&& source);

Transfers those elements from source which keys do not exist in the container.

In case of merging with the container with multiple elements with equal keys, it is unspecified which
element would be transferred.

No copy or move constructors of value_type are performed.

The behavior is undefined if get_allocator() != source.get_allocator().

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

Clearing

void clear();

Removes all elements from the container.

Erasing elements

iterator unsafe_erase(const_iterator pos);

iterator unsafe_erase(iterator pos);

Removes the element pointed to by pos from the container.

Invalidates all iterators and references to the removed element.

Returns: iterator which follows the removed element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

9.2. oneTBB Interfaces 616

oneAPI Specification, Release 1.1-rev-1

size_type unsafe_erase(const key_type& key);

Removes the element with the key equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

Returns: 1 if an element with the key equivalent to key exists; 0, otherwise.

template <typename K>
size_type unsafe_erase(const K& key);

Removes the element with the key that is equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

This overload only participates in overload resolution if all of the following statements are true:

• The qualified-id key_compare::is_transparent is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: 1 if an element with the key equivalent to key exists; 0, otherwise.

Erasing sequences

iterator unsafe_erase(const_iterator first, const_iterator last);

Removes all elements from the half-open interval [first, last) from the container.

Returns: iterator that follows the last removed element.

Requirements: the range [first, last) must be a valid subrange in *this.

Extracting nodes

node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const_iterator pos);

Transfers ownership of the element pointed to by pos from the container to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

9.2. oneTBB Interfaces 617

oneAPI Specification, Release 1.1-rev-1

node_type unsafe_extract(const key_type& key);

If an element with the key equivalent to key exists, transfers ownership of this element from the container
to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element or an empty node handle if an element with the
key equivalent to key was not found.

template <typename K>
node_type unsafe_extract(const K& key);

If an element with the key equivalent to key exists, transfers ownership of this element from the container
to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

This overload only participates in overload resolution if all of the following statements are true:

• The qualified-id key_compare::is_transparent is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the node handle that owns the extracted element or an empty node handle if an element with the
key equivalent to key was not found.

swap

void swap(concurrent_map& other);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

Lookup

All methods in this section can be executed concurrently with each other, concurrently-safe modifiers, and while travers-
ing the container.

9.2. oneTBB Interfaces 618

oneAPI Specification, Release 1.1-rev-1

count

size_type count(const key_type& key);

Returns: the number of elements with the key equivalent to key.

template <typename K>
size_type count(const K& key);

Returns: the number of elements with the key that is equivalent to key.

This overload only participates in overload resolution if qualified-id key_compare::is_transparent is
valid and denotes a type.

find

iterator find(const key_type& key);

const_iterator find(const key_type& key) const;

Returns: an iterator to the element with the key equivalent to key, or end() if no such element exists.

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

Returns: an iterator to the element with the key equivalent to key, or end() if no such element exists.

These overloads only participate in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

contains

bool contains(const key_type& key) const;

Returns: true if an element with the key equivalent to key exists in the container; false, otherwise.

template <typename K>
bool contains(const K& key) const;

Returns: true if an element with the key that is equivalent to key exists in the container; false, other-
wise.

This overload only participates in overload resolution if qualified-id key_compare::is_transparent is
valid and denotes a type.

9.2. oneTBB Interfaces 619

oneAPI Specification, Release 1.1-rev-1

lower_bound

iterator lower_bound(const key_type& key);

const_iterator lower_bound(const key_type& key) const;

Returns: an iterator to the first element in the container with the key that is not less than key.

template <typename K>
iterator lower_bound(const K& key)

template <typename K>
const_iterator lower_bound(const K& key) const

Returns: an iterator to the first element in the container with the key that is not less than key.

These overloads only participates in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

upper_bound

iterator upper_bound(const key_type& key);

const_iterator upper_bound(const key_type& key) const;

Returns: an iterator to the first element in the container with the key that compares greater than key.

template <typename K>
iterator upper_bound(const K& key);

template <typename K>
const_iterator upper_bound(const K& key) const;

Returns: an iterator to the first element in the container with the key that compares greater than key.

These overloads only participates in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

equal_range

std::pair<iterator, iterator> equal_range(const key_type& key);

std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣
→˓const;

Returns: if an element with the key equivalent to key exists, a pair of iterators {f, l}, where f is an
iterator to this element, l is std::next(f). Otherwise, {end(), end()}.

9.2. oneTBB Interfaces 620

oneAPI Specification, Release 1.1-rev-1

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key)

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key)

Returns: if an element with the key that is equivalent to key exists, a pair of iterators {f, l}, where f is
an iterator to this element, l is std::next(f). Otherwise, {end(), end()}.

These overloads only participate in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

Observers

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

key_comp

key_compare key_comp() const;

Returns: a copy of the key comparison functor associated with *this.

value_comp

value_compare value_comp() const;

Returns: an object of the value_compare class that is used to compare value_type objects.

Parallel iteration

Member types concurrent_map::range_type and concurrent_map::const_range_type meet the Contain-
erRange requirements.

These types differ only in that the bounds for a concurrent_map::const_range_type are of type
concurrent_map::const_iterator, whereas the bounds for a concurrent_map::range_type are of type
concurrent_map::iterator.

9.2. oneTBB Interfaces 621

oneAPI Specification, Release 1.1-rev-1

range member function

range_type range();

const_range_type range() const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provide binary and lexicographical comparison and swap operations on
oneapi::tbb::concurrent_map objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective
comparison operations. For example, an implementation may define the classes and functions in the same internal
namespace and define oneapi::tbb::concurrent_map as a type alias for which the non-member functions are
reachable only via argument-dependent lookup.

template <typename Key, typename T, typename Compare, typename Allocator>
void swap(concurrent_map<Key, T, Compare, Allocator>& lhs,

concurrent_map<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator<(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator<=(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>=(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs);

9.2. oneTBB Interfaces 622

oneAPI Specification, Release 1.1-rev-1

Non-member swap

template <typename Key, typename T, typename Compare, typename Allocator>
void swap(concurrent_map<Key, T, Compare, Allocator>& lhs,

concurrent_map<Key, T, Compare, Allocator>& rhs);

Equivalent to lhs.swap(rhs).

Non-member binary comparisons

Two oneapi::tbb::concurrent_map objects are equal if they have the same number of elements and each element
in one container is equal to the element in other container on the same position.

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is equal to rhs; false, otherwise.

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is not equal to rhs; false, otherwise.

Non-member lexicographical comparisons

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator<(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically less than rhs.

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator<=(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically less or equal than rhs.

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically greater than rhs.

9.2. oneTBB Interfaces 623

oneAPI Specification, Release 1.1-rev-1

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>=(const concurrent_map<Key, T, Compare, Allocator>& lhs,

const concurrent_map<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically greater or equal than rhs.

Other

Deduction guides

If possible, concurrent_map constructors support class template argument deduction (since C++17). Copy and move
constructors, including constructors with an explicit allocator_type argument, provide implicitly-generated deduc-
tion guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename Compare = std::less<iterator_key_t<InputIterator>>,
typename Allocator = tbb_allocator<iterator_alloc_value_t<InputIterator>>>

concurrent_map(InputIterator, InputIterator,
Compare = Compare(),
Allocator = Allocator())

-> concurrent_map<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
Compare,
Allocator>;

template <typename InputIterator,
typename Allocator>

concurrent_map(InputIterator, InputIterator,
Allocator)

-> concurrent_map<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
std::less<iterator_key_t<InputIterator>>,
Allocator>;

template <typename Key, typename T,
typename Compare = std::less<std::remove_const_t<Key>>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>>

concurrent_map(std::initializer_list<std::pair<Key, T>>,
Compare = Compare(),
Allocator = Allocator())

-> concurrent_map<std::remove_const_t<Key>,
T,
Compare,
Allocator>;

template <typename Key, typename T,
typename Allocator>

concurrent_map(std::initializer_list<std::pair<Key, T>>, Allocator)
-> concurrent_map<std::remove_const_t<Key>,

T,
std::less<std::remove_const_t<Key>>,
Allocator>;

9.2. oneTBB Interfaces 624

oneAPI Specification, Release 1.1-rev-1

where the type aliases iterator_key_t, iterator_mapped_t, iterator_alloc_value_t are defined as follows:

template <typename InputIterator>
using iterator_key_t = std::remove_const_t<typename std::iterator_traits<InputIterator>
→˓::value_type::first_type>;

template <typename InputIterator>
using iterator_mapped_t = typename std::iterator_traits<InputIterator>::value_
→˓type::second_type;

template <typename InputIterator>
using iterator_alloc_value_t = std::pair<std::add_const_t<iterator_key_t<InputIterator>>,

iterator_mapped_t<InputIterator>>;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

• The Compare type does not meet the Allocator requirements.

Example

#include <oneapi/tbb/concurrent_map.h>
#include <vector>

int main() {
std::vector<std::pair<int, float>> v;

// Deduces cm1 as concurrent_map<int, float>
oneapi::tbb::concurrent_map cm1(v.begin(), v.end());

// Deduces cm2 as concurrent_map<int, float>
oneapi::tbb::concurrent_map cm2({std::pair(1, 2f), std::pair(2, 3f)});

}

concurrent_multimap

[containers.concurrent_multimap]
oneapi::tbb::concurrent_multimap is a class template that represents a sorted associative container. It supports
concurrent insertion, lookup, and traversal, but does not support concurrent erasure. In this container, multiple elements
with equal keys can be stored.

9.2. oneTBB Interfaces 625

oneAPI Specification, Release 1.1-rev-1

Class Template Synopsis

namespace oneapi {
namespace tbb {

template <typename Key,
typename T,
typename Compare = std::less<Key>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>

class concurrent_multimap {
public:

using key_type = Key;
using mapped_type = T;
using value_type = std::pair<const Key, T>;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;

using key_compare = Compare;
using allocator_type = Allocator;

using reference = value_type&;
using const_reference = const value_type&;
using pointer = std::allocator_traits<Allocator>::pointer;
using const_pointer = std::allocator_traits<Allocator>::const_pointer;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

using node_type = <implementation-defined node handle>;

using range_type = <implementation-defined range>;
using const_range_type = <implementation-defined constant node handle>;

class value_compare;

// Construction, destruction, copying
concurrent_multimap();
explicit concurrent_multimap(const key_compare& comp,

const allocator_type& alloc = allocator_type()␣
→˓);

explicit concurrent_multimap(const allocator_type& alloc);

template <typename InputIterator>
concurrent_multimap(InputIterator first, InputIterator last,

const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_multimap(InputIterator first, InputIterator last,

const allocator_type& alloc);
(continues on next page)

9.2. oneTBB Interfaces 626

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

concurrent_multimap(std::initializer_list<value_type> init,
const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

concurrent_multimap(std::initializer_list<value_type> init, const allocator_
→˓type& alloc);

concurrent_multimap(const concurrent_multimap& other);
concurrent_multimap(const concurrent_multimap& other,

const allocator_type& alloc);

concurrent_multimap(concurrent_multimap&& other);
concurrent_multimap(concurrent_multimap&& other,

const allocator_type& alloc);

~concurrent_multimap();

concurrent_multimap& operator=(const concurrent_multimap& other);
concurrent_multimap& operator=(concurrent_multimap&& other);
concurrent_multimap& operator=(std::initializer_list<value_type> init);

allocator_type get_allocator() const;

// Iterators
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;

iterator end();
const_iterator end() const;
const_iterator cend() const;

// Size and capacity
bool empty() const;
size_type size() const;
size_type max_size() const;

// Concurrently safe modifiers
std::pair<iterator, bool> insert(const value_type& value);

iterator insert(const_iterator hint, const value_type& value);

template <typename P>
std::pair<iterator, bool> insert(P&& value);

template <typename P>
iterator insert(const_iterator hint, P&& value);

std::pair<iterator, bool> insert(value_type&& value);

iterator insert(const_iterator hint, value_type&& value);

(continues on next page)

9.2. oneTBB Interfaces 627

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

void insert(std::initializer_list<value_type> init);

std::pair<iterator, bool> insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

template <typename SrcCompare>
void merge(concurrent_map<Key, T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_map<Key, T, SrcCompare, Allocator>&& source);

template <typename SrcCompare>
void merge(concurrent_multimap<Key, T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_multimap<Key, T, SrcCompare, Allocator>&& source);

// Concurrently unsafe modifiers
void clear();

iterator unsafe_erase(const_iterator pos);
iterator unsafe_erase(iterator pos);

iterator unsafe_erase(const_iterator first, const_iterator last);

size_type unsafe_erase(const key_type& key);

template <typename K>
size_type unsafe_erase(const K& key);

node_type unsafe_extract(const_iterator pos);
node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const key_type& key);

template <typename K>
node_type unsafe_extract(const K& key);

void swap(concurrent_multimap& other);

// Lookup
size_type count(const key_type& key);

(continues on next page)

9.2. oneTBB Interfaces 628

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

template <typename K>
size_type count(const K& key);

iterator find(const key_type& key);
const_iterator find(const key_type& key) const;

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

bool contains(const key_type& key) const;

template <typename K>
bool contains(const K& key) const;

std::pair<iterator, iterator> equal_range(const key_type& key);
std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣

→˓const;

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;

iterator lower_bound(const key_type& key);
const_iterator lower_bound(const key_type& key) const;

template <typename K>
iterator lower_bound(const K& key);

template <typename K>
const_iterator lower_bound(const K& key) const;

iterator upper_bound(const key_type& key);
const_iterator upper_bound(const key_type& key) const;

template <typename K>
iterator upper_bound(const K& key);

template <typename K>
const_iterator upper_bound(const K& key) const;

// Observers
key_compare key_comp() const;

value_compare value_comp() const;

// Parallel iteration
range_type range();
const_range_type range() const;

(continues on next page)

9.2. oneTBB Interfaces 629

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

}; // class concurrent_multimap

} // namespace tbb
} // namespace oneapi

Requirements:

• The expression std::allocator_traits<Allocator>::destroy(m, val), where m is an object of the type
Allocator and val is an object of the type value_type, must be well-formed. Member functions can impose
stricter requirements depending on the type of the operation.

• The type Compare must meet the Compare requirements from the [alg.sorting] ISO C++ Standard section.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

Member classes

value_compare

concurrent_multimap::value_compare is a function object that is used to compare
concurrent_multimap::value_type objects by comparing their first components.

Class Synopsis

namespace oneapi {
namespace tbb {

template <typename Key, typename T,
typename Compare, typename Allocator>

class concurrent_multimap<Key, T, Compare, Allocator>::value_compare {
protected:

key_compare comp;

value_compare(key_compare c);

public:
bool operator()(const value_type& lhs, const value_type& rhs)␣

→˓const;
}; // class value_compare

} // namespace tbb
} // namespace oneapi

9.2. oneTBB Interfaces 630

oneAPI Specification, Release 1.1-rev-1

Member objects

key_compare comp;

The key comparison function object.

Member functions

value_compare(key_compare c);

Constructs a value_compare with the stored key comparison function object c.

bool operator()(const value_type& lhs, const value_type& rhs) const;

Compares lhs.first and rhs.first by calling the stored key comparison function comp.

Returns: true if first components of lhs and rhs are equal; false, otherwise.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_multimap();

explicit concurrent_multimap(const key_compare& comp,
const allocator_type& alloc = allocator_type());

explicit concurrent_multimap(const allocator_type& alloc);

Constructs an empty concurrent_multimap.

If provided, uses the comparison function object comp for all key_type comparisons and the allocator
alloc to allocate the memory.

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_multimap(InputIterator first, InputIterator last,

const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_multimap(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

9.2. oneTBB Interfaces 631

oneAPI Specification, Release 1.1-rev-1

Constructs the concurrent_multimap, which contains all elements from the half-open interval [first,
last).

If provided, uses the comparison function object comp for all key_type comparisons and the allocator
alloc to allocate the memory.

Requirements: the type InputIterator must meet the requirements of InputIterator from [input.
iterators] ISO C++ Standard section.

concurrent_multimap(std::initializer_list<value_type> init, const key_compare&
→˓ comp = key_compare(),

const allocator_type& alloc = allocator_type());

Equivalent to concurrent_multimap(init.begin(), init.end(), comp, alloc).

concurrent_multimap(std::initializer_list<value_type> init,
const allocator_type& alloc);

Equivalent to concurrent_multimap(init.begin(), init.end(), alloc).

Copying constructors

concurrent_multimap(const concurrent_multimap& other);

concurrent_multimap(const concurrent_multimap& other, const allocator_type&␣
→˓alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Moving constructors

concurrent_multimap(concurrent_multimap&& other);

concurrent_multimap(concurrent_multimap&& other, const allocator_type& alloc␣
→˓);

Constructs a concurrent_multimap with the contents of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

9.2. oneTBB Interfaces 632

oneAPI Specification, Release 1.1-rev-1

Destructor

~concurrent_multimap();

Destroys the concurrent_multimap. Calls destructors of the stored elements and deallocates the used
storage.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_multimap& operator=(const concurrent_multimap& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_multimap& operator=(concurrent_multimap&& other);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_multimap& operator=(std::initializer_list<value_type> init);

Replaces all elements in *this by the elements in init.

If init contains multiple elements with equal keys, it is unspecified which element would be inserted.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

Iterators

The types concurrent_multimap::iterator and concurrent_multimap::const_iterator meet the require-
ments of ForwardIterator from the [forward.iterators] ISO C++ standard section.

9.2. oneTBB Interfaces 633

oneAPI Specification, Release 1.1-rev-1

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the container.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the container.

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty, false otherwise.

The result may differ with the actual container state in case of pending concurrent insertions.

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ with the actual container size in case of pending concurrent insertions.

max_size

size_type max_size() const;

Returns: the maximum number of elements that container can hold.

9.2. oneTBB Interfaces 634

oneAPI Specification, Release 1.1-rev-1

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other, lookup methods and while travers-
ing the container.

Emplacing elements

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

Inserts an element constructed in-place from args into the container.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

Requirements: the type value_type must meet the EmplaceConstructible requirements from [con-
tainer.requirements] ISO C++ section.

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

Inserts an element constructed in-place from args into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

Returns: an iterator to the inserted element.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

Inserting values

std::pair<iterator, bool> insert(const value_type& value);

Inserts the value value into the container.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, const value_type& other);

Inserts the value value into the container.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

Returns: an iterator to the inserted element.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

9.2. oneTBB Interfaces 635

oneAPI Specification, Release 1.1-rev-1

template <typename P>
std::pair<iterator, bool> insert(P&& value);

Equivalent to emplace(std::forward<P>(value)).

This overload only participates in overload resolution if std::is_constructible<value_type,
P&&>::value is true.

template <typename P>
iterator insert(const_iterator hint, P&& value);

Equivalent to emplace_hint(hint, std::forward<P>(value)).

This overload only participates in overload resolution if std::is_constructible<value_type,
P&&>::value is true.

std::pair<iterator, bool> insert(value_type&& value);

Inserts the value value into the container using move semantics.

value is left in a valid, but unspecified state.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, value_type&& other);

Inserts the value value into the container using move semantics.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

value is left in a valid, but unspecified state.

Returns: an iterator to the inserted element.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

Inserting sequences of elements

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

Inserts all items from the half-open interval [first, last) into the container.

Requirements: the type InputIterator must meet the requirements of InputIterator from [input.
iterators] the ISO C++ Standard section.

9.2. oneTBB Interfaces 636

oneAPI Specification, Release 1.1-rev-1

void insert(std::initializer_list<value_type> init);

Equivalent to insert(init.begin(), init.end()).

Inserting nodes

std::pair<iterator, bool> insert(node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, inserts the node owned by nh into the container.

nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

iterator insert(const_iterator hint, node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, inserts the node owned by nh into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: an iterator pointing to the inserted element.

Merging containers

template <typename SrcCompare>
void merge(concurrent_map<Key, T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_map<Key, T, SrcCompare, Allocator>&& source);

template <typename SrcCompare>
void merge(concurrent_multimap<Key, T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_multimap<Key, T, SrcCompare, Allocator>&& source);

Transfers all elements from source to *this.

No copy or move constructors of value_type are performed.

The behavior is undefined if get_allocator() != source.get_allocator().

9.2. oneTBB Interfaces 637

oneAPI Specification, Release 1.1-rev-1

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

Clearing

void clear();

Removes all elements from the container.

Erasing elements

iterator unsafe_erase(const_iterator pos);

iterator unsafe_erase(iterator pos);

Removes the element pointed to by pos from the container.

Invalidates all iterators and references to the removed element.

Returns: iterator which follows the removed element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

size_type unsafe_erase(const key_type& key);

Removes all element with the key equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed elements.

Returns: the number of removed elements.

template <typename K>
size_type unsafe_erase(const K& key);

Removes all elements with the key that is equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed elements.

This overload only participates in overload resolution if all of the following statements are true:

• The qualified-id key_compare::is_transparent is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the number of removed elements.

9.2. oneTBB Interfaces 638

oneAPI Specification, Release 1.1-rev-1

Erasing sequences

iterator unsafe_erase(const_iterator first, const_iterator last);

Removes all elements from the half-open interval [first, last) from the container.

Returns: iterator that follows the last removed element.

Requirements: the range [first, last) must be a valid subrange in *this.

Extracting nodes

node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const_iterator pos);

Transfers ownership of the element pointed to by pos from the container to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

node_type unsafe_extract(const key_type& key);

If at least one element with the key equivalent to key exists, transfers ownership of this element from the
container to the node handle.

No copy or move constructors of value_type are performed.

If there are multiple elements with the key equivalent to key, it is unspecified which element should be
transferred.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element or an empty node handle if an element with the
key equivalent to key was not found.

template <typename K>
node_type unsafe_extract(const K& key);

If at least one element with the key that is equivalent to key exists, transfers ownership of this element
from the container to the node handle.

No copy or move constructors of value_type are performed.

If there are multiple elements with the key that is equivalent to key, it is unspecified which element should
be transferred.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

9.2. oneTBB Interfaces 639

oneAPI Specification, Release 1.1-rev-1

This overload only participates in overload resolution if all of the following statements are true:

• The qualified-id key_compare::is_transparent is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the node handle that owns the extracted element or an empty node handle if an element with the
key that is equivalent to key was not found.

swap

void swap(concurrent_multimap& other);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

Lookup

All methods in this section can be executed concurrently with each other, concurrently-safe modifiers and while travers-
ing the container.

count

size_type count(const key_type& key);

Returns: the number of elements with the key equivalent to key.

template <typename K>
size_type count(const K& key);

Returns: the number of elements with the key equivalent to key.

This overload only participates in overload resolution if qualified-id key_compare::is_transparent is
valid and denotes a type.

find

iterator find(const key_type& key);

const_iterator find(const key_type& key) const;

Returns: an iterator to the element with the key equivalent to key, or end() if no such element exists.

If there are multiple elements with the key equivalent to key, it is unspecified which element should be
found.

9.2. oneTBB Interfaces 640

oneAPI Specification, Release 1.1-rev-1

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

Returns: an iterator to the element with the key that is equivalent to key, or end() if no such element
exists.

If there are multiple elements with the key that is equivalent to key, it is unspecified which element should
be found.

These overloads only participates in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

contains

bool contains(const key_type& key) const;

Returns: true if an element with the key equivalent to key exists in the container; false, otherwise.

template <typename K>
bool contains(const K& key) const;

Returns: true if an element with the key equivalent to key exists in the container; false, otherwise.

This overload only participates in overload resolution if qualified-id key_compare::is_transparent is
valid and denotes a type.

lower_bound

iterator lower_bound(const key_type& key);

const_iterator lower_bound(const key_type& key) const;

Returns: an iterator to the first element in the container with the key that is not less than key.

template <typename K>
iterator lower_bound(const K& key)

template <typename K>
const_iterator lower_bound(const K& key) const

Returns: an iterator to the first element in the container with the key that is not less than key.

These overloads only participates in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

9.2. oneTBB Interfaces 641

oneAPI Specification, Release 1.1-rev-1

upper_bound

iterator upper_bound(const key_type& key);

const_iterator upper_bound(const key_type& key) const;

Returns: an iterator to the first element in the container with the key that compares greater than key.

template <typename K>
iterator upper_bound(const K& key);

template <typename K>
const_iterator upper_bound(const K& key) const;

Returns: an iterator to the first element in the container with the key that compares greater than key.

These overloads only participate in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

equal_range

std::pair<iterator, iterator> equal_range(const key_type& key);

std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣
→˓const;

Returns: if at least one element with the key equivalent to key exists, a pair of iterators {f, l}, where f
is an iterator to the first element with the key equivalent to key, l is an iterator to the element that follows
the last element with the key equivalent to key. Otherwise - {end(), end()}.

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key)

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key)

Returns: if at least one element with the key equivalent to key exists, a pair of iterators {f, l}, where f
is an iterator to the first element with the key that is equivalent to key, l is an iterator to the element that
follows the last element with the key that is equivalent to key. Otherwise, {end(), end()}.

These overloads only participates in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

9.2. oneTBB Interfaces 642

oneAPI Specification, Release 1.1-rev-1

Observers

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

key_comp

key_compare key_comp() const;

Returns: a copy of the key comparison functor associated with *this.

value_comp

value_compare value_comp() const;

Returns: an object of the value_compare class that is used to compare value_type objects.

Parallel iteration

Member types concurrent_multimap::range_type and concurrent_multimap::const_range_typemeet the
ContainerRange requirements.

These types differ only in that the bounds for a concurrent_multimap::const_range_type are of type
concurrent_multimap::const_iterator, whereas the bounds for a concurrent_multimap::range_type are
of type concurrent_multimap::iterator.

range member function

range_type range();

const_range_type range() const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provide binary and lexicographical comparison and swap operations on
oneapi::tbb::concurrent_multimap objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective
comparison operations. For example, an implementation may define the classes and functions in the same internal
namespace and define oneapi::tbb::concurrent_multimap as a type alias for which the non-member functions
are reachable only via argument-dependent lookup.

9.2. oneTBB Interfaces 643

oneAPI Specification, Release 1.1-rev-1

template <typename Key, typename T, typename Compare, typename Allocator>
void swap(concurrent_multimap<Key, T, Compare, Allocator>& lhs,

concurrent_multimap<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator<(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator<=(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>=(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_mutlimap<Key, T, Compare, Allocator>& rhs);

Non-member swap

template <typename Key, typename T, typename Compare, typename Allocator>
void swap(concurrent_multimap<Key, T, Compare, Allocator>& lhs,

concurrent_multimap<Key, T, Compare, Allocator>& rhs);

Equivalent to lhs.swap(rhs).

Non-member binary comparisons

Two oneapi::tbb::concurrent_multimap objects are equal if they have the same number of elements and each
element in one container is equal to the element in other container on the same position.

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is equal to rhs; false, otherwise.

9.2. oneTBB Interfaces 644

oneAPI Specification, Release 1.1-rev-1

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is not equal to rhs; false, otherwise.

Non-member lexicographical comparisons

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator<(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically less than rhs.

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator<=(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically less or equal than rhs.

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically greater than rhs.

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>=(const concurrent_multimap<Key, T, Compare, Allocator>& lhs,

const concurrent_multimap<Key, T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically greater or equal than rhs.

Other

Deduction guides

If possible, concurrent_multimap constructors support class template argument deduction (since C++17). Copy and
move constructors, including constructors with an explicit allocator_type argument, provide implicitly-generated
deduction guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename Compare = std::less<iterator_key_t<InputIterator>>,
typename Allocator = tbb_allocator<iterator_alloc_value_t<InputIterator>>>

concurrent_multimap(InputIterator, InputIterator,
Compare = Compare(),
Allocator = Allocator())

(continues on next page)

9.2. oneTBB Interfaces 645

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

-> concurrent_multimap<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
Compare,
Allocator>;

template <typename InputIterator,
typename Allocator>

concurrent_multimap(InputIterator, InputIterator,
Allocator)

-> concurrent_multimap<iterator_key_t<InputIterator>,
iterator_mapped_t<InputIterator>,
std::less<iterator_key_t<InputIterator>>,
Allocator>;

template <typename Key, typename T,
typename Compare = std::less<std::remove_const_t<Key>>,
typename Allocator = tbb_allocator<std::pair<const Key, T>>>

concurrent_multimap(std::initializer_list<std::pair<Key, T>>,
Compare = Compare(),
Allocator = Allocator())

-> concurrent_multimap<std::remove_const_t<Key>,
T,
Compare,
Allocator>;

template <typename Key, typename T,
typename Allocator>

concurrent_multimap(std::initializer_list<std::pair<Key, T>>, Allocator)
-> concurrent_multimap<std::remove_const_t<Key>,

T,
std::less<std::remove_const_t<Key>>,
Allocator>;

where the type aliases iterator_key_t, iterator_mapped_t, iterator_alloc_value_t are defined as follows:

template <typename InputIterator>
using iterator_key_t = std::remove_const_t<typename std::iterator_traits<InputIterator>
→˓::value_type::first_type>;

template <typename InputIterator>
using iterator_mapped_t = typename std::iterator_traits<InputIterator>::value_
→˓type::second_type;

template <typename InputIterator>
using iterator_alloc_value_t = std::pair<std::add_const_t<iterator_key_t<InputIterator>>,

iterator_mapped_t<InputIterator>>;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

9.2. oneTBB Interfaces 646

oneAPI Specification, Release 1.1-rev-1

• The Compare type does not meet the Allocator requirements.

Example

#include <oneapi/tbb/concurrent_map.h>
#include <vector>

int main() {
std::vector<std::pair<int, float>> v;

// Deduces cm1 as concurrent_multimap<int, float>
oneapi::tbb::concurrent_multimap cm1(v.begin(), v.end());

// Deduces cm2 as concurrent_multimap<int, float>
oneapi::tbb::concurrent_multimap cm2({std::pair(1, 2f), std::pair(2, 3f)});

}

concurrent_set

[containers.concurrent_set]
oneapi::tbb::concurrent_set is a class template that represents a sorted sequence of unique elements. It supports
concurrent insertion, lookup and traversal, but does not support concurrent erasure.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_set.h>

namespace oneapi {
namespace tbb {

template <typename T,
typename Compare = std::less<T>,
typename Allocator = tbb_allocator<T>>

class concurrent_set {
public:

using key_type = T;
using value_type = T;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;

using key_compare = Compare;
using value_compare = Compare;

using allocator_type = Allocator;

using reference = value_type&;
using const_reference = const value_type&;
using pointer = std::allocator_traits<Allocator>::pointer;
using const_pointer = std::allocator_traits<Allocator>::const_pointer;

(continues on next page)

9.2. oneTBB Interfaces 647

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

using node_type = <implementation-defined node handle>;

using range_type = <implementation-defined range>;
using const_range_type = <implementation-defined constant node handle>;

// Construction, destruction, copying
concurrent_set();
explicit concurrent_set(const key_compare& comp,

const allocator_type& alloc = allocator_type());

explicit concurrent_set(const allocator_type& alloc);

template <typename InputIterator>
concurrent_set(InputIterator first, InputIterator last,

const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_set(InputIterator first, InputIterator last,

const allocator_type& alloc);

concurrent_set(std::initializer_list<value_type> init,
const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

concurrent_set(std::initializer_list<value_type> init, const allocator_type&
→˓ alloc);

concurrent_set(const concurrent_set& other);
concurrent_set(const concurrent_set& other,

const allocator_type& alloc);

concurrent_set(concurrent_set&& other);
concurrent_set(concurrent_set&& other,

const allocator_type& alloc);

~concurrent_set();

concurrent_set& operator=(const concurrent_set& other);
concurrent_set& operator=(concurrent_set&& other);
concurrent_set& operator=(std::initializer_list<value_type> init);

allocator_type get_allocator() const;

// Iterators
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;

(continues on next page)

9.2. oneTBB Interfaces 648

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

iterator end();
const_iterator end() const;
const_iterator cend() const;

// Size and capacity
bool empty() const;
size_type size() const;
size_type max_size() const;

// Concurrently safe modifiers
std::pair<iterator, bool> insert(const value_type& value);

iterator insert(const_iterator hint, const value_type& value);

std::pair<iterator, bool> insert(value_type&& value);

iterator insert(const_iterator hint, value_type&& value);

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

void insert(std::initializer_list<value_type> init);

std::pair<iterator, bool> insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

template <typename SrcCompare>
void merge(concurrent_set<T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_set<T, SrcCompare, Allocator>&& source);

template <typename SrcCompare>
void merge(concurrent_multiset<T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_multiset<T, SrcCompare, Allocator>&& source);

// Concurrently unsafe modifiers
void clear();

iterator unsafe_erase(const_iterator pos);
iterator unsafe_erase(iterator pos);

iterator unsafe_erase(const_iterator first, const_iterator last);

(continues on next page)

9.2. oneTBB Interfaces 649

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

size_type unsafe_erase(const key_type& key);

template <typename K>
size_type unsafe_erase(const K& key);

node_type unsafe_extract(const_iterator pos);
node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const key_type& key);

template <typename K>
node_type unsafe_extract(const K& key);

void swap(concurrent_set& other);

// Lookup
size_type count(const key_type& key);

template <typename K>
size_type count(const K& key);

iterator find(const key_type& key);
const_iterator find(const key_type& key) const;

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

bool contains(const key_type& key) const;

template <typename K>
bool contains(const K& key) const;

std::pair<iterator, iterator> equal_range(const key_type& key);
std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣

→˓const;

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;

iterator lower_bound(const key_type& key);
const_iterator lower_bound(const key_type& key) const;

template <typename K>
iterator lower_bound(const K& key);

template <typename K>
const_iterator lower_bound(const K& key) const;

(continues on next page)

9.2. oneTBB Interfaces 650

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

iterator upper_bound(const key_type& key);
const_iterator upper_bound(const key_type& key) const;

template <typename K>
iterator upper_bound(const K& key);

template <typename K>
const_iterator upper_bound(const K& key) const;

// Observers
key_compare key_comp() const;

value_compare value_comp() const;

// Parallel iteration
range_type range();
const_range_type range() const;

}; // class concurrent_set

} // namespace tbb
} // namespace oneapi

Requirements:

• The expression std::allocator_traits<Allocator>::destroy(m, val), where m is an object of the type
Allocator and val is an object of the type value_type, must be well-formed. Member functions can impose
stricter requirements depending on the type of the operation.

• The type Compare must meet the Compare requirements from the [alg.sorting] ISO C++ Standard section.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_set();

explicit concurrent_set(const key_compare& comp,
const allocator_type& alloc = allocator_type());

explicit concurrent_set(const allocator_type& alloc);

Constructs an empty concurrent_set.

If provided, uses the comparison function object comp for all key_type comparisons and the allocator
alloc to allocate the memory.

9.2. oneTBB Interfaces 651

oneAPI Specification, Release 1.1-rev-1

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_set(InputIterator first, InputIterator last,

const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_set(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

Constructs the concurrent_set that contains the elements from the half-open interval [first, last).

If the range [first, last) contains multiple equal elements, it is unspecified which element would be
inserted.

If provided, uses the comparison function object comp for all key_type comparisons and the allocator
alloc to allocate the memory.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [input.
iterators] ISO C++ Standard section.

concurrent_set(std::initializer_list<value_type> init, const key_compare&␣
→˓comp = key_compare(),

const allocator_type& alloc = allocator_type());

Equivalent to concurrent_set(init.begin(), init.end(), comp, alloc).

concurrent_set(std::initializer_list<value_type> init,
const allocator_type& alloc);

Equivalent to concurrent_set(init.begin(), init.end(), alloc).

Copying constructors

concurrent_set(const concurrent_set& other);

concurrent_set(const concurrent_set& other, const allocator_type& alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

9.2. oneTBB Interfaces 652

oneAPI Specification, Release 1.1-rev-1

Moving constructors

concurrent_set(concurrent_set&& other);

concurrent_set(concurrent_set&& other, const allocator_type& alloc);

Constructs a concurrent_set with the contents of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Destructor

~concurrent_set();

Destroys the concurrent_set. Calls destructors of the stored elements and deallocates the used storage.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_set& operator=(const concurrent_set& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_set& operator=(concurrent_set&& other);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_set& operator=(std::initializer_list<value_type> init);

9.2. oneTBB Interfaces 653

oneAPI Specification, Release 1.1-rev-1

Replaces all elements in *this by the elements in init.

If init contains multiple elements with equal keys, it is unspecified which element would be inserted.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

Iterators

The types concurrent_set::iterator and concurrent_set::const_iterator meet the requirements of
ForwardIterator from the [forward.iterators] ISO C++ standard section.

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the container.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the container.

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty; false, otherwise.

The result may differ from the actual container state in case of pending concurrent insertions.

9.2. oneTBB Interfaces 654

oneAPI Specification, Release 1.1-rev-1

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ from the actual container size in case of pending concurrent insertions.

max_size

size_type max_size() const;

Returns: the maximum number of elements that container can hold.

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other, lookup methods and while travers-
ing the container.

Inserting values

std::pair<iterator, bool> insert(const value_type& value);

Attempts to insert the value value into the container.

Returns: std::pair<iterator, bool, where iterator points to the inserted element or to an existing
element with equal key. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, const value_type& other);

Attempts to insert the value value into the container.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

Returns: an iterator to the inserted element or to an existing element with equal key.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

std::pair<iterator, bool> insert(value_type&& value);

Attempts to insert the value value into the container using move semantics.

value is left in a valid, but unspecified state.

Returns: std::pair<iterator, bool, where iterator points to the inserted element or to an existing
element with equal key. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

9.2. oneTBB Interfaces 655

oneAPI Specification, Release 1.1-rev-1

iterator insert(const_iterator hint, value_type&& other);

Attempts to insert the value value into the container using move semantics.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

value is left in a valid, but unspecified state.

Returns: an iterator to the inserted element or to an existing element with equal key.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

Inserting sequences of elements

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

Attempts to insert all items from the half-open interval [first, last) into the container.

If the interval [first, last) contains multiple equal elements, it is unspecified which element should
be inserted.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [input.
iterators] ISO C++ Standard section.

void insert(std::initializer_list<value_type> init);

Equivalent to insert(init.begin(), init.end()).

Inserting nodes

std::pair<iterator, bool> insert(node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, attempts to insert the node owned by nh into the container.

If the insertion fails, node handle nh keeps ownership of the node.

Otherwise, nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: std::pair<iterator, bool, where iterator points to the inserted element or to an existing
element equal to nh.value(). Boolean value is true if insertion took place; false, otherwise.

iterator insert(const_iterator hint, node_type&& nh);

9.2. oneTBB Interfaces 656

oneAPI Specification, Release 1.1-rev-1

If the node handle nh is empty, does nothing.

Otherwise, attempts to insert the node owned by nh into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

If the insertion fails, node handle nh remains ownership of the node.

Otherwise, nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: an iterator pointing to the inserted element or to an existing element equal to nh.value().

Emplacing elements

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

Attempts to insert an element constructed in-place from args into the container.

Returns: std::pair<iterator, bool, where iterator points to the inserted element or to an existing
element with equal key. Boolean value is true if insertion took place; false, otherwise.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

Attempts to insert an element constructed in-place from args into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

Returns: an iterator to the inserted element or to an existing element with equal key.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

Merging containers

template <typename SrcCompare>
void merge(concurrent_set<T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_set<T, SrcCompare, Allocator>&& source);

template <typename SrcCompare>
void merge(concurrent_multiset<T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_multiset<T, SrcCompare, Allocator>&& source);

9.2. oneTBB Interfaces 657

oneAPI Specification, Release 1.1-rev-1

Transfers those elements from source which keys do not exist in the container.

In case of merging with the container with multiple equal elements, it is unspecified which element would
be transferred.

No copy or move constructors of value_type are performed.

The behavior is undefined if get_allocator() != source.get_allocator().

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

Clearing

void clear();

Removes all elements from the container.

Erasing elements

iterator unsafe_erase(const_iterator pos);

iterator unsafe_erase(iterator pos);

Removes the element pointed to by pos from the container.

Invalidates all iterators and references to the removed element.

Returns: iterator that follows the removed element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

size_type unsafe_erase(const key_type& key);

Removes the element equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

Returns: 1 if an element equivalent to key exists; 0, otherwise.

template <typename K>
size_type unsafe_erase(const K& key);

Removes the element that is equivalent to key if it exists in the container.

Invalidates all iterators and references to the removed element.

This overload only participates in overload resolution if all of the following statements are true:

• The qualified-id key_compare::is_transparent is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

9.2. oneTBB Interfaces 658

oneAPI Specification, Release 1.1-rev-1

• std::is_convertible<K, const_iterator>::value is false.

Returns: 1 if an element equivalent to key exists; 0, otherwise.

Erasing sequences

iterator unsafe_erase(const_iterator first, const_iterator last);

Removes all elements from the half-open interval [first, last) from the container.

Returns: iterator that follows the last removed element.

Requirements: the range [first, last) must be a valid subrange in *this.

Extracting nodes

node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const_iterator pos);

Transfers ownership of the element pointed to by pos from the container to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

node_type unsafe_extract(const key_type& key);

If an element equivalent to key exists, transfers ownership of this element from the container to the node
handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element or an empty node handle if an element equivalent
to key was not found.

template <typename K>
node_type unsafe_extract(const K& key);

If an element equivalent to key exists, transfers ownership of this element from the container to the node
handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

This overload only participates in overload resolution if all of the following statements are true:

9.2. oneTBB Interfaces 659

oneAPI Specification, Release 1.1-rev-1

• The qualified-id key_compare::is_transparent is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the node handle that owns the extracted element or an empty node handle if an element equivalent
to key was not found.

swap

void swap(concurrent_set& other);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

Lookup

All methods in this section can be executed concurrently with each other, concurrently-safe modifiers and while travers-
ing the container.

count

size_type count(const key_type& key);

Returns: the number of elements equivalent to key.

template <typename K>
size_type count(const K& key);

Returns: the number of elements that are equivalent to key.

This overload only participates in overload resolution if qualified-id key_compare::is_transparent is
valid and denotes a type.

find

iterator find(const key_type& key);

const_iterator find(const key_type& key) const;

Returns: an iterator to the element equivalent to key, or end() if no such element exists.

9.2. oneTBB Interfaces 660

oneAPI Specification, Release 1.1-rev-1

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

Returns: an iterator to the element that is equivalent to key, or end() if no such element exists.

These overloads only participates in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

contains

bool contains(const key_type& key) const;

Returns: true if an element equivalent to key exists in the container; false, otherwise.

template <typename K>
bool contains(const K& key) const;

Returns: true if an element equivalent to key exists in the container; false, otherwise.

This overload only participates in overload resolution if qualified-id key_compare::is_transparent is
valid and denotes a type.

lower_bound

iterator lower_bound(const key_type& key);

const_iterator lower_bound(const key_type& key) const;

Returns: an iterator to the first element in the container that is not less than key.

template <typename K>
iterator lower_bound(const K& key)

template <typename K>
const_iterator lower_bound(const K& key) const

Returns: an iterator to the first element in the container that is not less than key.

These overloads only participate in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

9.2. oneTBB Interfaces 661

oneAPI Specification, Release 1.1-rev-1

upper_bound

iterator upper_bound(const key_type& key);

const_iterator upper_bound(const key_type& key) const;

Returns: an iterator to the first element in the container that compares greater than key.

template <typename K>
iterator upper_bound(const K& key);

template <typename K>
const_iterator upper_bound(const K& key) const;

Returns: an iterator to the first element in the container that compares greater than key.

These overloads only participate in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

equal_range

std::pair<iterator, iterator> equal_range(const key_type& key);

std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣
→˓const;

Returns: if an element equivalent to key exists, a pair of iterators {f, l}, where f is an iterator to this
element, l is std::next(f). Otherwise, {end(), end()}.

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key)

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key)

Returns: if an element equivalent to key exists, a pair of iterators {f, l}, where f is an iterator to this
element, l is std::next(f). Otherwise, {end(), end()}.

These overloads only participate in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

Observers

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

9.2. oneTBB Interfaces 662

oneAPI Specification, Release 1.1-rev-1

key_comp

key_compare key_comp() const;

Returns: a copy of the key comparison functor associated with *this.

value_comp

value_compare value_comp() const;

Returns: an object of the value_compare class that is used to compare value_type objects.

Parallel iteration

Member types concurrent_set::range_type and concurrent_set::const_range_type meet the Contain-
erRange requirements.

These types differ only in that the bounds for a concurrent_set::const_range_type are of type
concurrent_set::const_iterator, whereas the bounds for a concurrent_set::range_type are of type
concurrent_set::iterator.

range member function

range_type range();

const_range_type range() const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provide binary and lexicographical comparison and swap operations on
oneapi::tbb::concurrent_set objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective
comparison operations. For example, an implementation may define the classes and functions in the same internal
namespace and define oneapi::tbb::concurrent_set as a type alias for which the non-member functions are
reachable only via argument-dependent lookup.

template <typename T, typename Compare, typename Allocator>
void swap(concurrent_set<T, Compare, Allocator>& lhs,

concurrent_set<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_set<T, Compare, Allocator>& lhs,

(continues on next page)

9.2. oneTBB Interfaces 663

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const concurrent_set<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator<(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator>(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator<=(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>=(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs);

Non-member swap

template <typename T, typename Compare, typename Allocator>
void swap(concurrent_set<T, Compare, Allocator>& lhs,

concurrent_set<T, Compare, Allocator>& rhs);

Equivalent to lhs.swap(rhs).

Non-member binary comparisons

Two oneapi::tbb::concurrent_set objects are equal if they have the same number of elements and each element
in one container is equal to the element in other container on the same position.

template <typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs)

Returns: true if lhs is equal to rhs; false, otherwise.

template <typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs)

Returns: true if lhs is not equal to rhs; false, otherwise.

9.2. oneTBB Interfaces 664

oneAPI Specification, Release 1.1-rev-1

Non-member lexicographical comparisons

template <typename T, typename Compare, typename Allocator>
bool operator<(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically less than rhs.

template <typename T, typename Compare, typename Allocator>
bool operator<=(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically less or equal than rhs.

template <typename T, typename Compare, typename Allocator>
bool operator>(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically greater than rhs.

template <typename T, typename Compare, typename Allocator>
bool operator>=(const concurrent_set<T, Compare, Allocator>& lhs,

const concurrent_set<T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically greater or equal than rhs.

Other

Deduction guides

If possible, concurrent_set constructors support class template argument deduction (since C++17). Copy and move
constructors, including constructors with an explicit allocator_type argument, provide implicitly-generated deduc-
tion guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename Compare = std::less<iterator_value_t<InputIterator>>,
typename Allocator = tbb::tbb_allocator<iterator_value_t<InputIterator>>>

concurrent_set(InputIterator, InputIterator,
Compare = Compare(),
Allocator = Allocator())

-> concurrent_set<iterator_value_t<InputIterator>,
Compare,
Allocator>;

template <typename InputIterator,
typename Allocator>

concurrent_set(InputIterator, InputIterator,
(continues on next page)

9.2. oneTBB Interfaces 665

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

Allocator)
-> concurrent_set<iterator_value_t<InputIterator>,

std::less<iterator_value_t<InputIterator>>,
Allocator>;

template <typename Key,
typename Compare = std::less<Key>,
typename Allocator = tbb::tbb_allocator<Key>>

concurrent_set(std::initializer_list<Key>,
Compare = Compare(),
Allocator = Allocator())

-> concurrent_set<Key,
Compare,
Allocator>;

template <typename Key,
typename Allocator>

concurrent_set(std::initializer_list<Key>,
Allocator)

-> concurrent_set<Key,
std::less<Key>,
Allocator>;

Where the type alias iterator_value_t is defined as follows:

template <typename InputIterator>
using iterator_value_t = typename std::iterator_traits<InputIterator>::value_type;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

• The Compare type does not meet the Allocator requirements.

Example

#include <oneapi/tbb/concurrent_set.h>
#include <vector>

int main() {
std::vector<int> v;

// Deduces cs1 as concurrent_set<int>
oneapi::tbb::concurrent_set cs1(v.begin(), v.end());

// Deduces cs2 as concurrent_set<int>
oneapi::tbb::concurrent_set cs2({1, 2, 3});

}

9.2. oneTBB Interfaces 666

oneAPI Specification, Release 1.1-rev-1

concurrent_multiset

[containers.concurrent_multiset]
oneapi::tbb::concurrent_multiset is a class template that represents a sorted sequence of elements. It sup-
ports concurrent insertion, lookup, and traversal, but does not support concurrent erasure. In this container, multiple
equivalent elements can be stored.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_set.h>

namespace oneapi {
namespace tbb {

template <typename T,
typename Compare = std::less<T>,
typename Allocator = tbb_allocator<T>>

class concurrent_multiset {
public:

using key_type = T;
using value_type = T;

using size_type = <implementation-defined unsigned integer type>;
using difference_type = <implementation-defined signed integer type>;

using key_compare = Compare;
using value_compare = Compare;

using allocator_type = Allocator;

using reference = value_type&;
using const_reference = const value_type&;
using pointer = std::allocator_traits<Allocator>::pointer;
using const_pointer = std::allocator_traits<Allocator>::const_pointer;

using iterator = <implementation-defined ForwardIterator>;
using const_iterator = <implementation-defined constant ForwardIterator>;

using node_type = <implementation-defined node handle>;

using range_type = <implementation-defined range>;
using const_range_type = <implementation-defined constant node handle>;

// Construction, destruction, copying
concurrent_multiset();
explicit concurrent_multiset(const key_compare& comp,

const allocator_type& alloc = allocator_type()␣
→˓);

explicit concurrent_multiset(const allocator_type& alloc);

(continues on next page)

9.2. oneTBB Interfaces 667

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

template <typename InputIterator>
concurrent_multiset(InputIterator first, InputIterator last,

const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_multiset(InputIterator first, InputIterator last,

const allocator_type& alloc);

concurrent_multiset(std::initializer_list<value_type> init,
const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

concurrent_multiset(std::initializer_list<value_type> init, const allocator_
→˓type& alloc);

concurrent_multiset(const concurrent_multiset& other);
concurrent_multiset(const concurrent_multiset& other,

const allocator_type& alloc);

concurrent_multiset(concurrent_multiset&& other);
concurrent_multiset(concurrent_multiset&& other,

const allocator_type& alloc);

~concurrent_multiset();

concurrent_multiset& operator=(const concurrent_multiset& other);
concurrent_multiset& operator=(concurrent_multiset&& other);
concurrent_multiset& operator=(std::initializer_list<value_type> init);

allocator_type get_allocator() const;

// Iterators
iterator begin();
const_iterator begin() const;
const_iterator cbegin() const;

iterator end();
const_iterator end() const;
const_iterator cend() const;

// Size and capacity
bool empty() const;
size_type size() const;
size_type max_size() const;

// Concurrently safe modifiers
std::pair<iterator, bool> insert(const value_type& value);

iterator insert(const_iterator hint, const value_type& value);

std::pair<iterator, bool> insert(value_type&& value);

(continues on next page)

9.2. oneTBB Interfaces 668

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

iterator insert(const_iterator hint, value_type&& value);

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

void insert(std::initializer_list<value_type> init);

std::pair<iterator, bool> insert(node_type&& nh);
iterator insert(const_iterator hint, node_type&& nh);

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

template <typename SrcCompare>
void merge(concurrent_set<T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_set<T, SrcCompare, Allocator>&& source);

template <typename SrcCompare>
void merge(concurrent_multiset<T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_multiset<T, SrcCompare, Allocator>&& source);

// Concurrently unsafe modifiers
void clear();

iterator unsafe_erase(const_iterator pos);
iterator unsafe_erase(iterator pos);

iterator unsafe_erase(const_iterator first, const_iterator last);

size_type unsafe_erase(const key_type& key);

template <typename K>
size_type unsafe_erase(const K& key);

node_type unsafe_extract(const_iterator pos);
node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const key_type& key);

template <typename K>
node_type unsafe_extract(const K& key);

void swap(concurrent_multiset& other);

(continues on next page)

9.2. oneTBB Interfaces 669

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

// Lookup
size_type count(const key_type& key);

template <typename K>
size_type count(const K& key);

iterator find(const key_type& key);
const_iterator find(const key_type& key) const;

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

bool contains(const key_type& key) const;

template <typename K>
bool contains(const K& key) const;

std::pair<iterator, iterator> equal_range(const key_type& key);
std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣

→˓const;

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key);
std::pair<const_iterator, const_iterator> equal_range(const K& key) const;

iterator lower_bound(const key_type& key);
const_iterator lower_bound(const key_type& key) const;

template <typename K>
iterator lower_bound(const K& key);

template <typename K>
const_iterator lower_bound(const K& key) const;

iterator upper_bound(const key_type& key);
const_iterator upper_bound(const key_type& key) const;

template <typename K>
iterator upper_bound(const K& key);

template <typename K>
const_iterator upper_bound(const K& key) const;

// Observers
key_compare key_comp() const;

value_compare value_comp() const;

// Parallel iteration

(continues on next page)

9.2. oneTBB Interfaces 670

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

range_type range();
const_range_type range() const;

}; // class concurrent_multiset

} // namespace tbb
} // namespace oneapi

Requirements:

• The expression std::allocator_traits<Allocator>::destroy(m, val), where m is an object of the type
Allocator and val is an object of the type value_type, should be well-formed. Member functions can impose
stricter requirements depending on the type of the operation.

• The type Compare must meet the Compare requirements from the [alg.sorting] ISO C++ Standard section.

• The type Allocator must meet the Allocator requirements from the [allocator.requirements] ISO C++ Stan-
dard section.

Member functions

Construction, destruction, copying

Empty container constructors

concurrent_multiset();

explicit concurrent_multiset(const key_compare& comp,
const allocator_type& alloc = allocator_type());

explicit concurrent_multiset(const allocator_type& alloc);

Constructs an empty concurrent_multiset.

If provided, uses the comparison function object comp for all key_type comparisons and the allocator
alloc to allocate the memory.

Constructors from the sequence of elements

template <typename InputIterator>
concurrent_multiset(InputIterator first, InputIterator last,

const key_compare& comp = key_compare(),
const allocator_type& alloc = allocator_type());

template <typename InputIterator>
concurrent_multiset(InputIterator first, InputIterator last,

const allocator_type& alloc = allocator_type());

Constructs the concurrent_multiset, which contains all elements from the half-open interval [first,
last).

If provided, uses the comparison function object comp for all key_type comparisons and the allocator
alloc to allocate the memory.

9.2. oneTBB Interfaces 671

oneAPI Specification, Release 1.1-rev-1

Requirements: the type InputIterator must meet the requirements of InputIterator from the [input.
iterators] ISO C++ Standard section.

concurrent_multiset(std::initializer_list<value_type> init, const key_compare&
→˓ comp = key_compare(),

const allocator_type& alloc = allocator_type());

Equivalent to concurrent_multiset(init.begin(), init.end(), comp, alloc).

concurrent_multiset(std::initializer_list<value_type> init,
const allocator_type& alloc);

Equivalent to concurrent_multiset(init.begin(), init.end(), alloc).

Copying constructors

concurrent_multiset(const concurrent_multiset& other);

concurrent_multiset(const concurrent_multiset& other, const allocator_type&␣
→˓alloc);

Constructs a copy of other.

If the allocator argument is not provided, it is obtained by calling
std::allocator_traits<allocator_type>::select_on_container_copy_construction(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

Moving constructors

concurrent_multiset(concurrent_multiset&& other);

concurrent_multiset(concurrent_multiset&& other, const allocator_type& alloc␣
→˓);

Constructs a concurrent_multiset with the contents of other using move semantics.

other is left in a valid, but unspecified state.

If the allocator argument is not provided, it is obtained by calling std::move(other.
get_allocator()).

The behavior is undefined in case of concurrent operations with other.

9.2. oneTBB Interfaces 672

oneAPI Specification, Release 1.1-rev-1

Destructor

~concurrent_multiset();

Destroys the concurrent_multiset. Calls destructors of the stored elements and deallocates the used
storage.

The behavior is undefined in case of concurrent operations with *this.

Assignment operators

concurrent_multiset& operator=(const concurrent_multiset& other);

Replaces all elements in *this by the copies of the elements in other.

Copy-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_copy_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_multiset& operator=(concurrent_multiset&& other);

Replaces all elements in *this by the elements in other using move semantics.

other is left in a valid, but unspecified state.

Move-assigns allocators if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

The behavior is undefined in case of concurrent operations with *this and other.

Returns: a reference to *this.

concurrent_multiset& operator=(std::initializer_list<value_type> init);

Replaces all elements in *this by the elements in init.

If init contains multiple elements with equal keys, it is unspecified which element would be inserted.

The behavior is undefined in case of concurrent operations with *this.

Returns: a reference to *this.

Iterators

The types concurrent_multiset::iterator and concurrent_multiset::const_iterator meet the require-
ments of ForwardIterator from the [forward.iterators] ISO C++ standard section.

9.2. oneTBB Interfaces 673

oneAPI Specification, Release 1.1-rev-1

begin and cbegin

iterator begin();

const_iterator begin() const;

const_iterator cbegin() const;

Returns: an iterator to the first element in the container.

end and cend

iterator end();

const_iterator end() const;

const_iterator cend() const;

Returns: an iterator to the element that follows the last element in the container.

Size and capacity

empty

bool empty() const;

Returns: true if the container is empty; false, otherwise.

The result may differ from the actual container state in case of pending concurrent insertions.

size

size_type size() const;

Returns: the number of elements in the container.

The result may differ from the actual container size in case of pending concurrent insertions.

max_size

size_type max_size() const;

Returns: the maximum number of elements that container can hold.

9.2. oneTBB Interfaces 674

oneAPI Specification, Release 1.1-rev-1

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other, lookup methods and while travers-
ing the container.

Inserting values

std::pair<iterator, bool> insert(const value_type& value);

Inserts the value value into the container.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, const value_type& other);

Inserts the value value into the container.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

Returns: an iterator to the inserted element.

Requirements: the type value_type must meet the CopyInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

std::pair<iterator, bool> insert(value_type&& value);

Inserts the value value into the container using move semantics.

value is left in a valid, but unspecified state.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

iterator insert(const_iterator hint, value_type&& other);

Inserts the value value into the container using move semantics.

Optionally uses the parameter hint as a suggestion to where the element should be placed.

value is left in a valid, but unspecified state.

Returns: an iterator to the inserted element.

Requirements: the type value_type must meet the MoveInsertable requirements from the [con-
tainer.requirements] ISO C++ Standard section.

9.2. oneTBB Interfaces 675

oneAPI Specification, Release 1.1-rev-1

Inserting sequences of elements

template <typename InputIterator>
void insert(InputIterator first, InputIterator last);

Inserts all items from the half-open interval [first, last) into the container.

Requirements: the type InputIterator must meet the requirements of InputIterator from the [input.
iterators] ISO C++ Standard section.

void insert(std::initializer_list<value_type> init);

Equivalent to insert(init.begin(), init.end()).

Inserting nodes

std::pair<iterator, bool> insert(node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, inserts the node owned by nh into the container.

nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

iterator insert(const_iterator hint, node_type&& nh);

If the node handle nh is empty, does nothing.

Otherwise, inserts the node owned by nh into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

nh is left in an empty state.

No copy or move constructors of value_type are performed.

The behavior is undefined if nh is not empty and get_allocator() != nh.get_allocator().

Returns: an iterator pointing to the inserted element.

9.2. oneTBB Interfaces 676

oneAPI Specification, Release 1.1-rev-1

Emplacing elements

template <typename... Args>
std::pair<iterator, bool> emplace(Args&&... args);

Inserts an element, constructed in-place from args into the container.

Returns: std::pair<iterator, bool>, where iterator points to the inserted element. Boolean
value is always true.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

template <typename... Args>
iterator emplace_hint(const_iterator hint, Args&&... args);

Inserts an element constructed in-place from args into the container.

Optionally uses the parameter hint as a suggestion to where the node should be placed.

Returns: an iterator to the inserted element.

Requirements: the type value_type must meet the EmplaceConstructible requirements from the
[container.requirements] ISO C++ section.

Merging containers

template <typename SrcCompare>
void merge(concurrent_set<T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_set<T, SrcCompare, Allocator>&& source);

template <typename SrcCompare>
void merge(concurrent_multiset<T, SrcCompare, Allocator>& source);

template <typename SrcCompare>
void merge(concurrent_multiset<T, SrcCompare, Allocator>&& source);

Transfers all elements from source to *this.

No copy or move constructors of value_type are performed.

The behavior is undefined if get_allocator() != source.get_allocator().

9.2. oneTBB Interfaces 677

oneAPI Specification, Release 1.1-rev-1

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these member functions with other (either concurrently safe) methods.

Clearing

void clear();

Removes all elements from the container.

Erasing elements

iterator unsafe_erase(const_iterator pos);

iterator unsafe_erase(iterator pos);

Removes the element pointed to by pos from the container.

Invalidates all iterators and references to the removed element.

Returns: iterator that follows the removed element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

size_type unsafe_erase(const key_type& key);

Removes all elements equivalent to key if they exist in the container.

Invalidates all iterators and references to the removed element.

Returns: the number of removed elements.

template <typename K>
size_type unsafe_erase(const K& key);

Removes all elements that are equivalent to key if they exist in the container.

Invalidates all iterators and references to the removed element.

This overload only participates in overload resolution if all of the following statements are true:

• The qualified-id key_compare::is_transparent is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the number of removed elements.

9.2. oneTBB Interfaces 678

oneAPI Specification, Release 1.1-rev-1

Erasing sequences

iterator unsafe_erase(const_iterator first, const_iterator last);

Removes all elements from the half-open interval [first, last) from the container.

Returns: iterator that follows the last removed element.

Requirements: the range [first, last) must be a valid subrange in *this.

Extracting nodes

node_type unsafe_extract(iterator pos);

node_type unsafe_extract(const_iterator pos);

Transfers ownership of the element pointed to by pos from the container to the node handle.

No copy or move constructors of value_type are performed.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element.

Requirements: the iterator pos should be valid, dereferenceable and point to the element in *this.

node_type unsafe_extract(const key_type& key);

If an element equivalent to key exists, transfers ownership of this element from the container to the node
handle.

No copy or move constructors of value_type are performed.

If there are multiple elements equivalent to key, it is unspecified which element should be transferred.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

Returns: the node handle that owns the extracted element or an empty node handle if an element equivalent
to key was not found.

template <typename K>
node_type unsafe_extract(const K& key);

If an element that is equivalent to key exists, transfers ownership of this element from the container to the
node handle.

No copy or move constructors of value_type are performed.

If there are multiple elements equivalent to key, it is unspecified which element should be transferred.

Invalidates all iterators to the extracted element. Pointers and references to the extracted element remain
valid.

This overload only participates in overload resolution if all of the following statements are true:

9.2. oneTBB Interfaces 679

oneAPI Specification, Release 1.1-rev-1

• The qualified-id key_compare::is_transparent is valid and denotes a type.

• std::is_convertible<K, iterator>::value is false.

• std::is_convertible<K, const_iterator>::value is false.

Returns: the node handle that owns the extracted element or an empty node handle if an element equivalent
to key was not found.

swap

void swap(concurrent_multiset& other);

Swaps contents of *this and other.

Swaps allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

Otherwise, if get_allocator() != other.get_allocator(), the behavior is undefined.

Lookup

All methods in this section can be executed concurrently with each other, concurrently-safe modifiers and while travers-
ing the container.

count

size_type count(const key_type& key);

Returns: the number of elements equivalent to key.

template <typename K>
size_type count(const K& key);

Returns: the number of elements that are equivalent to key.

This overload only participates in overload resolution if qualified-id key_compare::is_transparent is
valid and denotes a type.

find

iterator find(const key_type& key);

const_iterator find(const key_type& key) const;

Returns: an iterator to the element equivalent to key or end() if no such element exists.

If there are multiple elements equivalent to key, it is unspecified which element should be found.

9.2. oneTBB Interfaces 680

oneAPI Specification, Release 1.1-rev-1

template <typename K>
iterator find(const K& key);

template <typename K>
const_iterator find(const K& key) const;

Returns: an iterator to the element that is equivalent to key, or end() if no such element exists.

If there are multiple elements that are equivalent to key, it is unspecified which element should be found.

These overloads only participate in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

contains

bool contains(const key_type& key) const;

Returns: true if at least one element equivalent to key exists in the container; false, otherwise.

template <typename K>
bool contains(const K& key) const;

Returns: true if at least one element that is equivalent to key exists in the container; false, otherwise.

This overload participates in overload resolution only if qualified-id key_compare::is_transparent is
valid and denotes a type.

lower_bound

iterator lower_bound(const key_type& key);

const_iterator lower_bound(const key_type& key) const;

Returns: an iterator to the first element in the container that is not less than key.

template <typename K>
iterator lower_bound(const K& key)

template <typename K>
const_iterator lower_bound(const K& key) const

Returns: an iterator to the first element in the container that is not less than key.

These overloads only participate in overload resolution if qualified-id key_compare::is_transparent
is valid and denotes a type.

9.2. oneTBB Interfaces 681

oneAPI Specification, Release 1.1-rev-1

upper_bound

iterator upper_bound(const key_type& key);

const_iterator upper_bound(const key_type& key) const;

Returns: an iterator to the first element in the container that compares greater than key.

template <typename K>
iterator upper_bound(const K& key);

template <typename K>
const_iterator upper_bound(const K& key) const;

Returns: an iterator to the first element in the container that compares greater than key.

These overloads participate in overload resolution only if qualified-id key_compare::is_transparent
is valid and denotes a type.

equal_range

std::pair<iterator, iterator> equal_range(const key_type& key);

std::pair<const_iterator, const_iterator> equal_range(const key_type& key)␣
→˓const;

Returns: if at least one element equivalent to key exists, a pair of iterators {f, l}, where f is an iterator
to the first element equivalent to key, l is an iterator to the element that follows the last element equivalent
to key. Otherwise, {end(), end()}.

template <typename K>
std::pair<iterator, iterator> equal_range(const K& key)

template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K& key)

Returns: if at least one element that is equivalent to key exists, a pair of iterators {f, l}, where f
is an iterator to the first element that is equivalent to key, l is an iterator to the element that fol-
lows the last element that is equivalent to key. Otherwise, {end(), end()}.

These overloads participate in overload resolution only if qualified-id key_compare::is_transparent
is valid and denotes a type.

9.2. oneTBB Interfaces 682

oneAPI Specification, Release 1.1-rev-1

Observers

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator associated with *this.

key_comp

key_compare key_comp() const;

Returns: a copy of the key comparison functor associated with *this.

value_comp

value_compare value_comp() const;

Returns: an object of the value_compare class that is used to compare value_type objects.

Parallel iteration

Member types concurrent_multiset::range_type and concurrent_multiset::const_range_typemeet the
ContainerRange requirements.

These types differ only in that the bounds for a concurrent_multiset::const_range_type are of type
concurrent_multiset::const_iterator, whereas the bounds for a concurrent_multiset::range_type are
of type concurrent_multiset::iterator.

range member function

range_type range();

const_range_type range() const;

Returns: a range object representing all elements in the container.

Non-member functions

These functions provides binary and lexicographical comparison and swap operations on
oneapi::tbb::concurrent_multiset objects.

The exact namespace where these functions are defined is unspecified, as long as they may be used in respective
comparison operations. For example, an implementation may define the classes and functions in the same internal
namespace and define oneapi::tbb::concurrent_multiset as a type alias for which the non-member functions
are reachable only via argument dependent lookup.

9.2. oneTBB Interfaces 683

oneAPI Specification, Release 1.1-rev-1

template <typename T, typename Compare, typename Allocator>
void swap(concurrent_multiset<T, Compare, Allocator>& lhs,

concurrent_multiset<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator<(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator>(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs);

template <typename T, typename Compare, typename Allocator>
bool operator<=(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs);

template <typename Key, typename T, typename Compare, typename Allocator>
bool operator>=(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs);

Non-member swap

template <typename T, typename Compare, typename Allocator>
void swap(concurrent_multiset<T, Compare, Allocator>& lhs,

concurrent_multiset<T, Compare, Allocator>& rhs);

Equivalent to lhs.swap(rhs).

Non-member binary comparisons

Two oneapi::tbb::concurrent_multiset objects are equal if they have the same number of elements and each
element in one container is equal to the element in other container on the same position.

template <typename T, typename Compare, typename Allocator>
bool operator==(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs)

Returns: true if lhs is equal to rhs; false, otherwise.

9.2. oneTBB Interfaces 684

oneAPI Specification, Release 1.1-rev-1

template <typename T, typename Compare, typename Allocator>
bool operator!=(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs)

Returns: true if lhs is not equal to rhs; false, otherwise.

Non-member lexicographical comparisons

template <typename T, typename Compare, typename Allocator>
bool operator<(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically less than rhs.

template <typename T, typename Compare, typename Allocator>
bool operator<=(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically less or equal than rhs.

template <typename T, typename Compare, typename Allocator>
bool operator>(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically greater than rhs.

template <typename T, typename Compare, typename Allocator>
bool operator>=(const concurrent_multiset<T, Compare, Allocator>& lhs,

const concurrent_multiset<T, Compare, Allocator>& rhs)

Returns: true if lhs is lexicographically greater or equal than rhs.

Other

Deduction guides

If possible, concurrent_multiset constructors support class template argument deduction (since C++17). Copy and
move constructors, including constructors with an explicit allocator_type argument, provide implicitly-generated
deduction guides. In addition, the following explicit deduction guides are provided:

template <typename InputIterator,
typename Compare = std::less<iterator_value_t<InputIterator>>,
typename Allocator = tbb::tbb_allocator<iterator_value_t<InputIterator>>>

concurrent_multiset(InputIterator, InputIterator,
Compare = Compare(),
Allocator = Allocator())

(continues on next page)

9.2. oneTBB Interfaces 685

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

-> concurrent_multiset<iterator_value_t<InputIterator>,
Compare,
Allocator>;

template <typename InputIterator,
typename Allocator>

concurrent_multiset(InputIterator, InputIterator,
Allocator)

-> concurrent_multiset<iterator_value_t<InputIterator>,
std::less<iterator_value_t<InputIterator>>,
Allocator>;

template <typename Key,
typename Compare = std::less<Key>,
typename Allocator = tbb::tbb_allocator<Key>>

concurrent_multiset(std::initializer_list<Key>,
Compare = Compare(),
Allocator = Allocator())

-> concurrent_multiset<Key,
Compare,
Allocator>;

template <typename Key,
typename Allocator>

concurrent_multiset(std::initializer_list<Key>,
Allocator)

-> concurrent_multiset<Key,
std::less<Key>,
Allocator>;

Where the type alias iterator_value_t is defined as follows:

template <typename InputIterator>
using iterator_value_t = typename std::iterator_traits<InputIterator>::value_type;

These deduction guides only participate in the overload resolution if the following requirements are met:

• The InputIterator type meets the InputIterator requirements described in the [input.iterators] section of
the ISO C++ Standard.

• The Allocator type meets the Allocator requirements described in the [allocator.requirements] section of the
ISO C++ Standard.

• The Compare type does not meet the Allocator requirements.

Example

#include <oneapi/tbb/concurrent_set.h>
#include <vector>

int main() {
std::vector<int> v;

// Deduces cs1 as concurrent_multiset<int>
(continues on next page)

9.2. oneTBB Interfaces 686

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

oneapi::tbb::concurrent_multiset cs1(v.begin(), v.end());

// Deduces cs2 as concurrent_multiset<int>
oneapi::tbb::concurrent_multiset cs2({1, 2, 3});

}

Auxiliary classes

tbb_hash_compare

[containers.tbb_hash_compare]
oneapi::tbb::tbb_hash_compare is a class template for hash support. Use it with the
oneapi::tbb::concurrent_hash_map associative container to calculate hash codes and compare keys for
equality.

tbb_hash_compare meets the HashCompare requirements.

Class Template Synopsis

// Defined in header <oneapi/tbb/concurrent_hash_map.h>

namespace oneapi {
namespace tbb {

template <typename Key>
class tbb_hash_compare {

static std::size_t hash(const Key& k);
static bool equal(const Key& k1, const Key& k2);

}; // class tbb_hash_compare

} // namespace tbb
} // namespace oneapi

Member functions

static std::size_t hash(const Key& k);

Returns: a hash code for a key k.

static bool equal(const Key& k1, const Key& k2);

Equivalent to k1 == k2.

Returns: true if the keys are equal; false, otherwise.

9.2. oneTBB Interfaces 687

oneAPI Specification, Release 1.1-rev-1

Node handles

[containers.node_handles]
Concurrent associative containers (concurrent_map, concurrent_multimap, concurrent_set,
concurrent_multiset, concurrent_unordered_map, concurrent_unordered_multimap,
concurrent_unordered_set, and concurrent_unordered_multiset) store elements in individually allo-
cated, connected nodes. These containers support data transfer between containers with compatible node types by
changing the connections without copying or moving the actual data.

Class synopsis

class node-handle { // Exposition-only name
public:

using key_type = <container-specific>; // Only for maps
using mapped_type = <container-specific>; // Only for maps
using value_type = <container-specific>; // Only for sets
using allocator_type = <container-specific>;

node-handle();
node-handle(node-handle&& other);

~node-handle();

node-handle& operator=(node-handle&& other);

void swap(node-handle& nh);

bool empty() const;
explicit operator bool() const;

key_type& key() const; // Only for maps
mapped_type& mapped() const; // Only for maps
value_type& value() const; // Only for sets

allocator_type get_allocator() const;
};

A node handle is a container-specific move-only nested type (exposed as container::node_type) that represents a
node outside of any container instance. It allows reading and modifying the data stored in the node, and inserting the
node into a compatible container instance. The following containers have compatible node types and may exchange
nodes:

• concurrent_map and concurrent_multimap with the same key_type, mapped_type and
allocator_type.

• concurrent_set and concurrent_multiset with the same value_type and allocator_type.

• concurrent_unordered_map and concurrent_unordered_multimap with the same key_type,
mapped_type and allocator_type.

• concurrent_unordered_set and concurrent_unordered_multiset with the same value_type and
allocator_type.

9.2. oneTBB Interfaces 688

oneAPI Specification, Release 1.1-rev-1

Default or moved-from node handles are empty and do not represent a valid node. A non-empty node handle is typically
created when a node is extracted out of a container, for example, with the unsafe_extract method. It stores the node
along with a copy of the container’s allocator. Upon assignment or destruction a non-empty node handle destroys the
stored data and deallocates the node.

Member functions

Constructors

node-handle();

Constructs an empty node handle.

node-handle(node-handle&& other);

Constructs a node handle that takes ownership of the node from other.

other is left in an empty state.

Assignment

node-handle& operator=(node-handle&& other);

Transfers ownership of the node from other to *this. If *this was not empty before transferring,
destroys and deallocates the stored node.

Move assigns the stored allocator if std::allocator_traits<allocator_type>::propagate_on_container_move_assignment::value
is true.

other is left in an empty state.

Destructor

~node-handle();

Destroys the node handle. If it is not empty, destroys and deallocates the owned node.

Swap

void swap(node-handle& other)

Exchanges the nodes owned by *this and other.

Swaps the stored allocators if std::allocator_traits<allocator_type>::propagate_on_container_swap::value
is true.

9.2. oneTBB Interfaces 689

oneAPI Specification, Release 1.1-rev-1

State

bool empty() const;

Returns: true if the node handle is empty, false otherwise.

explicit operator bool() const;

Equivalent to !empty().

Access to the stored element

key_type& key() const;

Available only for map node handles.

Returns: a reference to the key of the element stored in the owned node.

The behavior is undefined if the node handle is empty.

mapped_type& mapped() const;

Available only for map node handles.

Returns: a reference to the value of the element stored in the owned node.

The behavior is undefined if the node handle is empty.

value_type& value() const;

Available only for set node handles.

Returns: a reference to the element stored in the owned node.

The behavior is undefined if the node handle is empty.

get_allocator

allocator_type get_allocator() const;

Returns: a copy of the allocator stored in the node handle.

The behavior is undefined if the node handle is empty.

9.2. oneTBB Interfaces 690

oneAPI Specification, Release 1.1-rev-1

9.2.6 Thread Local Storage

[thread_local_storage]
oneAPI Threading Building Blocks provides class templates for thread local storage (TLS). Each provides a thread-local
element per thread and lazily creates elements on demand.

combinable

[tls.combinable]
A class template for holding thread-local values during a parallel computation that will be merged into a final value.

A combinable provides each thread with its own instance of type T.

// Defined in header <oneapi/tbb/combinable.h>

namespace oneapi {
namespace tbb {

template <typename T>
class combinable {
public:

combinable();

combinable(const combinable& other);
combinable(combinable&& other);

template <typename FInit>
explicit combinable(FInit finit);

~combinable();

combinable& operator=(const combinable& other);
combinable& operator=(combinable&& other);

void clear();

T& local();
T& local(bool & exists);

template<typename BinaryFunc> T combine(BinaryFunc f);
template<typename UnaryFunc> void combine_each(UnaryFunc f);

};
} // namespace tbb
} // namespace oneapi

9.2. oneTBB Interfaces 691

oneAPI Specification, Release 1.1-rev-1

Member functions

combinable()
Constructs combinable such that thread-local instances of T will be default-constructed.

template<typename FInit>
explicit combinable(FInit finit)

Constructs combinable such that thread-local elements will be created by copying the result of finit().

Caution: The expression finit() must be safe to evaluate concurrently by multiple threads. It is evaluated
each time a new thread-local element is created.

combinable(const combinable &other)
Constructs a copy of other, so that it has copies of each element in other with the same thread mapping.

combinable(combinable &&other)
Constructs combinable by moving the content of other intact. other is left in an unspecified state but can be
safely destroyed.

~combinable()
Destroys all elements in *this.

combinable &operator=(const combinable &other)
Sets *this to be a copy of other. Returns a reference to *this.

combinable &operator=(combinable &&other)
Moves the content of other to *this intact. other is left in an unspecified state but can be safely destroyed.
Returns a reference to *this.

void clear()
Removes all elements from *this.

T &local()
If an element does not exist for the current thread, creates it.

Returns: Reference to thread-local element.

T &local(bool &exists)
Similar to local(), except that exists is set to true if an element was already present for the current thread; false,
otherwise.

Returns: Reference to thread-local element.

template<typename BinaryFunc>
T combine(BinaryFunc f)

Requires: A BinaryFunc must meet the Function Objects requirements described in the [function.objects]
section of the ISO C++ standard. Specifically, the type should be an associative binary functor with the signature T
BinaryFunc(T,T) or T BinaryFunc(const T&,const T&). A T type must be the same as a corresponding
template parameter for the combinable object.

Effects: Computes a reduction over all elements using binary functor f. All evaluations of f are done sequentially
in the calling thread. If there are no elements, creates the result using the same rules as for creating a new element.

Returns: Result of the reduction.

template<typename UnaryFunc>
void combine_each(UnaryFunc f)

Requires: An UnaryFunc must meet the Function Objects requirements described in the [function.objects]
section of the ISO C++ standard. Specifically, the type should be an unary functor with the one of the signatures:

9.2. oneTBB Interfaces 692

oneAPI Specification, Release 1.1-rev-1

void UnaryFunc(T), void UnaryFunc(T&), or void UnaryFunc(const T&) A T type must be the same
as a corresponding template parameter for the enumerable_thread_specific object.

Effects: Evaluates f(x) for each thread-local element x in *this. All evaluations are done sequentially in the
calling thread.

Note: Methods of class combinable are not thread-safe, except for local.

enumerable_thread_specific

[tls.enumerable_thread_specific]
A class template for thread local storage (TLS).

// Defined in header <oneapi/tbb/enumerable_thread_specific.h>

namespace oneapi {
namespace tbb {

enum ets_key_usage_type {
ets_key_per_instance,
ets_no_key,
ets_suspend_aware

};

template <typename T,
typename Allocator=cache_aligned_allocator<T>,
ets_key_usage_type ETS_key_type=ets_no_key >

class enumerable_thread_specific {
public:

// Basic types
using value_type = T;
using reference = T&;
using const_reference = const T&;
using pointer = T*;
using size_type = /* implementation-defined */;
using difference_type = /* implementation-defined */;
using allocator_type = Allocator;

// Iterator types
using iterator = /* implementation-defined */;
using const_iterator = /* implementation-defined */;

// Parallel range types
using range_type = /* implementation-defined */;
using const_range_type = /* implementation-defined */;

// Construction
enumerable_thread_specific();
template <typename Finit>
explicit enumerable_thread_specific(Finit finit);
explicit enumerable_thread_specific(const T& exemplar);

(continues on next page)

9.2. oneTBB Interfaces 693

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

explicit enumerable_thread_specific(T&& exemplar);
template <typename... Args>
enumerable_thread_specific(Args&&... args);

// Destruction
~enumerable_thread_specific();

// Copy constructors
enumerable_thread_specific(const enumerable_thread_specific& other);
template<typename Alloc, ets_key_usage_type Cachetype>
enumerable_thread_specific(const enumerable_thread_specific<T, Alloc, Cachetype>

→˓& other);
// Copy assignments
enumerable_thread_specific& operator=(const enumerable_thread_specific& other);
template<typename Alloc, ets_key_usage_type Cachetype>
enumerable_thread_specific& operator=(const enumerable_thread_specific<T, Alloc,

→˓ Cachetype>& other);

// Move constructors
enumerable_thread_specific(enumerable_thread_specific&& other);
template<typename Alloc, ets_key_usage_type Cachetype>
enumerable_thread_specific(enumerable_thread_specific<T, Alloc, Cachetype>&&␣

→˓other);
// Move assignments
enumerable_thread_specific& operator=(enumerable_thread_specific&& other);
template<typename Alloc, ets_key_usage_type Cachetype>
enumerable_thread_specific& operator=(enumerable_thread_specific<T, Alloc,␣

→˓Cachetype>&& other);

// Other whole container operations
void clear();

// Concurrent operations
reference local();
reference local(bool& exists);
size_type size() const;
bool empty() const;

// Combining
template<typename BinaryFunc> T combine(BinaryFunc f);
template<typename UnaryFunc> void combine_each(UnaryFunc f);

// Parallel iteration
range_type range(size_t grainsize=1);
const_range_type range(size_t grainsize=1) const;

// Iterators
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;

};

(continues on next page)

9.2. oneTBB Interfaces 694

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

} // namespace tbb
} // namespace oneapi

A class template enumerable_thread_specific provides TLS for elements of type T. A class template
enumerable_thread_specific acts as a container by providing iterators and ranges across all of the thread-local
elements.

The thread-local elements are created lazily. A freshly constructed enumerable_thread_specific has no ele-
ments. When a thread requests access to an enumerable_thread_specific, it creates an element correspond-
ing to that thread. The number of elements is equal to the number of distinct threads that have accessed the
enumerable_thread_specific and not necessarily the number of threads in use by the application. Clearing an
enumerable_thread_specific removes all its elements.

Use the ETS_key_usage_type parameter type to select an underlying implementation.

Caution: enumerable_thread_specific uses the OS-specific value returned by
std::this_thread::get_id() to identify threads. This value is not guaranteed to be unique except for
the life of the thread. A newly created thread may get an OS-specific ID equal to that of an already destroyed
thread. The number of elements of the enumerable_thread_specific may therefore be less than the number
of actual distinct threads that have called local(), and the element returned by the first reference by a thread to
the enumerable_thread_specific may not be newly-constructed.

Member functions

Construction, destruction, copying

Empty container constructors

enumerable_thread_specific();

Constructs an enumerable_thread_specific where each thread-local element will be default-constructed.

template<typename Finit> explicit enumerable_thread_specific(Finit finit);

Constructs an enumerable_thread_specific such that any thread-local element will be created by copying the
result of finit().

Note: The expression finit() must be safe to evaluate concurrently by multiple threads. It is evaluated each time a
thread-local element is created.

explicit enumerable_thread_specific(const T& exemplar);

Constructs an enumerable_thread_specific where each thread-local element will be copy-constructed from
exemplar.

explicit enumerable_thread_specific(T&& exemplar);

Constructs an enumerable_thread_specific object, move constructor of T can be used to store exemplar inter-
nally; however, thread-local elements are always copy-constructed.

9.2. oneTBB Interfaces 695

oneAPI Specification, Release 1.1-rev-1

template <typename... Args> enumerable_thread_specific(Args&&... args);

Constructs enumerable_thread_specific such that any thread-local element will be constructed by invoking
T(args...).

Note: This constructor does not participate in overload resolution if the type of the first argument in args... is T, or
enumerable_thread_specific<T>, or foo() is a valid expression for a value foo of that type.

Copying constructors

enumerable_thread_specific (const enumerable_thread_specific& other);

template<typename Alloc, ets_key_usage_type Cachetype> enumerable_thread_specific(const␣
→˓enumerable_thread_specific <T, Alloc, Cachetype>& other);

Constructs an enumerable_thread_specific as a copy of other. The values are copy-constructed from the values
in other and have same thread correspondence.

Moving constructors

enumerable_thread_specific (enumerable_thread_specific&& other)

Constructs an enumerable_thread_specific by moving the content of other intact. other is left in an unspecified
state, but can be safely destroyed.

template<typename Alloc, ets_key_usage_type Cachetype> enumerable_thread_specific(␣
→˓enumerable_thread_specific <T, Alloc, Cachetype>&& other)

Constructs an enumerable_thread_specific using per-element move construction from the values in other, and
keeping their thread correspondence. other is left in an unspecified state, but can be safely destroyed.

Destructor

~enumerable_thread_specific()

Destroys all elements in *this. Destroys any native TLS keys that were created for this instance.

Assignment operators

enumerable_thread_specific& operator=(const enumerable_thread_specific& other);

Copies the content of other to *this. Returns a reference to this*.

template<typename Alloc, ets_key_usage_type Cachetype>
enumerable_thread_specific& operator=(const enumerable_thread_specific<T, Alloc,␣
→˓Cachetype>& other);

9.2. oneTBB Interfaces 696

oneAPI Specification, Release 1.1-rev-1

Copies the content of other to *this. Returns a reference to this*.

Note: The allocator and key usage specialization is unchanged by this call.

enumerable_thread_specific& operator=(enumerable_thread_specific&& other);

Moves the content of other to *this intact. An other is left in an unspecified state, but can be safely destroyed.
Returns a reference to this*.

template<typename Alloc, ets_key_usage_type Cachetype>
enumerable_thread_specific& operator=(enumerable_thread_specific<T, Alloc, Cachetype>&&␣
→˓other);

Moves the content of other to *this using per-element move construction and keeping thread correspondence. An
other is left in an unspecified state, but can be safely destroyed. Returns a reference to this*.

Note: The allocator and key usage specialization is unchanged by this call.

Concurrently safe modifiers

All member functions in this section can be performed concurrently with each other.

reference local()
If there is no current element corresponding to the current thread, this method constructs a new element. A new
element is copy-constructed if an exemplar was provided to the constructor for *this; otherwise, a new element
is default-constructed.

Returns: A reference to the element of *this that corresponds to the current thread.

reference local(bool &exists)
Similar to local(), except that exists is set to true if an element was already present for the current thread;
false, otherwise.

Returns: Reference to the thread-local element.

Concurrently unsafe modifiers

All member functions in this section can only be performed serially. The behavior is undefined in case of concurrent
execution of these methods with other (either concurrently safe) methods.

clear

void clear();

Destroys all elements in *this.

9.2. oneTBB Interfaces 697

oneAPI Specification, Release 1.1-rev-1

Size and capacity

size_type size() const
Returns the number of elements in *this. The value is equal to the number of distinct threads that have called
local() after *this was constructed or most recently cleared.

bool empty() const
Returns true if the container is empty; false, otherwise.

Iteration

Class template enumerable_thread_specific supports random access iterators, which enable iteration over the set
of all elements in the container.

iterator begin()
Returns iterator pointing to the beginning of the set of elements.

iterator end()
Returns iterator pointing to the end of the set of elements.

const_iterator begin() const
Returns const_iterator pointing to the beginning of the set of elements.

const_iterator end() const
Returns const_iterator pointing to the end of the set of elements.

Class template enumerable_thread_specific supports const_range_type and range_type types, which model
the ContainerRange requirement. The types differ only in that the bounds for a const_range_type are of type
const_iterator, whereas the bounds for a range_type are of type iterator.

const_range_type range(size_t grainsize = 1) const
Returns: A const_range_type representing all elements in *this. The parameter grainsize is in units of
elements.

range_type range(size_t grainsize = 1)
Returns: A range_type representing all elements in *this. The parameter grainsize is in units of elements.

Combining

The member functions in this section iterate across the entire container sequentially in the calling thread.

template<typename BinaryFunc>
T combine(BinaryFunc f)

Requires: A BinaryFunc must meet the Function Objects requirements described in the [function.objects]
section of the ISO C++ standard. Specifically, the type should be an associative binary functor with the signature T
BinaryFunc(T,T) or T BinaryFunc(const T&,const T&). A T type must be the same as a corresponding
template parameter for enumerable_thread_specific object.

Effects: Computes reduction over all elements using binary functor f. If there are no elements, creates the result
using the same rules as for creating a thread-local element.

Returns: Result of the reduction.

template<typename UnaryFunc>
void combine_each(UnaryFunc f)

Requires: An UnaryFunc must meet the Function Objects requirements described in the [function.objects]
section of the ISO C++ standard. Specifically, the type should be an unary functor with one of signatures: void

9.2. oneTBB Interfaces 698

oneAPI Specification, Release 1.1-rev-1

UnaryFunc(T), void UnaryFunc(T&), or void UnaryFunc(const T&) A T type must be the same as a
corresponding template parameter for the enumerable_thread_specific object.

Effects: Evaluates f(x) for each instance x of T in *this.

Non-member types and constants

enum ets_key_usage_type::ets_key_per_instance

Enumeration parameter type used to select an implementation that consumes 1 native TLS key per
enumerable_thread_specific instance. The number of native TLS keys may be limited and can be fairly
small.

enum ets_key_usage_type::ets_no_key

Enumeration parameter type used to select an implementation that consumes no native TLS keys. If no
ETS_key_usage_type parameter type is provided, ets_no_key is used by default.

enum ets_key_usage_type::ets_suspend_aware

The oneapi::tbb::task::suspend function can change the value of the enumerable_thread_specific object.
To avoid this problem, use the ets_suspend_aware enumeration parameter type. The local() value can be the same
for different threads, but no two distinct threads can access the same value simultaneously.

This section also describes class template flatten2d, which assists a common idiom where an
enumerable_thread_specific represents a container partitioner across threads.

flattened2d

[tls.flattened2d]
The class template flattened2d is an adaptor that provides a flattened view of a container of containers.

// Defined in header <oneapi/tbb/enumerable_thread_specific.h>

namespace oneapi {
namespace tbb {

template<typename Container>
class flattened2d {
public:

// Basic types
using size_type = /* implementation-defined */;
using difference_type = /* implementation-defined */;
using allocator_type = /* implementation-defined */;
using value_type = /* implementation-defined */;
using reference = /* implementation-defined */;
using const_reference = /* implementation-defined */;
using pointer = /* implementation-defined */;
using const_pointer = /* implementation-defined */;

using iterator = /* implementation-defined */;
using const_iterator = /* implementation-defined */;

explicit flattened2d(const Container& c);

(continues on next page)

9.2. oneTBB Interfaces 699

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

flattened2d(const Container& c,
typename Container::const_iterator first,
typename Container::const_iterator last);

iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;

size_type size() const;
};

template <typename Container>
flattened2d<Container> flatten2d(const Container &c);

template <typename Container>
flattened2d<Container> flatten2d(

const Container &c,
const typename Container::const_iterator first,
const typename Container::const_iterator last);

} // namespace tbb
} // namespace oneapi

Requirements:

• A Container type must meet the container requirements from the [container.requirements.general] ISO C++
section.

Iterating from begin() to end() visits all of the elements in the inner containers. The class template supports forward
iterators only.

The utility function flatten2d creates a flattened2d object from a specified container.

Member functions

explicit flattened2d(const Container &c)
Constructs a flattened2d representing the sequence of elements in the inner containers contained by outer
container c.

Safety: these operations must not be invoked concurrently on the same flattened2d.

flattened2d(const Container &c, typename Container::const_iterator first, typename Container::const_iterator
last)

Constructs a flattened2d representing the sequence of elements in the inner containers in the half-open interval
[first, last) of a container c.

Safety: these operations must not be invoked concurrently on the same flattened2d.

size_type size() const
Returns the sum of the sizes of the inner containers that are viewable in the flattened2d.

Safety: These operations may be invoked concurrently on the same flattened2d.

iterator begin()
Returns iterator pointing to the beginning of the set of local copies.

9.2. oneTBB Interfaces 700

oneAPI Specification, Release 1.1-rev-1

iterator end()
Returns iterator pointing to the end of the set of local copies.

const_iterator begin() const
Returns const_iterator pointing to the beginning of the set of local copies.

const_iterator end() const
Returns const_iterator pointing to the end of the set of local copies.

Non-member functions

template<typename Container>
flattened2d<Container> flatten2d(const Container &c, const typename Container::const_iterator b, const

typename Container::const_iterator e)
Constructs and returns a flattened2d object that provides iterators that traverse the elements in the containers
within the half-open range [b, e) of a container c.

template<typename Container>
flattened2d(const Container &c)

Constructs and returns a flattened2d that provides iterators that traverse the elements in all of the containers
within a container c.

9.3 oneTBB Auxiliary Interfaces

9.3.1 Memory Allocation

[memory_allocation]
This section describes classes and functions related to memory allocation.

Allocators

The oneAPI Threading Building Blocks (oneTBB) library implements several classes that meet the allocator require-
ments from the [allocator.requirements] ISO C++ Standard section.

tbb_allocator

[memory_allocation.tbb_allocator]
A tbb_allocator is a class template that models the allocator requirements from the [allocator.requirements] ISO
C++ section.

The tbb_allocator allocates and frees memory via the oneTBB malloc library if it is available, otherwise, it reverts
to using std::malloc and std::free.

// Defined in header <oneapi/tbb/tbb_allocator.h>

namespace oneapi {
namespace tbb {

template<typename T> class tbb_allocator {
public:

using value_type = T;
(continues on next page)

9.3. oneTBB Auxiliary Interfaces 701

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

using size_type = std::size_t;
using propagate_on_container_move_assignment = std::true_type;
using is_always_equal = std::true_type;

enum malloc_type {
scalable,
standard

};

tbb_allocator() = default;
template<typename U>
tbb_allocator(const tbb_allocator<U>&) noexcept;

T* allocate(size_type);
void deallocate(T*, size_type);

static malloc_type allocator_type();
};

} // namespace tbb
} // namespace oneapi

Member Functions

T *allocate(size_type n)
Allocates n * sizeof(T) bytes. Returns a pointer to the allocated memory.

void deallocate(T *p, size_type n)
Deallocates memory pointed to by p. The behavior is undefined if the pointer p is not the result of the
allocate(n) method. The behavior is undefined if the memory has been already deallocated.

static malloc_type allocator_type()
Returns the enumeration type malloc_type::scalable if the oneTBB malloc library is available, and
malloc_type::standard, otherwise.

Non-member Functions

These functions provide comparison operations between two tbb_allocator instances.

template<typename T, typename U>
bool operator==(const tbb_allocator<T>&, const tbb_allocator<U>&) noexcept;

template<typename T, typename U>
bool operator!=(const tbb_allocator<T>&, const tbb_allocator<U>&) noexcept;

The namespace where these functions are defined is unspecified, as long as they may be used in respective binary op-
eration expressions on tbb_allocator objects. For example, an implementation may define the classes and functions
in the same unspecified internal namespace and define oneapi::tbb::tbb_allocator as a type alias for which the
non-member functions are reachable only via argument-dependent lookup.

template<typename T, typename U>
bool operator==(const tbb_allocator<T>&, const tbb_allocator<U>&) noexcept

Returns true.

9.3. oneTBB Auxiliary Interfaces 702

oneAPI Specification, Release 1.1-rev-1

template<typename T, typename U>
bool operator!=(const tbb_allocator<T>&, const tbb_allocator<U>&) noexcept

Returns false.

scalable_allocator

[memory_allocation.scalable_allocator]
A scalable_allocator is a class template that models the allocator requirements from the [allocator.requirements]
ISO C++ section.

The scalable_allocator allocates and frees memory in a way that scales with the number of processors. Memory
allocated by a scalable_allocator should be freed by a scalable_allocator, not by a std::allocator.

// Defined in header <oneapi/tbb/scalable_allocator.h>

namespace oneapi {
namespace tbb {

template<typename T> class scalable_allocator {
public:

using value_type = T;
using size_type = std::size_t;
using propagate_on_container_move_assignment = std::true_type;
using is_always_equal = std::true_type;

scalable_allocator() = default;
template<typename U>
scalable_allocator(const scalable_allocator<U>&) noexcept;

T* allocate(size_type);
void deallocate(T*, size_type);

};
} // namespace tbb
} // namespace oneapi

Caution: The scalable_allocator requires the memory allocator library. If the library is missing, calls to
the scalable allocator fail. In contrast to scalable_allocator, if the memory allocator library is not available,
tbb_allocator falls back on std::malloc and std::free.

Member Functions

value_type *allocate(size_type n)
Allocates n * sizeof(T) bytes of memory. Returns a pointer to the allocated memory.

void deallocate(value_type *p, size_type n)
Deallocates memory pointed to by p. The behavior is undefined if the pointer p is not the result of the
allocate(n) method. The behavior is undefined if the memory has been already deallocated.

9.3. oneTBB Auxiliary Interfaces 703

oneAPI Specification, Release 1.1-rev-1

Non-member Functions

These functions provide comparison operations between two scalable_allocator instances.

namespace oneapi {
namespace tbb {

template<typename T, typename U>
bool operator==(const scalable_allocator<T>&,

const scalable_allocator<U>&) noexcept;

template<typename T, typename U>
bool operator!=(const scalable_allocator<T>&,

const scalable_allocator<U>&) noexcept;
} // namespace tbb
} // namespace oneapi

The namespace where these functions are defined is unspecified, as long as they may be used in respective binary
operation expressions on scalable_allocator objects. For example, an implementation may define the classes and
functions in the same unspecified internal namespace, and define oneapi::tbb::scalable_allocator as a type
alias for which the non-member functions are reachable only via argument-dependent lookup.

template<typename T, typename U>
bool operator==(const scalable_allocator<T>&, const scalable_allocator<U>&) noexcept

Returns true.

template<typename T, typename U>
bool operator!=(const scalable_allocator<T>&, const scalable_allocator<U>&) noexcept

Returns false.

cache_aligned_allocator

[memory_allocation.cache_aligned_allocator]
A cache_aligned_allocator is a class template that models the allocator requirements from the [alloca-
tor.requirements] ISO C++ section.

The cache_aligned_allocator allocates memory on cache line boundaries, in order to avoid false sharing and
potentially improve performance. False sharing is a situation when logically distinct items occupy the same cache line,
which can hurt performance if multiple threads attempt to access the different items simultaneously. Even though the
items are logically separate, the processor hardware may have to transfer the cache line between the processors as if
they were sharing a location. The net result can be much more memory traffic than if the logically distinct items were
on different cache lines.

However, this class is sometimes an inappropriate replacement for default allocator, because the benefit of allocating
on a cache line comes at the price that cache_aligned_allocator implicitly adds pad memory. Therefore allocating
many small objects with cache_aligned_allocator may increase memory usage.

// Defined in header <oneapi/tbb/cache_aligned_allocator.h>

namespace oneapi {
namespace tbb {

template<typename T> class cache_aligned_allocator {
public:

using value_type = T;
using size_type = std::size_t;

(continues on next page)

9.3. oneTBB Auxiliary Interfaces 704

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

using propagate_on_container_move_assignment = std::true_type;
using is_always_equal = std::true_type;

cache_aligned_allocator() = default;
template<typename U>
cache_aligned_allocator(const cache_aligned_allocator<U>&) noexcept;

T* allocate(size_type);
void deallocate(T*, size_type);
size_type max_size() const noexcept;

};
} // namespace tbb
} // namespace oneapi

Member Functions

T *allocate(size_type n)
Returns a pointer to the allocated n * sizeof(T) bytes of memory, aligned on a cache-line boundary. The
allocation may include extra hidden padding.

void deallocate(T *p, size_type n)
Deallocates memory pointed to by p. Deallocation also deallocates any extra hidden padding. The behavior is
undefined if the pointer p is not the result of the allocate(n) method. The behavior is undefined if the memory
has been already deallocated.

size_type max_size() const noexcept
Returns the largest value n for which the call allocate(n) might succeed with cache alignment constraints.

Non-member Functions

These functions provide comparison operations between two cache_aligned_allocator instances.

template<typename T, typename U>
bool operator==(const cache_aligned_allocator<T>&,

const cache_aligned_allocator<U>&) noexcept;

template<typename T, typename U>
bool operator!=(const cache_aligned_allocator<T>&,

const cache_aligned_allocator<U>&) noexcept;

The namespace where these functions are defined is unspecified, as long as they may be used in respective binary op-
eration expressions on cache_aligned_allocator objects. For example, an implementation may define the classes
and functions in the same unspecified internal namespace, and define oneapi::tbb::cache_aligned_allocator
as a type alias for which the non-member functions are reachable only via argument-dependent lookup.

template<typename T, typename U>
bool operator==(const cache_aligned_allocator<T>&, const cache_aligned_allocator<U>&) noexcept

Returns true.

template<typename T, typename U>
bool operator!=(const cache_aligned_allocator<T>&, const cache_aligned_allocator<U>&) noexcept

Returns false.

9.3. oneTBB Auxiliary Interfaces 705

oneAPI Specification, Release 1.1-rev-1

Memory Resources

Starting from C++17, the standard library provides a std::pmr::polymorphic_allocator class that allocates
memory from a supplied memory resource (see the [mem.poly.allocator.class] ISO/IEC 14882:2017 section). Class
std::pmr::memory_resource is an abstract interface for user-side implementation of different allocation strategies.
For details, see the [mem.res.class] ISO/IEC 14882:2017 standard section.

oneTBB provides a set of std::pmr::memory_resource implementations.

cache_aligned_resource

[memory_allocation.cache_aligned_resource]
A cache_aligned_resource is a general-purpose memory resource class, which acts as a wrapper to another memory
resource to ensure that all allocations are aligned on cache line boundaries to avoid false sharing.

See the cache_aligned_allocator template class section for more information about false sharing avoidance.

// Defined in header <oneapi/tbb/cache_aligned_allocator.h>

namespace oneapi {
namespace tbb {

class cache_aligned_resource {
public:

cache_aligned_resource();
explicit cache_aligned_resource(std::pmr::memory_resource*);

std::pmr::memory_resource* upstream_resource() const;

private:
void* do_allocate(size_t n, size_t alignment) override;
void do_deallocate(void* p, size_t n, size_t alignment) override;
bool do_is_equal(const std::pmr::memory_resource& other) const noexcept override;

};
} // namespace tbb
} // namespace oneapi

Member Functions

cache_aligned_resource()
Constructs a cache_aligned_resource over std::pmr::get_default_resource().

explicit cache_aligned_resource(std::pmr::memory_resource *r)
Constructs a cache_aligned_resource over the memory resource r.

std::pmr::memory_resource *upstream_resource() const
Returns the pointer to the underlying memory resource.

void *do_allocate(size_t n, size_t alignment) override
Allocates n bytes of memory on a cache-line boundary, with alignment not less than requested. The allocation
may include extra memory for padding. Returns pointer to the allocated memory.

void do_deallocate(void *p, size_t n, size_t alignment) override
Deallocates memory pointed to by p and any extra padding. Pointer p must be obtained with do_allocate(n,
alignment). The memory must not be deallocated beforehand.

9.3. oneTBB Auxiliary Interfaces 706

oneAPI Specification, Release 1.1-rev-1

bool do_is_equal(const std::pmr::memory_resource &other) const noexcept override
Compares upstream memory resources of *this and other. If other is not a cache_aligned_resource,
returns false.

scalable_memory_resource

[memory_allocation.scalable_memory_resource]
A oneapi::tbb::scalable_memory_resource() is a function that returns a memory resource for scalable memory
allocation.

The scalable_memory_resource() function returns the pointer to the memory resource managed by the
oneTBB scalable memory allocator. In particular, its allocate method uses scalable_aligned_malloc(), and
deallocate uses scalable_free(). The memory resources returned by this function compare equal.

std::pmr::polymorphic_allocator instantiated with oneapi::tbb::scalable_memory_resource() behaves
like oneapi::tbb::scalable_allocator.

// Defined in header <oneapi/tbb/scalable_allocator.h>

std::pmr::memory_resource* scalable_memory_resource();

Library Functions

C Interface to Scalable Allocator

[memory_allocation.scalable_alloc_c_interface]
Low-level interface for scalable memory allocation.

// Defined in header <oneapi/tbb/scalable_allocator.h>

extern "C" {
// Scalable analogs of C memory allocator
void* scalable_malloc(size_t size);
void scalable_free(void* ptr);
void* scalable_calloc(size_t nobj, size_t size);
void* scalable_realloc(void* ptr, size_t size);

// Analog of _msize/malloc_size/malloc_usable_size.
size_t scalable_msize(void* ptr);

// Scalable analog of posix_memalign
int scalable_posix_memalign(void** memptr, size_t alignment, size_t size);

// Aligned allocation
void* scalable_aligned_malloc(size_t size, size_t alignment);
void scalable_aligned_free(void* ptr);
void* scalable_aligned_realloc(void* ptr, size_t size, size_t alignment);

// Return values for scalable_allocation_* functions
typedef enum {

TBBMALLOC_OK,
(continues on next page)

9.3. oneTBB Auxiliary Interfaces 707

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

TBBMALLOC_INVALID_PARAM,
TBBMALLOC_UNSUPPORTED,
TBBMALLOC_NO_MEMORY,
TBBMALLOC_NO_EFFECT

} ScalableAllocationResult;

typedef enum {
// To turn on/off the use of huge memory pages
TBBMALLOC_USE_HUGE_PAGES,
// To set a threshold for the allocator memory usage.
// Exceeding it will forcefully clean internal memory buffers
TBBMALLOC_SET_SOFT_HEAP_LIMIT,
// Lower bound for the size (Bytes), that is interpreted as huge
// and not released during regular cleanup operations
TBBMALLOC_SET_HUGE_SIZE_THRESHOLD

} AllocationModeParam;

// Set allocator-specific allocation modes.
int scalable_allocation_mode(int param, intptr_t value);

typedef enum {
// Clean internal allocator buffers for all threads.
TBBMALLOC_CLEAN_ALL_BUFFERS,
// Clean internal allocator buffer for current thread only.
TBBMALLOC_CLEAN_THREAD_BUFFERS

} ScalableAllocationCmd;

// Call allocator-specific commands.
int scalable_allocation_command(int cmd, void *param);

}

These functions provide a C-level interface to the scalable allocator. With the exception of
scalable_allocation_mode and scalable_allocation_command, each routine scalable_x behaves analo-
gously to the library function x. The routines form the two families shown in the table below, “C Interface to Scalable
Allocator”. Storage allocated by a scalable_x function in one family must be freed or resized by the scalable_x
function in the same family, not by a C standard library function. Likewise, storage allocated by a C standard library
function should not be freed or resized by a scalable_x function.

Table 5: C Interface to Scalable Allocator
Allocation Routine Deallocation Routine Analogous Library
scalable_malloc scalable_free C standard library
scalable_calloc
scalable_realloc
scalable_posix_memalign POSIX*
scalable_aligned_malloc scalable_aligned_free Microsoft* C run-time library
scalable_aligned_realloc

The following functions do not allocate or free memory but allow obtaining useful information or influencing behavior
of the memory allocator.

size_t scalable_msize(void *ptr)
Returns: The usable size of the memory block pointed to by ptr if it was allocated by the scalable allocator.

9.3. oneTBB Auxiliary Interfaces 708

oneAPI Specification, Release 1.1-rev-1

Returns zero if ptr does not point to such a block.

int scalable_allocation_mode(int mode, intptr_t value)
Use this function to adjust behavior of the scalable memory allocator.

Returns: TBBMALLOC_OK if the operation succeeded, TBBMALLOC_INVALID_PARAM if mode is not
one of the described below, or if value is not valid for the given mode. Other return values are possible, as
described below.

scalable_allocation_mode Parameters: Parameter, Description
TBBMALLOC_USE_HUGE_PAGES

scalable_allocation_mode(TBBMALLOC_USE_HUGE_PAGES, 1) tells the allocator to use huge pages
if enabled by the operating system. scalable_allocation_mode(TBBMALLOC_USE_HUGE_PAGES,
0) disables it. Setting TBB_MALLOC_USE_HUGE_PAGES environment variable to 1 has the same ef-
fect as scalable_allocation_mode(TBBMALLOC_USE_HUGE_PAGES, 1). The mode set with
scalable_allocation_mode() takes priority over the environment variable.

May return: TBBMALLOC_NO_EFFECT if huge pages are not supported on the platform.

For now, this allocation mode is only supported for Linux* OS. It works with both explicitly configured and
transparent huge pages. For information about enabling and configuring huge pages, refer to OS documentation
or ask your system administrator.

TBBMALLOC_SET_SOFT_HEAP_LIMIT
scalable_allocation_mode(TBBMALLOC_SET_SOFT_HEAP_LIMIT, size) sets a threshold of size bytes
on the amount of memory the allocator takes from OS. Exceeding the threshold urges the allocator to release
memory from its internal buffers; however it does not prevent from requesting more memory if needed.

TBBMALLOC_SET_HUGE_SIZE_THRESHOLD
scalable_allocation_mode(TBBMALLOC_SET_HUGE_SIZE_THRESHOLD, size) sets a lower bound thresh-
old (with no upper limit) of size bytes. Any object bigger than this threshold becomes huge and
does not participate in internal periodic cleanup logic. However, it does not affect the logic of the
TBBMALLOC_SET_SOFT_HEAP_LIMIT mode as well as the TBBMALLOC_CLEAN_ALL_BUFFERS operation.

Setting TBB_MALLOC_SET_HUGE_SIZE_THRESHOLD environment variable to the size value has the same effect,
but is limited to the LONG_MAX value. The mode set with scalable_allocation_mode takes priority over the
environment variable.

int scalable_allocation_command(int cmd, void *reserved)
This function may be used to command the scalable memory allocator to perform an action specified by the first
parameter. The second parameter is reserved and must be set to 0.

Returns: TBBMALLOC_OK if the operation succeeded, TBBMALLOC_INVALID_PARAM if cmd is not one of the
described below, or if reserved is not equal to 0.

scalable_allocation_command Parameters: Parameter, Description
TBBMALLOC_CLEAN_ALL_BUFFERS

scalable_allocation_command(TBBMALLOC_CLEAN_ALL_BUFFERS, 0) cleans internal memory buffers of
the allocator, and possibly reduces memory footprint. It may result in increased time for subsequent memory
allocation requests. The command is not designed for frequent use, and careful evaluation of the performance
impact is recommended.

May return: TBBMALLOC_NO_EFFECT if no buffers were released.

9.3. oneTBB Auxiliary Interfaces 709

oneAPI Specification, Release 1.1-rev-1

Note: It is not guaranteed that the call will release all unused memory.

TBBMALLOC_CLEAN_THREAD_BUFFERS
scalable_allocation_command(TBBMALLOC_CLEAN_THREAD_BUFFERS, 0) cleans internal memory
buffers, but only for the calling thread.

May return: TBBMALLOC_NO_EFFECT if no buffers were released.

9.3.2 Mutual Exclusion

[mutex]
The library provides a set of mutual exclusion primitives to simplify writing race-free code. A mutex object facilitates
protection against data races and provides safe synchronization of data between threads.

Mutex Classes

mutex

[mutex.mutex]
A mutex is a class that models Mutex requirement using an adaptive approach, it guarantees that the thread that can-
not acquire the lock spins before blocking. The mutex class satisfies all of the mutex requirements described in the
[thread.mutex.requirements] section of the ISO C++ standard. The mutex class is not fair or recursive.

// Defined in header <oneapi/tbb/mutex.h>

namespace oneapi {
namespace tbb {

class mutex {
public:

mutex() noexcept;
~mutex();

mutex(const mutex&) = delete;
mutex& operator=(const mutex&) = delete;

class scoped_lock;

void lock();
bool try_lock();
void unlock();

static constexpr bool is_rw_mutex = false;
static constexpr bool is_recursive_mutex = false;
static constexpr bool is_fair_mutex = false;

};
}

}

9.3. oneTBB Auxiliary Interfaces 710

oneAPI Specification, Release 1.1-rev-1

Member classes

class scoped_lock
The corresponding scoped_lock class. See Mutex requirement.

Member functions

mutex()
Constructs a mutex with the unlocked state.

~mutex()
Destroys an unlocked mutex.

void lock()
Acquires a lock. It uses an adaptive logic for waiting, thus it is blocked after a certain time of busy waiting.

bool try_lock()
Tries to acquire a lock (non-blocking). Returns true if succeeded; false otherwise.

void unlock()
Releases the lock held by a current thread.

rw_mutex

[mutex.rw_mutex]
A rw_mutex is a class that models ReaderWriterMutex requirement using an adaptive approach, it guarantees that
the thread that cannot acquire the lock spins before blocking. The rw_mutex class satisfies all of the shared mutex
requirements described in the [thread.sharedmutex.requirements] section of the ISO C++ standard. The rw_mutex
class is an unfair reader-writer lock with a writer preference.

// Defined in header <oneapi/tbb/rw_mutex.h>

namespace oneapi {
namespace tbb {

class rw_mutex {
public:

rw_mutex() noexcept;
~rw_mutex();

rw_mutex(const rw_mutex&) = delete;
rw_mutex& operator=(const rw_mutex&) = delete;

class scoped_lock;

// exclusive ownership
(continues on next page)

9.3. oneTBB Auxiliary Interfaces 711

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

void lock();
bool try_lock();
void unlock();

// shared ownership
void lock_shared();
bool try_lock_shared();
void unlock_shared();

static constexpr bool is_rw_mutex = true;
static constexpr bool is_recursive_mutex = false;
static constexpr bool is_fair_mutex = false;

};
}

}

Member classes

class scoped_lock
The corresponding scoped-lock class. See ReaderWriterMutex requirement.

Member functions

rw_mutex()
Constructs an unlocked rw_mutex.

~rw_mutex()
Destroys an unlocked rw_mutex.

void lock()
Acquires a lock. It uses an adaptive logic for waiting, thus it is blocked after a certain time of busy waiting.

bool try_lock()
Tries to acquire a lock (non-blocking) on write. Returns true if succeeded; false otherwise.

void unlock()
Releases the write lock held by the current thread.

void lock_shared()
Acquires a lock on read. It uses an adaptive logic for waiting, thus it is blocked after a certain time of busy
waiting.

9.3. oneTBB Auxiliary Interfaces 712

oneAPI Specification, Release 1.1-rev-1

bool try_lock_shared()
Tries to acquire the lock (non-blocking) on read. Returns true if succeeded; false otherwise.

void unlock_shared()
Releases the read lock held by the current thread.

spin_mutex

[mutex.spin_mutex]
A spin_mutext is a class that models the Mutex requirement using a spin lock. The spin_mutex class satisfies all
requirements of mutex type from the [thread.mutex.requirements] ISO C++ section. The spin_mutex class is not fair
or recursive.

// Defined in header <oneapi/tbb/spin_mutex.h>

namespace oneapi {
namespace tbb {

class spin_mutex {
public:

spin_mutex() noexcept;
~spin_mutex();

spin_mutex(const spin_mutex&) = delete;
spin_mutex& operator=(const spin_mutex&) = delete;

class scoped_lock;

void lock();
bool try_lock();
void unlock();

static constexpr bool is_rw_mutex = false;
static constexpr bool is_recursive_mutex = false;
static constexpr bool is_fair_mutex = false;

};
} // namespace tbb
} // namespace oneapi

Member classes

class scoped_lock
Corresponding scoped_lock class. See the Mutex requirement.

9.3. oneTBB Auxiliary Interfaces 713

oneAPI Specification, Release 1.1-rev-1

Member functions

spin_mutex()
Constructs spin_mutex with unlocked state.

~spin_mutex()
Destroys an unlocked spin_mutex.

void lock()
Acquires a lock. Spins if the lock is taken.

bool try_lock()
Attempts to acquire a lock (non-blocking). Returns true if lock is acquired; false, otherwise.

void unlock()
Releases a lock held by a current thread.

spin_rw_mutex

[mutex.spin_rw_mutex]
A spin_rw_mutex is a class that models the ReaderWriterMutex requirement and satisfies all requirements of shared
mutex type from the [thread.sharedmutex.requirements] ISO C++ section.

The spin_rw_mutex class is unfair spinning reader-writer lock with backoff and writer-preference.

// Defined in header <oneapi/tbb/spin_rw_mutex.h>

namespace oneapi {
namespace tbb {

class spin_rw_mutex {
public:

spin_rw_mutex() noexcept;
~spin_rw_mutex();

spin_rw_mutex(const spin_rw_mutex&) = delete;
spin_rw_mutex& operator=(const spin_rw_mutex&) = delete;

class scoped_lock;

// exclusive ownership
void lock();
bool try_lock();
void unlock();

// shared ownership
void lock_shared();
bool try_lock_shared();
void unlock_shared();

static constexpr bool is_rw_mutex = true;
static constexpr bool is_recursive_mutex = false;
static constexpr bool is_fair_mutex = false;

};
(continues on next page)

9.3. oneTBB Auxiliary Interfaces 714

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

} // namespace tbb
} // namespace oneapi

Member classes

class scoped_lock
Corresponding scoped-lock class. See the ReaderWriterMutex requirement.

Member functions

spin_rw_mutex()
Constructs unlocked spin_rw_mutex.

~spin_rw_mutex()
Destroys unlocked spin_rw_mutex.

void lock()
Acquires a lock. Spins if the lock is taken.

bool try_lock()
Attempts to acquire a lock (non-blocking) on write. Returns true if the lock is acquired on write; false otherwise.

void unlock()
Releases a write lock, held by the current thread.

void lock_shared()
Acquires a lock on read. Spins if the lock is taken on write already.

bool try_lock_shared()
Attempts to acquire the lock (non-blocking) on read. Returns true if the lock is acquired on read; false, otherwise.

void unlock_shared()
Releases a read lock held by the current thread.

speculative_spin_mutex

[mutex.speculative_spin_mutex]
A speculative_spin_mutex is a class that models the Mutex requirement using a spin lock, and for processors that
support hardware transactional memory (such as Intel® Transactional Synchronization Extensions (Intel® TSX)) may
be implemented in a way that allows non-contending changes to the protected data to proceed in parallel.

The speculative_spin_mutex is not fair and not recursive. The speculative_spin_mutex is like a spin_mutex,
but it may provide better throughput than non-speculative mutexes when the following conditions are met:

• Running on a processor that supports hardware transactional memory.

• Multiple threads can concurrently execute the critical section(s) protected by the mutex, mostly without conflict-
ing.

Otherwise, it performs like a spin_mutex, possibly with worse throughput.

9.3. oneTBB Auxiliary Interfaces 715

oneAPI Specification, Release 1.1-rev-1

// Defined in header <oneapi/tbb/spin_mutex.h>

namespace oneapi {
namespace tbb {

class speculative_spin_mutex {
public:

speculative_spin_mutex() noexcept;
~speculative_spin_mutex();

speculative_spin_mutex(const speculative_spin_mutex&) = delete;
speculative_spin_mutex& operator=(const speculative_spin_mutex&) = delete;

class scoped_lock;

static constexpr bool is_rw_mutex = false;
static constexpr bool is_recursive_mutex = false;
static constexpr bool is_fair_mutex = false;

};
} // namespace tbb
} // namespace oneapi

Member classes

class scoped_lock
Corresponding scoped_lock class. See the Mutex requirement.

Member functions

speculative_spin_mutex()
Constructs speculative_spin_mutex with unlocked state.

~speculative_spin_mutex()
Destroys an unlocked speculative_spin_mutex.

speculative_spin_rw_mutex

[mutex.speculative_spin_rw_mutex]
A speculative_spin_rw_mutex is a class that models the ReaderWriterMutex requirement, and for processors that
support hardware transactional memory (such as Intel® Transactional Synchronization Extensions (Intel® TSX)) may
be implemented in a way that allows non-contending changes to the protected data to proceed in parallel.

The speculative_spin_rw_mutex class is not fair and not recursive. The speculative_spin_rw_mutex class
is like a spin_rw_mutex, but it may provide better throughput than non-speculative mutexes when the following
conditions are met:

• Running on a processor that supports hardware transactional memory.

• Multiple threads can concurrently execute the critical section(s) protected by the mutex, mostly without conflict-
ing.

Otherwise, it performs like a spin_rw_mutex, possibly with worse throughput.

9.3. oneTBB Auxiliary Interfaces 716

oneAPI Specification, Release 1.1-rev-1

For processors that support hardware transactional memory, speculative_spin_rw_mutex may be implemented in
a way that

• speculative readers and writers do not block each other

• a non-speculative reader blocks writers but allows speculative readers

• a non-speculative writer blocks all readers and writers

// Defined in header <oneapi/tbb/spin_rw_mutex.h>

namespace oneapi {
namespace tbb {

class speculative_spin_rw_mutex {
public:

speculative_spin_rw_mutex() noexcept;
~speculative_spin_rw_mutex();

speculative_spin_rw_mutex(const speculative_spin_rw_mutex&) = delete;
speculative_spin_rw_mutex& operator=(const speculative_spin_rw_mutex&) = delete;

class scoped_lock;

static constexpr bool is_rw_mutex = true;
static constexpr bool is_recursive_mutex = false;
static constexpr bool is_fair_mutex = false;

};
} // namespace tbb
} // namespace oneapi

Member classes

class scoped_lock
Corresponding scoped_lock class. See the ReaderWriterMutex requirement.

Member functions

speculative_spin_rw_mutex()
Constructs speculative_spin_rw_mutex with unlocked state.

~speculative_spin_rw_mutex()
Destroys an unlocked speculative_spin_rw_mutex.

queuing_mutex

[mutex.queuing_mutex]
A queuing_mutex is a class that models the Mutex requirement. The queuing_mutex is not recursive. The
queuing_mutex is fair, threads acquire a lock on a mutex in the order that they request it.

// Defined in header <oneapi/tbb/queuing_mutex.h>

namespace oneapi {
(continues on next page)

9.3. oneTBB Auxiliary Interfaces 717

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

namespace tbb {
class queuing_mutex {
public:

queuing_mutex() noexcept;
~queuing_mutex();

queuing_mutex(const queuing_mutex&) = delete;
queuing_mutex& operator=(const queuing_mutex&) = delete;

class scoped_lock;

static constexpr bool is_rw_mutex = false;
static constexpr bool is_recursive_mutex = false;
static constexpr bool is_fair_mutex = true;

};
} // namespace tbb
} // namespace oneapi

Member classes

class scoped_lock
Corresponding scoped_lock class. See the Mutex requirement.

Member functions

queuing_mutex()
Constructs unlocked queuing_mutex.

~queuing_mutex()
Destroys unlocked queuing_mutex.

queuing_rw_mutex

[mutex.queuing_rw_mutex]
A queuing_rw_mutex is a class that models the ReaderWriterMutex requirement concept. The queuing_rw_mutex
is not recursive. The queuing_rw_mutex is fair, threads acquire a lock on a mutex in the order that they request it.

// Defined in header <oneapi/tbb/queuing_rw_mutex.h>

namespace oneapi {
namespace tbb {

class queuing_rw_mutex {
public:

queuing_rw_mutex() noexcept;
~queuing_rw_mutex();

queuing_rw_mutex(const queuing_rw_mutex&) = delete;
queuing_rw_mutex& operator=(const queuing_rw_mutex&) = delete;

(continues on next page)

9.3. oneTBB Auxiliary Interfaces 718

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

class scoped_lock;

static constexpr bool is_rw_mutex = true;
static constexpr bool is_recursive_mutex = false;
static constexpr bool is_fair_mutex = true;

};
} // namespace tbb
} // namespace oneapi

Member classes

class scoped_lock
Corresponding scoped_lock class. See the ReaderWriterMutex requirement.

Member functions

queuing_rw_mutex()
Constructs unlocked queuing_rw_mutex.

~queuing_rw_mutex()
Destroys unlocked queuing_rw_mutex.

null_mutex

[mutex.null_mutex]
A null_mutex is a class that models the Mutex requirement concept syntactically, but does nothing. It is useful for
instantiating a template that expects a Mutex, but no mutual exclusion is actually needed for that instance.

// Defined in header <oneapi/tbb/null_mutex.h>

namespace oneapi {
namespace tbb {

class null_mutex {
public:

constexpr null_mutex() noexcept;
~null_mutex();

null_mutex(const null_mutex&) = delete;
null_mutex& operator=(const null_mutex&) = delete;

class scoped_lock;

void lock();
bool try_lock();
void unlock();

static constexpr bool is_rw_mutex = false;
static constexpr bool is_recursive_mutex = true;
static constexpr bool is_fair_mutex = true;

(continues on next page)

9.3. oneTBB Auxiliary Interfaces 719

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

};
} // namespace tbb
} // namespace oneapi

Member classes

class scoped_lock
Corresponding scoped_lock class. See the Mutex requirement.

Member functions

null_mutex()
Constructs unlocked mutex.

~null_mutex()
Destroys unlocked mutex.

void lock()
Acquires lock.

bool try_lock()
Tries acquiring lock (non-blocking).

void unlock()
Releases the lock.

null_rw_mutex

[mutex.null_rw_mutex]
A null_rw_mutex is a class that models the ReaderWriterMutex requirement syntactically, but does noth-
ing. The null_rw_mutex class also satisfies all syntactic requirements of shared mutex type from the
[thread.sharedmutex.requirements] ISO C++ section, but does nothing. It is useful for instantiating a template that
expects a ReaderWriterMutex, but no mutual exclusion is actually needed for that instance.

// Defined in header <oneapi/tbb/null_rw_mutex.h>

namespace oneapi {
namespace tbb {

class null_rw_mutex {
public:

constexpr null_rw_mutex() noexcept;
~null_rw_mutex();

null_rw_mutex(const null_rw_mutex&) = delete;
null_rw_mutex& operator=(const null_rw_mutex&) = delete;

class scoped_lock;

void lock();
bool try_lock();

(continues on next page)

9.3. oneTBB Auxiliary Interfaces 720

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

void unlock();

void lock_shared();
bool try_lock_shared();
void unlock_shared();

static constexpr bool is_rw_mutex = true;
static constexpr bool is_recursive_mutex = true;
static constexpr bool is_fair_mutex = true;

};
} // namespace tbb
} // namespace oneapi

Member classes

class scoped_lock
Corresponding scoped_lock class. See the ReaderWriterMutex requirement.

Member functions

null_rw_mutex()
Constructs unlocked mutex.

~null_rw_mutex()
Destroys unlocked mutex.

void lock()
Acquires a lock.

bool try_lock()
Attempts to acquire a lock (non-blocking) on write. Returns true.

void unlock()
Releases a write lock held by the current thread.

void lock_shared()
Acquires a lock on read.

bool try_lock_shared()
Attempts to acquire the lock (non-blocking) on read. Returns true.

void unlock_shared()
Releases a read lock held by the current thread.

9.3. oneTBB Auxiliary Interfaces 721

oneAPI Specification, Release 1.1-rev-1

9.3.3 Timing

[timing]
Parallel programming is about speeding up wall clock time, which is the real time that it takes a program or function
to run. The library provides API to simplify timing within an application.

Syntax

// Declared in tick_count.h

class tick_count;

class tick_count::interval_t;

Classes

tick_count class

[timing.tick_count]
A tick_count is an absolute wall clock timestamp. Two tick_count objects can be subtracted to compute wall clock
duration tick_count::interval_t, which can be converted to seconds.

namespace oneapi {
namespace tbb {

class tick_count {
public:

class interval_t;
tick_count();
tick_count(const tick_count&);
~tick_count();
tick_count& operator=(const tick_count&);
static tick_count now();
static double resolution();

};

} // namespace tbb
} // namespace oneapi

tick_count() Constructs tick_count with an unspecified wall clock timestamp.

tick_count(const tick_count&) Constructs tick_count with the timestamp of the given tick_count.

~tick_count() Destructor.

tick_count& operator=(const tick_count&) Assigns the timestamp of one tick_count to another.

static tick_count now() Returns a tick_count object that represents the current wall clock timestamp.

static double resolution() Returns the resolution of the clock used by tick_count, in seconds.

9.3. oneTBB Auxiliary Interfaces 722

oneAPI Specification, Release 1.1-rev-1

tick_count::interval_t class

[timing.tick_count.interval_t]
A tick_count::interval_t represents wall clock duration.

namespace oneapi {
namespace tbb {

class tick_count::interval_t {
public:

interval_t();
explicit interval_t(double);
~interval_t();
interval_t& operator=(const interval_t&);
interval_t& operator+=(const interval_t&);
interval_t& operator-=(const interval_t&);
double seconds() const;

};

} // namespace tbb
} // namespace oneapi

interval_t() Constructs interval_t representing zero time duration.

explicit interval_t(double) Constructs interval_t representing the specified number of seconds.

~interval_t() Destructor.

interval_t& operator=(const interval_t&) Assigns the wall clock duration of one interval_t to an-
other.

interval_t& operator+=(const interval_t&) Increases the duration to the given interval_t, and returns
*this.

interval_t& operator-=(const interval_t&) Decreases the duration to the given interval_t, and re-
turns *this.

double seconds() const Returns the duration measured in seconds.

Non-member functions

[timing.tick_count.nonmember]
These functions provide arithmetic binary operations with wall clock timestamps and durations.

oneapi::tbb::tick_count::interval_t operator-(const oneapi::tbb::tick_count&, const␣
→˓oneapi::tbb::tick_count&);
oneapi::tbb::tick_count::interval_t operator+(const oneapi::tbb::tick_count::interval_t&
→˓, const oneapi::tbb::tick_count::interval_t&);
oneapi::tbb::tick_count::interval_t operator-(const oneapi::tbb::tick_count::interval_t&
→˓, const oneapi::tbb::tick_count::interval_t&);

The namespace where these functions are defined is unspecified as long as they may be used in respective binary
operation expressions on tick_count and tick_count::interval_t objects. For example, an implementation may
define the classes and functions in the same unspecified internal namespace, and define oneapi::tbb::tick_count
as a type alias for which the non-member functions are reachable only via argument-dependent lookup.

9.3. oneTBB Auxiliary Interfaces 723

oneAPI Specification, Release 1.1-rev-1

oneapi::tbb::tick_count::interval_t operator-(const oneapi::tbb::tick_count&, const oneapi::tbb::tick_count&)
Returns interval_t representing the duration between two given wall clock timestamps.

oneapi::tbb::tick_count::interval_t operator+(const oneapi::tbb::tick_count::interval_t&, const oneapi::tbb::tick_count::interval_t&)
Returns interval_t representing the sum of two given intervals.

oneapi::tbb::tick_count::interval_t operator-(const oneapi::tbb::tick_count::interval_t&, const oneapi::tbb::tick_count::interval_t&)
Returns interval_t representing the difference of two given intervals.

9.3.4 info Namespace

[info_namespace]
Interfaces to query information about execution environment.

// Declared in header <oneapi/tbb/info.h>

namespace oneapi {
namespace tbb {

using numa_node_id = /*implementation-defined*/;
namespace info {

std::vector<numa_node_id> numa_nodes();
int default_concurrency(numa_node_id id = oneapi::tbb::task_arena::automatic);

}
} // namespace tbb
} // namespace oneapi

Types

numa_node_id - Represents NUMA node identifier.

Functions

std::vector<numa_node_id> numa_nodes()
Returns the vector of integral indexes that indicate available NUMA nodes.

Note: If error occurs during system topology parsing, returns vector containing single element that equals to
task_arena::automatic.

int default_concurrency(numa_node_id id = oneapi::tbb::task_arena::automatic)
Returns concurrency level of the given NUMA node. If argument is not specified, returns default concurrency
level for current library configuration.

9.3. oneTBB Auxiliary Interfaces 724

oneAPI Specification, Release 1.1-rev-1

9.4 oneTBB Deprecated Interfaces

9.4.1 task_arena::attach

[deprecated.task_arena_attach_tag]

Caution: Deprecated in oneTBB Specification 1.1.

A set of methods for constructing a task_arena with attach.

// Defined in header <oneapi/tbb/task_arena.h>

namespace oneapi {
namespace tbb {

class task_arena {
public:

// ...
struct attach {};

explicit task_arena(task_arena::attach);
void initialize(task_arena::attach);
// ...

};

} // namespace tbb
} // namespace oneapi

Member types and constants

struct attach
A tag for constructing a task_arena with attach.

Member functions

explicit task_arena(task_arena::attach)
Creates an instance of task_arena that is connected to the internal task arena representation currently used by
the calling thread. If no such arena exists yet, creates a task_arena with default parameters.

Note: Unlike other task_arena constructors, this one automatically initializes the new task_arena when
connecting to an already existing arena.

void initialize(task_arena::attach)
If an internal task arena representation currently used by the calling thread, the method ignores arena parameters
and connects task_arena to that internal task arena representation. The method has no effect when called for
an already initialized task_arena.

See also:

• attach

9.4. oneTBB Deprecated Interfaces 725

CHAPTER

TEN

ONEVPL

The oneAPI Video Processing Library (oneVPL) is a programming interface for video decoding, encoding, and pro-
cessing to build portable media pipelines on CPUs, GPUs, and other accelerators. It provides device discovery and
selection in media centric and video analytics workloads and API primitives for zero-copy buffer sharing. oneVPL
is backwards and cross-architecture compatible to ensure optimal execution on current and next generation hardware
without source code changes.

oneVPL Specification Version

This document contains oneVPL specification version of 2.5.0.

Latest published version of oneVPL specification: https://spec.oneapi.com/onevpl/latest/index.html.

10.1 oneVPL for Intel® Media Software Development Kit Users

oneVPL is source compatible with Intel® Media Software Development Kit. Applications can use Intel® Media Soft-
ware Development Kit to target older hardware and oneVPL to target everything else. Some obsolete features of Intel®
Media Software Development Kit have been omitted from oneVPL. Hereinafter the term “Legacy” will be used to
describe a behavior when oneVPL is called by Intel® Media Software Development Kit applications.

10.1.1 oneVPL Ease of Use Enhancements

oneVPL provides improved ease of use compared to Intel® Media Software Development Kit. Ease of use enhancements
include the following:

• Smart dispatcher with discovery of implementation capabilities. See oneVPL Session for more details.

• Simplified decoder initialization. See Decoding Procedures for more details.

• New memory management and components (session) interoperability. See Internal Memory Management and
Decoding Procedures for more details.

726

https://spec.oneapi.com/onevpl/latest/index.html

oneAPI Specification, Release 1.1-rev-1

10.1.2 New APIs in oneVPL

oneVPL introduces new functions that are not available in Intel® Media Software Development Kit.

New oneVPL dispatcher functions:

• MFXLoad()

• MFXUnload()

• MFXCreateConfig()

• MFXSetConfigFilterProperty()

• MFXEnumImplementations()

• MFXCreateSession()

• MFXDispReleaseImplDescription()

New oneVPL memory management functions:

• MFXMemory_GetSurfaceForVPP()

• MFXMemory_GetSurfaceForVPPOut()

• MFXMemory_GetSurfaceForEncode()

• MFXMemory_GetSurfaceForDecode()

New oneVPL implementation capabilities retrieval functions:

• MFXQueryImplsDescription()

• MFXReleaseImplDescription()

New oneVPL session initialization:

• MFXInitialize()

10.1.3 Intel® Media Software Development Kit Feature Removals

The following Intel® Media Software Development Kit features are considered obsolete and are not included in oneVPL:

• Audio support. oneVPL is intended for video processing. Audio APIs that duplicate functionality from other
audio libraries such as Sound Open Firmware have been removed.

• ENC and PAK interfaces. Part of the Flexible Encode Infrastructure (FEI) and plugin interfaces which provide
additional control over the encoding process for AVC and HEVC encoders. This feature was removed because it
is not widely used by customers.

• User plugins architecture. oneVPL enables robust video acceleration through API implementations of many
different video processing frameworks. Support of a SDK user plugin framework is obsolete.

• External buffer memory management. A set of callback functions to replace internal memory allocation is
obsolete.

• Video Processing extended runtime functionality. Video processing function
MFXVideoVPP_RunFrameVPPAsyncEx is used for plugins only and is obsolete.

• External threading. The new threading model makes the MFXDoWork function obsolete.

• Multi-frame encode. A set of external buffers to combine several frames into one encoding call. This feature
was removed because it is device specific and not commonly used.

10.1. oneVPL for Intel® Media Software Development Kit Users 727

https://github.com/thesofproject

oneAPI Specification, Release 1.1-rev-1

• Surface Type Neutral Transcoding. Opaque memory support is removed and replaced with internal memory
allocation concept.

10.1.4 Intel® Media Software Development Kit API Removals

The following Intel® Media Software Development Kit functions are not included in oneVPL:

• Audio related functions
– MFXAudioCORE_SyncOperation()

– MFXAudioDECODE_Close()

– MFXAudioDECODE_DecodeFrameAsync()

– MFXAudioDECODE_DecodeHeader()

– MFXAudioDECODE_GetAudioParam()

– MFXAudioDECODE_Init()

– MFXAudioDECODE_Query()

– MFXAudioDECODE_QueryIOSize()

– MFXAudioDECODE_Reset()

– MFXAudioENCODE_Close()

– MFXAudioENCODE_EncodeFrameAsync()

– MFXAudioENCODE_GetAudioParam()

– MFXAudioENCODE_Init()

– MFXAudioENCODE_Query()

– MFXAudioENCODE_QueryIOSize()

– MFXAudioENCODE_Reset()

• Flexible encode infrastructure functions
– MFXVideoENC_Close()

– MFXVideoENC_GetVideoParam()

– MFXVideoENC_Init()

– MFXVideoENC_ProcessFrameAsync()

– MFXVideoENC_Query()

– MFXVideoENC_QueryIOSurf()

– MFXVideoENC_Reset()

– MFXVideoPAK_Close()

– MFXVideoPAK_GetVideoParam()

– MFXVideoPAK_Init()

– MFXVideoPAK_ProcessFrameAsync()

– MFXVideoPAK_Query()

– MFXVideoPAK_QueryIOSurf()

10.1. oneVPL for Intel® Media Software Development Kit Users 728

oneAPI Specification, Release 1.1-rev-1

– MFXVideoPAK_Reset()

• User plugin functions
– MFXAudioUSER_ProcessFrameAsync()

– MFXAudioUSER_Register()

– MFXAudioUSER_Unregister()

– MFXVideoUSER_GetPlugin()

– MFXVideoUSER_ProcessFrameAsync()

– MFXVideoUSER_Register()

– MFXVideoUSER_Unregister()

– MFXVideoUSER_Load()

– MFXVideoUSER_LoadByPath()

– MFXVideoUSER_UnLoad()

– MFXDoWork()

• Memory functions
– MFXVideoCORE_SetBufferAllocator()

• Video processing functions
– MFXVideoVPP_RunFrameVPPAsyncEx()

• Memory type and IOPattern enumerations
– MFX_IOPATTERN_IN_OPAQUE_MEMORY

– MFX_IOPATTERN_OUT_OPAQUE_MEMORY

– MFX_MEMTYPE_OPAQUE_FRAME

Important: Corresponding extension buffers are also removed.

The following behaviors occur when attempting to use a Intel® Media Software Development Kit API that is not
supported by oneVPL:

• Code compiled with the oneVPL API headers will generate a compile and/or link error when attempting to use
a removed API.

• Code previously compiled with Intel® Media Software Development Kit and executed using a oneVPL runtime
will generate an MFX_ERR_NOT_IMPLEMENTED error when calling a removed function.

10.1.5 Intel® Media Software Development Kit Legacy API

oneVPL contains following header files from Intel® Media Software Development Kit included for the simplification
of existing applications migration to oneVPL:

• mfxvideo++.h

Important: Intel® Media Software Development Kit obsolette API removed from those header files. Code compiled
with the oneVPL API headers will generate a compile and/or link error when attempting to use a removed API.

10.1. oneVPL for Intel® Media Software Development Kit Users 729

oneAPI Specification, Release 1.1-rev-1

10.2 Architecture

oneVPL functions fall into the following categories:

DECODE Functions that decode compressed video streams into raw video frames

ENCODE Functions that encode raw video frames into compressed bitstreams

VPP Functions that perform video processing on raw video frames

DECODE_VPP Functions that perfom combined operations of decoding and video processing

CORE Auxiliary functions for synchronization

Misc Global auxiliary functions

With the exception of the global auxiliary functions, oneVPL functions are named after their functioning domain and
category. oneVPL exposes video domain functions.

Fig. 1: oneVPL function name notation

Applications use oneVPL functions by linking with the oneVPL dispatcher library.

Application

oneVPL dispatcher library

oneVPL library 1 (CPU) oneVPL library 2 (platform 1) oneVPL library 3 (platform 2)

Fig. 2: oneVPL dispatching mechanism

The dispatcher library identifies the hardware acceleration device on the running platform, determines the most suitable
platform library for the identified hardware acceleration, and then redirects function calls accordingly.

10.2. Architecture 730

oneAPI Specification, Release 1.1-rev-1

10.2.1 Video Decoding

The DECODE class of functions take a compressed bitstream as input and converts it to raw frames as output.

DECODE processes only pure or elementary video streams with the exception of AV1/VP9/VP8 decoders, which accept
the IVF format. The library can process bitstreams that reside in an IVF container but cannot process bitstreams that
reside in any other container format, such as MP4 or MPEG.

The application must first demultiplex the bitstreams. Demultiplexing extracts pure video streams out of the container
format. The application can provide the input bitstream as one complete frame of data, a partial frame (less than one
complete frame), or as multiple frames. If only a partial frame is provided, DECODE internally constructs one frame
of data before decoding it.

The time stamp of a bitstream buffer must be accurate to the first byte of the frame data. For H.264 the first byte of the
frame data comes from the NAL unit in the video coding layer. For MPEG-2 or VC-1 the first byte of the frame data
comes from the picture header. DECODE passes the time stamp to the output surface for audio and video multiplexing
or synchronization.

Decoding the first frame is a special case because DECODE does not provide enough configuration parameters to
correctly process the bitstream. DECODE searches for the sequence header (a sequence parameter set in H.264 or a
sequence header in MPEG-2 and VC-1) that contains the video configuration parameters used to encode subsequent
video frames. The decoder skips any bitstream prior to the sequence header. In the case of multiple sequence headers
in the bitstream, DECODE adopts the new configuration parameters, ensuring proper decoding of subsequent frames.

DECODE supports repositioning of the bitstream at any time during decoding. Because there is no way to obtain
the correct sequence header associated with the specified bitstream position after a position change, the application
must supply DECODE with a sequence header before the decoder can process the next frame at the new position. If
the sequence header required to correctly decode the bitstream at the new position is not provided by the application,
DECODE treats the new location as a new “first frame” and follows the procedure for decoding first frames.

10.2.2 Video Encoding

The ENCODE class of functions take raw frames as input and compresses them into a bitstream.

Input frames usually come encoded in a repeated pattern called the Group of Picture (GOP) sequence. For example, a
GOP sequence can start with an I-frame followed by a few B-frames, a P-frame, and so on. ENCODE uses an MPEG-2
style GOP sequence structure that can specify the length of the sequence and the distance between two keyframes: I-
or P-frames. A GOP sequence ensures that the segments of a bitstream do not completely depend upon each other. It
also enables decoding applications to reposition the bitstream.

ENCODE processes input frames in two ways;

• Display order: ENCODE receives input frames in the display order. GOP structure parameters specify the GOP
sequence during ENCODE initialization. Scene changes resulting from the video processing stage of a pipeline
can alter the GOP sequence.

• Encoded order: ENCODE receives input frames in their encoding order. The application must specify the exact
input frame type for encoding. ENCODE references GOP parameters to determine when to insert information,
such as an end-of-sequence, into the bitstream.

An ENCODE output consists of one frame of a bitstream with the time stamp passed from the input frame. The time
stamp is used for multiplexing subsequent video with other associated data such as audio. oneVPL provides only pure
video stream encoding. The application must provide its own multiplexing.

ENCODE supports the following bitrate control algorithms: constant bitrate, variable bitrate (VBR), and constant quan-
tization parameter (QP). In the constant bitrate mode, ENCODE performs stuffing when the size of the least-compressed
frame is smaller than what is required to meet the hypothetical reference decoder (HRD) buffer requirements (or VBR
requirements). (Stuffing is a process that appends zeros to the end of encoded frames.)

10.2. Architecture 731

oneAPI Specification, Release 1.1-rev-1

10.2.3 Video Processing

Video processing functions (VPP) take raw frames as input and provide raw frames as output.

The actual conversion process is a chain operation with many single-function filters.

Function 1 Function 2 Additional filters Function N-1 Function N

Fig. 3: Video processing operation pipeline

The application specifies the input and output format; oneVPL configures the pipeline according to the specified in-
put and output formats. The application can also attach one or more hint structures to configure individual filters or
turn them on and off. Unless specifically instructed, oneVPL builds the pipeline in a way that best utilizes hardware
acceleration or generates the best video processing quality.

The Video Processing Features table shows oneVPL video processing features. The application can configure supported
video processing features through the video processing I/O parameters. The application can also configure optional
features through hints. See Video Processing Procedures for more details on how to configure optional filters.

Table 1: Video Processing Features
Video Processing Features Configuration
Convert color format from input to output I/O parameters
De-interlace to produce progressive frames at the output I/O parameters
Crop and resize the input frames I/O parameters
Convert input frame rate to match the output I/O parameters
Perform inverse telecine operations I/O parameters
Fields weaving I/O parameters
Fields splitting I/O parameters
Remove noise Hint (optional feature)
Enhance picture details/edges Hint (optional feature)
Adjust the brightness, contrast, saturation, and hue settings Hint (optional feature)
Perform image stabilization Hint (optional feature)
Convert input frame rate to match the output, based on frame interpolation Hint (optional feature)
Perform detection of picture structure Hint (optional feature)

10.2.4 Video Decoding with multiple video processing

The DECODE_VPP class of functions take a compressed bitstream as input, converts it to raw frames and applies video
processing filters to raw frames. Users can set several output channels where each channel represents a list of video
processing filters applied for decoded frames.

The DECODE_VPP supports only internal allocation.

10.2. Architecture 732

oneAPI Specification, Release 1.1-rev-1

10.3 Programming Guide

This chapter describes the concepts used in programming with oneVPL.

The application must use the include file mfx.h for C/C++ programming and link the oneVPL dispatcher library
libvpl.so.

Include these files:

#include "mfx.h" /* oneVPL include file */

Link this library:

libvpl.so /* oneVPL dynamic dispatcher library (Linux*) */

10.3.1 Status Codes

The oneVPL functions are organized into categories for easy reference. The categories include ENCODE (encoding
functions), DECODE (decoding functions), and VPP (video processing functions).

Init, Reset, and Close are member functions within the ENCODE, DECODE, and VPP classes that initialize, restart,
and deinitialize specific operations defined for the class. Call all member functions of a given class within the Init -
Reset - Close sequence, except Query and QueryIOSurf. Reset functions are optional within the sequence.

The Init and Reset member functions set up necessary internal structures for media processing. Init functions allocate
memory and Reset functions only reuse allocated internal memory. If oneVPL needs to allocate additional memory,
Reset can fail. Reset functions can also fine-tune ENCODE and VPP parameters during those processes or reposition
a bitstream during DECODE.

All oneVPL functions return status codes to indicate if an operation succeeded or failed. The
mfxStatus::MFX_ERR_NONE status code indicates that the function successfully completed its operation.
Error status codes are less than mfxStatus::MFX_ERR_NONE and warning status codes are greater than
mfxStatus::MFX_ERR_NONE. See the mfxStatus enumerator for all defined status codes.

If a oneVPL function returns a warning, it has sufficiently completed its operation. Note that the output of the function
might not be strictly reliable. The application must check the validity of the output generated by the function.

If a oneVPL function returns an error (except mfxStatus::MFX_ERR_MORE_DATA ,
mfxStatus::MFX_ERR_MORE_SURFACE, or mfxStatus::MFX_ERR_MORE_BITSTREAM), the function aborts
the operation. The application must call either the Reset function to reset the class back to a clean state or the Close
function to terminate the operation. The behavior is undefined if the application continues to call any class member
functions without a Reset or Close. To avoid memory leaks, always call the Close function after Init.

10.3.2 oneVPL Session

Before calling any oneVPL functions, the application must initialize the library and create a oneVPL session. A oneVPL
session maintains context for the use of any of DECODE, ENCODE, VPP, DECODE_VPP functions.

10.3. Programming Guide 733

oneAPI Specification, Release 1.1-rev-1

Intel® Media Software Development Kit Dispatcher (Legacy)

The MFXInit() or MFXInitEx() function starts (initializes) a session. The MFXClose() function closes (de-
initializes) the session. To avoid memory leaks, always call MFXClose() after MFXInit().

Important: MFXInit() and MFXInitEx() are deprecated starting from API 2.0. Applications must use MFXLoad()
and MFXCreateSession() to initialize implementations.

Important: For backward compatibility with existent Intel® Media Software Development Kit applications oneVPL
session can be created and initialized by the legacy dispacther through MFXInit() or MFXInitEx() calls.

The application can initialize a session as a software-based session (MFX_IMPL_SOFTWARE) or a hardware-based
session (MFX_IMPL_HARDWARE). In a software-based session, the SDK functions execute on a CPU. In a hardware-
base session, the SDK functions use platform acceleration capabilities. For platforms that expose multiple graphic
devices, the application can initialize a session on any alternative graphic device using the MFX_IMPL_HARDWARE,
MFX_IMPL_HARDWARE2, MFX_IMPL_HARDWARE3, or MFX_IMPL_HARDWARE4 values of mfxIMPL.

The application can also initialize a session to be automatic (MFX_IMPL_AUTO or MFX_IMPL_AUTO_ANY), instructing
the dispatcher library to detect the platform capabilities and choose the best SDK library available. After initialization,
the SDK returns the actual implementation through the MFXQueryIMPL() function.

Internally, the dispatcher works as follows:

1. Dispatcher searches for the shared library with the specific name:

OS Name Description
Linux* libmfxsw64.so.1 64-bit software-based implementation
Linux libmfxsw32.so.1 32-bit software-based implementation
Linux libmfxhw64.so.1 64-bit hardware-based implementation
Linux libmfxhw64.so.1 32-bit hardware-based implementation
Windows* libmfxsw32.dll 64-bit software-based implementation
Windows libmfxsw32.dll 32-bit software-based implementation
Windows libmfxhw64.dll 64-bit hardware-based implementation
Windows libmfxhw64.dll 32-bit hardware-based implementation

2. Once the library is loaded, the dispatcher obtains addresses for each SDK function. See the Exported Func-
tions/API Version table for the list of functions to expose.

How the shared library is identified using the implementation search strategy will vary according to the OS.

• On Windows, the dispatcher searches the following locations, in the specified order, to find the correct imple-
mentation library:

1. The Driver Store directory for the current adapter. All types of graphics drivers can install libraries in
this directory. Learn more about Driver Store.

2. The directory specified for the current hardware under the registry key HKEY_CURRENT_USER\Software\
Intel\MediaSDK\Dispatch.

3. The directory specified for the current hardware under the registry key HKEY_LOCAL_MACHINE\Software\
Intel\MediaSDK\Dispatch.

4. The directory that is stored in these registry keys: C:Program FilesIntelMedia SDK. This directory is
where legacy graphics drivers install libraries.

10.3. Programming Guide 734

https://docs.microsoft.com/en-us/windows-hardware/drivers/install/driver-store

oneAPI Specification, Release 1.1-rev-1

5. The directory where the current module (the module that links the dispatcher) is located (only if the current
module is a dll).

After the dispatcher completes the main search, it additionally checks:

1. The directory of the exe file of the current process, where it looks for software implementation only, re-
gardless of which implementation the application requested.

2. Default dll search. This provides loading from the directory of the application’s exe file and from the
System32 and SysWOW64 directories. Learn more about default dll search order.

3. The System32 and SysWOW64 directories, which is where DCH graphics drivers install libraries.

• On Linux, the dispatcher searches the following locations, in the specified order, to find the correct implementa-
tion library:

1. Directories provided by the environment variable LD_LIBRARY_PATH.

2. Content of the /etc/ld.so.cache cache file.

3. Default path /lib, then /usr/lib or /lib64, and then /usr/lib64 on some 64 bit OSs. On Debian:
/usr/lib/x86_64-linux-gnu.

4. SDK installation folder.

oneVPL Dispatcher

The oneVPL dispatcher extends the legacy dispatcher by providing additional ability to select the appropriate imple-
mentation based on the implementation capabilities. Implementation capabilities include information about supported
decoders, encoders, and VPP filters. For each supported encoder, decoder, and filter, capabilities include information
about supported memory types, color formats, and image (frame) size in pixels.

The recommended approach to configure the dispatcher’s capabilities search filters and to create a session based on a
suitable implementation is as follows:

1. Create loader with MFXLoad().

2. Create loader’s configuration with MFXCreateConfig().

3. Add configuration properties with MFXSetConfigFilterProperty().

4. Explore available implementations with MFXEnumImplementations().

5. Create a suitable session with MFXCreateSession().

The procedure to terminate an application is as follows:

1. Destroy session with MFXClose().

2. Destroy loader with MFXUnload().

Note: Multiple loader instances can be created.

Note: Each loader may have multiple configuration objects associated with it. When a configuration object is modified
through MFXSetConfigFilterProperty() it implicitly impacts the state and configuration of the associated loader.

Important: One configuration object can handle only one filter property.

10.3. Programming Guide 735

https://docs.microsoft.com/en-us/windows/win32/dlls/dynamic-link-library-search-order?redirectedfrom=MSDN#search-order-for-desktop-applications

oneAPI Specification, Release 1.1-rev-1

Note: Multiple sessions can be created by using one loader object.

When the dispatcher searches for the implementation, it uses the following priority rules:

1. Hardware implementation has priority over software implementation.

2. General hardware implementation has priority over VSI hardware implementation.

3. Highest API version has higher priority over lower API version.

Note: Implementation has priority over the API version. In other words, the dispatcher must return the implementation
with the highest API priority (greater than or equal to the implementation requested).

How the shared library is identified using the implementation search strategy will vary according to the OS.

• On Windows, the dispatcher searches the following locations, in the specified order, to find the correct imple-
mentation library:

1. The Driver Store directory for all available adapters. All types of graphics drivers can install libraries
in this directory. Learn more about Driver Store. Applicable only for Intel implementations.

2. The directory of the exe file of the current process.

3. Current working directory.

4. PATH enviromental variable.

5. For backward compatibility with older spec versions, dispatcher also checks user-defined search folders
which are provided by ONEVPL_SEARCH_PATH enviromental variable.

• On Linux, the dispatcher searches the following locations, in the specified order, to find the correct implementa-
tion library:

1. Directories provided by the environment variable LD_LIBRARY_PATH.

2. Default path /lib, then /usr/lib or /lib64, and then /usr/lib64 on some 64 bit OSs. On Debian:
/usr/lib/x86_64-linux-gnu.

3. Current working directory.

4. For backward compatibility with older spec versions, dispatcher also checks user-defined search folders
which are provided by ONEVPL_SEARCH_PATH enviromental variable.

When oneVPL dispatcher searchers for the legacy Intel® Media Software Development Kit implementation it uses
legacy dispatcher search order.

The dispatcher supports different software implementations. The user can use the mfxImplDescription::VendorID
field, the mfxImplDescription::VendorImplID field, or the mfxImplDescription::ImplName field to search for
the specific implementation.

Internally, the dispatcher works as follows:

1. Dispatcher loads any shared library with libvpl* prefix in the library name in the given search folders.

2. For each loaded library, the dispatcher tries to resolve address of the MFXQueryImplsDescription() function
to collect the implementation’s capabilities.

3. Once the user has requested to create the session based on this implementation, the dispatcher obtains addresses
of each oneVPL function. See the Exported Functions/API Version table for the list of functions to export.

10.3. Programming Guide 736

https://docs.microsoft.com/en-us/windows-hardware/drivers/install/driver-store

oneAPI Specification, Release 1.1-rev-1

Note: For backward compatibility with Intel® Media Software Development Kit, the dispatcher will first try to load
Intel® Media Software Development Kit if API version 1.x was requested. If loading fails, the dispatcher will search
for the implementation with highest 2.x API version and load that version.

oneVPL Dispatcher Configuration Properties

The Dispatcher Configuration Properties Table shows property strings supported by the dispatcher. Table organized
in the hierarchy way, to create the string, go from the left to right from column to column and concatenate strings by
using . (dot) as the separator.

Table 2: Dispatcher Configuration Properties
Structure name Property Value Data Type Comment
mfxImplDescription

mfxImplDescription
.Impl

MFX_VARIANT_TYPE_U32

mfxImplDescription
.AccelerationMode

MFX_VARIANT_TYPE_U32 The mode will be
used for session ini-
tilization

mfxImplDescription
.ApiVersion
.Version

MFX_VARIANT_TYPE_U32

mfxImplDescription
.ApiVersion
.Major

MFX_VARIANT_TYPE_U16

mfxImplDescription
.ApiVersion
.Minor

MFX_VARIANT_TYPE_U16

mfxImplDescription
.ImplName

MFX_VARIANT_TYPE_PTR Pointer to the null-
terminated string.

mfxImplDescription
.License

MFX_VARIANT_TYPE_PTR Pointer to the null-
terminated string.

mfxImplDescription
.Keywords

MFX_VARIANT_TYPE_PTR Pointer to the null-
terminated string.

continues on next page

10.3. Programming Guide 737

oneAPI Specification, Release 1.1-rev-1

Table 2 – continued from previous page
Structure name Property Value Data Type Comment

mfxImplDescription
.VendorID

MFX_VARIANT_TYPE_U32

mfxImplDescription
.VendorImplID

MFX_VARIANT_TYPE_U32

mfxImplDescription
.mfxSurfacePoolMode

MFX_VARIANT_TYPE_U32

mfxImplDescription
.mfxDeviceDescription
.device
.DeviceID

MFX_VARIANT_TYPE_PTR Pointer to the null-
terminated string.

mfxImplDescription
.mfxDecoderDescription
.decoder
.CodecID

MFX_VARIANT_TYPE_U32

mfxImplDescription
.mfxDecoderDescription
.decoder
.MaxcodecLevel

MFX_VARIANT_TYPE_U16

mfxImplDescription
.mfxDecoderDescription
.decoder
.decprofile
.Profile

MFX_VARIANT_TYPE_U32

mfxImplDescription
.mfxDecoderDescription
.decoder
.decprofile
.Profile
.decmemdesc
.MemHandleType

MFX_VARIANT_TYPE_U32

continues on next page

10.3. Programming Guide 738

oneAPI Specification, Release 1.1-rev-1

Table 2 – continued from previous page
Structure name Property Value Data Type Comment

mfxImplDescription
.mfxDecoderDescription
.decoder
.decprofile
.Profile
.decmemdesc
.Width

MFX_VARIANT_TYPE_PTR Pointer to the
mfxRange32U
object

mfxImplDescription
.mfxDecoderDescription
.decoder
.decprofile
.Profile
.decmemdesc
.Height

MFX_VARIANT_TYPE_PTR Pointer to the
mfxRange32U
object

mfxImplDescription
.mfxDecoderDescription
.decoder
.decprofile
.Profile
.decmemdesc
.ColorFormats

MFX_VARIANT_TYPE_U32

mfxImplDescription
.mfxEncoderDescription
.encoder
.CodecID

MFX_VARIANT_TYPE_U32

mfxImplDescription
.mfxEncoderDescription
.encoder
.MaxcodecLevel

MFX_VARIANT_TYPE_U16

mfxImplDescription
.mfxEncoderDescription
.encoder
.BiDirectionalPrediction

MFX_VARIANT_TYPE_U16

continues on next page

10.3. Programming Guide 739

oneAPI Specification, Release 1.1-rev-1

Table 2 – continued from previous page
Structure name Property Value Data Type Comment

mfxImplDescription
.mfxEncoderDescription
.encoder
.encprofile
.Profile

MFX_VARIANT_TYPE_U32

mfxImplDescription
.mfxEncoderDescription
.encoder
.encprofile
.Profile
.encmemdesc
.MemHandleType

MFX_VARIANT_TYPE_U32

mfxImplDescription
.mfxEncoderDescription
.encoder
.encprofile
.Profile
.encmemdesc
.Width

MFX_VARIANT_TYPE_PTR Pointer to the
mfxRange32U
object

mfxImplDescription
.mfxEncoderDescription
.encoder
.encprofile
.Profile
.encmemdesc
.Height

MFX_VARIANT_TYPE_PTR Pointer to the
mfxRange32U
object

mfxImplDescription
.mfxEncoderDescription
.encoder
.encprofile
.Profile
.encmemdesc
.ColorFormats

MFX_VARIANT_TYPE_U32

continues on next page

10.3. Programming Guide 740

oneAPI Specification, Release 1.1-rev-1

Table 2 – continued from previous page
Structure name Property Value Data Type Comment

mfxImplDescription
.mfxVPPDescription
.filter
.FilterFourCC

MFX_VARIANT_TYPE_U32

mfxImplDescription
.mfxVPPDescription
.filter
.MaxDelayInFrames

MFX_VARIANT_TYPE_U16

mfxImplDescription
.mfxVPPDescription
.filter
.memdesc
.MemHandleType

MFX_VARIANT_TYPE_U32

mfxImplDescription
.mfxVPPDescription
.filter
.memdesc
.Width

MFX_VARIANT_TYPE_PTR Pointer to the
mfxRange32U
object

mfxImplDescription
.mfxVPPDescription
.filter
.memdesc
.Height

MFX_VARIANT_TYPE_PTR Pointer to the
mfxRange32U
object

mfxImplDescription
.mfxVPPDescription
.filter
.memdesc
.format
.InFormat

MFX_VARIANT_TYPE_U32

continues on next page

10.3. Programming Guide 741

oneAPI Specification, Release 1.1-rev-1

Table 2 – continued from previous page
Structure name Property Value Data Type Comment

mfxImplDescription
.mfxVPPDescription
.filter
.memdesc
.format
.OutFormats

MFX_VARIANT_TYPE_U32

mfxImplementedFunctions

mfxImplementedFunctions
.FunctionsName

MFX_VARIANT_TYPE_PTR Pointer to the buffer
with string

N/A
DXGIAdapterIndex

MFX_VARIANT_TYPE_U32 Adapter in-
dex according
to IDXGIFac-
tory::EnumAdapters

Important: DXGIAdapterNum property is available for Windows only and filters only hardware implementations.

Examples of the property name strings:

• mfxImplDescription.mfxDecoderDescription.decoder.decprofile.Profile

• mfxImplDescription.mfxDecoderDescription.decoder.decprofile.decmemdesc.MemHandleType

• mfxImplementedFunctions.FunctionsName

Following properties are supported in a special manner: they are used to send additional data to the implementation
through the dispatcher. Application needs to use MFXSetConfigFilterProperty() to set them up but they don’t
influence on the implementation selection. They are used during the MFXCreateSession() function call to fine tune
the implementation.

Table 3: Dispatcher’s Special Properties
Property Value data type
mfxHandleType mfxVariantType::MFX_VARIANT_TYPE_U32
mfxHDL mfxVariantType::MFX_VARIANT_TYPE_PTR

oneVPL Dispatcher Interactions

This sequence diagram visualize how application communcates with implementations via the dispacher.

Dispatcher API This API is implemented in the dispatcher.

Implementation API This API is provided by the any implementation.

10.3. Programming Guide 742

oneAPI Specification, Release 1.1-rev-1

10.3. Programming Guide 743

oneAPI Specification, Release 1.1-rev-1

The oneVPL dispacther is capable to load and initialize Intel® Media Software Development Kit legacy library. The
sequence diagram below demonstrates the approach.

10.3. Programming Guide 744

oneAPI Specification, Release 1.1-rev-1

Important: The dispacther doesn’t filter and report mfxDeviceDescription, mfxDecoderDescription,
mfxEncoderDescription, mfxVPPDescription when enumerates or creates Intel® Media Software Development
Kit implementation. Once Intel® Media Software Development Kit is loaded applications have to use legacy approach
to query capabilities.

oneVPL Dispatcher Debug Log

The debug output of the dispatcher is controlled with the ONEVPL_DISPATCHER_LOG environment variable. To
enable log output, set the ONEVPL_DISPATCHER_LOG environment variable value equals to “ON”.

By default, oneVPL dispatcher prints all log messages to the console. To redirect log output to the desired file, set the
ONEVPL_DISPATCHER_LOG_FILE environmental variable with the file name of the log file.

Examples of Dispathcer’s Usage

This code illustrates simple usage of dispathcer to load first available library:

1 mfxLoader loader = MFXLoad();
2 MFXCreateSession(loader,0,&session);

This code illustrates simple usage of dispathcer to load first available HW accelerated library:

1 mfxLoader loader = MFXLoad();
2 mfxConfig cfg = MFXCreateConfig(loader);
3 mfxVariant ImplValue;
4 ImplValue.Type = MFX_VARIANT_TYPE_U32;
5 ImplValue.Data.U32 = MFX_IMPL_TYPE_HARDWARE;
6 MFXSetConfigFilterProperty(cfg,(const mfxU8 *)"mfxImplDescription.Impl",ImplValue);
7 MFXCreateSession(loader,0,&session);

This code illustrates how multiple sessions from multiple loaders can be created:

1 // Create session with software based implementation
2 mfxLoader loader1 = MFXLoad();
3 mfxConfig cfg1 = MFXCreateConfig(loader1);
4 mfxVariant ImplValueSW;
5 ImplValueSW.Type = MFX_VARIANT_TYPE_U32;
6 ImplValueSW.Data.U32 = MFX_IMPL_TYPE_SOFTWARE;
7 MFXSetConfigFilterProperty(cfg1,(const mfxU8 *)"mfxImplDescription.Impl",ImplValueSW);
8 MFXCreateSession(loader1,0,&sessionSW);
9

10 // Create session with hardware based implementation
11 mfxLoader loader2 = MFXLoad();
12 mfxConfig cfg2 = MFXCreateConfig(loader2);
13 mfxVariant ImplValueHW;
14 ImplValueHW.Type = MFX_VARIANT_TYPE_U32;
15 ImplValueHW.Data.U32 = MFX_IMPL_TYPE_HARDWARE;
16 MFXSetConfigFilterProperty(cfg2,(const mfxU8 *)"mfxImplDescription.Impl",ImplValueHW);
17 MFXCreateSession(loader2,0,&sessionHW);
18

19 // use both sessionSW and sessionHW
(continues on next page)

10.3. Programming Guide 745

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

20 // ...
21 // Close everything
22 MFXClose(sessionSW);
23 MFXClose(sessionHW);
24 MFXUnload(loader1); // cfg1 will be destroyed here.
25 MFXUnload(loader2); // cfg2 will be destroyed here.

This code illustrates how multiple decoders from single loader can be created:

1 mfxLoader loader = MFXLoad();
2

3 // We want to have AVC decoder supported.
4 mfxConfig cfg1 = MFXCreateConfig(loader);
5 mfxVariant ImplValue;
6 ImplValue.Type = MFX_VARIANT_TYPE_U32;
7 ImplValue.Data.U32 = MFX_CODEC_AVC;
8 MFXSetConfigFilterProperty(cfg1,
9 (const mfxU8 *)"mfxImplDescription.mfxDecoderDescription.decoder.CodecID",

→˓ImplValue);
10

11 // And we want to have HEVC encoder supported by the same implementation.
12 mfxConfig cfg2 = MFXCreateConfig(loader);
13 ImplValue.Type = MFX_VARIANT_TYPE_U32;
14 ImplValue.Data.U32 = MFX_CODEC_HEVC;
15 MFXSetConfigFilterProperty(cfg2,
16 (const mfxU8 *)"mfxImplDescription.mfxEncoderDescription.encoder.CodecID",

→˓ImplValue);
17

18 // To create single session with both capabilities.
19 MFXCreateSession(loader,0,&session);

How To Check If Function is Implemented

There are two ways to check if particular function is implemented or not by the implementation.

This code illustrates how application can iterate through the whole list of implemented functions:

1 mfxHDL h;
2 // request pointer to the list. Assume that implementation supports that.
3 // Assume that `loader` is configured before.
4 mfxStatus sts = MFXEnumImplementations(loader, idx, MFX_IMPLCAPS_IMPLEMENTEDFUNCTIONS, &

→˓h);
5 // break if no idx
6 if (sts != MFX_ERR_NOT_FOUND) {
7 // Cast typeless handle to structure pointer
8 mfxImplementedFunctions *implemented_functions = (mfxImplementedFunctions*)h;
9

10 // print out list of functions' name
11 std::for_each(implemented_functions->FunctionsName, implemented_functions->

→˓FunctionsName +
12 implemented_functions->

→˓NumFunctions,
(continues on next page)

10.3. Programming Guide 746

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

13 [](mfxChar* functionName) {
14 std::cout << functionName << " is implemented" << std::endl;
15 });
16 // Release resource
17 MFXDispReleaseImplDescription(loader, h);
18 }

This code illustrates how application can check that specific functions are implemented:

1 mfxSession session_handle;
2 loader = mfxLoader();
3

4 // We want to search for the implementation with Decode+VPP domain functions support.
5 // i.e we search for the MFXVideoDECODE_VPP_Init and MFXVideoDECODE_VPP_DecodeFrameAsync
6 // implemented functions
7 mfxConfig init_funct_prop = MFXCreateConfig(loader);
8 mfxVariant value;
9

10 // Filter property for the Init function
11 value.Type = mfxVariantType::MFX_VARIANT_TYPE_PTR;
12 value.Data.Ptr = (mfxHDL)"MFXVideoDECODE_VPP_Init";
13 MFXSetConfigFilterProperty(init_funct_prop, (const mfxU8*)"mfxImplementedFunctions.

→˓FunctionsName",
14 value);
15

16 // Filter property for the Process function
17 mfxConfig process_func_prop = MFXCreateConfig(loader);
18 value.Data.Ptr = (mfxHDL)"MFXVideoDECODE_VPP_DecodeFrameAsync";
19 MFXSetConfigFilterProperty(process_func_prop, (const mfxU8*)"mfxImplementedFunctions.

→˓FunctionsName",
20 value);
21

22 // create session from first matched implementation
23 MFXCreateSession(loader, 0, &session_handle);

How To Search For The Available encoder/decoder implementation

The CodecFormatFourCC enum specifies codec’s FourCC values. Application needs to assign this
value to the field of mfxDecoderDescription::decoder::CodecID to search for the decoder or
mfxEncoderDescription::encoder::CodecID to search for the encoder.

This code illustrates decoder’s implementation search procedure:

1 mfxSession hevc_session_handle;
2 loader = mfxLoader();
3

4 // We want to search for the HEVC decoder implementation
5 mfxConfig hevc_decoder_config = MFXCreateConfig(loader);
6 mfxVariant value;
7

8 // Filter property for the implementations with HEVC decoder
9 value.Type = MFX_VARIANT_TYPE_U32;

(continues on next page)

10.3. Programming Guide 747

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

10 value.Data.U32 = MFX_CODEC_HEVC;
11

12 MFXSetConfigFilterProperty(hevc_decoder_config
13 , (const mfxU8*)"mfxImplDescription.mfxDecoderDescription.decoder.CodecID"
14 , value);
15

16 // create session from first matched implementation
17 MFXCreateSession(loader, 0, &hevc_session_handle);

How To Search For The Available VPP Filter implementation

Each VPP filter identified by the filter ID. Filter ID is defined by corresponding to the filter extension buffer ID value
which is defined in a form of fourCC value. Filter ID values are subset of the general ExtendedBufferID enum.
The table references available IDs of VPP filters to search. Application needs to assign this value to the field of
mfxVPPDescription::filter::FilterFourCC to search for the needed VPP filter.

Table 4: VPP Filters ID
Filter ID Description
MFX_EXTBUFF_VPP_DENOISE Denoise filter (deprecated in 2.2)
MFX_EXTBUFF_VPP_DENOISE2 Denoise filter
MFX_EXTBUFF_VPP_MCTF Motion-Compensated Temporal Filter

(MCTF).
MFX_EXTBUFF_VPP_DETAIL Detail/edge enhancement filter.
MFX_EXTBUFF_VPP_FRAME_RATE_CONVERSION Frame rate conversion filter
MFX_EXTBUFF_VPP_IMAGE_STABILIZATION Image stabilization filter
MFX_EXTBUFF_VPP_PROCAMP ProcAmp filter
MFX_EXTBUFF_VPP_FIELD_PROCESSING Field processing filter
MFX_EXTBUFF_VPP_COLOR_CONVERSION Color Conversion filter
MFX_EXTBUFF_VPP_SCALING Resize filter
MFX_EXTBUFF_VPP_COMPOSITE Surfaces composition filter
MFX_EXTBUFF_VPP_DEINTERLACING Deinterlace filter
MFX_EXTBUFF_VPP_ROTATION Rotation filter
MFX_EXTBUFF_VPP_MIRRORING Mirror filter
MFX_EXTBUFF_VPP_COLORFILL ColorFill filter

This code illustrates VPP mirror filter implementation search procedure:

1 mfxSession mirror_session_handle;
2 loader = mfxLoader();
3

4 // We want to search for the VPP mirror implementation
5 mfxConfig mirror_flt_config = MFXCreateConfig(loader);
6 mfxVariant value;
7

8 // Filter property for the implementations with VPP mirror
9 value.Type = MFX_VARIANT_TYPE_U32;

10 value.Data.U32 = MFX_EXTBUFF_VPP_MIRRORING;
11

12 MFXSetConfigFilterProperty(mirror_flt_config
13 , (const mfxU8*)"mfxImplDescription.mfxVPPDescription.filter.FilterFourCC"

(continues on next page)

10.3. Programming Guide 748

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

14 , value);
15

16 // create session from first matched implementation
17 MFXCreateSession(loader, 0, &mirror_session_handle);

How To Get Path to the Shared Library With the Implementation

Sessions can be created from different implementations, each implementations can be located in different shared li-
braries. To get path of the shared library with the implementation from which session can be or was created, application
can use MFXEnumImplementations() and pass MFX_IMPLCAPS_IMPLPATH value as the outpt data request.

This code illustrates collection and print out path of implementations’s shared library:

1 mfxHDL h;
2 mfxSession def_session;
3

4 loader = mfxLoader();
5

6 // Create session from the first avialable implementation.
7 // That's why we no any filters need to be set.
8 // First avialable implementation has index equal to the 0.
9 MFXCreateSession(loader, 0, &def_session);

10

11 // Get and print out OS path to the loaded shared library
12 // with the implementation. It is absolutely OK to call
13 // MFXEnumImplementations after session creation just need to make
14 // sure that the same index of implementation is provided to the
15 // function call.
16 MFXEnumImplementations(loader, 0, MFX_IMPLCAPS_IMPLPATH, &h);
17 mfxChar* path = reinterpret_cast<mfxChar*>(h);
18

19 // Print out the path
20 std::cout << "Loaded shared library: " << path << std::endl;
21

22 // Release the memory for the string with path.
23 MFXDispReleaseImplDescription(loader, h);

oneVPL implementation on Intel® platforms with Xe architecture and Intel® Media Software Develop-
ment Kit Coexistence

oneVPL supersedes Intel® Media Software Development Kit and partially binary compartible with Intel® Media Soft-
ware Development Kit. Both oneVPL and Intel® Media Software Development Kit includes own dispatcher and im-
plementation. Coexistence of oneVPL and Intel® Media Software Development Kit dispatchers and implementations
on single system is allowed until Intel® Media Software Development Kit is not EOL.

Usage of the following combinations of dispatchers and implementations within the single application is permitted for
the legacy purposes only. In that scenario legacy applications developed with Intel® Media Software Development Kit
will continue to work on any HW supported either by Intel® Media Software Development Kit or by the oneVPL.

10.3. Programming Guide 749

oneAPI Specification, Release 1.1-rev-1

Attention: Any application to work with the oneVPL API starting from version 2.0 must use only oneVPL dis-
patcher.

Intel® Media Software Development Kit API Intel® Media Software Development Kit API of 1.x version.

Removed API Intel® Media Software Development Kit API which is removed from oneVPL.

Core API Intel® Media Software Development Kit API without removed API.

oneVPL API New API introduced in oneVPL only started from API 2.0 version.

oneVPL Dispatcher API Dispatcher API introduced in oneVPL in 2.0 API version. This is subset of oneVPL API.

Table 5: oneVPL for Intel® platforms with Xe architecture and Intel®
Media Software Development Kit

Dispatcher Installed on the device Loaded Allowed API
oneVPL oneVPL for Intel® plat-

forms with Xe architecture
oneVPL for Intel® plat-
forms with Xe architecture

Usage of any API except
removed API is allowed.

oneVPL Intel® Media Software
Development Kit

Intel® Media Software
Development Kit

Usage of core API plus
dispatcher API is allowed
only.

oneVPL oneVPL for Intel® plat-
forms with Xe architecture
and Intel® Media Soft-
ware Development Kit

oneVPL for Intel® plat-
forms with Xe architecture

Usage of any API except
removed API is allowed.

Intel® Media Software
Development Kit

oneVPL for Intel® plat-
forms with Xe architecture

oneVPL for Intel® plat-
forms with Xe architecture

Usage of core API is al-
lowed only.

Intel® Media Software
Development Kit

oneVPL for Intel® plat-
forms with Xe architecture
and Intel® Media Soft-
ware Development Kit

Intel® Media Software
Development Kit

Usage of Intel® Media
Software Development
Kit API is allowed.

Intel® Media Software
Development Kit

Intel® Media Software
Development Kit

Intel® Media Software
Development Kit

Usage of Intel® Media
Software Development
Kit API is allowed.

Note: if system has multiple devices the logic of selection and loading implementations will be applied to each device
accordingly to the system enumeration.

Multiple Sessions

Each oneVPL session can run exactly one instance of the DECODE, ENCODE, and VPP functions. This is adequate for
a simple transcoding operation. If the application needs more than one instance of DECODE, ENCODE, or VPP in a
complex transcoding setting or needs more simultaneous transcoding operations, the application can initialize multiple
oneVPL sessions created from one or several oneVPL implementations.

The application can use multiple oneVPL sessions independently or run a “joined” session. To join two ses-
sions together, the application can use the function MFXJoinSession(). Alternatively, the application can use the
MFXCloneSession() function to duplicate an existing session. Joined oneVPL sessions work together as a single
session, sharing all session resources, threading control, and prioritization operations except hardware acceleration
devices and external allocators. When joined, the first session (first join) serves as the parent session and will schedule
execution resources with all other child sessions. Child sessions rely on the parent session for resource management.

10.3. Programming Guide 750

oneAPI Specification, Release 1.1-rev-1

Important: Applications can join sessions created from the same oneVPL implementation only.

With joined sessions, the application can set the priority of session operations through the MFXSetPriority() func-
tion. A lower priority session receives fewer CPU cycles. Session priority does not affect hardware accelerated pro-
cessing.

After the completion of all session operations, the application can use the MFXDisjoinSession() function to remove
the joined state of a session. Do not close the parent session until all child sessions are disjoined or closed.

10.3.3 Frame and Fields

In oneVPL terminology, a frame (also referred to as frame surface) contains either a progressive frame or a comple-
mentary field pair. If the frame is a complementary field pair, the odd lines of the surface buffer store the top fields and
the even lines of the surface buffer store the bottom fields.

Frame Surface Management

During encoding, decoding, or video processing, cases arise that require reserving input or output frames for future
use. For example, when decoding, a frame that is ready for output must remain as a reference frame until the current
sequence pattern ends. The usual method to manage this is to cache the frames internally. This method requires a copy
operation, which can significantly reduce performance.

oneVPL has two approaches to avoid the need for copy operations. The legacy approach uses a frame-locking mecha-
nism that works as follows:

1. The application allocates a pool of frame surfaces large enough to include oneVPL function I/O frame surfaces
and internal cache needs. Each frame surface maintains a Locked counter, which is part of the mfxFrameData
structure. The Locked counter is initially set to zero.

2. The application calls a oneVPL function with frame surfaces from the pool whose Locked counter is set as
appropriate for the desired operation. For decoding or video processing operations, where oneVPL uses the
surfaces to write, the Locked counter should be equal to zero. If the oneVPL function needs to reserve any
frame surface, the oneVPL function increases the Locked counter of the frame surface. A non-zero Locked
counter indicates that the calling application must treat the frame surface as “in use.” When the frame surface is
in use, the application can read but cannot alter, move, delete, or free the frame surface.

3. In subsequent oneVPL executions, if the frame surface is no longer in use, oneVPL decreases the Locked counter.
When the Locked counter reaches zero, the application is free to do as it wishes with the frame surface.

In general, the application should not increase or decrease the Locked counter since oneVPL manages this field. If,
for some reason, the application needs to modify the Locked counter, the operation must be atomic to avoid a race
condition.

oneVPL API version 2.0 introduces the mfxFrameSurfaceInterface structure which provides a set of callback func-
tions for the mfxFrameSurface1 structure to work with frame surfaces. This interface defines mfxFrameSurface1
as a reference counted object which can be allocated by oneVPL or the application. The application must fol-
low the general rules of operation with reference counted objects. For example, when surfaces are allocated by
oneVPL during MFXVideoDECODE_DecodeFrameAsync() or with the help of MFXMemory_GetSurfaceForVPP()
or MFXMemory_GetSurfaceForVPPOut() or MFXMemory_GetSurfaceForEncode(), the application must call the
corresponding mfxFrameSurfaceInterface::Release function for the surfaces that are no longer in use.

Attention: Note that the Locked counter defines read/write access policies and the reference counter is responsible
for managing a frame’s lifetime.

10.3. Programming Guide 751

oneAPI Specification, Release 1.1-rev-1

The second approach to avoid the need for copy operations is based on the mfxFrameSurfaceInterface and works
as follows:

1. oneVPL or the application allocates a frame surface and the application stores a value of reference counter ob-
tained through mfxFrameSurfaceInterface::GetRefCounter.

2. The application calls a oneVPL function with the frame surface. If oneVPL needs to reserve the
frame surface it increments the reference counter through the mfxFrameSurfaceInterface::AddRef call.
When the frame surface is no longer in use by the oneVPL it decrements reference counter through the
mfxFrameSurfaceInterface::Release call which returns the reference counter to the original value.

3. The application checks the reference counter of the frame surface and when it is equal to the original value after
allocation, it can reuse the reference counter for subsequent operations.

Note: All mfxFrameSurface1 structures starting from mfxFrameSurface1::mfxStructVersion = {1,1} support the
mfxFrameSurfaceInterface.

10.3.4 Decoding Procedures

There are several approaches to decode video frames. The first one is based on the internal allocation mechanism
presented here:

1 MFXVideoDECODE_Init(session, &init_param);
2 sts=MFX_ERR_MORE_DATA;
3 for (;;) {
4 if (sts==MFX_ERR_MORE_DATA && !end_of_stream())
5 append_more_bitstream(bitstream);
6 bits=(end_of_stream())?NULL:bitstream;
7 sts=MFXVideoDECODE_DecodeFrameAsync(session,bits,NULL,&disp,&syncp);
8 if (end_of_stream() && sts==MFX_ERR_MORE_DATA) break;
9 // skipped other error handling

10 if (sts==MFX_ERR_NONE) {
11 disp->FrameInterface->Synchronize(disp, INFINITE); // or MFXVideoCORE_

→˓SyncOperation(session,syncp,INFINITE)
12 do_something_with_decoded_frame(disp);
13 disp->FrameInterface->Release(disp);
14 }
15 }
16 MFXVideoDECODE_Close(session);

Note the following key points about the example:

• The application calls the MFXVideoDECODE_DecodeFrameAsync() function for a decoding operation with the
bitstream buffer (bits), frame surface is allocated internally by the library.

Attention: As shown in the example above starting with API version 2.0, the application can provide NULL
as the working frame surface that leads to internal memory allocation.

• If decoding output is not available, the function returns a status code requesting additional bitstream input as
follows:

– mfxStatus::MFX_ERR_MORE_DATA : The function needs additional bitstream input. The existing buffer
contains less than a frame’s worth of bitstream data.

10.3. Programming Guide 752

oneAPI Specification, Release 1.1-rev-1

• Upon successful decoding, the MFXVideoDECODE_DecodeFrameAsync() function returns
mfxStatus::MFX_ERR_NONE. However, the decoded frame data (identified by the surface_out pointer) is
not yet available because the MFXVideoDECODE_DecodeFrameAsync() function is asynchronous. The appli-
cation must use the MFXVideoCORE_SyncOperation() or mfxFrameSurfaceInterface::Synchronize to
synchronize the decoding operation before retrieving the decoded frame data.

• At the end of the bitstream, the application continuously calls the MFXVideoDECODE_DecodeFrameAsync()
function with a NULL bitstream pointer to drain any remaining frames cached within the decoder until the
function returns mfxStatus::MFX_ERR_MORE_DATA .

• When application completes the work with frame surface, it must call release to avoid memory leaks.

The next example demonstrates how applications can use internally pre-allocated chunk of video surfaces:

1 MFXVideoDECODE_QueryIOSurf(session, &init_param, &request);
2 MFXVideoDECODE_Init(session, &init_param);
3 for (int i = 0; i < request.NumFrameSuggested; i++) {
4 MFXMemory_GetSurfaceForDecode(session, &work);
5 add_surface_to_pool(work);
6 }
7 sts=MFX_ERR_MORE_DATA;
8 for (;;) {
9 if (sts==MFX_ERR_MORE_DATA && !end_of_stream())

10 append_more_bitstream(bitstream);
11 bits=(end_of_stream())?NULL:bitstream;
12 // application logic to distinguish free and busy surfaces
13 find_free_surface_from_the_pool(&work);
14 sts=MFXVideoDECODE_DecodeFrameAsync(session,bits,work,&disp,&syncp);
15 if (end_of_stream() && sts==MFX_ERR_MORE_DATA) break;
16 // skipped other error handling
17 if (sts==MFX_ERR_NONE) {
18 disp->FrameInterface->Synchronize(disp, INFINITE); // or MFXVideoCORE_

→˓SyncOperation(session,syncp,INFINITE)
19 do_something_with_decoded_frame(disp);
20 disp->FrameInterface->Release(disp);
21 }
22 }
23 for (int i = 0; i < request.NumFrameSuggested; i++) {
24 get_next_surface_from_pool(&work);
25 work->FrameInterface->Release(work);
26 }
27 MFXVideoDECODE_Close(session);

Here the application should use the MFXVideoDECODE_QueryIOSurf() function to obtain the number of working
frame surfaces required to reorder output frames. It is also required that MFXMemory_GetSurfaceForDecode() call
is done after decoder initialization. In the MFXVideoDECODE_DecodeFrameAsync() the oneVPL library increments
reference counter of incoming surface frame so it is required that the application releases frame surface after the call.

Another approach to decode frames is to allocate video frames on-fly with help of
MFXMemory_GetSurfaceForDecode() function, feed the library and release working surface after
MFXVideoDECODE_DecodeFrameAsync() call.

Attention: Please pay attention on two release calls for surfaces: after
MFXVideoDECODE_DecodeFrameAsync() to decrease reference counter of working surface re-
turned by MFXMemory_GetSurfaceForDecode(). After MFXVideoCORE_SyncOperation() to

10.3. Programming Guide 753

oneAPI Specification, Release 1.1-rev-1

decrease reference counter of output surface returned by MFXVideoDECODE_DecodeFrameAsync().

1 MFXVideoDECODE_Init(session, &init_param);
2 sts=MFX_ERR_MORE_DATA;
3 for (;;) {
4 if (sts==MFX_ERR_MORE_DATA && !end_of_stream())
5 append_more_bitstream(bitstream);
6 bits=(end_of_stream())?NULL:bitstream;
7 MFXMemory_GetSurfaceForDecode(session, &work);
8 sts=MFXVideoDECODE_DecodeFrameAsync(session,bits,work,&disp,&syncp);
9 work->FrameInterface->Release(work);

10 if (end_of_stream() && sts==MFX_ERR_MORE_DATA) break;
11 // skipped other error handling
12 if (sts==MFX_ERR_NONE) {
13 disp->FrameInterface->Synchronize(disp, INFINITE); // or MFXVideoCORE_

→˓SyncOperation(session,syncp,INFINITE)
14 do_something_with_decoded_frame(disp);
15 disp->FrameInterface->Release(disp);
16 }
17 }
18 MFXVideoDECODE_Close(session);

The following pseudo code shows the decoding procedure according to the legacy mode with external video frames
allocation:

1 MFXVideoDECODE_DecodeHeader(session, bitstream, &init_param);
2 MFXVideoDECODE_QueryIOSurf(session, &init_param, &request);
3 allocate_pool_of_frame_surfaces(request.NumFrameSuggested);
4 MFXVideoDECODE_Init(session, &init_param);
5 sts=MFX_ERR_MORE_DATA;
6 for (;;) {
7 if (sts==MFX_ERR_MORE_DATA && !end_of_stream())
8 append_more_bitstream(bitstream);
9 find_free_surface_from_the_pool(&work);

10 bits=(end_of_stream())?NULL:bitstream;
11 sts=MFXVideoDECODE_DecodeFrameAsync(session,bits,work,&disp,&syncp);
12 if (sts==MFX_ERR_MORE_SURFACE) continue;
13 if (end_of_stream() && sts==MFX_ERR_MORE_DATA) break;
14 if (sts==MFX_ERR_REALLOC_SURFACE) {
15 MFXVideoDECODE_GetVideoParam(session, ¶m);
16 realloc_surface(work, param.mfx.FrameInfo);
17 continue;
18 }
19 // skipped other error handling
20 if (sts==MFX_ERR_NONE) {
21 disp->FrameInterface->Synchronize(disp, INFINITE); // or MFXVideoCORE_

→˓SyncOperation(session,syncp,INFINITE)
22 do_something_with_decoded_frame(disp);
23 }
24 }
25 MFXVideoDECODE_Close(session);
26 free_pool_of_frame_surfaces();

10.3. Programming Guide 754

oneAPI Specification, Release 1.1-rev-1

Note the following key points about the example:

• The application can use the MFXVideoDECODE_DecodeHeader() function to retrieve decoding initialization
parameters from the bitstream. This step is optional if the data is retrievable from other sources such as an
audio/video splitter.

• The MFXVideoDECODE_DecodeFrameAsync() function can return following status codes in addition to the
described above:

– mfxStatus::MFX_ERR_MORE_SURFACE: The function needs one more frame surface to produce any out-
put.

– mfxStatus::MFX_ERR_REALLOC_SURFACE: Dynamic resolution change case - the function needs a bigger
working frame surface (work).

The following pseudo code shows the simplified decoding procedure:

1 sts=MFX_ERR_MORE_DATA;
2 for (;;) {
3 if (sts==MFX_ERR_MORE_DATA && !end_of_stream())
4 append_more_bitstream(bitstream);
5 bits=(end_of_stream())?NULL:bitstream;
6 sts=MFXVideoDECODE_DecodeFrameAsync(session,bits,NULL,&disp,&syncp);
7 if (sts==MFX_ERR_MORE_SURFACE) continue;
8 if (end_of_stream() && sts==MFX_ERR_MORE_DATA) break;
9 // skipped other error handling

10 if (sts==MFX_ERR_NONE) {
11 disp->FrameInterface->Synchronize(disp, INFINITE); // or MFXVideoCORE_

→˓SyncOperation(session,syncp,INFINITE)
12 do_something_with_decoded_frame(disp);
13 disp->FrameInterface->Release(disp);
14 }
15 }

oneVPL API version 2.0 introduces a new decoding approach. For simple use cases, when the user wants to decode
a stream and does not want to set additional parameters, a simplified procedure for the decoder’s initialization has
been proposed. In this scenario it is possible to skip explicit stages of a stream’s header decoding and the decoder’s
initialization and instead to perform these steps implicitly during decoding of the first frame. This change also requires
setting the additional field mfxBitstream::CodecId to indicate codec type. In this mode the decoder allocates
mfxFrameSurface1 internally, so users should set the input surface to zero.

Bitstream Repositioning

The application can use the following procedure for bitstream reposition during decoding:

1. Use the MFXVideoDECODE_Reset() function to reset the oneVPL decoder.

2. Optional: If the application maintains a sequence header that correctly decodes the bitstream at the new position,
the application may insert the sequence header to the bitstream buffer.

3. Append the bitstream from the new location to the bitstream buffer.

4. Resume the decoding procedure. If the sequence header is not inserted in the previous steps, the oneVPL decoder
searches for a new sequence header before starting decoding.

10.3. Programming Guide 755

oneAPI Specification, Release 1.1-rev-1

Broken Streams Handling

Robustness and the capability to handle a broken input stream is an important part of the decoder.

First, the start code prefix (ITU-T* H.264 3.148 and ITU-T H.265 3.142) is used to separate NAL units. Then all syntax
elements in the bitstream are parsed and verified. If any of the elements violate the specification, the input bitstream is
considered invalid and the decoder tries to re-sync (find the next start code). Subsequent decoder behavior is dependent
on which syntax element is broken:

• SPS header is broken: return mfxStatus::MFX_ERR_INCOMPATIBLE_VIDEO_PARAM (HEVC decoder only,
AVC decoder uses last valid).

• PPS header is broken: re-sync, use last valid PPS for decoding.

• Slice header is broken: skip this slice, re-sync.

• Slice data is broken: corruption flags are set on output surface.

Many streams have IDR frames with frame_num != 0 while the specification says that “If the current picture is an
IDR picture, frame_num shall be equal to 0” (ITU-T H.265 7.4.3).

VUI is also validated, but errors do not invalidate the whole SPS. The decoder either does not use the corrupted VUI
(AVC) or resets incorrect values to default (HEVC).

Note: Some requirements are relaxed because there are many streams which violate the strict standard but can be
decoded without errors.

Corruption at the reference frame is spread over all inter-coded pictures that use the reference frame for prediction.
To cope with this problem you must either periodically insert I-frames (intra-coded) or use the intra-refresh technique.
The intra-refresh technique allows recovery from corruptions within a predefined time interval. The main point of
intra-refresh is to insert a cyclic intra-coded pattern (usually a row) of macroblocks into the inter-coded pictures, re-
stricting motion vectors accordingly. Intra-refresh is often used in combination with recovery point SEI, where the
recovery_frame_cnt is derived from the intra-refresh interval. The recovery point SEI message is well described
at ITU-T H.264 D.2.7 and ITU-T H.265 D.2.8. If decoding starts from AU associated with this SEI message, then
the message can be used by the decoder to determine from which picture all subsequent pictures have no errors. In
comparison to IDR, the recovery point message does not mark reference pictures as “unused for reference”.

Besides validation of syntax elements and their constraints, the decoder also uses various hints to handle broken streams:

• If there are no valid slices for the current frame, then the whole frame is skipped.

• The slices which violate slice segment header semantics (ITU-T H.265 7.4.7.1) are skipped. Only the
slice_temporal_mvp_enabled_flag is checked for now.

• Since LTR (Long Term Reference) stays at DPB until it is explicitly cleared by IDR or MMCO, the incorrect
LTR could cause long standing visual artifacts. AVC decoder uses the following approaches to handle this:

– When there is a DPB overflow in the case of an incorrect MMCO command that marks the reference picture
as LT, the operation is rolled back.

– An IDR frame with frame_num != 0 can’t be LTR.

• If the decoder detects frame gapping, it inserts “fake”’” (marked as non-existing) frames, updates Fra-
meNumWrap (ITU-T H.264 8.2.4.1) for reference frames, and applies the Sliding Window (ITU-T H.264 8.2.5.3)
marking process. Fake frames are marked as reference, but since they are marked as non-existing, they are not
used for inter-prediction.

10.3. Programming Guide 756

oneAPI Specification, Release 1.1-rev-1

VP8 Specific Details

Unlike other oneVPL supported decoders, VP8 can accept only a complete frame as input. The application should
provide the complete frame accompanied by the MFX_BITSTREAM_COMPLETE_FRAME flag. This is the single specific
difference.

JPEG

The application can use the same decoding procedures for JPEG/motion JPEG decoding, as shown in the following
pseudo code:

// optional; retrieve initialization parameters
MFXVideoDECODE_DecodeHeader(...);
// decoder initialization
MFXVideoDECODE_Init(...);
// single frame/picture decoding
MFXVideoDECODE_DecodeFrameAsync(...);
MFXVideoCORE_SyncOperation(...);
// optional; retrieve meta-data
MFXVideoDECODE_GetUserData(...);
// close
MFXVideoDECODE_Close(...);

The MFXVideoDECODE_Query() function will return mfxStatus::MFX_ERR_UNSUPPORTED if the input bitstream
contains unsupported features.

For still picture JPEG decoding, the input can be any JPEG bitstreams that conform to the ITU-T Recommendation
T.81 with an EXIF or JFIF header. For motion JPEG decoding, the input can be any JPEG bitstreams that conform to
the ITU-T Recommendation T.81.

Unlike other oneVPL decoders, JPEG decoding supports three different output color formats: NV12, YUY2, and RGB32.
This support sometimes requires internal color conversion and more complicated initialization. The color format of the
input bitstream is described by the mfxInfoMFX::JPEGChromaFormat and mfxInfoMFX::JPEGColorFormat fields.
The MFXVideoDECODE_DecodeHeader() function usually fills them in. If the JPEG bitstream does not contains color
format information, the application should provide it. Output color format is described by general oneVPL parameters:
the mfxFrameInfo::FourCC and mfxFrameInfo::ChromaFormat fields.

Motion JPEG supports interlaced content by compressing each field (a half-height frame) individually. This behavior
is incompatible with the rest of the oneVPL transcoding pipeline, where oneVPL requires fields to be in odd and even
lines of the same frame surface. The decoding procedure is modified as follows:

• The application calls the MFXVideoDECODE_DecodeHeader() function with the first field JPEG bitstream to
retrieve initialization parameters.

• The application initializes the oneVPL JPEG decoder with the following settings:

– The PicStruct field of the mfxVideoParam structure set to the correct interlaced type,
MFX_PICSTRUCT_FIELD_TFF or MFX_PICSTRUCT_FIELD_BFF, from the motion JPEG header.

– Double the Height field in the mfxVideoParam structure as the value returned by the
MFXVideoDECODE_DecodeHeader() function describes only the first field. The actual frame sur-
face should contain both fields.

• During decoding, the application sends both fields for decoding in the same mfxBitstream . The applica-
tion should also set mfxBitstream::DataFlag to MFX_BITSTREAM_COMPLETE_FRAME. oneVPL decodes both
fields and combines them into odd and even lines according to oneVPL convention.

10.3. Programming Guide 757

oneAPI Specification, Release 1.1-rev-1

By default, the MFXVideoDECODE_DecodeHeader() function returns the Rotation parameter so that after rotation,
the pixel at the first row and first column is at the top left. The application can overwrite the default rotation before
calling MFXVideoDECODE_Init().

The application may specify Huffman and quantization tables during decoder initialization by attaching
mfxExtJPEGQuantTables and mfxExtJPEGHuffmanTables buffers to the mfxVideoParam structure. In this case,
the decoder ignores tables from bitstream and uses the tables specified by the application. The application can also re-
trieve these tables by attaching the same buffers to mfxVideoParam and calling MFXVideoDECODE_GetVideoParam()
or MFXVideoDECODE_DecodeHeader() functions.

Multi-view Video Decoding

The oneVPL MVC decoder operates on complete MVC streams that contain all view and temporal configurations. The
application can configure the oneVPL decoder to generate a subset at the decoding output. To do this, the application
must understand the stream structure and use the stream information to configure the decoder for target views.

The decoder initialization procedure is as follows:

1. The application calls the MFXVideoDECODE_DecodeHeader() function to obtain the stream structural informa-
tion. This is done in two steps:

1. The application calls the MFXVideoDECODE_DecodeHeader() function with the mfxExtMVCSeqDesc
structure attached to the mfxVideoParam structure. At this point, do not allocate memory for the ar-
rays in the mfxExtMVCSeqDesc structure. Set the View, ViewId, and OP pointers to NULL and set
NumViewAlloc, NumViewIdAlloc, and NumOPAlloc to zero. The function parses the bitstream and re-
turns mfxStatus::MFX_ERR_NOT_ENOUGH_BUFFER with the correct values for NumView, NumViewId,
and NumOP. This step can be skipped if the application is able to obtain the NumView, NumViewId, and
NumOP values from other sources.

2. The application allocates memory for the View, ViewId, and OP arrays and calls the
MFXVideoDECODE_DecodeHeader() function again. The function returns the MVC structural in-
formation in the allocated arrays.

2. The application fills the mfxExtMVCTargetViews structure to choose the target views, based on information
described in the mfxExtMVCSeqDesc structure.

3. The application initializes the oneVPL decoder using the MFXVideoDECODE_Init() function. The applica-
tion must attach both the mfxExtMVCSeqDesc structure and the mfxExtMVCTargetViews structure to the
mfxVideoParam structure.

In the above steps, do not modify the values of the mfxExtMVCSeqDesc structure after the
MFXVideoDECODE_DecodeHeader() function, as the oneVPL decoder uses the values in the structure for internal
memory allocation. Once the application configures the oneVPL decoder, the rest of the decoding procedure remains
unchanged. As shown in the pseudo code below, the application calls the MFXVideoDECODE_DecodeFrameAsync()
function multiple times to obtain all target views of the current frame picture, one target view at a time. The target
view is identified by the FrameID field of the mfxFrameInfo structure.

1 mfxExtBuffer *eb[2];
2 mfxExtMVCSeqDesc seq_desc;
3 mfxVideoParam init_param;
4

5 init_param.ExtParam=(mfxExtBuffer **)&eb;
6 init_param.NumExtParam=1;
7 eb[0]=(mfxExtBuffer *)&seq_desc;
8 MFXVideoDECODE_DecodeHeader(session, bitstream, &init_param);
9

10 /* select views to decode */
(continues on next page)

10.3. Programming Guide 758

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

11 mfxExtMVCTargetViews tv;
12 init_param.NumExtParam=2;
13 eb[1]=(mfxExtBuffer *)&tv;
14

15 /* initialize decoder */
16 MFXVideoDECODE_Init(session, &init_param);
17

18 /* perform decoding */
19 for (;;) {
20 MFXVideoDECODE_DecodeFrameAsync(session, bits, work, &disp, &syncp);
21 disp->FrameInterface->Synchronize(disp, INFINITE); // or MFXVideoCORE_

→˓SyncOperation(session,syncp,INFINITE)
22 }
23

24 /* close decoder */
25 MFXVideoDECODE_Close(session);

Combined Decode with Multi-channel Video Processing

The oneVPL exposes interface for making decode and video processing operations in one call. Users can specify a
number of output processing channels and multiple video filters per each channel. This interface supports only internal
memory allocation model and returns array of processed frames through mfxSurfaceArray reference object as shown
by the example:

1 num_channel_par = 2;
2 // first video processing channel with resize
3 vpp_par_array[0]->VPP.Width = 400;
4 vpp_par_array[0]->VPP.Height = 400;
5

6 // second video channel with color conversion filter
7 vpp_par_array[1]->VPP.FourCC = MFX_FOURCC_UYVY;
8

9 sts = MFXVideoDECODE_VPP_Init(session, decode_par, vpp_par_array, num_channel_par);
10

11 sts = MFXVideoDECODE_VPP_DecodeFrameAsync(session, bitstream, NULL, 0, &surf_array_out);
12

13 //surf_array_out layout is
14 do_smth(surf_array_out->Surfaces[0]); //The first channel contains decoded frames.
15 do_smth(surf_array_out->Surfaces[1]); //The second channel contains resized frames after␣

→˓decode.
16 do_smth(surf_array_out->Surfaces[2]); //The third channel contains color converted␣

→˓frames after decode.

It’s possible that different video processing channels may have diffrent latency:

1 //1st call
2 sts = MFXVideoDECODE_VPP_DecodeFrameAsync(session, bitstream, NULL, 0, &surf_array_out);
3 //surf_array_out layout is
4 do_smth(surf_array_out->Surfaces[0]); //decoded frame
5 do_smth(surf_array_out->Surfaces[1]); //resized frame (ChannelId = 1). The first frame␣

→˓from channel with resize avialable
(continues on next page)

10.3. Programming Guide 759

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

6 // no output from channel with ADI output since it has one frame delay
7

8 //2nd call
9 sts = MFXVideoDECODE_VPP_DecodeFrameAsync(session, bitstream, NULL, 0, &surf_array_out);

10 //surf_array_out layout is
11 do_smth(surf_array_out->Surfaces[0]); //decoded frame
12 do_smth(surf_array_out->Surfaces[1]); //resized frame (ChannelId = 1)
13 do_smth(surf_array_out->Surfaces[2]); //ADI output (ChannelId = 2). The first frame from␣

→˓ADI channel

Application can match decoded frame w/ specific VPP channels using mfxFrameData::TimeStamp,
:cpp:member:mfxFrameData::FrameOrder` and mfxFrameInfo::ChannelId .

Application can skip some or all channels including decoding output with help of skip_channels and
num_skip_channels parameters as follows: application fills skip_channels array with ChannelId`s to disable output
of correspondent channels. In that case :cpp:member:`surf_array_out would contain only surfaces for the remaining
channels. If the decoder’s channel and/or impacted VPP channels don’t have output frame(s) for the current call (for in-
stance, input bitstream doesn’t contain complete frame or deinterlacing/FRC filter have delay) skip_channels parameter
is ignored for this channel.

If application disables all channels the SDK returns NULL as mfxSurfaceArray.

If application doesn’t need to disable any channels it sets num_skip_channels to zero, skip_channels is ignored when
num_skip_channels is zero.

Note: Even if more than one input compressed frame is consumed, the
MFXVideoDECODE_VPP_DecodeFrameAsync() produces only one decoded frame and correspondent frames
from VPP channels.

10.3.5 Encoding Procedures

There are two methods for shared memory allocation and handling in oneVPL: external and internal.

External Memory

The following pseudo code shows the encoding procedure with external memory (legacy mode):

1 MFXVideoENCODE_QueryIOSurf(session, &init_param, &request);
2 allocate_pool_of_frame_surfaces(request.NumFrameSuggested);
3 MFXVideoENCODE_Init(session, &init_param);
4 sts=MFX_ERR_MORE_DATA;
5 for (;;) {
6 if (sts==MFX_ERR_MORE_DATA && !end_of_stream()) {
7 find_unlocked_surface_from_the_pool(&surface);
8 fill_content_for_encoding(surface);
9 }

10 surface2=end_of_stream()?NULL:surface;
11 sts=MFXVideoENCODE_EncodeFrameAsync(session,NULL,surface2,bits,&syncp);
12 if (end_of_stream() && sts==MFX_ERR_MORE_DATA) break;
13 // Skipped other error handling
14 if (sts==MFX_ERR_NONE) {

(continues on next page)

10.3. Programming Guide 760

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

15 MFXVideoCORE_SyncOperation(session, syncp, INFINITE);
16 do_something_with_encoded_bits(bits);
17 }
18 }
19 MFXVideoENCODE_Close(session);
20 free_pool_of_frame_surfaces();

Note the following key points about the example:

• The application uses the MFXVideoENCODE_QueryIOSurf() function to obtain the number of working frame
surfaces required for reordering input frames.

• The application calls the MFXVideoENCODE_EncodeFrameAsync() function for the encoding operation. The
input frame must be in an unlocked frame surface from the frame surface pool. If the encoding output is not
available, the function returns the mfxStatus::MFX_ERR_MORE_DATA status code to request additional input
frames.

• Upon successful encoding, the MFXVideoENCODE_EncodeFrameAsync() function returns
mfxStatus::MFX_ERR_NONE. At this point, the encoded bitstream is not yet available because the
MFXVideoENCODE_EncodeFrameAsync() function is asynchronous. The application must use the
MFXVideoCORE_SyncOperation() function to synchronize the encoding operation before retrieving the
encoded bitstream.

• At the end of the stream, the application continuously calls the MFXVideoENCODE_EncodeFrameAsync() func-
tion with a NULL surface pointer to drain any remaining bitstreams cached within the oneVPL encoder, until the
function returns mfxStatus::MFX_ERR_MORE_DATA .

Note: It is the application’s responsibility to fill pixels outside of the crop window when it is smaller than the frame to
be encoded, especially in cases when crops are not aligned to minimum coding block size (16 for AVC and 8 for HEVC
and VP9).

Internal Memory

The following pseudo code shows the encoding procedure with internal memory:

1 MFXVideoENCODE_Init(session, &init_param);
2 sts=MFX_ERR_MORE_DATA;
3 for (;;) {
4 if (sts==MFX_ERR_MORE_DATA && !end_of_stream()) {
5 MFXMemory_GetSurfaceForEncode(session,&surface);
6 fill_content_for_encoding(surface);
7 }
8 surface2=end_of_stream()?NULL:surface;
9 sts=MFXVideoENCODE_EncodeFrameAsync(session,NULL,surface2,bits,&syncp);

10 if (surface2) surface->FrameInterface->Release(surface2);
11 if (end_of_stream() && sts==MFX_ERR_MORE_DATA) break;
12 // Skipped other error handling
13 if (sts==MFX_ERR_NONE) {
14 MFXVideoCORE_SyncOperation(session, syncp, INFINITE);
15 do_something_with_encoded_bits(bits);
16 }

(continues on next page)

10.3. Programming Guide 761

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

17 }
18 MFXVideoENCODE_Close(session);

There are several key differences in this example, compared to external memory (legacy mode):

• The application does not need to call the MFXVideoENCODE_QueryIOSurf() function to obtain the number of
working frame surfaces since allocation is done by oneVPL.

• The application calls the MFXMemory_GetSurfaceForEncode() function to get a free surface for the subsequent
encode operation.

• The application must call the mfxFrameSurfaceInterface::Release function to decrement the reference
counter of the obtained surface after the call to the MFXVideoENCODE_EncodeFrameAsync() function.

Configuration Change

The application changes configuration during encoding by calling the MFXVideoENCODE_Reset() function. Depend-
ing on the difference in configuration parameters before and after the change, the oneVPL encoder will either continue
the current sequence or start a new one. If the encoder starts a new sequence, it completely resets internal state and
begins a new sequence with the IDR frame.

The application controls encoder behavior during parameter change by attaching the mfxExtEncoderResetOption
structure to the mfxVideoParam structure during reset. By using this structure, the application instructs the encoder
to start or not start a new sequence after reset. In some cases, the request to continue the current sequence cannot be
satisfied and the encoder will fail during reset. To avoid this scenario, the application may query the reset outcome
before the actual reset by calling the MFXVideoENCODE_Query() function with the mfxExtEncoderResetOption
attached to the mfxVideoParam structure.

The application uses the following procedure to change encoding configurations:

1. The application retrieves any cached frames in the oneVPL encoder by calling the
MFXVideoENCODE_EncodeFrameAsync() function with a NULL input frame pointer until the function
returns mfxStatus::MFX_ERR_MORE_DATA .

2. The application calls the MFXVideoENCODE_Reset() function with the new configuration:

• If the function successfully sets the configuration, the application can continue encoding as usual.

• If the new configuration requires a new memory allocation, the function returns
mfxStatus::MFX_ERR_INCOMPATIBLE_VIDEO_PARAM . The application must close the oneVPL
encoder and reinitialize the encoding procedure with the new configuration.

External Bitrate Control

The application can make the encoder use the external Bitrate Control (BRC) instead of the native bitrate control.
To make the encoder use the external BRC, the application should attach the mfxExtCodingOption2 structure with
ExtBRC = MFX_CODINGOPTION_ON and the mfxExtBRC callback structure to the mfxVideoParam structure during
encoder initialization. The Init, Reset, and Close callbacks will be invoked inside their corresponding functions:
MFXVideoENCODE_Init(), MFXVideoENCODE_Reset(), and MFXVideoENCODE_Close(). The following figure
shows asynchronous encoding flow with external BRC (using GetFrameCtrl and Update):

Note: IntAsyncDepth is the oneVPL max internal asynchronous encoding queue size. It is always less than or equal
to mfxVideoParam::AsyncDepth .

The following pseudo code shows use of the external BRC:

10.3. Programming Guide 762

oneAPI Specification, Release 1.1-rev-1

Fig. 4: Asynchronous encoding flow with external BRC

10.3. Programming Guide 763

oneAPI Specification, Release 1.1-rev-1

1 #include "mfxvideo.h"
2 #include "mfxbrc.h"
3

4 typedef struct {
5 mfxU32 EncodedOrder;
6 mfxI32 QP;
7 mfxU32 MaxSize;
8 mfxU32 MinSize;
9 mfxU16 Status;

10 mfxU64 StartTime;
11 // ... skipped
12 } MyBrcFrame;
13

14 typedef struct {
15 MyBrcFrame* frame_queue;
16 mfxU32 frame_queue_size;
17 mfxU32 frame_queue_max_size;
18 mfxI32 max_qp[3]; //I,P,B
19 mfxI32 min_qp[3]; //I,P,B
20 // ... skipped
21 } MyBrcContext;
22

23 void* GetExtBuffer(mfxExtBuffer** ExtParam, mfxU16 NumExtParam, mfxU32 bufferID)
24 {
25 int i=0;
26 for(i = 0; i < NumExtParam; i++) {
27 if(ExtParam[i]->BufferId == bufferID) return ExtParam[i];
28 }
29 return NULL;
30 }
31

32 static int IsParametersSupported(mfxVideoParam *par)
33 {
34 UNUSED_PARAM(par);
35 // do some checks
36 return 1;
37 }
38

39 static int IsResetPossible(MyBrcContext* ctx, mfxVideoParam *par)
40 {
41 UNUSED_PARAM(ctx);
42 UNUSED_PARAM(par);
43 // do some checks
44 return 1;
45 }
46

47 static MyBrcFrame* GetFrame(MyBrcFrame *frame_queue, mfxU32 frame_queue_size, mfxU32␣
→˓EncodedOrder)

48 {
49 UNUSED_PARAM(EncodedOrder);
50 //do some logic
51 if(frame_queue_size) return &frame_queue[0];
52 return NULL;

(continues on next page)

10.3. Programming Guide 764

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

53 }
54

55 static mfxU32 GetFrameCost(mfxU16 FrameType, mfxU16 PyramidLayer)
56 {
57 UNUSED_PARAM(FrameType);
58 UNUSED_PARAM(PyramidLayer);
59 // calculate cost
60 return 1;
61 }
62

63 static mfxU32 GetMinSize(MyBrcContext *ctx, mfxU32 cost)
64 {
65 UNUSED_PARAM(ctx);
66 UNUSED_PARAM(cost);
67 // do some logic
68 return 1;
69 }
70

71 static mfxU32 GetMaxSize(MyBrcContext *ctx, mfxU32 cost)
72 {
73 UNUSED_PARAM(ctx);
74 UNUSED_PARAM(cost);
75 // do some logic
76 return 1;
77 }
78

79 static mfxI32 GetInitQP(MyBrcContext *ctx, mfxU32 MinSize, mfxU32 MaxSize, mfxU32␣
→˓cost)

80 {
81 UNUSED_PARAM(ctx);
82 UNUSED_PARAM(MinSize);
83 UNUSED_PARAM(MaxSize);
84 UNUSED_PARAM(cost);
85 // do some logic
86 return 1;
87 }
88

89 static mfxU64 GetTime()
90 {
91 mfxU64 wallClock = 0xFFFF;
92 return wallClock;
93 }
94

95 static void UpdateBRCState(mfxU32 CodedFrameSize, MyBrcContext *ctx)
96 {
97 UNUSED_PARAM(CodedFrameSize);
98 UNUSED_PARAM(ctx);
99 return;

100 }
101

102 static void RemoveFromQueue(MyBrcFrame* frame_queue, mfxU32 frame_queue_size,␣
→˓MyBrcFrame* frame)

(continues on next page)

10.3. Programming Guide 765

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

103 {
104 UNUSED_PARAM(frame_queue);
105 UNUSED_PARAM(frame_queue_size);
106 UNUSED_PARAM(frame);
107 return;
108 }
109

110 static mfxU64 GetMaxFrameEncodingTime(MyBrcContext *ctx)
111 {
112 UNUSED_PARAM(ctx);
113 return 2;
114 }
115

116 mfxStatus MyBrcInit(mfxHDL pthis, mfxVideoParam* par) {
117 MyBrcContext* ctx = (MyBrcContext*)pthis;
118 mfxI32 QpBdOffset;
119 mfxExtCodingOption2* co2;
120 mfxI32 defaultQP = 4;
121

122 if (!pthis || !par)
123 return MFX_ERR_NULL_PTR;
124

125 if (!IsParametersSupported(par))
126 return MFX_ERR_UNSUPPORTED;
127

128 ctx->frame_queue_max_size = par->AsyncDepth;
129 ctx->frame_queue = (MyBrcFrame*)malloc(sizeof(MyBrcFrame) * ctx->frame_queue_max_

→˓size);
130

131 if (!ctx->frame_queue)
132 return MFX_ERR_MEMORY_ALLOC;
133

134 co2 = (mfxExtCodingOption2*)GetExtBuffer(par->ExtParam, par->NumExtParam, MFX_
→˓EXTBUFF_CODING_OPTION2);

135 QpBdOffset = (par->mfx.FrameInfo.BitDepthLuma > 8) ? (6 * (par->mfx.FrameInfo.
→˓BitDepthLuma - 8)) : 0;

136

137 ctx->max_qp[0] = (co2 && co2->MaxQPI) ? (co2->MaxQPI - QpBdOffset) : defaultQP;
138 ctx->min_qp[0] = (co2 && co2->MinQPI) ? (co2->MinQPI - QpBdOffset) : defaultQP;
139

140 ctx->max_qp[1] = (co2 && co2->MaxQPP) ? (co2->MaxQPP - QpBdOffset) : defaultQP;
141 ctx->min_qp[1] = (co2 && co2->MinQPP) ? (co2->MinQPP - QpBdOffset) : defaultQP;
142

143 ctx->max_qp[2] = (co2 && co2->MaxQPB) ? (co2->MaxQPB - QpBdOffset) : defaultQP;
144 ctx->min_qp[2] = (co2 && co2->MinQPB) ? (co2->MinQPB - QpBdOffset) : defaultQP;
145

146 // skipped initialization of other other BRC parameters
147

148 ctx->frame_queue_size = 0;
149

150 return MFX_ERR_NONE;
151 }

(continues on next page)

10.3. Programming Guide 766

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

152

153 mfxStatus MyBrcReset(mfxHDL pthis, mfxVideoParam* par) {
154 MyBrcContext* ctx = (MyBrcContext*)pthis;
155

156 if (!pthis || !par)
157 return MFX_ERR_NULL_PTR;
158

159 if (!IsParametersSupported(par))
160 return MFX_ERR_UNSUPPORTED;
161

162 if (!IsResetPossible(ctx, par))
163 return MFX_ERR_INCOMPATIBLE_VIDEO_PARAM;
164

165 // reset here BRC parameters if required
166

167 return MFX_ERR_NONE;
168 }
169

170 mfxStatus MyBrcClose(mfxHDL pthis) {
171 MyBrcContext* ctx = (MyBrcContext*)pthis;
172

173 if (!pthis)
174 return MFX_ERR_NULL_PTR;
175

176 if (ctx->frame_queue) {
177 free(ctx->frame_queue);
178 ctx->frame_queue = NULL;
179 ctx->frame_queue_max_size = 0;
180 ctx->frame_queue_size = 0;
181 }
182

183 return MFX_ERR_NONE;
184 }
185

186 mfxStatus MyBrcGetFrameCtrl(mfxHDL pthis, mfxBRCFrameParam* par, mfxBRCFrameCtrl*␣
→˓ctrl) {

187 MyBrcContext* ctx = (MyBrcContext*)pthis;
188 MyBrcFrame* frame = NULL;
189 mfxU32 cost;
190

191 if (!pthis || !par || !ctrl)
192 return MFX_ERR_NULL_PTR;
193

194 if (par->NumRecode > 0)
195 frame = GetFrame(ctx->frame_queue, ctx->frame_queue_size, par->EncodedOrder);
196 else if (ctx->frame_queue_size < ctx->frame_queue_max_size)
197 frame = &ctx->frame_queue[ctx->frame_queue_size++];
198

199 if (!frame)
200 return MFX_ERR_UNDEFINED_BEHAVIOR;
201

202 if (par->NumRecode == 0) {

(continues on next page)

10.3. Programming Guide 767

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

203 frame->EncodedOrder = par->EncodedOrder;
204 cost = GetFrameCost(par->FrameType, par->PyramidLayer);
205 frame->MinSize = GetMinSize(ctx, cost);
206 frame->MaxSize = GetMaxSize(ctx, cost);
207 frame->QP = GetInitQP(ctx, frame->MinSize, frame->MaxSize, cost); // from QP/

→˓size stat
208 frame->StartTime = GetTime();
209 }
210

211 ctrl->QpY = frame->QP;
212

213 return MFX_ERR_NONE;
214 }
215

216 #define DEFAULT_QP_INC 4
217 #define DEFAULT_QP_DEC 4
218

219 mfxStatus MyBrcUpdate(mfxHDL pthis, mfxBRCFrameParam* par, mfxBRCFrameCtrl* ctrl,␣
→˓mfxBRCFrameStatus* status) {

220 MyBrcContext* ctx = (MyBrcContext*)pthis;
221 MyBrcFrame* frame = NULL;
222 mfxU32 panic = 0;
223

224 if (!pthis || !par || !ctrl || !status)
225 return MFX_ERR_NULL_PTR;
226

227 frame = GetFrame(ctx->frame_queue, ctx->frame_queue_size, par->EncodedOrder);
228 if (!frame)
229 return MFX_ERR_UNDEFINED_BEHAVIOR;
230

231 // update QP/size stat here
232

233 if (frame->Status == MFX_BRC_PANIC_BIG_FRAME
234 || frame->Status == MFX_BRC_PANIC_SMALL_FRAME)
235 panic = 1;
236

237 if (panic || (par->CodedFrameSize >= frame->MinSize && par->CodedFrameSize <=␣
→˓frame->MaxSize)) {

238 UpdateBRCState(par->CodedFrameSize, ctx);
239 RemoveFromQueue(ctx->frame_queue, ctx->frame_queue_size, frame);
240 ctx->frame_queue_size--;
241 status->BRCStatus = MFX_BRC_OK;
242

243 // Here update Min/MaxSize for all queued frames
244

245 return MFX_ERR_NONE;
246 }
247

248 panic = ((GetTime() - frame->StartTime) >= GetMaxFrameEncodingTime(ctx));
249

250 if (par->CodedFrameSize > frame->MaxSize) {
251 if (panic || (frame->QP >= ctx->max_qp[0])) {

(continues on next page)

10.3. Programming Guide 768

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

252 frame->Status = MFX_BRC_PANIC_BIG_FRAME;
253 } else {
254 frame->Status = MFX_BRC_BIG_FRAME;
255 frame->QP = DEFAULT_QP_INC;
256 }
257 }
258

259 if (par->CodedFrameSize < frame->MinSize) {
260 if (panic || (frame->QP <= ctx->min_qp[0])) {
261 frame->Status = MFX_BRC_PANIC_SMALL_FRAME;
262 status->MinFrameSize = frame->MinSize;
263 } else {
264 frame->Status = MFX_BRC_SMALL_FRAME;
265 frame->QP = DEFAULT_QP_DEC;
266 }
267 }
268

269 status->BRCStatus = frame->Status;
270

271 return MFX_ERR_NONE;
272 }
273

274 void EncoderInit()
275 {
276 //initialize encoder
277 MyBrcContext brc_ctx;
278 mfxExtBRC ext_brc;
279 mfxExtCodingOption2 co2;
280 mfxExtBuffer* ext_buf[2] = {&co2.Header, &ext_brc.Header};
281 mfxVideoParam vpar;
282

283 memset(&brc_ctx, 0, sizeof(MyBrcContext));
284 memset(&ext_brc, 0, sizeof(mfxExtBRC));
285 memset(&co2, 0, sizeof(mfxExtCodingOption2));
286

287 vpar.ExtParam = ext_buf;
288 vpar.NumExtParam = sizeof(ext_buf) / sizeof(ext_buf[0]);
289

290 co2.Header.BufferId = MFX_EXTBUFF_CODING_OPTION2;
291 co2.Header.BufferSz = sizeof(mfxExtCodingOption2);
292 co2.ExtBRC = MFX_CODINGOPTION_ON;
293

294 ext_brc.Header.BufferId = MFX_EXTBUFF_BRC;
295 ext_brc.Header.BufferSz = sizeof(mfxExtBRC);
296 ext_brc.pthis = &brc_ctx;
297 ext_brc.Init = MyBrcInit;
298 ext_brc.Reset = MyBrcReset;
299 ext_brc.Close = MyBrcClose;
300 ext_brc.GetFrameCtrl = MyBrcGetFrameCtrl;
301 ext_brc.Update = MyBrcUpdate;
302

303 sts = MFXVideoENCODE_Query(session, &vpar, &vpar);

(continues on next page)

10.3. Programming Guide 769

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

304 if (sts == MFX_ERR_UNSUPPORTED || co2.ExtBRC != MFX_CODINGOPTION_ON)
305 // unsupported case
306 sts = sts;
307 else
308 sts = MFXVideoENCODE_Init(session, &vpar);
309 }

JPEG

The application can use the same encoding procedures for JPEG/motion JPEG encoding, as shown in the following
pseudo code:

// encoder initialization
MFXVideoENCODE_Init (...);
// single frame/picture encoding
MFXVideoENCODE_EncodeFrameAsync (...);
MFXVideoCORE_SyncOperation(...);
// close down
MFXVideoENCODE_Close(...);

The application may specify Huffman and quantization tables during encoder initialization by attaching
mfxExtJPEGQuantTables and mfxExtJPEGHuffmanTables buffers to the mfxVideoParam structure. If the ap-
plication does not define tables, then the oneVPL encoder uses tables recommended in ITU-T* Recommendation T.81.
If the application does not define a quantization table it must specify the mfxInfoMFX::Quality parameter. In this
case, the oneVPL encoder scales the default quantization table according to the specified mfxInfoMFX::Quality
parameter value.

The application should properly configure chroma sampling format and color format using the
mfxFrameInfo::FourCC and mfxFrameInfo::ChromaFormat fields. For example, to encode a 4:2:2 verti-
cally sampled YCbCr picture, the application should set mfxFrameInfo::FourCC to MFX_FOURCC_YUY2 and
mfxFrameInfo::ChromaFormat to MFX_CHROMAFORMAT_YUV422V . To encode a 4:4:4 sampled RGB picture, the
application should set mfxFrameInfo::FourCC to MFX_FOURCC_RGB4 and mfxFrameInfo::ChromaFormat to
MFX_CHROMAFORMAT_YUV444.

The oneVPL encoder supports different sets of chroma sampling and color formats on different platforms. The
application must call the MFXVideoENCODE_Query() function to check if the required color format is sup-
ported on a given platform and then initialize the encoder with proper values of mfxFrameInfo::FourCC and
mfxFrameInfo::ChromaFormat.

The application should not define the number of scans and number of components. These numbers are derived by the
oneVPL encoder from the mfxInfoMFx::Interleaved flag and from chroma type. If interleaved coding is specified,
then one scan is encoded that contains all image components. Otherwise, the number of scans is equal to number of
components. The encoder uses the following component IDs: “1” for luma (Y), “2” for chroma Cb (U), and “3” for
chroma Cr (V).

The application should allocate a buffer that is big enough to hold the encoded picture. A rough upper limit may be
calculated using the following equation where Width and Height are width and height of the picture in pixel and
BytesPerPx is the number of bytes for one pixel:

BufferSizeInKB = 4 + (Width * Height * BytesPerPx + 1023) / 1024;

The equation equals 1 for a monochrome picture, 1.5 for NV12 and YV12 color formats, 2 for YUY2 color format, and
3 for RGB32 color format (alpha channel is not encoded).

10.3. Programming Guide 770

oneAPI Specification, Release 1.1-rev-1

Multi-view Video Encoding

Similar to the decoding and video processing initialization procedures, the application attaches the mfxExtMVCSeqDesc
structure to the mfxVideoParam structure for encoding initialization. The mfxExtMVCSeqDesc structure configures
the oneVPL MVC encoder to work in three modes:

• Default dependency mode: The application specifies mfxExtMVCSeqDesc::NumView and all other fields to
zero. The oneVPL encoder creates a single operation point with all views (view identifier 0 : NumView-1) as
target views. The first view (view identifier 0) is the base view. Other views depend on the base view.

• Explicit dependency mode: The application specifies mfxExtMVCSeqDesc::NumView and the view depen-
dency array, and sets all other fields to zero. The oneVPL encoder creates a single operation point with all views
(view identifier View[0 : NumView-1].ViewId) as target views. The first view (view identifier View[0].ViewId)
is the base view. View dependencies are defined as mfxMVCViewDependency structures.

• Complete mode: The application fully specifies the views and their dependencies. The oneVPL encoder gener-
ates a bitstream with corresponding stream structures.

During encoding, the oneVPL encoding function MFXVideoENCODE_EncodeFrameAsync() accumulates input
frames until encoding of a picture is possible. The function returns mfxStatus::MFX_ERR_MORE_DATA
for more data at input or mfxStatus::MFX_ERR_NONE if it successfully accumulated enough data for en-
coding a picture. The generated bitstream contains the complete picture (multiple views). The applica-
tion can change this behavior and instruct the encoder to output each view in a separate bitstream buffer.
To do so, the application must turn on the mfxExtCodingOption::ViewOutput flag. In this case, the
encoder returns mfxStatus::MFX_ERR_MORE_BITSTREAM if it needs more bitstream buffers at output and
mfxStatus::MFX_ERR_NONE when processing of the picture (multiple views) has been finished. It is recommended
that the application provide a new input frame each time the oneVPL encoder requests a new bitstream buffer. The
application must submit view data for encoding in the order they are described in the mfxExtMVCSeqDesc structure.
Particular view data can be submitted for encoding only when all views that it depends upon have already been sub-
mitted.

The following pseudo code shows the encoding procedure:

1 mfxExtBuffer *eb;
2 mfxExtMVCSeqDesc seq_desc;
3 mfxVideoParam init_param;
4

5 init_param.ExtParam=(mfxExtBuffer **)&eb;
6 init_param.NumExtParam=1;
7 eb=(mfxExtBuffer *)&seq_desc;
8

9 /* init encoder */
10 MFXVideoENCODE_Init(session, &init_param);
11

12 /* perform encoding */
13 for (;;) {
14 MFXVideoENCODE_EncodeFrameAsync(session, NULL, surface2, bits,
15 &syncp);
16 MFXVideoCORE_SyncOperation(session,syncp,INFINITE);
17 }
18

19 /* close encoder */
20 MFXVideoENCODE_Close(session);

10.3. Programming Guide 771

oneAPI Specification, Release 1.1-rev-1

10.3.6 Video Processing Procedures

The following pseudo code shows the video processing procedure:

1 MFXVideoVPP_QueryIOSurf(session, &init_param, response);
2 allocate_pool_of_surfaces(in_pool, response[0].NumFrameSuggested);
3 allocate_pool_of_surfaces(out_pool, response[1].NumFrameSuggested);
4 MFXVideoVPP_Init(session, &init_param);
5 mfxFrameSurface1 *in=find_unlocked_surface_and_fill_content(in_pool);
6 mfxFrameSurface1 *out=find_unlocked_surface_from_the_pool(out_pool);
7 for (;;) {
8 sts=MFXVideoVPP_RunFrameVPPAsync(session,in,out,NULL,&syncp);
9 if (sts==MFX_ERR_MORE_SURFACE || sts==MFX_ERR_NONE) {

10 MFXVideoCORE_SyncOperation(session,syncp,INFINITE);
11 process_output_frame(out);
12 out=find_unlocked_surface_from_the_pool(out_pool);
13 }
14 if (sts==MFX_ERR_MORE_DATA && in==NULL)
15 break;
16 if (sts==MFX_ERR_NONE || sts==MFX_ERR_MORE_DATA) {
17 in=find_unlocked_surface_from_the_pool(in_pool);
18 fill_content_for_video_processing(in);
19 if (end_of_stream())
20 in=NULL;
21 }
22 }
23 MFXVideoVPP_Close(session);
24 free_pool_of_surfaces(in_pool);
25 free_pool_of_surfaces(out_pool);

Note the following key points about the example:

• The application uses the MFXVideoVPP_QueryIOSurf() function to obtain the number of frame surfaces needed
for input and output. The application must allocate two frame surface pools: one for the input and one for the
output.

• The video processing function MFXVideoVPP_RunFrameVPPAsync() is asynchronous. The application must
use the MFXVideoCORE_SyncOperation() function to synchronize in order to make the output result ready.

• The body of the video processing procedure covers the following three scenarios:

– If the number of frames consumed at input is equal to the number of frames generated at output, VPP
returns mfxStatus::MFX_ERR_NONE when an output is ready. The application must process the output
frame after synchronization, as the MFXVideoVPP_RunFrameVPPAsync() function is asynchronous. The
application must provide a NULL input at the end of the sequence to drain any remaining frames.

– If the number of frames consumed at input is more than the number of frames generated at output, VPP
returns mfxStatus::MFX_ERR_MORE_DATA for additional input until an output is ready. When the output
is ready, VPP returns mfxStatus::MFX_ERR_NONE. The application must process the output frame after
synchronization and provide a NULL input at the end of the sequence to drain any remaining frames.

– If the number of frames consumed at input is less than the number of frames generated at output,
VPP returns either mfxStatus::MFX_ERR_MORE_SURFACE (when more than one output is ready), or
mfxStatus::MFX_ERR_NONE (when one output is ready and VPP expects new input). In both cases, the
application must process the output frame after synchronization and provide a NULL input at the end of
the sequence to drain any remaining frames.

10.3. Programming Guide 772

oneAPI Specification, Release 1.1-rev-1

Configuration

oneVPL configures the video processing pipeline operation based on the difference between the input and output for-
mats, specified in the mfxVideoParam structure. The following list shows several examples:

• When the input color format is YUY2 and the output color format is NV12, oneVPL enables color conversion
from YUY2 to NV12.

• When the input is interleaved and the output is progressive, oneVPL enables deinterlacing.

• When the input is single field and the output is interlaced or progressive, oneVPL enables field weaving, optionally
with deinterlacing.

• When the input is interlaced and the output is single field, oneVPL enables field splitting.

In addition to specifying the input and output formats, the application can provide hints to fine-tune the video processing
pipeline operation. The application can disable filters in the pipeline by using the mfxExtVPPDoNotUse structure,
enable filters by using the mfxExtVPPDoUse structure, and configure filters by using dedicated configuration structures.
See the Configurable VPP Filters table for a complete list of configurable video processing filters, their IDs, and
configuration structures. See the ExtendedBufferID enumerator for more details.

oneVPL ensures that all filters necessary to convert the input format to the output format are included in the pipeline.
oneVPL may skip some optional filters even if they are explicitly requested by the application, for example due to
limitations of the underlying hardware. To notify the application about skipped optional filters, oneVPL returns the
mfxStatus::MFX_WRN_FILTER_SKIPPED warning. The application can retrieve the list of active filters by attaching
the mfxExtVPPDoUse structure to the mfxVideoParam structure and calling the MFXVideoVPP_GetVideoParam()
function. The application must allocate enough memory for the filter list.

See the Configurable VPP Filters table for a full list of configurable filters.

Table 6: Configurable VPP Filters
Filter ID Configuration Structure
MFX_EXTBUFF_VPP_DENOISE mfxExtVPPDenoise
MFX_EXTBUFF_VPP_DENOISE2 mfxExtVPPDenoise2
MFX_EXTBUFF_VPP_MCTF mfxExtVppMctf
MFX_EXTBUFF_VPP_DETAIL mfxExtVPPDetail
MFX_EXTBUFF_VPP_FRAME_RATE_CONVERSION mfxExtVPPFrameRateConversion
MFX_EXTBUFF_VPP_IMAGE_STABILIZATION mfxExtVPPImageStab
MFX_EXTBUFF_VPP_PROCAMP mfxExtVPPProcAmp
MFX_EXTBUFF_VPP_FIELD_PROCESSING mfxExtVPPFieldProcessing
MFX_EXTBUFF_VPP_3DLUT mfxExtVPP3DLut

The following example shows video processing configuration:

1 /* enable image stabilization filter with default settings */
2 mfxExtVPPDoUse du;
3 mfxU32 al=MFX_EXTBUFF_VPP_IMAGE_STABILIZATION;
4

5 du.Header.BufferId=MFX_EXTBUFF_VPP_DOUSE;
6 du.Header.BufferSz=sizeof(mfxExtVPPDoUse);
7 du.NumAlg=1;
8 du.AlgList=&al;
9

10 /* configure the mfxVideoParam structure */
11 mfxVideoParam conf;
12 mfxExtBuffer *eb=(mfxExtBuffer *)&du;

(continues on next page)

10.3. Programming Guide 773

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

13

14 memset(&conf,0,sizeof(conf));
15 conf.IOPattern=MFX_IOPATTERN_IN_SYSTEM_MEMORY | MFX_IOPATTERN_OUT_SYSTEM_MEMORY;
16 conf.NumExtParam=1;
17 conf.ExtParam=&eb;
18

19 conf.vpp.In.FourCC=MFX_FOURCC_YV12;
20 conf.vpp.Out.FourCC=MFX_FOURCC_NV12;
21 conf.vpp.In.Width=conf.vpp.Out.Width=1920;
22 conf.vpp.In.Height=conf.vpp.Out.Height=1088;
23

24 /* video processing initialization */
25 MFXVideoVPP_Init(session, &conf);

Region of Interest

During video processing operations, the application can specify a region of interest for each frame as shown in the
following figure:

Fig. 5: VPP region of interest operation

Specifying a region of interest guides the resizing function to achieve special effects, such as resizing from 16:9 to 4:3,
while keeping the aspect ratio intact. Use the CropX, CropY, CropW, and CropH parameters in the mfxVideoParam
structure to specify a region of interest.

The VPP Region of Interest Operations table shows examples of VPP operations applied to a region of interest.

10.3. Programming Guide 774

oneAPI Specification, Release 1.1-rev-1

Table 7: VPP Region of Interest Operations

Operation VPP Input
Width X
Height

VPP Input
CropX, CropY,
CropW, CropH

VPP Output
Width X
Height

VPP Output
CropX, CropY,
CropW, CropH

Cropping 720 x 480 16, 16, 688, 448 720 x 480 16, 16, 688, 448
Resizing 720 x 480 0, 0, 720, 480 1440 x 960 0, 0, 1440, 960
Horizontal stretching 720 x 480 0, 0, 720, 480 640 x 480 0, 0, 640, 480
16:9 4:3 with letter boxing at the
top and bottom

1920 x 1088 0, 0, 1920, 1088 720 x 480 0, 36, 720, 408

4:3 16:9 with pillar boxing at the
left and right

720 x 480 0, 0, 720, 480 1920 x 1088 144, 0, 1632, 1088

Multi-view Video Processing

oneVPL video processing supports processing multiple views. For video processing initialization, the application
needs to attach the mfxExtMVCSeqDesc structure to the mfxVideoParam structure and call the MFXVideoVPP_Init()
function. The function saves the view identifiers. During video processing, oneVPL processes each view individually.
oneVPL refers to the FrameID field of the mfxFrameInfo structure to configure each view according to its processing
pipeline. If the video processing source frame is not the output from the oneVPL MVC decoder, then the application
needs to fill the the FrameID field before calling the MFXVideoVPP_RunFrameVPPAsync() function. This is shown
in the following pseudo code:

1 mfxExtBuffer *eb;
2 mfxExtMVCSeqDesc seq_desc;
3 mfxVideoParam init_param;
4

5 init_param.ExtParam = &eb;
6 init_param.NumExtParam=1;
7 eb=(mfxExtBuffer *)&seq_desc;
8

9 /* init VPP */
10 MFXVideoVPP_Init(session, &init_param);
11

12 /* perform processing */
13 for (;;) {
14 MFXVideoVPP_RunFrameVPPAsync(session,in,out,NULL,&syncp);
15 MFXVideoCORE_SyncOperation(session,syncp,INFINITE);
16 }
17

18 /* close VPP */
19 MFXVideoVPP_Close(session);

10.3. Programming Guide 775

oneAPI Specification, Release 1.1-rev-1

Video Processing 3DLUT

oneVPL video processing supports 3DLUT with Intel HW specific memory layout. The following pseudo code shows
how to create a MFX_3DLUT_MEMORY_LAYOUT_INTEL_65LUT 3DLUT surface.

1 VADisplay va_dpy = 0;
2 VASurfaceID surface_id = 0;
3

4 vaInitialize(va_dpy, NULL, NULL);
5

6 // MFX_3DLUT_MEMORY_LAYOUT_INTEL_65LUT indicate 65*65*128*8bytes.
7 mfxU32 seg_size = 65, mul_size = 128;
8 mfxMemId memId = 0;
9

10 // create 3DLUT surface (MFX_3DLUT_MEMORY_LAYOUT_INTEL_65LUT)
11 VASurfaceAttrib surface_attrib = {};
12 surface_attrib.type = VASurfaceAttribPixelFormat;
13 surface_attrib.flags = VA_SURFACE_ATTRIB_SETTABLE;
14 surface_attrib.value.type = VAGenericValueTypeInteger;
15 surface_attrib.value.value.i = VA_FOURCC_RGBA;
16

17 vaCreateSurfaces(va_dpy,
18 VA_RT_FORMAT_RGB32, // 4 bytes
19 seg_size * mul_size, // 65*128
20 seg_size * 2, // 65*2
21 &surface_id,
22 1,
23 &surface_attrib,
24 1);
25

26 *((VASurfaceID*)memId) = surface_id;
27

28 // configure 3DLUT parameters
29 mfxExtVPP3DLut lut3DConfig;
30 memset(&lut3DConfig, 0, sizeof(lut3DConfig));
31 lut3DConfig.Header.BufferId = MFX_EXTBUFF_VPP_3DLUT;
32 lut3DConfig.Header.BufferSz = sizeof(mfxExtVPP3DLut);
33 lut3DConfig.ChannelMapping = MFX_3DLUT_CHANNEL_MAPPING_RGB_RGB;
34 lut3DConfig.BufferType = MFX_RESOURCE_VA_SURFACE;
35 lut3DConfig.VideoBuffer.DataType = MFX_DATA_TYPE_U16;
36 lut3DConfig.VideoBuffer.MemLayout = MFX_3DLUT_MEMORY_LAYOUT_INTEL_65LUT;
37 lut3DConfig.VideoBuffer.MemId = memId;
38

39 // release 3DLUT surface
40 vaDestroySurfaces(va_dpy, &surface_id, 1);

The following pseudo code shows how to create a system memory mfx3DLutSystemBuffer 3DLUT surface.

1 // 64 size 3DLUT
2 mfxU8 dataR[64], dataG[64], dataB[64];
3 mfxChannel channelR, channelG, channelB;
4 channelR.DataType = MFX_DATA_TYPE_U8;
5 channelR.Size = 64;
6 channelR.Data = dataR;

(continues on next page)

10.3. Programming Guide 776

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

7 channelG.DataType = MFX_DATA_TYPE_U8;
8 channelG.Size = 64;
9 channelG.Data = dataG;

10 channelB.DataType = MFX_DATA_TYPE_U8;
11 channelB.Size = 64;
12 channelB.Data = dataB;
13

14 // configure 3DLUT parameters
15 mfxExtVPP3DLut lut3DConfig;
16 memset(&lut3DConfig, 0, sizeof(lut3DConfig));
17 lut3DConfig.Header.BufferId = MFX_EXTBUFF_VPP_3DLUT;
18 lut3DConfig.Header.BufferSz = sizeof(mfxExtVPP3DLut);
19 lut3DConfig.ChannelMapping = MFX_3DLUT_CHANNEL_MAPPING_RGB_RGB;
20 lut3DConfig.BufferType = MFX_RESOURCE_SYSTEM_SURFACE;
21 lut3DConfig.SystemBuffer.Channel[0] = channelR;
22 lut3DConfig.SystemBuffer.Channel[1] = channelG;
23 lut3DConfig.SystemBuffer.Channel[2] = channelB;

HDR Tone Mapping

oneVPL video processing supports HDR Tone Mapping with Intel HW. The following pseudo code shows how to
perform HDR Tone Mapping.

The following pseudo code shows HDR to SDR.

1 // HDR to SDR (e.g P010 HDR signal -> NV12 SDR signal) in transcoding pipeline
2 // Attach input external buffers as the below for HDR input. SDR is by default, hence no
3 // extra output external buffer.
4 // The input Video Signal Information
5 mfxExtVideoSignalInfo inSignalInfo = {};
6 inSignalInfo.Header.BufferId = MFX_EXTBUFF_VIDEO_SIGNAL_INFO_IN;
7 inSignalInfo.Header.BufferSz = sizeof(mfxExtVideoSignalInfo);
8 inSignalInfo.VideoFullRange = 0; // Limited range P010
9 inSignalInfo.ColourPrimaries = 9; // BT.2020

10 inSignalInfo.TransferCharacteristics = 16; // ST2084
11

12 // The content Light Level Information
13 mfxExtContentLightLevelInfo inContentLight = {};
14 inContentLight.Header.BufferId = MFX_EXTBUFF_CONTENT_LIGHT_LEVEL_INFO;
15 inContentLight.Header.BufferSz = sizeof(mfxExtContentLightLevelInfo);
16 inContentLight.MaxContentLightLevel = 4000; // nits
17 inContentLight.MaxPicAverageLightLevel = 1000; // nits
18

19 // The mastering display colour volume
20 mfxExtMasteringDisplayColourVolume inColourVolume = {};
21 inColourVolume.Header.BufferId = MFX_EXTBUFF_MASTERING_DISPLAY_COLOUR_VOLUME_IN;
22 inColourVolume.Header.BufferSz = sizeof(mfxExtMasteringDisplayColourVolume);
23 // Based on the needs, Please set DisplayPrimaryX/Y[3], WhitePointX/Y, and␣

→˓MaxDisplayMasteringLuminance,
24 // MinDisplayMasteringLuminance
25

(continues on next page)

10.3. Programming Guide 777

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

26 mfxExtBuffer *ExtBufferIn[3];
27 ExtBufferIn[0] = (mfxExtBuffer *)&inSignalInfo;
28 ExtBufferIn[1] = (mfxExtBuffer *)&inContentLight;
29 ExtBufferIn[2] = (mfxExtBuffer *)&inColourVolume;
30

31 mfxSession session = (mfxSession)0;
32 mfxVideoParam VPPParams = {};
33 VPPParams.NumExtParam = 3;
34 VPPParams.ExtParam = (mfxExtBuffer **)&ExtBufferIn[0];
35 MFXVideoVPP_Init(session, &VPPParams);

The following pseudo code shows SDR to HDR.

1 // SDR to HDR (e.g NV12 SDR signal -> P010 HDR signal) in transcoding pipeline
2 // Attach output external buffers as the below for HDR output. SDR is by default, hence␣

→˓no
3 // extra input external buffer.
4 // The output Video Signal Information
5 mfxExtVideoSignalInfo outSignalInfo = {};
6 outSignalInfo.Header.BufferId = MFX_EXTBUFF_VIDEO_SIGNAL_INFO_OUT;
7 outSignalInfo.Header.BufferSz = sizeof(mfxExtVideoSignalInfo);
8 outSignalInfo.VideoFullRange = 0; // Limited range P010
9 outSignalInfo.ColourPrimaries = 9; // BT.2020

10 outSignalInfo.TransferCharacteristics = 16; // ST2084
11

12 // The mastering display colour volume
13 mfxExtMasteringDisplayColourVolume outColourVolume = {};
14 outColourVolume.Header.BufferId = MFX_EXTBUFF_MASTERING_DISPLAY_COLOUR_VOLUME_OUT;
15 outColourVolume.Header.BufferSz = sizeof(mfxExtMasteringDisplayColourVolume);
16 // Based on the needs, Please set DisplayPrimaryX/Y[3], WhitePointX/Y, and␣

→˓MaxDisplayMasteringLuminance,
17 // MinDisplayMasteringLuminance
18

19 mfxExtBuffer *ExtBufferOut[2];
20 ExtBufferOut[0] = (mfxExtBuffer *)&outSignalInfo;
21 ExtBufferOut[2] = (mfxExtBuffer *)&outColourVolume;
22

23 mfxSession session = (mfxSession)0;
24 mfxVideoParam VPPParams = {};
25 VPPParams.NumExtParam = 2;
26 VPPParams.ExtParam = (mfxExtBuffer **)&ExtBufferOut[0];
27 MFXVideoVPP_Init(session, &VPPParams);

The following pseudo code shows HDR to HDR.

1 // HDR to HDR (e.g P010 HDR signal -> P010 HDR signal) in transcoding pipeline
2 // Attach in/output external buffers as the below for HDR input/output.
3 // The input Video Signal Information
4 mfxExtVideoSignalInfo inSignalInfo = {};
5 inSignalInfo.Header.BufferId = MFX_EXTBUFF_VIDEO_SIGNAL_INFO_IN;
6 inSignalInfo.Header.BufferSz = sizeof(mfxExtVideoSignalInfo);
7 inSignalInfo.VideoFullRange = 0; // Limited range P010

(continues on next page)

10.3. Programming Guide 778

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

8 inSignalInfo.ColourPrimaries = 9; // BT.2020
9 inSignalInfo.TransferCharacteristics = 16; // ST2084

10

11 // The content Light Level Information
12 mfxExtContentLightLevelInfo inContentLight = {};
13 inContentLight.Header.BufferId = MFX_EXTBUFF_CONTENT_LIGHT_LEVEL_INFO;
14 inContentLight.Header.BufferSz = sizeof(mfxExtContentLightLevelInfo);
15 inContentLight.MaxContentLightLevel = 4000; // nits
16 inContentLight.MaxPicAverageLightLevel = 1000; // nits
17

18 // The mastering display colour volume
19 mfxExtMasteringDisplayColourVolume inColourVolume = {};
20 inColourVolume.Header.BufferId = MFX_EXTBUFF_MASTERING_DISPLAY_COLOUR_VOLUME_IN;
21 inColourVolume.Header.BufferSz = sizeof(mfxExtMasteringDisplayColourVolume);
22 // Based on the needs, Please set DisplayPrimaryX/Y[3], WhitePointX/Y, and␣

→˓MaxDisplayMasteringLuminance,
23 // MinDisplayMasteringLuminance
24

25 mfxExtVideoSignalInfo outSignalInfo = {};
26 outSignalInfo.Header.BufferId = MFX_EXTBUFF_VIDEO_SIGNAL_INFO_OUT;
27 outSignalInfo.Header.BufferSz = sizeof(mfxExtVideoSignalInfo);
28 outSignalInfo.VideoFullRange = 0; // Limited range P010
29 outSignalInfo.ColourPrimaries = 9; // BT.2020
30 outSignalInfo.TransferCharacteristics = 16; // ST2084
31

32 // The mastering display colour volume
33 mfxExtMasteringDisplayColourVolume outColourVolume = {};
34 outColourVolume.Header.BufferId = MFX_EXTBUFF_MASTERING_DISPLAY_COLOUR_VOLUME_OUT;
35 outColourVolume.Header.BufferSz = sizeof(mfxExtMasteringDisplayColourVolume);
36 // Based on the needs, Please set DisplayPrimaryX/Y[3], WhitePointX/Y, and␣

→˓MaxDisplayMasteringLuminance,
37 // MinDisplayMasteringLuminance
38

39 mfxExtBuffer *ExtBuffer[5];
40 ExtBuffer[0] = (mfxExtBuffer *)&inSignalInfo;
41 ExtBuffer[1] = (mfxExtBuffer *)&inContentLight;
42 ExtBuffer[2] = (mfxExtBuffer *)&inColourVolume;
43 ExtBuffer[3] = (mfxExtBuffer *)&outSignalInfo;
44 ExtBuffer[4] = (mfxExtBuffer *)&outColourVolume;
45

46 mfxSession session = (mfxSession)0;
47 mfxVideoParam VPPParams = {};
48 VPPParams.NumExtParam = 5;
49 VPPParams.ExtParam = (mfxExtBuffer **)&ExtBuffer[0];
50 MFXVideoVPP_Init(session, &VPPParams);

10.3. Programming Guide 779

oneAPI Specification, Release 1.1-rev-1

10.3.7 Transcoding Procedures

The application can use oneVPL encoding, decoding, and video processing functions together for transcoding opera-
tions. This section describes the key aspects of connecting two or more oneVPL functions together.

Asynchronous Pipeline

The application passes the output of an upstream oneVPL function to the input of the downstream oneVPL function
to construct an asynchronous pipeline. Pipeline construction is done at runtime and can be dynamically changed, as
shown in the following example:

1 mfxSyncPoint sp_d, sp_e;
2 MFXVideoDECODE_DecodeFrameAsync(session,bs,work,&vin, &sp_d);
3 if (going_through_vpp) {
4 MFXVideoVPP_RunFrameVPPAsync(session,vin,vout, NULL, &sp_d);
5 MFXVideoENCODE_EncodeFrameAsync(session,NULL,vout,bits2,&sp_e);
6 } else {
7 MFXVideoENCODE_EncodeFrameAsync(session,NULL,vin,bits2,&sp_e);
8 }
9 MFXVideoCORE_SyncOperation(session,sp_e,INFINITE);

oneVPL simplifies the requirements for asynchronous pipeline synchronization. The application only needs to syn-
chronize after the last oneVPL function. Explicit synchronization of intermediate results is not required and may slow
performance.

oneVPL tracks dynamic pipeline construction and verifies dependency on input and output pa-
rameters to ensure the execution order of the pipeline function. In the previous example,
oneVPL will ensure MFXVideoENCODE_EncodeFrameAsync() does not begin its operation until
MFXVideoDECODE_DecodeFrameAsync() or MFXVideoVPP_RunFrameVPPAsync() has finished.

During the execution of an asynchronous pipeline, the application must consider the input data as “in use” and must
not change it until the execution has completed. The application must also consider output data unavailable until the
execution has finished. In addition, for encoders, the application must consider extended and payload buffers as “in
use” while the input surface is locked.

oneVPL checks dependencies by comparing the input and output parameters of each oneVPL function in the pipeline.
Do not modify the contents of input and output parameters before the previous asynchronous operation finishes. Doing
so will break the dependency check and can result in undefined behavior. An exception occurs when the input and
output parameters are structures, in which case overwriting fields in the structures is allowed.

Note: The dependency check works on the pointers to the structures only.

There are two exceptions with respect to intermediate synchronization:

• If the input is from any asynchronous operation, the application must synchronize any input before calling the
oneVPL MFXVideoDECODE_DecodeFrameAsync() function.

• When the application calls an asynchronous function to generate an output surface in video memory and passes
that surface to a non-oneVPL component, it must explicitly synchronize the operation before passing the surface
to the non-oneVPL component.

10.3. Programming Guide 780

oneAPI Specification, Release 1.1-rev-1

Surface Pool Allocation

When connecting API function A to API function B, the application must take into account the requirements of both
functions to calculate the number of frame surfaces in the surface pool. Typically, the application can use the formula
Na+Nb, where Na is the frame surface requirements for oneVPL function A output, and Nb is the frame surface
requirements for oneVPL function B input.

For performance considerations, the application must submit multiple operations and delay synchronization as much
as possible, which gives oneVPL flexibility to organize internal pipelining. For example, compare the following two
operation sequences, where the first sequence is the recommended order:

Operation sequence 1

ENCODE(F1) ENCODE(F2) SYNC(F1) SYNC(F2)

Fig. 6: Recommended operation sequence

Operation sequence 2

ENCODE(F1) SYNC(F1) ENCODE(F2) SYNC(F2)

Fig. 7: Operation sequence - not recommended

In this example, the surface pool needs additional surfaces to take into account multiple asynchronous op-
erations before synchronization. The application can use the mfxVideoParam::AsyncDepth field to in-
form a oneVPL function of the number of asynchronous operations the application plans to perform be-
fore synchronization. The corresponding oneVPL QueryIOSurf function will reflect this number in the
mfxFrameAllocRequest::NumFrameSuggested value. The following example shows a way of calculating the sur-
face needs based on mfxFrameAllocRequest::NumFrameSuggested values:

1 mfxVideoParam init_param_v, init_param_e;
2 mfxFrameAllocRequest response_v[2], response_e;
3

4 // Desired depth
5 mfxU16 async_depth=4;
6

7 init_param_v.AsyncDepth=async_depth;
8 MFXVideoVPP_QueryIOSurf(session, &init_param_v, response_v);
9 init_param_e.AsyncDepth=async_depth;

10 MFXVideoENCODE_QueryIOSurf(session, &init_param_e, &response_e);
11 mfxU32 num_surfaces = response_v[1].NumFrameSuggested

(continues on next page)

10.3. Programming Guide 781

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

12 + response_e.NumFrameSuggested
13 - async_depth; /* double counted in ENCODE & VPP */
14

15 allocate_surfaces(num_surfaces);

Pipeline Error Reporting

During asynchronous pipeline construction, each pipeline stage function will return a synchronization point (sync
point). These synchronization points are useful in tracking errors during the asynchronous pipeline operation.

For example, assume the following pipeline:

A B C

The application synchronizes on sync point C. If the error occurs in function C, then the synchroniza-
tion returns the exact error code. If the error occurs before function C, then the synchronization returns
mfxStatus::MFX_ERR_ABORTED. The application can then try to synchronize on sync point B. Similarly, if the error
occurs in function B, the synchronization returns the exact error code, or else mfxStatus:: MFX_ERR_ABORTED.
The same logic applies if the error occurs in function A.

10.3.8 Hardware Acceleration

oneVPL provides a new model for working with hardware acceleration while continuing to support hardware acceler-
ation in legacy mode.

New Model to Work with Hardware Acceleration

oneVPL API version 2.0 introduces a new memory model: internal allocation where oneVPL is responsible for video
memory allocation. In this mode, an application is not dependent on a low-level video framework API, such as DirectX*
or the VA API, and does not need to create and set corresponding low-level oneVPL primitives such as ID3D11Device
or VADisplay. Instead, oneVPL creates all required objects to work with hardware acceleration and video surfaces
internally. An application can get access to these objects using MFXVideoCORE_GetHandle() or with help of the
mfxFrameSurfaceInterface interface.

This approach simplifies the oneVPL initialization, making calls to the MFXVideoENCODE_QueryIOSurf(),
MFXVideoDECODE_QueryIOSurf(), or MFXVideoVPP_QueryIOSurf() functions optional. See Internal Memory
Management.

Note: Applications can set device handle before session creation through MFXSetConfigFilterProperty() like
shown in the code below:

10.3. Programming Guide 782

oneAPI Specification, Release 1.1-rev-1

1 mfxLoader loader = MFXLoad();
2 mfxConfig config1 = MFXCreateConfig(loader);
3 mfxConfig config2 = MFXCreateConfig(loader);
4 mfxSession session;
5

6 mfxVariant HandleType;
7 HandleType.Type = MFX_VARIANT_TYPE_U32;
8 HandleType.Data.U32 = MFX_HANDLE_VA_DISPLAY;
9 MFXSetConfigFilterProperty(config1, (mfxU8*)"mfxHandleType", HandleType);

10

11 mfxVariant DisplayHandle;
12 DisplayHandle.Type = MFX_VARIANT_TYPE_PTR;
13 HandleType.Data.Ptr = vaDisplay;
14 MFXSetConfigFilterProperty(config2, (mfxU8*)"mfxHDL", DisplayHandle);
15

16 MFXCreateSession(loader, 0, &session);

Work with Hardware Acceleration in Legacy Mode

Work with Multiple Media Devices

If your system has multiple graphics adapters, you may need hints on which adapter is better suited to process a particular
workload. The legacy mode of oneVPL provides a helper API to select the most suitable adapter for your workload
based on the provided workload description. The following example shows workload initialization on a discrete adapter:

1 mfxU32 num_adapters_available;
2 mfxIMPL impl;
3

4 // Query number of graphics adapters available on system
5 mfxStatus sts = MFXQueryAdaptersNumber(&num_adapters_available);
6 MSDK_CHECK_STATUS(sts, "MFXQueryAdaptersNumber failed");
7

8 // Allocate memory for response
9 std::vector<mfxAdapterInfo> displays_data(num_adapters_available);

10 mfxAdaptersInfo adapters = { displays_data.data(), mfxU32(displays_data.size()), 0u, {0}␣
→˓};

11

12 // Query information about all adapters (mind that first parameter is NULL)
13 sts = MFXQueryAdapters(nullptr, &adapters);
14 MSDK_CHECK_STATUS(sts, "MFXQueryAdapters failed");
15

16 // Find dGfx adapter in list of adapters
17 auto idx_d = std::find_if(adapters.Adapters, adapters.Adapters + adapters.NumActual,
18 [](const mfxAdapterInfo info)
19 {
20 return info.Platform.MediaAdapterType == mfxMediaAdapterType::MFX_MEDIA_DISCRETE;
21 });
22

23 // No dGfx in list
24 if (idx_d == adapters.Adapters + adapters.NumActual)
25 {

(continues on next page)

10.3. Programming Guide 783

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

26 printf("Warning: No dGfx detected on machine\n");
27 return -1;
28 }
29

30 mfxU32 idx = static_cast<mfxU32>(std::distance(adapters.Adapters, idx_d));
31

32 // Choose correct implementation for discrete adapter
33 switch (adapters.Adapters[idx].Number)
34 {
35 case 0:
36 impl = MFX_IMPL_HARDWARE;
37 break;
38 case 1:
39 impl = MFX_IMPL_HARDWARE2;
40 break;
41 case 2:
42 impl = MFX_IMPL_HARDWARE3;
43 break;
44 case 3:
45 impl = MFX_IMPL_HARDWARE4;
46 break;
47

48 default:
49 // Try searching on all display adapters
50 impl = MFX_IMPL_HARDWARE_ANY;
51 break;
52 }
53 printf("Choosen implementation: %d\n", impl);
54 // Initialize mfxSession in regular way with obtained implementation.

The example shows that after obtaining the adapter list with MFXQueryAdapters(), further initialization of
mfxSession is performed in the regular way. The specific adapter is selected using the MFX_IMPL_HARDWARE,
MFX_IMPL_HARDWARE2, MFX_IMPL_HARDWARE3, or MFX_IMPL_HARDWARE4 values of mfxIMPL.

The following example shows the use of MFXQueryAdapters() for querying the most suitable adapter for a particular
encode workload:

1 mfxU32 num_adapters_available;
2 mfxIMPL impl;
3 mfxVideoParam Encode_mfxVideoParam;
4

5 // Query number of graphics adapters available on system
6 mfxStatus sts = MFXQueryAdaptersNumber(&num_adapters_available);
7 MSDK_CHECK_STATUS(sts, "MFXQueryAdaptersNumber failed");
8

9 // Allocate memory for response
10 std::vector<mfxAdapterInfo> displays_data(num_adapters_available);
11 mfxAdaptersInfo adapters = { displays_data.data(), mfxU32(displays_data.size()), 0u, {0}␣

→˓};
12

13 // Fill description of Encode workload
14 mfxComponentInfo interface_request = { MFX_COMPONENT_ENCODE, Encode_mfxVideoParam, {0} };
15

(continues on next page)

10.3. Programming Guide 784

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

16 // Query information about suitable adapters for Encode workload described by Encode_
→˓mfxVideoParam

17 sts = MFXQueryAdapters(&interface_request, &adapters);
18

19 if (sts == MFX_ERR_NOT_FOUND)
20 {
21 printf("Error: No adapters on machine capable to process desired workload\n");
22 return -1;
23 }
24

25 MSDK_CHECK_STATUS(sts, "MFXQueryAdapters failed");
26

27 // Choose correct implementation for discrete adapter. Mind usage of index 0, this is␣
→˓best suitable adapter from MSDK perspective

28 switch (adapters.Adapters[0].Number)
29 {
30 case 0:
31 impl = MFX_IMPL_HARDWARE;
32 break;
33 case 1:
34 impl = MFX_IMPL_HARDWARE2;
35 break;
36 case 2:
37 impl = MFX_IMPL_HARDWARE3;
38 break;
39 case 3:
40 impl = MFX_IMPL_HARDWARE4;
41 break;
42

43 default:
44 // Try searching on all display adapters
45 impl = MFX_IMPL_HARDWARE_ANY;
46 break;
47 }
48

49 printf("Choosen implementation: %d\n", impl);
50

51 // Initialize mfxSession in regular way with obtained implementation

See the MFXQueryAdapters() description for adapter priority rules.

Work with Video Memory

To fully utilize the oneVPL acceleration capability, the application should support OS specific infrastructures. If using
Microsoft* Windows*, the application should support Microsoft DirectX*. If using Linux*, the application should
support the VA API for Linux.

The hardware acceleration support in an application consists of video memory support and acceleration device support.

Depending on the usage model, the application can use video memory at different stages in the pipeline. Three major
scenarios are shown in the following diagrams:

10.3. Programming Guide 785

oneAPI Specification, Release 1.1-rev-1

oneVPL functions interconnection

oneVPL Function oneVPL FunctionVideo Memory

Video memory as output

oneVPL Function ApplicationVideo Memory

Video memory as input

Application oneVPL FunctionVideo Memory

The application must use the mfxVideoParam::IOPattern field to indicate the I/O access pattern during initializa-
tion. Subsequent function calls must follow this access pattern. For example, if a function operates on video mem-
ory surfaces at both input and output, the application must specify the access pattern IOPattern at initialization in
MFX_IOPATTERN_IN_VIDEO_MEMORY for input and MFX_IOPATTERN_OUT_VIDEO_MEMORY for output. This particu-
lar I/O access pattern must not change inside the Init - Close sequence.

Initialization of any hardware accelerated oneVPL component requires the acceleration device handle. This handle is
also used by the oneVPL component to query hardware capabilities. The application can share its device with oneVPL
by passing the device handle through the MFXVideoCORE_SetHandle() function. It is recommended to share the
handle before any actual usage of oneVPL.

10.3. Programming Guide 786

oneAPI Specification, Release 1.1-rev-1

Work with Microsoft DirectX* Applications

oneVPL supports two different infrastructures for hardware acceleration on the Microsoft Windows OS: the Direct3D*
9 DXVA2 and Direct3D 11 Video API. If Direct3D 9 DXVA2 is used for hardware acceleration, the application should
use the IDirect3DDeviceManager9 interface as the acceleration device handle. If the Direct3D 11 Video API is used
for hardware acceleration, the application should use the ID3D11Device interface as the acceleration device handle.

The application should share one of these interfaces with oneVPL through the MFXVideoCORE_SetHandle() function.
If the application does not provide the interface, then oneVPL creates its own internal acceleration device. As a result,
oneVPL input and output will be limited to system memory only for the external allocation mode, which will reduce
oneVPL performance. If oneVPL fails to create a valid acceleration device, then oneVPL cannot proceed with hardware
acceleration and returns an error status to the application.

Note: It is recommended to work in the internal allocation mode if the application does not provide the IDi-
rect3DDeviceManager9 or ID3D11Device interface.

The application must create the Direct3D 9 device with the flag D3DCREATE_MULTITHREADED. The flag
D3DCREATE_FPU_PRESERVE is also recommended. This influences floating-point calculations, including PTS values.

The application must also set multi-threading mode for the Direct3D 11 device. The following example shows how to
set multi-threading mode for a Direct3D 11 device:

1 ID3D11Device *pD11Device;
2 ID3D11DeviceContext *pD11Context;
3 ID3D10Multithread *pD10Multithread;
4

5 pD11Device->GetImmediateContext(&pD11Context);
6 pD11Context->QueryInterface(IID_ID3D10Multithread, &pD10Multithread);
7 pD10Multithread->SetMultithreadProtected(true);

During hardware acceleration, if a Direct3D “device lost” event occurs, the oneVPL operation terminates with the
mfxStatus::MFX_ERR_DEVICE_LOST return status. If the application provided the Direct3D device handle, the ap-
plication must reset the Direct3D device.

When the oneVPL decoder creates auxiliary devices for hardware acceleration, it must allocate the list of Direct3D
surfaces for I/O access, also known as the surface chain, and pass the surface chain as part of the device creation
command. In most cases, the surface chain is the frame surface pool mentioned in the Frame Surface Locking section.

The application passes the surface chain to the oneVPL component Init function through a oneVPL external allocator
callback. See the Memory Allocation and External Allocators section for details.

Only the decoder Init function requests the external surface chain from the application and uses it for auxiliary device
creation. Encoder and VPP Init functions may only request internal surfaces. See the ExtMemFrameType enumerator
for more details about different memory types.

Depending on configuration parameters, oneVPL requires different surface types. It is strongly recommended
to call the MFXVideoENCODE_QueryIOSurf() function, the MFXVideoDECODE_QueryIOSurf() function, or the
MFXVideoVPP_QueryIOSurf() function to determine the appropriate type in the external allocation mode.

10.3. Programming Guide 787

oneAPI Specification, Release 1.1-rev-1

Work with VA API Applications

oneVPL supports the VA API infrastructure for hardware acceleration on Linux. The application should use the
VADisplay interface as the acceleration device handle for this infrastructure and share it with oneVPL through the
MFXVideoCORE_SetHandle() function.

The following example shows how to obtain the VA display from the X Window System:

1 Display *x11_display;
2 VADisplay va_display;
3

4 x11_display = XOpenDisplay(current_display);
5 va_display = vaGetDisplay(x11_display);
6

7 MFXVideoCORE_SetHandle(session, MFX_HANDLE_VA_DISPLAY, (mfxHDL) va_display);

The following example shows how to obtain the VA display from the Direct Rendering Manager:

1 int card;
2 VADisplay va_display;
3

4 card = open("/dev/dri/card0", O_RDWR); /* primary card */
5 va_display = vaGetDisplayDRM(card);
6 vaInitialize(va_display, &major_version, &minor_version);
7

8 MFXVideoCORE_SetHandle(session, MFX_HANDLE_VA_DISPLAY, (mfxHDL) va_display);

When the oneVPL decoder creates a hardware acceleration device, it must allocate the list of video memory surfaces
for I/O access, also known as the surface chain, and pass the surface chain as part of the device creation command.
The application passes the surface chain to the oneVPL component Init function through a oneVPL external allocator
callback. See the Memory Allocation and External Allocators section for details. Starting from oneVPL API version
2.0, oneVPL creates its own surface chain if an external allocator is not set. See the :ref`New Model to work with
Hardware Acceleration <hw-acceleration>` section for details.

Note: The VA API does not define any surface types and the application can use either
MFX_MEMTYPE_VIDEO_MEMORY_DECODER_TARGET or MFX_MEMTYPE_VIDEO_MEMORY_PROCESSOR_TARGET to
indicate data in video memory.

10.3. Programming Guide 788

oneAPI Specification, Release 1.1-rev-1

10.3.9 Memory Allocation and External Allocators

There are two models of memory management in oneVPL: internal and external.

External Memory Management

In the external memory model, the application must allocate sufficient memory for input and output parameters and
buffers and deallocate it when oneVPL functions complete their operations. During execution, the oneVPL functions
use callback functions to the application to manage memory for video frames through the external allocator interface
mfxFrameAllocator.

If an application needs to control the allocation of video frames, it can use callback functions through the
mfxFrameAllocator interface. If an application does not specify an allocator, an internal allocator is used. However,
if an application uses video memory surfaces for input and output, it must specify the hardware acceleration device and
an external frame allocator using mfxFrameAllocator.

The external frame allocator can allocate different frame types:

• In-system memory.

• In-video memory, as ‘Decoder Render Targets’ or ‘Processor Render Targets.’ See Working with Hardware
Acceleration for additional details.

The external frame allocator responds only to frame allocation requests for the requested memory type and returns
mfxStatus::MFX_ERR_UNSUPPORTED for all other types. The allocation request uses flags (part of the memory type
field) to indicate which oneVPL class initiated the request so that the external frame allocator can respond accordingly.

The following example shows a simple external frame allocator:

1 #define ALIGN32(X) (((mfxU32)((X)+31)) & (~ (mfxU32)31))
2

3 typedef struct {
4 mfxU16 width, height;
5 mfxU8 *base;
6 } mid_struct;
7

8 mfxStatus fa_alloc(mfxHDL pthis, mfxFrameAllocRequest *request, mfxFrameAllocResponse␣
→˓*response) {

9 UNUSED_PARAM(pthis);
10 if (!(request->Type&MFX_MEMTYPE_SYSTEM_MEMORY))
11 return MFX_ERR_UNSUPPORTED;
12 if (request->Info.FourCC!=MFX_FOURCC_NV12)
13 return MFX_ERR_UNSUPPORTED;
14 response->NumFrameActual=request->NumFrameMin;
15 for (int i=0;i<request->NumFrameMin;i++) {
16 mid_struct *mmid=(mid_struct *)malloc(sizeof(mid_struct));
17 mmid->width=ALIGN32(request->Info.Width);
18 mmid->height=ALIGN32(request->Info.Height);
19 mmid->base=(mfxU8*)malloc(mmid->width*mmid->height*3/2);
20 response->mids[i]=mmid;
21 }
22 return MFX_ERR_NONE;
23 }
24

25 mfxStatus fa_lock(mfxHDL pthis, mfxMemId mid, mfxFrameData *ptr) {
26 UNUSED_PARAM(pthis);

(continues on next page)

10.3. Programming Guide 789

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

27 mid_struct *mmid=(mid_struct *)mid;
28 ptr->Pitch=mmid->width;
29 ptr->Y=mmid->base;
30 ptr->U=ptr->Y+mmid->width*mmid->height;
31 ptr->V=ptr->U+1;
32 return MFX_ERR_NONE;
33 }
34

35 mfxStatus fa_unlock(mfxHDL pthis, mfxMemId mid, mfxFrameData *ptr) {
36 UNUSED_PARAM(pthis);
37 UNUSED_PARAM(mid);
38 if (ptr) ptr->Y=ptr->U=ptr->V=ptr->A=0;
39 return MFX_ERR_NONE;
40 }
41

42 mfxStatus fa_gethdl(mfxHDL pthis, mfxMemId mid, mfxHDL *handle) {
43 UNUSED_PARAM(pthis);
44 UNUSED_PARAM(mid);
45 UNUSED_PARAM(handle);
46 return MFX_ERR_UNSUPPORTED;
47 }
48

49 mfxStatus fa_free(mfxHDL pthis, mfxFrameAllocResponse *response) {
50 UNUSED_PARAM(pthis);
51 for (int i=0;i<response->NumFrameActual;i++) {
52 mid_struct *mmid=(mid_struct *)response->mids[i];
53 free(mmid->base); free(mmid);
54 }
55 return MFX_ERR_NONE;
56 }

For system memory, it is highly recommended to allocate memory for all planes of the same frame as a single buffer
(using one single malloc call).

Internal Memory Management

In the internal memory management model, oneVPL provides interface functions for frames allocation:

• MFXMemory_GetSurfaceForVPP()

• MFXMemory_GetSurfaceForVPPOut()

• MFXMemory_GetSurfaceForEncode()

• MFXMemory_GetSurfaceForDecode()

These functions are used together with mfxFrameSurfaceInterface for surface management. The
surface returned by these functions is a reference counted object and the application must call
mfxFrameSurfaceInterface::Release after finishing all operations with the surface. In this model the
application does not need to create and set the external allocator to oneVPL.

Another method to obtain an internally allocated surface is to call MFXVideoDECODE_DecodeFrameAsync() with
a working surface equal to NULL (see Simplified decoding procedure). In this scenario, the decoder will allocate a
new refcountable mfxFrameSurface1 and return it to the user. All assumed contracts with the user are similar to the
MFXMemory_GetSurfaceForXXX functions.

10.3. Programming Guide 790

oneAPI Specification, Release 1.1-rev-1

mfxFrameSurfaceInterface

oneVPL API version 2.0 introduces mfxFrameSurfaceInterface. This interface is a set of callback functions to
manage the lifetime of allocated surfaces, get access to pixel data, and obtain native handles and device abstrac-
tions (if suitable). Instead of directly accessing mfxFrameSurface1 structure members, it’s recommended to use
the mfxFrameSurfaceInterface if present or call external allocator callback functions if set.

The following pseudo code shows the usage of mfxFrameSurfaceInterface for memory sharing:

1 // lets decode frame and try to access output in an optimal way.
2 sts = MFXVideoDECODE_DecodeFrameAsync(session, NULL, NULL, &outsurface, &syncp);
3 if (MFX_ERR_NONE == sts)
4 {
5 mfxStatus s = outsurface->FrameInterface->GetDeviceHandle(outsurface,
6 &device_handle, &device_type);
7 // if application or component is familar with mfxHandleType and it's
8 // possible to share memory created by device_handle.
9 if (MFX_ERR_NONE == s && isDeviceTypeCompatible(device_type)

10 && isPossibleForMemorySharing(device_handle)) {
11 // get native handle and type
12 outsurface->FrameInterface->GetNativeHandle(outsurface,
13 &resource, &resource_type);
14 if (isResourceTypeCompatible(resource_type)) {
15 //use memory directly
16 ProcessNativeMemory(resource);
17 outsurface->FrameInterface->Release(outsurface);
18 }
19 } else {
20 // Application or component is not aware about such DeviceHandle or
21 // Resource type need to map to system memory.
22 outsurface->FrameInterface->Map(outsurface, MFX_MAP_READ);
23 ProcessSystemMemory(outsurface);
24 outsurface->FrameInterface->Unmap(outsurface);
25 outsurface->FrameInterface->Release(outsurface);
26 }
27 }

10.3.10 Hardware Device Error Handling

For implementations that accelerate decoding, encoding, and video processing through a hardware device, API func-
tions may return errors or warnings if the hardware device encounters errors. See the Hardware Device Errors and
Warnings table for detailed information about the errors and warnings.

10.3. Programming Guide 791

oneAPI Specification, Release 1.1-rev-1

Table 8: Hardware Device Errors and Warnings
Status Description
mfxStatus::MFX_ERR_DEVICE_FAILED Hardware device returned unexpected er-

rors. oneVPL was unable to restore opera-
tion.

mfxStatus::MFX_ERR_DEVICE_LOST Hardware device was lost due to system lock
or shutdown.

mfxStatus::MFX_WRN_PARTIAL_ACCELERATION The hardware does not fully support the
specified configuration. The encoding, de-
coding, or video processing operation may
be partially accelerated.

mfxStatus::MFX_WRN_DEVICE_BUSY Hardware device is currently busy.

oneVPL Query, QueryIOSurf, and Init functions return mfxStatus::MFX_WRN_PARTIAL_ACCELERATION to indi-
cate that the encoding, decoding, or video processing operation can be partially hardware accelerated or not hardware
accelerated at all. The application can ignore this warning and proceed with the operation. (Note that oneVPL func-
tions may return errors or other warnings overwriting mfxStatus::MFX_WRN_PARTIAL_ACCELERATION, as it is a
lower priority warning.)

oneVPL functions return mfxStatus::MFX_WRN_DEVICE_BUSY to indicate that the hardware device is busy and un-
able to receive commands at this time. The recommended approach is:

• If the asynchronous operation returns synchronization point along with mfxStatus::MFX_WRN_DEVICE_BUSY
- call the MFXVideoCORE_SyncOperation() with it.

• If application has buffered synchronization point(s) obtained from previous asynchronous operations - call
MFXVideoCORE_SyncOperation() with the oldest one.

• If no synchronization point(s) available - wait for a few milliseconds.

• Resume the operation by resubmitting the request.

1 mfxStatus sts=MFX_ERR_NONE;
2 for (;;) {
3 // do something
4 sts=MFXVideoDECODE_DecodeFrameAsync(session, bitstream, surface_work, &surface_disp,␣

→˓&syncp);
5 if (sts == MFX_ERR_NONE) buffered_syncp = syncp;
6 else if (sts == MFX_WRN_DEVICE_BUSY) prg_handle_device_busy(session, syncp ? syncp :␣

→˓buffered_syncp);
7

8 }

The same procedure applies to encoding and video processing.

oneVPL functions return mfxStatus::MFX_ERR_DEVICE_LOST or mfxStatus::MFX_ERR_DEVICE_FAILED to in-
dicate that there is a complete failure in hardware acceleration. The application must close and reinitialize the oneVPL
function class. If the application has provided a hardware acceleration device handle to oneVPL, the application must
reset the device.

10.3. Programming Guide 792

oneAPI Specification, Release 1.1-rev-1

10.4 Mandatory APIs and Functions

10.4.1 Disclaimer

Developers can implement any subset of the oneVPL API. The specification makes no claim about what encoder, de-
coder, VPP filter, or any other underlying features are mandatory for the implementation. The oneVPL API is designed
such that users have several options to discover capabilities exposed by the implementation:

1. Before session creation: Users can get a list of supported encoders, decoders, VPP filters, correspondent color
formats, and memory types with the help of the MFXEnumImplementations() function.

2. After session is created: Users can call Query functions to obtain low level implementation capabilities.

Attention: The legacy Intel® Media Software Development Kit implementation does not support the first approach
to obtain capabilities.

10.4.2 Exported Functions

The Exported Functions table lists all functions that must be exposed by any oneAPI Video Processing Li-
brary implementation. The realization of all listed functions is mandatory; most functions may return
mfxStatus::MFX_ERR_NOT_IMPLEMENTED.

Note: Functions MFXInit() and MFXInitEx() are not required to be exported.

See Mandatory APIs for details about which functions, in which conditions, must not return
mfxStatus::MFX_ERR_NOT_IMPLEMENTED.

Table 9: Exported Functions
Function API Version
MFXClose() 1.0
MFXQueryIMPL() 1.0
MFXQueryVersion() 1.0
MFXJoinSession() 1.1
MFXDisjoinSession() 1.1
MFXCloneSession() 1.1
MFXSetPriority() 1.1
MFXGetPriority() 1.1
MFXVideoCORE_SetFrameAllocator() 1.0
MFXVideoCORE_SetHandle() 1.0
MFXVideoCORE_GetHandle() 1.0
MFXVideoCORE_SyncOperation() 1.0
MFXVideoENCODE_Query() 1.0
MFXVideoENCODE_QueryIOSurf() 1.0
MFXVideoENCODE_Init() 1.0
MFXVideoENCODE_Reset() 1.0
MFXVideoENCODE_Close() 1.0
MFXVideoENCODE_GetVideoParam() 1.0
MFXVideoENCODE_GetEncodeStat() 1.0

continues on next page

10.4. Mandatory APIs and Functions 793

oneAPI Specification, Release 1.1-rev-1

Table 9 – continued from previous page
Function API Version
MFXVideoENCODE_EncodeFrameAsync() 1.0
MFXVideoDECODE_Query() 1.0
MFXVideoDECODE_DecodeHeader() 1.0
MFXVideoDECODE_QueryIOSurf() 1.0
MFXVideoDECODE_Init() 1.0
MFXVideoDECODE_Reset() 1.0
MFXVideoDECODE_Close() 1.0
MFXVideoDECODE_GetVideoParam() 1.0
MFXVideoDECODE_GetDecodeStat() 1.0
MFXVideoDECODE_SetSkipMode() 1.0
MFXVideoDECODE_GetPayload() 1.0
MFXVideoDECODE_DecodeFrameAsync() 1.0
MFXVideoVPP_Query() 1.0
MFXVideoVPP_QueryIOSurf() 1.0
MFXVideoVPP_Init() 1.0
MFXVideoVPP_Reset() 1.0
MFXVideoVPP_Close() 1.0
MFXVideoVPP_GetVideoParam() 1.0
MFXVideoVPP_GetVPPStat() 1.0
MFXVideoVPP_RunFrameVPPAsync() 1.0
MFXVideoCORE_QueryPlatform() 1.19
MFXQueryAdapters() 1.31
MFXQueryAdaptersDecode() 1.31
MFXQueryAdaptersNumber() 1.31
MFXMemory_GetSurfaceForVPP() 2.0
MFXMemory_GetSurfaceForEncode() 2.0
MFXMemory_GetSurfaceForDecode() 2.0
MFXQueryImplsDescription() 2.0
MFXReleaseImplDescription() 2.0
MFXInitialize() 2.0
MFXMemory_GetSurfaceForVPPOut() 2.1
MFXVideoVPP_ProcessFrameAsync() 2.1
MFXVideoDECODE_VPP_Init() 2.1
MFXVideoDECODE_VPP_DecodeFrameAsync() 2.1
MFXVideoDECODE_VPP_Reset() 2.1
MFXVideoDECODE_VPP_GetChannelParam() 2.1
MFXVideoDECODE_VPP_Close() 2.1

10.4.3 Mandatory APIs

All implementations must implement the APIs listed in the Mandatory APIs table:

10.4. Mandatory APIs and Functions 794

oneAPI Specification, Release 1.1-rev-1

Table 10: Mandatory APIs
Functions Description

MFXInitialize()

MFXClose()

Required functions for the dispatcher to create a session.

MFXQueryImplsDescription()

MFXReleaseImplDescription()

Required functions for the dispatcher to return imple-
mentation capabilities.

MFXVideoCORE_SyncOperation() Required function for synchronization of asynchronous
operations.

If the implementation exposes any encoder, decoder, or VPP filter, it must implement the corresponding mandatory
APIs, as described in the Mandatory Encode, Decode, VPP abd Decode+VPP APIs tables:

Table 11: Mandatory Encode APIs
Functions Description

MFXVideoENCODE_Init()

MFXVideoENCODE_Close()

MFXVideoENCODE_Query()

MFXVideoENCODE_EncodeFrameAsync()

Required functions if the implementation implements
any encoder.

Table 12: Mandatory Decode APIs
Functions Description

MFXVideoDECODE_Init()

MFXVideoDECODE_Close()

MFXVideoDECODE_Query()

MFXVideoDECODE_DecodeFrameAsync()

Required functions if the implementation implements
any decoder.

Table 13: Mandatory VPP APIs
Functions Description

MFXVideoVPP_Init()

MFXVideoVPP_Close()

MFXVideoVPP_Query()

MFXVideoVPP_RunFrameVPPAsync() or
MFXVideoVPP_ProcessFrameAsync()

Required functions if the implementation implements
any VPP filter.

10.4. Mandatory APIs and Functions 795

oneAPI Specification, Release 1.1-rev-1

Table 14: Mandatory Decode+VPP APIs
Functions Description

MFXVideoDECODE_VPP_Init()

MFXVideoDECODE_VPP_DecodeFrameAsync()

MFXVideoDECODE_VPP_Close()

Required functions if the implementation implements
any Decode+VPP component.

Note: Mandatory functions must not return the MFX_ERR_NOT_IMPLEMENTED status.

If at least one of the encoder, decoder, or VPP filter functions is implemented, the MFXQueryImplsDescription()
function must return a valid mfxImplDescription structure instance with mandatory capabilities of the implemen-
tation, including decoder, encoder, or VPP capabilities information.

If the implementation supports internal memory allocation by exposing at least one of the function from
that family: internal memory allocation and management API then implementation of whole scope of the
mfxFrameSurfaceInterface structure as a part of the mfxFrameSurface1 is mandatory.

Any other functions or extension buffers are optional for the implementation.

10.5 oneVPL API Reference

10.5.1 Function Reference

VideoDECODE Functions that implement a complete decoder that decompresses input bitstreams directly to output
frame surfaces.

VideoENCODE Functions that perform the entire encoding pipeline from the input video frames to the output bit-
stream.

VideoVPP Functions that perform video processing before encoding, rendering, or standalone.

VideoCORE Functions to perform external device and memory management and synchronization.

Session Management Functions to manage sessions.

Memory Functions for internal memory allocation and management.

Implementation Capabilities Functions to report capabilities of available implementations and create user-requested
library implementations.

Adapters Functions that identify graphics adapters for Microsoft* DirectX* video processing, encoding, and decoding.

VideoDECODE_VPP Functions that implement combined operation of decoding and video processing with multiple
output frame surfaces.

10.5. oneVPL API Reference 796

oneAPI Specification, Release 1.1-rev-1

VideoDECODE

Functions that implement a complete decoder that decompresses input bitstreams directly to output frame surfaces.

API

• MFXVideoDECODE_Query

• MFXVideoDECODE_DecodeHeader

• MFXVideoDECODE_QueryIOSurf

• MFXVideoDECODE_Init

• MFXVideoDECODE_Reset

• MFXVideoDECODE_Close

• MFXVideoDECODE_GetVideoParam

• MFXVideoDECODE_GetDecodeStat

• MFXVideoDECODE_SetSkipMode

• MFXVideoDECODE_GetPayload

• MFXVideoDECODE_DecodeFrameAsync

MFXVideoDECODE_Query

mfxStatus MFXVideoDECODE_Query(mfxSession session, mfxVideoParam *in, mfxVideoParam *out)
Works in one of two modes:

• If the in parameter is zero, the function returns the class configurability in the output structure. A non-zero
value in each field of the output structure indicates that the field is configurable by the implementation with
the MFXVideoDECODE_Init function.

• If the in parameter is non-zero, the function checks the validity of the fields in the input structure. Then the
function returns the corrected values to the output structure. If there is insufficient information to determine
the validity or correction is impossible, the function zeros the fields. This feature can verify whether the
implementation supports certain profiles, levels, or bitrates.

The application can call this function before or after it initializes the decoder. The CodecId field of the output
structure is a mandated field (to be filled by the application) to identify the coding standard.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• in – [in] Pointer to the mfxVideoParam structure as input.

• out – [out] Pointer to the mfxVideoParam structure as output.

10.5. oneVPL API Reference 797

oneAPI Specification, Release 1.1-rev-1

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_UNSUPPORTED The function failed to identify a specific implementation for the
required features.

MFX_WRN_PARTIAL_ACCELERATION The underlying hardware does not fully support the
specified video parameters. The decoding may be partially accelerated. Only hardware imple-
mentations may return this status code.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAM The function detected some video parame-
ters were incompatible with others; incompatibility resolved.

Important: The MFXVideoDECODE_Query() is mandatory when implementing a decoder.

MFXVideoDECODE_DecodeHeader

mfxStatus MFXVideoDECODE_DecodeHeader(mfxSession session, mfxBitstream *bs, mfxVideoParam *par)
Parses the input bitstream and fills the mfxVideoParam structure with appropriate values, such as resolution and
frame rate, for the Init API function.

The application can then pass the resulting structure to the MFXVideoDECODE_Init function for decoder ini-
tialization.

An application can call this API function at any time before or after decoder initialization. If the library finds a
sequence header in the bitstream, the function moves the bitstream pointer to the first bit of the sequence header.
Otherwise, the function moves the bitstream pointer close to the end of the bitstream buffer but leaves enough
data in the buffer to avoid possible loss of start code.

The CodecId field of the mfxVideoParam structure is a mandated field (to be filled by the application) to identify
the coding standard.

The application can retrieve a copy of the bitstream header, by attaching the mfxExtCodingOptionSPSPPS struc-
ture to the mfxVideoParam structure.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• bs – [in] Pointer to the bitstream.

• par – [in] Pointer to the mfxVideoParam structure.

Returns
• MFX_ERR_NONE The function successfully filled the structure. It does not mean that

the stream can be decoded by the library. The application should call MFXVideoDE-
CODE_Query function to check if decoding of the stream is supported.

• MFX_ERR_MORE_DATA The function requires more bitstream data.

• MFX_ERR_UNSUPPORTED CodecId field of the mfxVideoParam structure indicates
some unsupported codec.

• MFX_ERR_INVALID_HANDLE Session is not initialized.

10.5. oneVPL API Reference 798

oneAPI Specification, Release 1.1-rev-1

• MFX_ERR_NULL_PTR bs or par pointer is NULL.

MFXVideoDECODE_QueryIOSurf

mfxStatus MFXVideoDECODE_QueryIOSurf(mfxSession session, mfxVideoParam *par, mfxFrameAllocRequest
*request)

Returns minimum and suggested numbers of the output frame surfaces required for decoding initialization and
their type.

Init will call the external allocator for the required frames with the same set of numbers. The use of this function
is recommended. For more information, see the Working with Hardware Acceleration section.

The CodecId field of the mfxVideoParam structure is a mandated field (to be filled by the application) to identify
the coding standard. This function does not validate I/O parameters except those used in calculating the number
of output surfaces.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• par – [in] Pointer to the mfxVideoParam structure as input.

• request – [in] Pointer to the mfxFrameAllocRequest structure as output.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_INVALID_VIDEO_PARAM The function detected invalid video parameters.
These parameters may be out of the valid range, or the combination of them resulted in incom-
patibility. Incompatibility not resolved.

MFX_WRN_PARTIAL_ACCELERATION The underlying hardware does not fully support the
specified video parameters. The encoding may be partially accelerated. Only hardware imple-
mentations may return this status code.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAM The function detected some video parame-
ters were incompatible with others; incompatibility resolved.

MFXVideoDECODE_Init

mfxStatus MFXVideoDECODE_Init(mfxSession session, mfxVideoParam *par)
Allocates memory and prepares tables and necessary structures for encoding.

This function also does extensive validation to ensure if the configuration, as specified in the input parameters,
is supported.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• par – [in] Pointer to the mfxVideoParam structure.

10.5. oneVPL API Reference 799

oneAPI Specification, Release 1.1-rev-1

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_INVALID_VIDEO_PARAM The function detected invalid video parameters.
These parameters may be out of the valid range, or the combination of them resulted in incom-
patibility. Incompatibility not resolved.

MFX_WRN_PARTIAL_ACCELERATION The underlying hardware does not fully support the
specified video parameters. The encoding may be partially accelerated. Only hardware imple-
mentations may return this status code.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAM The function detected some video parame-
ters were incompatible with others; incompatibility resolved.

MFX_ERR_UNDEFINED_BEHAVIOR The function is called twice without a close.

Important: The MFXVideoDECODE_Init() is mandatory when implementing a decoder.

MFXVideoDECODE_Reset

mfxStatus MFXVideoDECODE_Reset(mfxSession session, mfxVideoParam *par)
Stops the current decoding operation and restores internal structures or parameters for a new decoding operation.

Reset serves two purposes:

• It recovers the decoder from errors.

• It restarts decoding from a new position

The function resets the old sequence header (sequence parameter set in H.264, or sequence header in MPEG-2
and VC-1). The decoder will expect a new sequence header before it decodes the next frame and will skip any
bitstream before encountering the new sequence header.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• par – [in] Pointer to the mfxVideoParam structure.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_INVALID_VIDEO_PARAM The function detected that video parameters are wrong
or they conflict with initialization parameters. Reset is impossible.

MFX_ERR_INCOMPATIBLE_VIDEO_PARAM The function detected that video parameters
provided by the application are incompatible with initialization parameters. Reset requires addi-
tional memory allocation and cannot be executed. The application should close the component
and then reinitialize it.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAM The function detected some video parame-
ters were incompatible with others; incompatibility resolved.

10.5. oneVPL API Reference 800

oneAPI Specification, Release 1.1-rev-1

MFXVideoDECODE_Close

mfxStatus MFXVideoDECODE_Close(mfxSession session)
Terminates the current decoding operation and de-allocates any internal tables or structures.

Since This function is available since API version 1.0.

Parameters session – [in] Session handle.

Returns MFX_ERR_NONE The function completed successfully.

Important: The MFXVideoDECODE_Close() is mandatory when implementing a decoder.

MFXVideoDECODE_GetVideoParam

mfxStatus MFXVideoDECODE_GetVideoParam(mfxSession session, mfxVideoParam *par)
Retrieves current working parameters to the specified output structure.

If extended buffers are to be returned, the application must allocate those extended buffers and attach them
as part of the output structure. The application can retrieve a copy of the bitstream header, by attaching the
mfxExtCodingOptionSPSPPS structure to the mfxVideoParam structure.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• par – [in] Pointer to the corresponding parameter structure.

Returns MFX_ERR_NONE The function completed successfully.

MFXVideoDECODE_GetDecodeStat

mfxStatus MFXVideoDECODE_GetDecodeStat(mfxSession session, mfxDecodeStat *stat)
Obtains statistics collected during decoding.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• stat – [in] Pointer to the mfxDecodeStat structure.

Returns MFX_ERR_NONE The function completed successfully.

10.5. oneVPL API Reference 801

oneAPI Specification, Release 1.1-rev-1

MFXVideoDECODE_SetSkipMode

mfxStatus MFXVideoDECODE_SetSkipMode(mfxSession session, mfxSkipMode mode)
Sets the decoder skip mode.

The application may use this API function to increase decoding performance by sacrificing output quality. In-
creasing the skip level first results in skipping of some decoding operations like deblocking and then leads to
frame skipping; first B, then P. Particular details are platform dependent.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• mode – [in] Decoder skip mode. See the mfxSkipMode enumerator for details.

Returns
MFX_ERR_NONE The function completed successfully and the output surface is ready for de-
coding

MFX_WRN_VALUE_NOT_CHANGED The skip mode is not affected as the maximum or min-
imum skip range is reached.

MFXVideoDECODE_GetPayload

mfxStatus MFXVideoDECODE_GetPayload(mfxSession session, mfxU64 *ts, mfxPayload *payload)
Extracts user data (MPEG-2) or SEI (H.264) messages from the bitstream.

Internally, the decoder implementation stores encountered user data or SEI messages. The application may call
this API function multiple times to retrieve the user data or SEI messages, one at a time.

If there is no payload available, the function returns with payload->NumBit=0.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• ts – [in] Pointer to the user data time stamp in units of 90 KHz; divide ts by 90,000 (90 KHz)
to obtain the time in seconds; the time stamp matches the payload with a specific decoded
frame.

• payload – [in] Pointer to the mfxPayload structure; the payload contains user data in MPEG-
2 or SEI messages in H.264.

Returns
MFX_ERR_NONE The function completed successfully and the output buffer is ready for de-
coding.

MFX_ERR_NOT_ENOUGH_BUFFER The payload buffer size is insufficient.

10.5. oneVPL API Reference 802

oneAPI Specification, Release 1.1-rev-1

MFXVideoDECODE_DecodeFrameAsync

mfxStatus MFXVideoDECODE_DecodeFrameAsync(mfxSession session, mfxBitstream *bs, mfxFrameSurface1
*surface_work, mfxFrameSurface1 **surface_out, mfxSyncPoint
*syncp)

Decodes the input bitstream to a single output frame.

The surface_work parameter provides a working frame buffer for the decoder. The application should allocate
the working frame buffer, which stores decoded frames. If the function requires caching frames after decoding,
it locks the frames and the application must provide a new frame buffer in the next call.

If, and only if, the function returns MFX_ERR_NONE, the pointer surface_out points to the output frame
in the display order. If there are no further frames, the function will reset the pointer to zero and return the
appropriate status code.

Before decoding the first frame, a sequence header (sequence parameter set in H.264 or sequence header in
MPEG-2 and VC-1) must be present. The function skips any bitstreams before it encounters the new sequence
header.

The input bitstream bs can be of any size. If there are not enough bits to decode a frame, the function returns
MFX_ERR_MORE_DATA, and consumes all input bits except if a partial start code or sequence header is at
the end of the buffer. In this case, the function leaves the last few bytes in the bitstream buffer. If there is more
incoming bitstream, the application should append the incoming bitstream to the bitstream buffer. Otherwise,
the application should ignore the remaining bytes in the bitstream buffer and apply the end of stream procedure
described below.

The application must set bs to NULL to signal end of stream. The application may need to call this API function
several times to drain any internally cached frames until the function returns MFX_ERR_MORE_DATA.

If more than one frame is in the bitstream buffer, the function decodes until the buffer is consumed. The decoding
process can be interrupted for events such as if the decoder needs additional working buffers, is readying a frame
for retrieval, or encountering a new header. In these cases, the function returns appropriate status code and moves
the bitstream pointer to the remaining data.

The decoder may return MFX_ERR_NONE without taking any data from the input bitstream buffer. If the
application appends additional data to the bitstream buffer, it is possible that the bitstream buffer may contain
more than one frame. It is recommended that the application invoke the function repeatedly until the function
returns MFX_ERR_MORE_DATA, before appending any more data to the bitstream buffer.

Starting from API 2.0 it is possible to pass NULL instead of surface_work. In such case runtime will allocate
output frames internally.

This function is asynchronous.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• bs – [in] Pointer to the input bitstream.

• surface_work – [in] Pointer to the working frame buffer for the decoder.

• surface_out – [out] Pointer to the output frame in the display order.

• syncp – [out] Pointer to the sync point associated with this operation.

Returns

10.5. oneVPL API Reference 803

oneAPI Specification, Release 1.1-rev-1

MFX_ERR_NONE The function completed successfully and the output surface is ready for de-
coding.

MFX_ERR_MORE_DATA The function requires more bitstream at input before decoding can
proceed.

MFX_ERR_MORE_SURFACE The function requires more frame surface at output before de-
coding can proceed.

MFX_ERR_DEVICE_LOST Hardware device was lost.

See the Working with Microsoft* DirectX* Applications section for further information.

MFX_WRN_DEVICE_BUSY Hardware device is currently busy. Call this function again after
MFXVideoCORE_SyncOperation or in a few milliseconds.

MFX_WRN_VIDEO_PARAM_CHANGED The decoder detected a new sequence header in the
bitstream. Video parameters may have changed.

MFX_ERR_INCOMPATIBLE_VIDEO_PARAM The decoder detected incompatible video pa-
rameters in the bitstream and failed to follow them.

MFX_ERR_REALLOC_SURFACE Bigger surface_work required. May be returned
only if mfxInfoMFX::EnableReallocRequest was set to ON during initialization.
MFX_WRN_ALLOC_TIMEOUT_EXPIRED Timeout expired for internal output frame
allocation (if set with mfxExtAllocationHints and NULL passed as surface_work). Repeat the
call in a few milliseconds or re-initialize decoder with higher surface limit.

Important: The MFXVideoDECODE_DecodeFrameAsync() is mandatory when implementing a decoder.

VideoENCODE

Functions that perform the entire encoding pipeline from the input video frames to the output bitstream.

API

• MFXVideoENCODE_Query

• MFXVideoENCODE_QueryIOSurf

• MFXVideoENCODE_Init

• MFXVideoENCODE_Reset

• MFXVideoENCODE_Close

• MFXVideoENCODE_GetVideoParam

• MFXVideoENCODE_GetEncodeStat

• MFXVideoENCODE_EncodeFrameAsync

10.5. oneVPL API Reference 804

oneAPI Specification, Release 1.1-rev-1

MFXVideoENCODE_Query

mfxStatus MFXVideoENCODE_Query(mfxSession session, mfxVideoParam *in, mfxVideoParam *out)
Works in either of four modes:

• If the in parameter is zero, the function returns the class configurability in the output structure. The output
structure has a non-zero value in each field that the implementation can configure using Init.

• If the in parameter is non-zero, the function checks the validity of the fields in the input structure. Then the
function returns the corrected values in the output structure. If there is insufficient information to determine
the validity or correction is impossible, the function zeroes the fields. This feature can verify whether the
implementation supports certain profiles, levels or bitrates.

• If the in parameter is non-zero and mfxExtEncoderResetOption structure is attached to it, the function
queries for the outcome of the MFXVideoENCODE_Reset function and returns it in the mfxExtEncoder-
ResetOption structure attached to out. The query function succeeds if a reset is possible and returns an error
otherwise. Unlike other modes that are independent of the encoder state, this one checks if reset is possible
in the present encoder state. This mode also requires a completely defined mfxVideoParam structure, unlike
other modes that support partially defined configurations. See mfxExtEncoderResetOption description for
more details.

• If the in parameter is non-zero and mfxExtEncoderCapability structure is attached to it, the function returns
encoder capability in the mfxExtEncoderCapability structure attached to out. It is recommended to fill in
the mfxVideoParam structure and set the hardware acceleration device handle before calling the function
in this mode.

The application can call this function before or after it initializes the encoder. The CodecId field of the output
structure is a mandated field (to be filled by the application) to identify the coding standard.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• in – [in] Pointer to the mfxVideoParam structure as input.

• out – [out] Pointer to the mfxVideoParam structure as output.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_UNSUPPORTED The function failed to identify a specific implementation for the
required features.

MFX_WRN_PARTIAL_ACCELERATION The underlying hardware does not fully support the
specified video parameters. The encoding may be partially accelerated. Only hardware imple-
mentations may return this status code.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAM The function detected some video parame-
ters were incompatible with others; incompatibility resolved.

Important: The MFXVideoENCODE_Query() function is mandatory when implementing an encoder.

10.5. oneVPL API Reference 805

oneAPI Specification, Release 1.1-rev-1

MFXVideoENCODE_QueryIOSurf

mfxStatus MFXVideoENCODE_QueryIOSurf(mfxSession session, mfxVideoParam *par, mfxFrameAllocRequest
*request)

Returns minimum and suggested numbers of the input frame surfaces required for encoding initialization and
their type.

Init will call the external allocator for the required frames with the same set of numbers. This function does not
validate I/O parameters except those used in calculating the number of input surfaces.

The use of this function is recommended. For more information, see the Working with Hardware Acceleration
section.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• par – [in] Pointer to the mfxVideoParam structure as input.

• request – [in] Pointer to the mfxFrameAllocRequest structure as output.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_INVALID_VIDEO_PARAM The function detected invalid video parameters.
These parameters may be out of the valid range or the combination of them resulted in incom-
patibility. Incompatibility not resolved.

MFX_WRN_PARTIAL_ACCELERATION The underlying hardware does not fully support the
specified video parameters. The encoding may be partially accelerated. Only hardware imple-
mentations may return this status code.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAM The function detected some video parame-
ters were incompatible with others; incompatibility resolved.

MFXVideoENCODE_Init

mfxStatus MFXVideoENCODE_Init(mfxSession session, mfxVideoParam *par)
Allocates memory and prepares tables and necessary structures for encoding.

This function also does extensive validation to ensure if the configuration, as specified in the input parameters,
is supported.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• par – [in] Pointer to the mfxVideoParam structure.

Returns
MFX_ERR_NONE The function completed successfully.

10.5. oneVPL API Reference 806

oneAPI Specification, Release 1.1-rev-1

MFX_ERR_INVALID_VIDEO_PARAM The function detected invalid video parameters.
These parameters may be out of the valid range, or the combination of them resulted in incom-
patibility. Incompatibility not resolved.

MFX_WRN_PARTIAL_ACCELERATION The underlying hardware does not fully support the
specified video parameters. The encoding may be partially accelerated. Only hardware imple-
mentations may return this status code.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAM The function detected some video parame-
ters were incompatible with others; incompatibility resolved.

MFX_ERR_UNDEFINED_BEHAVIOR The function is called twice without a close;

Important: The MFXVideoENCODE_Init() function is mandatory when implementing an encoder.

MFXVideoENCODE_Reset

mfxStatus MFXVideoENCODE_Reset(mfxSession session, mfxVideoParam *par)
Stops the current encoding operation and restores internal structures or parameters for a new encoding operation,
possibly with new parameters.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• par – [in] Pointer to the mfxVideoParam structure.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_INVALID_VIDEO_PARAM The function detected invalid video parameters.
These parameters may be out of the valid range, or the combination of them resulted in incom-
patibility. Incompatibility not resolved.

MFX_ERR_INCOMPATIBLE_VIDEO_PARAM The function detected that video parameters
provided by the application are incompatible with initialization parameters. Reset requires addi-
tional memory allocation and cannot be executed. The application should close the component
and then reinitialize it.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAM The function detected some video parame-
ters were incompatible with others; incompatibility resolved.

10.5. oneVPL API Reference 807

oneAPI Specification, Release 1.1-rev-1

MFXVideoENCODE_Close

mfxStatus MFXVideoENCODE_Close(mfxSession session)
Terminates the current encoding operation and de-allocates any internal tables or structures.

Since This function is available since API version 1.0.

Parameters session – [in] Session handle.

Returns MFX_ERR_NONE The function completed successfully.

Important: The MFXVideoENCODE_Close() function is mandatory when implementing an encoder.

MFXVideoENCODE_GetVideoParam

mfxStatus MFXVideoENCODE_GetVideoParam(mfxSession session, mfxVideoParam *par)
Retrieves current working parameters to the specified output structure.

If extended buffers are to be returned, the application must allocate those extended buffers and attach them
as part of the output structure. The application can retrieve a copy of the bitstream header by attaching the
mfxExtCodingOptionSPSPPS structure to the mfxVideoParam structure.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• par – [in] Pointer to the corresponding parameter structure.

Returns MFX_ERR_NONE The function completed successfully.

MFXVideoENCODE_GetEncodeStat

mfxStatus MFXVideoENCODE_GetEncodeStat(mfxSession session, mfxEncodeStat *stat)
Obtains statistics collected during encoding.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• stat – [in] Pointer to the mfxEncodeStat structure.

Returns MFX_ERR_NONE The function completed successfully.

10.5. oneVPL API Reference 808

oneAPI Specification, Release 1.1-rev-1

MFXVideoENCODE_EncodeFrameAsync

mfxStatus MFXVideoENCODE_EncodeFrameAsync(mfxSession session, mfxEncodeCtrl *ctrl, mfxFrameSurface1
*surface, mfxBitstream *bs, mfxSyncPoint *syncp)

Takes a single input frame in either encoded or display order and generates its output bitstream.

In the case of encoded ordering, the mfxEncodeCtrl structure must specify the explicit frame type. In the case of
display ordering, this function handles frame order shuffling according to the GOP structure parameters specified
during initialization.

Since encoding may process frames differently from the input order, not every call of the function generates output
and the function returns MFX_ERR_MORE_DATA. If the encoder needs to cache the frame, the function locks
the frame. The application should not alter the frame until the encoder unlocks the frame. If there is output (with
return status MFX_ERR_NONE), the return is a frame’s worth of bitstream.

It is the calling application’s responsibility to ensure that there is sufficient space in the output buffer. The value
BufferSizeInKB in the mfxVideoParam structure at encoding initialization specifies the maximum possible
size for any compressed frames. This value can also be obtained from the MFXVideoENCODE_GetVideoParam
function after encoding initialization.

To mark the end of the encoding sequence, call this function with a NULL surface pointer. Repeat the call to drain
any remaining internally cached bitstreams (one frame at a time) until MFX_ERR_MORE_DATA is returned.

This function is asynchronous.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• ctrl – [in] Pointer to the mfxEncodeCtrl structure for per-frame encoding control; this pa-
rameter is optional (it can be NULL) if the encoder works in the display order mode.

• surface – [in] Pointer to the frame surface structure.

• bs – [out] Pointer to the output bitstream.

• syncp – [out] Pointer to the returned sync point associated with this operation.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_NOT_ENOUGH_BUFFER The bitstream buffer size is insufficient.

MFX_ERR_MORE_DATA The function requires more data to generate any output.

MFX_ERR_DEVICE_LOST Hardware device was lost.

See the Working with Microsoft* DirectX* Applications section for further information.

MFX_WRN_DEVICE_BUSY Hardware device is currently busy. Call this function again after
MFXVideoCORE_SyncOperation or in a few milliseconds.

MFX_ERR_INCOMPATIBLE_VIDEO_PARAM Inconsistent parameters detected not con-
forming to Configuration Parameter Constraints.

10.5. oneVPL API Reference 809

oneAPI Specification, Release 1.1-rev-1

Important: The MFXVideoENCODE_EncodeFrameAsync() function is mandatory when implementing an encoder.

VideoVPP

Functions that perform video processing before encoding, rendering, or standalone.

API

• MFXVideoVPP_Query

• MFXVideoVPP_QueryIOSurf

• MFXVideoVPP_Init

• MFXVideoVPP_Reset

• MFXVideoVPP_Close

• MFXVideoVPP_GetVideoParam

• MFXVideoVPP_GetVPPStat

• MFXVideoVPP_RunFrameVPPAsync

• MFXVideoVPP_ProcessFrameAsync

MFXVideoVPP_Query

mfxStatus MFXVideoVPP_Query(mfxSession session, mfxVideoParam *in, mfxVideoParam *out)
Works in one of two modes:

• If the in pointer is zero, the function returns the class configurability in the output structure. A non-zero
value in a field indicates that the implementation can configure it with Init.

• If the in parameter is non-zero, the function checks the validity of the fields in the input structure. Then the
function returns the corrected values to the output structure. If there is insufficient information to determine
the validity or correction is impossible, the function zeroes the fields.

The application can call this function before or after it initializes the preprocessor.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• in – [in] Pointer to the mfxVideoParam structure as input.

• out – [out] Pointer to the mfxVideoParam structure as output.

10.5. oneVPL API Reference 810

oneAPI Specification, Release 1.1-rev-1

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_UNSUPPORTED The implementation does not support the specified configuration.

MFX_WRN_PARTIAL_ACCELERATION The underlying hardware does not fully support the
specified video parameters. The video processing may be partially accelerated. Only hardware
implementations may return this status code.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAM The function detected some video parame-
ters were incompatible with others; incompatibility resolved.

Important: The MFXVideoVPP_Query() function is mandatory when implementing a VPP filter.

MFXVideoVPP_QueryIOSurf

mfxStatus MFXVideoVPP_QueryIOSurf(mfxSession session, mfxVideoParam *par, mfxFrameAllocRequest
request[2])

Returns minimum and suggested numbers of the input frame surfaces required for video processing initialization
and their type.

The parameter request[0] refers to the input requirements; request[1] refers to output requirements. Init
will call the external allocator for the required frames with the same set of numbers. This function does not
validate I/O parameters except those used in calculating the number of input surfaces.

The use of this function is recommended. For more information, see the Working with Hardware Acceleration
section.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• par – [in] Pointer to the mfxVideoParam structure as input.

• request – [in] Pointer to the mfxFrameAllocRequest structure; use request[0] for input
requirements and request[1] for output requirements for video processing.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_INVALID_VIDEO_PARAM The function detected invalid video parameters.
These parameters may be out of the valid range, or the combination of them resulted in incom-
patibility. Incompatibility not resolved.

MFX_WRN_PARTIAL_ACCELERATION The underlying hardware does not fully support the
specified video parameters. The video processing may be partially accelerated. Only hardware
implementations may return this status code.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAM The function detected some video parame-
ters were incompatible with others; incompatibility resolved.

10.5. oneVPL API Reference 811

oneAPI Specification, Release 1.1-rev-1

MFXVideoVPP_Init

mfxStatus MFXVideoVPP_Init(mfxSession session, mfxVideoParam *par)
Allocates memory and prepares tables and necessary structures for video processing.

This function also does extensive validation to ensure if the configuration, as specified in the input parameters,
is supported.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• par – [in] Pointer to the mfxVideoParam structure.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_INVALID_VIDEO_PARAM The function detected invalid video parameters.
These parameters may be out of the valid range, or the combination of them resulted in incom-
patibility. Incompatibility not resolved.

MFX_WRN_PARTIAL_ACCELERATION The underlying hardware does not fully support the
specified video parameters. The video processing may be partially accelerated. Only hardware
implementations may return this status code.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAM The function detected some video parame-
ters were incompatible with others; incompatibility resolved.

MFX_ERR_UNDEFINED_BEHAVIOR The function is called twice without a close.

MFX_WRN_FILTER_SKIPPED The VPP skipped one or more filters requested by the applica-
tion.

Important: The MFXVideoVPP_Init() function is mandatory when implementing a VPP filter.

MFXVideoVPP_Reset

mfxStatus MFXVideoVPP_Reset(mfxSession session, mfxVideoParam *par)
Stops the current video processing operation and restores internal structures or parameters for a new operation.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• par – [in] Pointer to the mfxVideoParam structure.

Returns
MFX_ERR_NONE The function completed successfully.

10.5. oneVPL API Reference 812

oneAPI Specification, Release 1.1-rev-1

MFX_ERR_INVALID_VIDEO_PARAM The function detected that video parameters are wrong
or they conflict with initialization parameters. Reset is impossible.

MFX_ERR_INCOMPATIBLE_VIDEO_PARAM The function detected that video parameters
provided by the application are incompatible with initialization parameters. Reset requires addi-
tional memory allocation and cannot be executed. The application should close the component
and then reinitialize it.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAM The function detected some video parame-
ters were incompatible with others; incompatibility resolved.

MFXVideoVPP_Close

mfxStatus MFXVideoVPP_Close(mfxSession session)
Terminates the current video processing operation and de-allocates any internal tables or structures.

Since This function is available since API version 1.0.

Parameters session – [in] Session handle.

Returns MFX_ERR_NONE The function completed successfully.

Important: The MFXVideoVPP_Close() function is mandatory when implementing a VPP filter.

MFXVideoVPP_GetVideoParam

mfxStatus MFXVideoVPP_GetVideoParam(mfxSession session, mfxVideoParam *par)
Retrieves current working parameters to the specified output structure.

If extended buffers are to be returned, the application must allocate those extended buffers and attach them as
part of the output structure.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• par – [in] Pointer to the corresponding parameter structure.

Returns MFX_ERR_NONE The function completed successfully.

10.5. oneVPL API Reference 813

oneAPI Specification, Release 1.1-rev-1

MFXVideoVPP_GetVPPStat

mfxStatus MFXVideoVPP_GetVPPStat(mfxSession session, mfxVPPStat *stat)
Obtains statistics collected during video processing.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• stat – [in] Pointer to the mfxVPPStat structure.

Returns MFX_ERR_NONE The function completed successfully.

MFXVideoVPP_RunFrameVPPAsync

mfxStatus MFXVideoVPP_RunFrameVPPAsync(mfxSession session, mfxFrameSurface1 *in, mfxFrameSurface1 *out,
mfxExtVppAuxData *aux, mfxSyncPoint *syncp)

Processes a single input frame to a single output frame.

Retrieval of the auxiliary data is optional; the encoding process may use it. The video processing process may
not generate an instant output given an input. See the Video Processing Procedures section for details on how to
correctly send input and retrieve output.

At the end of the stream, call this function with the input argument in=NULL to retrieve any remaining frames,
until the function returns MFX_ERR_MORE_DATA. This function is asynchronous.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• in – [in] Pointer to the input video surface structure.

• out – [out] Pointer to the output video surface structure.

• aux – [in] Optional pointer to the auxiliary data structure.

• syncp – [out] Pointer to the output sync point.

Returns
MFX_ERR_NONE The output frame is ready after synchronization.

MFX_ERR_MORE_DATA Need more input frames before VPP can produce an output.

MFX_ERR_MORE_SURFACE The output frame is ready after synchronization. Need more
surfaces at output for additional output frames available.

MFX_ERR_DEVICE_LOST Hardware device was lost.

See the Working with Microsoft* DirectX* Applications section for further information.

MFX_WRN_DEVICE_BUSY Hardware device is currently busy. Call this function again after
MFXVideoCORE_SyncOperation or in a few milliseconds.

10.5. oneVPL API Reference 814

oneAPI Specification, Release 1.1-rev-1

MFXVideoVPP_ProcessFrameAsync

mfxStatus MFXVideoVPP_ProcessFrameAsync(mfxSession session, mfxFrameSurface1 *in, mfxFrameSurface1
**out)

The function processes a single input frame to a single output frame with internal allocation of output frame.

At the end of the stream, call this function with the input argument in=NULL to retrieve any remaining frames,
until the function returns MFX_ERR_MORE_DATA. This function is asynchronous.

Since This function is available since API version 2.1.

Parameters
• session – [in] Session handle.

• in – [in] Pointer to the input video surface structure.

• out – [out] Pointer to the output video surface structure which is reference counted object
allocated by the library.

Returns
MFX_ERR_NONE The output frame is ready after synchronization.

MFX_ERR_MORE_DATA Need more input frames before VPP can produce an output.

MFX_ERR_MEMORY_ALLOC The function failed to allocate output videoframe.

MFX_ERR_DEVICE_LOST Hardware device was lost.

See the Working with Microsoft* DirectX* Applications section for further information.

MFX_WRN_DEVICE_BUSY Hardware device is currently busy. Call this function again after
MFXVideoCORE_SyncOperation or in a few milliseconds.

MFX_WRN_ALLOC_TIMEOUT_EXPIRED Timeout expired for internal output frame alloca-
tion (if set with mfxExtAllocationHints). Repeat the call in a few milliseconds or reinitialize VPP
with higher surface limit.

Important: Either MFXVideoVPP_RunFrameVPPAsync() or MFXVideoVPP_ProcessFrameAsync() function is
mandatory when implementing a VPP filter.

VideoCORE

Functions to perform external device and memory management and synchronization.

10.5. oneVPL API Reference 815

oneAPI Specification, Release 1.1-rev-1

API

• MFXVideoCORE_SetFrameAllocator

• MFXVideoCORE_SetHandle

• MFXVideoCORE_GetHandle

• MFXVideoCORE_QueryPlatform

• MFXVideoCORE_SyncOperation

MFXVideoCORE_SetFrameAllocator

mfxStatus MFXVideoCORE_SetFrameAllocator(mfxSession session, mfxFrameAllocator *allocator)
Sets the external allocator callback structure for frame allocation.

If the allocator argument is NULL, the library uses the default allocator, which allocates frames from system
memory or hardware devices. The behavior of the API is undefined if it uses this function while the previous
allocator is in use. A general guideline is to set the allocator immediately after initializing the session.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• allocator – [in] Pointer to the mfxFrameAllocator structure

Returns MFX_ERR_NONE The function completed successfully.

MFXVideoCORE_SetHandle

mfxStatus MFXVideoCORE_SetHandle(mfxSession session, mfxHandleType type, mfxHDL hdl)
Sets any essential system handle that the library might use.

If the specified system handle is a COM interface, the reference counter of the COM interface will increase. The
counter will decrease when the session closes.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• type – [in] Handle type

• hdl – [in] Handle to be set

Returns
MFX_ERR_NONE The function completed successfully.

10.5. oneVPL API Reference 816

oneAPI Specification, Release 1.1-rev-1

MFX_ERR_UNDEFINED_BEHAVIOR The same handle is redefined. For example, the func-
tion has been called twice with the same handle type or an internal handle has been created before
this function call. MFX_ERR_DEVICE_FAILED The SDK cannot initialize using the handle.

MFXVideoCORE_GetHandle

mfxStatus MFXVideoCORE_GetHandle(mfxSession session, mfxHandleType type, mfxHDL *hdl)
Obtains system handles previously set by the MFXVideoCORE_SetHandle function.

If the handler is a COM interface, the reference counter of the interface increases. The calling application must
release the COM interface.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• type – [in] Handle type

• hdl – [in] Pointer to the handle to be set

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_UNDEFINED_BEHAVIOR Specified handle type not found.

MFXVideoCORE_QueryPlatform

mfxStatus MFXVideoCORE_QueryPlatform(mfxSession session, mfxPlatform *platform)
Returns information about current hardware platform in the Legacy mode.

Since This function is available since API version 1.19.

Parameters
• session – [in] Session handle.

• platform – [out] Pointer to the mfxPlatform structure

Returns MFX_ERR_NONE The function completed successfully.

MFXVideoCORE_SyncOperation

mfxStatus MFXVideoCORE_SyncOperation(mfxSession session, mfxSyncPoint syncp, mfxU32 wait)
Initiates execution of an asynchronous function not already started and returns the status code after the specified
asynchronous operation completes. If wait is zero, the function returns immediately.

Since This function is available since API version 1.0.

Parameters

10.5. oneVPL API Reference 817

oneAPI Specification, Release 1.1-rev-1

• session – [in] Session handle.

• syncp – [in] Sync point

• wait – [in] wait time in milliseconds

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_NONE_PARTIAL_OUTPUT The function completed successfully, bitstream con-
tains a portion of the encoded frame according to required granularity.

MFX_WRN_IN_EXECUTION The specified asynchronous function is in execution.

MFX_ERR_ABORTED The specified asynchronous function aborted due to data dependency
on a previous asynchronous function that did not complete.

Important: The MFXVideoCORE_SyncOperation() function is mandatory for any implementation.

Session Management

Functions to manage sessions.

API

• MFXInit

• MFXInitEx

• MFXInitialize

• MFXClose

• MFXQueryIMPL

• MFXQueryVersion

• MFXJoinSession

• MFXDisjoinSession

• MFXCloneSession

• MFXSetPriority

• MFXGetPriority

10.5. oneVPL API Reference 818

oneAPI Specification, Release 1.1-rev-1

MFXInit

mfxStatus MFXInit(mfxIMPL impl, mfxVersion *ver, mfxSession *session)
Creates and initializes a session in the legacy mode for compatibility with Intel(r) Media SDK applications. This
function is deprecated starting from API version 2.0, applications must use MFXLoad with mfxCreateSession
to select the implementation and initialize the session.

Call this function before calling any other API function. If the desired implementation specified by impl is
MFX_IMPL_AUTO, the function will search for the platform-specific implementation. If the function cannot
find the platform-specific implementation, it will use the software implementation instead.

The ver argument indicates the desired version of the library implementation. The loaded implementation will
have an API version compatible to the specified version (equal in the major version number, and no less in the
minor version number.) If the desired version is not specified, the default is to use the API version from the
library release with which an application is built.

Production applications should always specify the minimum API version that meets the functional requirements.
For example, if an application uses only H.264 decoding as described in API v1.0, the application should initialize
the library with API v1.0. This ensures backward compatibility.

Deprecated:
Deprecated in API version 2.3. Use MFXLoad and MFXCreateSession to initialize the session. Use
MFX_DEPRECATED_OFF macro to turn off the deprecation message visualization.

Since This function is available since API version 1.0.

Parameters
• impl – [in] mfxIMPL enumerator that indicates the desired legacy Intel(r) Media SDK im-

plementation.

• ver – [in] Pointer to the minimum library version or zero, if not specified.

• session – [out] Pointer to the legacy Intel(r) Media SDK session handle.

Returns
MFX_ERR_NONE The function completed successfully. The output parameter contains the
handle of the session.

MFX_ERR_UNSUPPORTED The function cannot find the desired legacy Intel(r) Media SDK
implementation or version.

MFXInitEx

mfxStatus MFXInitEx(mfxInitParam par, mfxSession *session)
Creates and initializes a session in the legacy mode for compatibility with Intel(r) Media SDK applications. This
function is deprecated starting from API version 2.0, applications must use MFXLoad with mfxCreateSession
to select the implementation and initialize the session.

Call this function before calling any other API functions. If the desired implementation specified by par is
MFX_IMPL_AUTO, the function will search for the platform-specific implementation. If the function cannot
find the platform-specific implementation, it will use the software implementation instead.

The argument par.Version indicates the desired version of the implementation. The loaded implementation
will have an API version compatible to the specified version (equal in the major version number, and no less in

10.5. oneVPL API Reference 819

oneAPI Specification, Release 1.1-rev-1

the minor version number.) If the desired version is not specified, the default is to use the API version from the
library release with which an application is built.

Production applications should always specify the minimum API version that meets the functional requirements.
For example, if an application uses only H.264 decoding as described in API v1.0, the application should initialize
the library with API v1.0. This ensures backward compatibility.

The argument par.ExternalThreads specifies threading mode. Value 0 means that the implementation should
create and handle work threads internally (this is essentially the equivalent of the regular MFXInit).

Deprecated:
Deprecated in API version 2.3. Use MFXLoad and MFXCreateSession to initialize the session. Use
MFX_DEPRECATED_OFF macro to turn off the deprecation message visualization.

Since This function is available since API version 1.14.

Parameters
• par – [in] mfxInitParam structure that indicates the desired implementation, minimum li-

brary version and desired threading mode.

• session – [out] Pointer to the session handle.

Returns
MFX_ERR_NONE The function completed successfully. The output parameter contains the
handle of the session.

MFX_ERR_UNSUPPORTED The function cannot find the desired implementation or version.

MFXInitialize

mfxStatus MFXInitialize(mfxInitializationParam par, mfxSession *session)
Creates and initializes a session starting from API version 2.0. This function is used by the dispatcher. The
dispatcher creates and fills the mfxInitializationParam structure according to mfxConfig values set by an appli-
cation. Calling this function directly is not recommended. Instead, applications must call the mfxCreateSession
function.

Since This function is available since API version 2.0.

Parameters
• par – [in] mfxInitializationParam structure that indicates the minimum library version and

acceleration type.

• session – [out] Pointer to the session handle.

Returns
MFX_ERR_NONE The function completed successfully. The output parameter contains the
handle of the session.

MFX_ERR_UNSUPPORTED The function cannot find the desired implementation or version.

Important: The MFXInitialize() function is mandatory for any implementation.

10.5. oneVPL API Reference 820

oneAPI Specification, Release 1.1-rev-1

MFXClose

mfxStatus MFXClose(mfxSession session)
Completes and deinitializes a session. Any active tasks in execution or in queue are aborted. The application
cannot call any API function after calling this function.

All child sessions must be disjoined before closing a parent session.

Since This function is available since API version 1.0.

Parameters session – [in] session handle.

Returns MFX_ERR_NONE The function completed successfully.

Important: The MFXClose() function is mandatory for any implementation.

MFXQueryIMPL

mfxStatus MFXQueryIMPL(mfxSession session, mfxIMPL *impl)
Returns the implementation type of a given session.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• impl – [out] Pointer to the implementation type

Returns MFX_ERR_NONE The function completed successfully.

MFXQueryVersion

mfxStatus MFXQueryVersion(mfxSession session, mfxVersion *version)
Returns the implementation version.

Since This function is available since API version 1.0.

Parameters
• session – [in] Session handle.

• version – [out] Pointer to the returned implementation version.

Returns MFX_ERR_NONE The function completed successfully.

10.5. oneVPL API Reference 821

oneAPI Specification, Release 1.1-rev-1

MFXJoinSession

mfxStatus MFXJoinSession(mfxSession session, mfxSession child)
Joins the child session to the current session.

After joining, the two sessions share thread and resource scheduling for asynchronous operations. However, each
session still maintains its own device manager and buffer/frame allocator. Therefore, the application must use a
compatible device manager and buffer/frame allocator to share data between two joined sessions.

The application can join multiple sessions by calling this function multiple times. When joining the first two
sessions, the current session becomes the parent responsible for thread and resource scheduling of any later
joined sessions.

Joining of two parent sessions is not supported.

Since This function is available since API version 1.1.

Parameters
• session – [inout] The current session handle.

• child – [in] The child session handle to be joined

Returns
MFX_ERR_NONE The function completed successfully.

MFX_WRN_IN_EXECUTION Active tasks are executing or in queue in one of the sessions.
Call this function again after all tasks are completed.

MFX_ERR_UNSUPPORTED The child session cannot be joined with the current session.

MFXDisjoinSession

mfxStatus MFXDisjoinSession(mfxSession session)
Removes the joined state of the current session.

After disjoining, the current session becomes independent. The application must␣
→˓ensure there is no active task running in the session before calling this API␣
→˓function.

Since This function is available since API version 1.1.

Parameters session – [inout] The current session handle.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_WRN_IN_EXECUTION Active tasks are executing or in queue in one of the sessions.
Call this function again after all tasks are completed.

MFX_ERR_UNDEFINED_BEHAVIOR The session is independent, or this session is the parent
of all joined sessions.

10.5. oneVPL API Reference 822

oneAPI Specification, Release 1.1-rev-1

MFXCloneSession

mfxStatus MFXCloneSession(mfxSession session, mfxSession *clone)
Creates a clean copy of the current session.

The cloned session is an independent session and does not inherit any user-
→˓defined buffer, frame allocator, or device manager handles from the current␣
→˓session.

This function is a light-weight equivalent of MFXJoinSession after MFXInit.

Since This function is available since API version 1.1.

Parameters
• session – [in] The current session handle.

• clone – [out] Pointer to the cloned session handle.

Returns MFX_ERR_NONE The function completed successfully.

MFXSetPriority

mfxStatus MFXSetPriority(mfxSession session, mfxPriority priority)
Sets the current session priority.

Since This function is available since API version 1.1.

Parameters
• session – [in] The current session handle.

• priority – [in] Priority value.

Returns MFX_ERR_NONE The function completed successfully.

MFXGetPriority

mfxStatus MFXGetPriority(mfxSession session, mfxPriority *priority)
Returns the current session priority.

Since This function is available since API version 1.1.

Parameters
• session – [in] The current session handle.

• priority – [out] Pointer to the priority value.

Returns MFX_ERR_NONE The function completed successfully.

10.5. oneVPL API Reference 823

oneAPI Specification, Release 1.1-rev-1

Memory

Functions for internal memory allocation and management.

API

• MFXMemory_GetSurfaceForVPP

• MFXMemory_GetSurfaceForVPPOut

• MFXMemory_GetSurfaceForEncode

• MFXMemory_GetSurfaceForDecode

MFXMemory_GetSurfaceForVPP

mfxStatus MFXMemory_GetSurfaceForVPP(mfxSession session, mfxFrameSurface1 **surface)
Returns surface which can be used as input for VPP.

VPP should be initialized before this call. Surface should be released with mfxFrameSur-
face1::FrameInterface.Release(. . .) after usage. The value of mfxFrameSurface1::Data.Locked for the
returned surface is 0.

Since This function is available since API version 2.0.

Parameters
• session – [in] Session handle.

• surface – [out] Pointer is set to valid mfxFrameSurface1 object.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_NULL_PTR If double-pointer to the surface is NULL.

MFX_ERR_INVALID_HANDLE If session was not initialized.

MFX_ERR_NOT_INITIALIZED If VPP was not initialized (allocator needs to know surface
size from somewhere).

MFX_ERR_MEMORY_ALLOC In case of any other internal allocation error.

MFX_WRN_ALLOC_TIMEOUT_EXPIRED In case of waiting timeout expired (if set with
mfxExtAllocationHints).

Alias below, can be used as well:

MFXMemory_GetSurfaceForVPPIn
Alias for MFXMemory_GetSurfaceForVPP function.

10.5. oneVPL API Reference 824

oneAPI Specification, Release 1.1-rev-1

MFXMemory_GetSurfaceForVPPOut

mfxStatus MFXMemory_GetSurfaceForVPPOut(mfxSession session, mfxFrameSurface1 **surface)
Returns surface which can be used as output of VPP.

VPP should be initialized before this call. Surface should be released with mfxFrameSur-
face1::FrameInterface.Release(. . .) after usage. The value of mfxFrameSurface1::Data.Locked for the
returned surface is 0.

Since This function is available since API version 2.1.

Parameters
• session – [in] Session handle.

• surface – [out] Pointer is set to valid mfxFrameSurface1 object.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_NULL_PTR If double-pointer to the surface is NULL.

MFX_ERR_INVALID_HANDLE If session was not initialized.

MFX_ERR_NOT_INITIALIZED If VPP was not initialized (allocator needs to know surface
size from somewhere).

MFX_ERR_MEMORY_ALLOC In case of any other internal allocation error.

MFX_WRN_ALLOC_TIMEOUT_EXPIRED In case of waiting timeout expired (if set with
mfxExtAllocationHints).

MFXMemory_GetSurfaceForEncode

mfxStatus MFXMemory_GetSurfaceForEncode(mfxSession session, mfxFrameSurface1 **surface)
Returns a surface which can be used as input for the encoder.

Encoder should be initialized before this call. Surface should be released with mfxFrameSur-
face1::FrameInterface.Release(. . .) after usage. The value of mfxFrameSurface1::Data.Locked for the returned
surface is 0.

Since This function is available since API version 2.0.

Parameters
• session – [in] Session handle.

• surface – [out] Pointer is set to valid mfxFrameSurface1 object.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_NULL_PTR If surface is NULL.

MFX_ERR_INVALID_HANDLE If session was not initialized.

MFX_ERR_NOT_INITIALIZED If the encoder was not initialized (allocator needs to know
surface size from somewhere).

10.5. oneVPL API Reference 825

oneAPI Specification, Release 1.1-rev-1

MFX_ERR_MEMORY_ALLOC In case of any other internal allocation error.

MFX_WRN_ALLOC_TIMEOUT_EXPIRED In case of waiting timeout expired (if set with
mfxExtAllocationHints).

MFXMemory_GetSurfaceForDecode

mfxStatus MFXMemory_GetSurfaceForDecode(mfxSession session, mfxFrameSurface1 **surface)
Returns a surface which can be used as output of the decoder.

Decoder should be initialized before this call. Surface should be released with mfxFrameSur-
face1::FrameInterface.Release(. . .) after usage. The value of mfxFrameSurface1::Data.Locked for the returned
surface is 0.’

Since This function is available since API version 2.0.

Note: This function was added to simplify transition from legacy surface management to the proposed internal
allocation approach. Previously, the user allocated surfaces for the working pool and fed them to the decoder
using DecodeFrameAsync calls. With MFXMemory_GetSurfaceForDecode it is possible to change the existing
pipeline by just changing the source of work surfaces. Newly developed applications should prefer direct usage
of DecodeFrameAsync with internal allocation.

Parameters
• session – [in] Session handle.

• surface – [out] Pointer is set to valid mfxFrameSurface1 object.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_NULL_PTR If surface is NULL.

MFX_ERR_INVALID_HANDLE If session was not initialized.

MFX_ERR_NOT_INITIALIZED If the decoder was not initialized (allocator needs to know
surface size from somewhere).

MFX_ERR_MEMORY_ALLOC Other internal allocation error.

MFX_WRN_ALLOC_TIMEOUT_EXPIRED In case of waiting timeout expired (if set with
mfxExtAllocationHints).

Implementation Capabilities

Functions to report capabilities of available implementations and create user-requested library implementations.

10.5. oneVPL API Reference 826

oneAPI Specification, Release 1.1-rev-1

API

• MFXQueryImplsDescription

• MFXReleaseImplDescription

MFXQueryImplsDescription

mfxHDL *MFXQueryImplsDescription(mfxImplCapsDeliveryFormat format, mfxU32 *num_impls)
Delivers implementation capabilities in the requested format according to the format value.

Since This function is available since API version 2.0.

Parameters
• format – [in] Format in which capabilities must be delivered. See mfxImplCapsDelivery-

Format for more details.

• num_impls – [out] Number of the implementations.

Returns Array of handles to the capability report or NULL in case of unsupported format or NULL
num_impls pointer. Length of array is equal to num_impls.

Important: The MFXQueryImplsDescription() function is mandatory for any implementation.

MFXReleaseImplDescription

mfxStatus MFXReleaseImplDescription(mfxHDL hdl)
Destroys the handle allocated by the MFXQueryImplsDescription function. Implementation must remember
which handles are released. Once the last handle is released, this function must release memory allocated for the
array of handles.

Since This function is available since API version 2.0.

Parameters hdl – [in] Handle to destroy. Can be equal to NULL.

Returns MFX_ERR_NONE The function completed successfully.

Important: The MFXReleaseImplDescription() function is mandatory for any implementation.

10.5. oneVPL API Reference 827

oneAPI Specification, Release 1.1-rev-1

Adapters

Functions that identify graphics adapters for Microsoft* DirectX* video processing, encoding, and decoding.

API

• MFXQueryAdapters

• MFXQueryAdaptersDecode

• MFXQueryAdaptersNumber

MFXQueryAdapters

mfxStatus MFXQueryAdapters(mfxComponentInfo *input_info, mfxAdaptersInfo *adapters)
Returns a list of adapters that are suitable to handle workload input_info. The list is sorted in priority order,
with iGPU given the highest precedence. This rule may change in the future. If the input_info pointer is
NULL, the list of all available adapters will be returned.

Since This function is available since API version 1.31.

Parameters
• input_info – [in] Pointer to workload description. See mfxComponentInfo description for

details.

• adapters – [out] Pointer to output description of all suitable adapters for input workload.
See mfxAdaptersInfo description for details.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_NULL_PTR input_info or adapters pointer is NULL.

MFX_ERR_NOT_FOUND No suitable adapters found.

MFX_WRN_OUT_OF_RANGE Not enough memory to report back entire list of adapters. In
this case as many adapters as possible will be returned.

MFXQueryAdaptersDecode

mfxStatus MFXQueryAdaptersDecode(mfxBitstream *bitstream, mfxU32 codec_id, mfxAdaptersInfo *adapters)
Returns list of adapters that are suitable to decode the input bitstream. The list is sorted in priority order, with
iGPU given the highest precedence. This rule may change in the future. This function is a simplification of
MFXQueryAdapters, because bitstream is a description of the workload itself.

Since This function is available since API version 1.31.

Parameters
• bitstream – [in] Pointer to bitstream with input data.

10.5. oneVPL API Reference 828

oneAPI Specification, Release 1.1-rev-1

• codec_id – [in] Codec ID to determine the type of codec for the input bitstream.

• adapters – [out] Pointer to the output list of adapters. Memory should be allocated by user.
See mfxAdaptersInfo description for details.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_NULL_PTR bitstream or adapters pointer is NULL.

MFX_ERR_NOT_FOUND No suitable adapters found.

MFX_WRN_OUT_OF_RANGE Not enough memory to report back entire list of adapters. In
this case as many adapters as possible will be returned.

MFXQueryAdaptersNumber

mfxStatus MFXQueryAdaptersNumber(mfxU32 *num_adapters)
Returns the number of detected graphics adapters. It can be used before calling MFXQueryAdapters to determine
the size of input data that the user will need to allocate.

Since This function is available since API version 1.31.

Parameters num_adapters – [out] Pointer for the output number of detected graphics adapters.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_NULL_PTR num_adapters pointer is NULL.

VideoDECODE_VPP

Functions that implement combined operation of decoding and video processing with multiple output frame surfaces.

API

• MFXVideoDECODE_VPP_Init

• MFXVideoDECODE_VPP_Reset

• MFXVideoDECODE_VPP_GetChannelParam

• MFXVideoDECODE_VPP_DecodeFrameAsync

• MFXVideoDECODE_VPP_Close

10.5. oneVPL API Reference 829

oneAPI Specification, Release 1.1-rev-1

MFXVideoDECODE_VPP_Init

mfxStatus MFXVideoDECODE_VPP_Init(mfxSession session, mfxVideoParam *decode_par, mfxVideoChannelParam
**vpp_par_array, mfxU32 num_vpp_par)

Initialize the SDK in (decode + vpp) mode. The logic of this function is similar to MFXVideoDECODE_Init,
but application has to provide array of pointers to mfxVideoChannelParam and num_channel_param - number
of channels. Application is responsible for

memory allocation for mfxVideoChannelParam parameters and for each channel it should specify channel IDs:

mfxVideoChannelParam::mfxFrameInfo::ChannelId. ChannelId should be unique value within one session. The
application can attach mfxExtInCrops to mfxVideoChannelParam::ExtParam to annotate input video frame if it
wants to enable letterboxing operation.

Since This function is available since API version 2.1.

Parameters
• session – [in] SDK session handle.

• decode_par – [in] Pointer to the mfxVideoParam structure which contains initialization
parameters for decoder.

• vpp_par_array – [in] Array of pointers to mfxVideoChannelParamstructures. Each
mfxVideoChannelParam contains initialization parameters for each VPP channel.

• num_vpp_par – [in] Size of array of pointers to mfxVideoChannelParam structures.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_INVALID_VIDEO_PARAM The function detected invalid video parameters.
These parameters may be out of the valid range, or the combination of them resulted in incom-
patibility. Incompatibility not resolved.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAM The function detected some video parame-
ters were incompatible with others; incompatibility resolved.

MFX_ERR_UNDEFINED_BEHAVIOR The component is already initialized.

MFX_WRN_FILTER_SKIPPED The VPP skipped one or more filters requested by the applica-
tion.

Important: The MFXVideoDECODE_VPP_Init() is mandatory when implementing a combined decode plus vpp.

MFXVideoDECODE_VPP_Reset

mfxStatus MFXVideoDECODE_VPP_Reset(mfxSession session, mfxVideoParam *decode_par,
mfxVideoChannelParam **vpp_par_array, mfxU32 num_vpp_par)

This function is similar to MFXVideoDECODE_Reset and stops the current decoding and vpp operation, and
restores internal structures or parameters for a new decoding plus vpp operation. It resets the state of the de-
coder and/or all initialized vpp channels. Applications have to care about draining of buffered frames for decode
and all vpp channels before call this function. The application can attach mfxExtInCrops to mfxVideoChannel-
Param::ExtParam to annotate input video frame if it wants to enable letterboxing operation.

10.5. oneVPL API Reference 830

oneAPI Specification, Release 1.1-rev-1

Since This function is available since API version 2.1.

Parameters
• session – [in] Session handle.

• decode_par – [in] Pointer to the mfxVideoParam structure which contains new initial-
ization parameters for decoder. Might be NULL if application wants to Reset only VPP
channels.

• vpp_par_array – [in] Array of pointers to mfxVideoChannelParam structures. Each
mfxVideoChannelParam contains new initialization parameters for each VPP channel.

• num_vpp_par – [in] Size of array of pointers to mfxVideoChannelParam structures.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_INVALID_VIDEO_PARAM The function detected that video parameters are wrong
or they conflict with initialization parameters. Reset is impossible.

MFX_ERR_INCOMPATIBLE_VIDEO_PARAM The function detected that video parameters
provided by the application are incompatible with initialization parameters. Reset requires addi-
tional memory allocation and cannot be executed. The application should close the component
and then reinitialize it.

MFX_WRN_INCOMPATIBLE_VIDEO_PARAM The function detected some video parame-
ters were incompatible with others; incompatibility resolved. MFX_ERR_NULL_PTR Both
pointers decode_par and vpp_par_array` equal to zero.

MFXVideoDECODE_VPP_GetChannelParam

mfxStatus MFXVideoDECODE_VPP_GetChannelParam(mfxSession session, mfxVideoChannelParam *par, mfxU32
channel_id)

Returns actual VPP parameters for selected channel which should be specified by application through

mfxVideoChannelParam::mfxFrameInfo::ChannelId.

Since This function is available since API version 2.1.

Parameters
• session – [in] Session handle.

• par – [in] Pointer to the mfxVideoChannelParam structure which allocated by application

• channel_id – [in] specifies the requested channel’s info

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_NULL_PTR par pointer is NULL.

MFX_ERR_NOT_FOUND the library is not able to find VPP channel with such channel_id.

10.5. oneVPL API Reference 831

oneAPI Specification, Release 1.1-rev-1

MFXVideoDECODE_VPP_DecodeFrameAsync

mfxStatus MFXVideoDECODE_VPP_DecodeFrameAsync(mfxSession session, mfxBitstream *bs, mfxU32
*skip_channels, mfxU32 num_skip_channels,
mfxSurfaceArray **surf_array_out)

This function is similar to MFXVideoDECODE_DecodeFrameAsync and inherits all bitstream processing logic.
As output it allocates

and returns array of processed surfaces according to the chain of filters specified by applicaton in MFXVideoDE-
CODE_VPP_Init. The original decoded frames are returned through surfaces with mfxFrameInfo::ChannelId ==
0. In other words, zero ChannelId is reserved by the SDK for decoded output and cannot be used by application
to set video processing channels during

initialization.

Since This function is available since API version 2.1.

Parameters
• session – [in] SDK session handle.

• bs – [in] Pointer to the input bitstream.

• skip_channels – [in] Pointer to the array of ChannelIds which specifies channels with
skip output frames. Memory for the array is allocated by application.

• num_skip_channels – [in] Number of channels addressed by skip_channels.

• surf_array_out – [out] The address of a pointer to the structure with frame surfaces.

Returns
MFX_ERR_NONE The function completed successfully and the output surface is ready for de-
coding.

MFX_ERR_MORE_DATA The function requires more bitstream at input before decoding can
proceed.

MFX_ERR_MORE_SURFACE The function requires more frame surface at output before de-
coding can proceed.

MFX_ERR_DEVICE_LOST Hardware device was lost.

See the Working with Microsoft* DirectX* Applications section for further information.

MFX_WRN_DEVICE_BUSY Hardware device is currently busy. Call this function again after
MFXVideoCORE_SyncOperation or in a few milliseconds.

MFX_WRN_VIDEO_PARAM_CHANGED The decoder detected a new sequence header in the
bitstream. Video parameters may have changed.

MFX_ERR_INCOMPATIBLE_VIDEO_PARAM The decoder detected incompatible video pa-
rameters in the bitstream and failed to follow them.

MFX_ERR_NULL_PTR num_skip_channels doesn’t equal to 0 when skip_channels is NULL.

10.5. oneVPL API Reference 832

oneAPI Specification, Release 1.1-rev-1

Important: The MFXVideoDECODE_VPP_DecodeFrameAsync() is mandatory when implementing a combined de-
code plus vpp.

MFXVideoDECODE_VPP_Close

mfxStatus MFXVideoDECODE_VPP_Close(mfxSession session)
This function is similar to MFXVideoDECODE_Close. It terminates the current decoding and vpp operation
and de-allocates any internal tables or structures.

Since This function is available since API version 2.1.

Parameters session – [in] Session handle.

Returns MFX_ERR_NONE The function completed successfully.

Important: The MFXVideoDECODE_VPP_Close() is mandatory when implementing a combined decode plus vpp.

10.5.2 Structure Reference

Type Definitions Structures used for type definitions.

Memory Structures Structures used for memory.

Implementation Management Structures used for implementation management.

Cross-component Structures Structures used across library components.

Decode Structures Structures used by Decode only.

Encode Structures Structures used by Encode only.

VPP Structures Structures used by VPP only.

Protected Structures Protected structures.

DECODDE_VPP Structures Structures used by DECODE_VPP only.

Type Definitions

Structures used for type definitions.

10.5. oneVPL API Reference 833

oneAPI Specification, Release 1.1-rev-1

API

• mfxExtBuffer

• mfxHDLPair

• mfxI16Pair

• mfxRange32U

• mfxStructVersion

mfxExtBuffer

struct mfxExtBuffer
The common header definition for external buffers and video processing hints.

Public Members

mfxU32 BufferId
Identifier of the buffer content. See the ExtendedBufferID enumerator for a complete list of extended
buffers.

mfxU32 BufferSz
Size of the buffer.

mfxHDLPair

struct mfxHDLPair
Represents pair of handles of type mfxHDL.

Public Members

mfxHDL first
First handle.

mfxHDL second
Second handle.

10.5. oneVPL API Reference 834

oneAPI Specification, Release 1.1-rev-1

mfxI16Pair

struct mfxI16Pair
Represents a pair of numbers of type mfxI16.

Public Members

mfxI16 x
First number.

mfxI16 y
Second number.

mfxRange32U

struct mfxRange32U
Represents a range of unsigned values.

Public Members

mfxU32 Min
Minimal value of the range.

mfxU32 Max
Maximal value of the range.

mfxU32 Step
Value increment.

mfxStructVersion

union mfxStructVersion
#include <mfxdefs.h> Introduce the field Version for any structure. Assumed that any structure changes are
backward binary compatible. mfxStructVersion starts from {1,0} for any new API structures. If mfxStructVersion
is added to the existent legacy structure (replacing reserved fields) it starts from {1, 1}.

Major and Minor fields

Anonymous structure with Major and Minor fields. Minor number is incremented when reserved fields are used.
Major number is incremented when the size of structure is increased.

mfxU8 Minor
Minor number of the correspondent structure.

mfxU8 Major
Major number of the correspondent structure.

10.5. oneVPL API Reference 835

oneAPI Specification, Release 1.1-rev-1

Public Members

struct mfxStructVersion::[anonymous] [anonymous]

mfxU16 Version
Structure version number.

Memory Structures

Structures used for memory.

API

• mfxBitstream

• mfxFrameAllocator

• mfxFrameAllocRequest

• mfxFrameAllocResponse

• mfxFrameData

• mfxFrameInfo

• mfxFrameSurface1

• mfxFrameSurfaceInterface

• mfxSurfacePoolInterface

mfxBitstream

struct mfxBitstream
Defines the buffer that holds compressed video data.

Public Members

mfxEncryptedData *EncryptedData
Reserved and must be zero.

mfxExtBuffer **ExtParam
Array of extended buffers for additional bitstream configuration. See the ExtendedBufferID enumerator for
a complete list of extended buffers.

mfxU16 NumExtParam
The number of extended buffers attached to this structure.

mfxU32 CodecId
Specifies the codec format identifier in the FourCC code. See the CodecFormatFourCC enumerator for
details. This optional parameter is required for the simplified decode initialization.

10.5. oneVPL API Reference 836

oneAPI Specification, Release 1.1-rev-1

mfxI64 DecodeTimeStamp
Decode time stamp of the compressed bitstream in units of 90KHz. A value of
MFX_TIMESTAMP_UNKNOWN indicates that there is no time stamp.

This value is calculated by the encoder from the presentation time stamp provided by the application in
the mfxFrameSurface1 structure and from the frame rate provided by the application during the encoder
initialization.

mfxU64 TimeStamp
Time stamp of the compressed bitstream in units of 90KHz. A value of MFX_TIMESTAMP_UNKNOWN
indicates that there is no time stamp.

mfxU8 *Data
Bitstream buffer pointer, 32-bytes aligned.

mfxU32 DataOffset
Next reading or writing position in the bitstream buffer.

mfxU32 DataLength
Size of the actual bitstream data in bytes.

mfxU32 MaxLength
Allocated bitstream buffer size in bytes.

mfxU16 PicStruct
Type of the picture in the bitstream. Output parameter.

mfxU16 FrameType
Frame type of the picture in the bitstream. Output parameter.

mfxU16 DataFlag
Indicates additional bitstream properties. See the BitstreamDataFlag enumerator for details.

mfxU16 reserved2
Reserved for future use.

mfxFrameAllocator

struct mfxFrameAllocator
Describes the API callback functions Alloc, Lock, Unlock, GetHDL, and Free that the implementation might
use for allocating internal frames. Applications that operate on OS-specific video surfaces must implement these
API callback functions.

Using the default allocator implies that frame data passes in or out of functions through pointers, as opposed to
using memory IDs.

Behavior is undefined when using an incompletely defined external allocator.

See the Memory Allocation and External Allocators section for additional information.

10.5. oneVPL API Reference 837

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxHDL pthis
Pointer to the allocator object.

mfxStatus (*Alloc)(mfxHDL pthis, mfxFrameAllocRequest *request, mfxFrameAllocResponse *response)
Allocates surface frames. For decoders, MFXVideoDECODE_Init calls Alloc only once. That call includes
all frame allocation requests. For encoders, MFXVideoENCODE_Init calls Alloc twice: once for the input
surfaces and again for the internal reconstructed surfaces.

If two library components must share DirectX* surfaces, this function should pass the pre-allocated surface
chain to the library instead of allocating new DirectX surfaces. See the Surface Pool Allocation section for
additional information.

Parameters
• pthis – [in] Pointer to the allocator object.

• request – [in] Pointer to the mfxFrameAllocRequest structure that specifies the type and
number of required frames.

• response – [out] Pointer to the mfxFrameAllocResponse structure that retrieves frames
actually allocated.

Returns
MFX_ERR_NONE The function successfully allocated the memory block.

MFX_ERR_MEMORY_ALLOC The function failed to allocate the video frames.

MFX_ERR_UNSUPPORTED The function does not support allocating the specified type of
memory.

mfxStatus (*Lock)(mfxHDL pthis, mfxMemId mid, mfxFrameData *ptr)
Locks a frame and returns its pointer.

Parameters
• pthis – [in] Pointer to the allocator object.

• mid – [in] Memory block ID.

• ptr – [out] Pointer to the returned frame structure.

Returns
MFX_ERR_NONE The function successfully locked the memory block.

MFX_ERR_LOCK_MEMORY This function failed to lock the frame.

mfxStatus (*Unlock)(mfxHDL pthis, mfxMemId mid, mfxFrameData *ptr)
Unlocks a frame and invalidates the specified frame structure.

Parameters
• pthis – [in] Pointer to the allocator object.

• mid – [in] Memory block ID.

• ptr – [out] Pointer to the frame structure. This pointer can be NULL.

Returns MFX_ERR_NONE The function successfully locked the memory block.

10.5. oneVPL API Reference 838

oneAPI Specification, Release 1.1-rev-1

mfxStatus (*GetHDL)(mfxHDL pthis, mfxMemId mid, mfxHDL *handle)
Returns the OS-specific handle associated with a video frame. If the handle is a COM interface, the refer-
ence counter must increase. The library will release the interface afterward.

Parameters
• pthis – [in] Pointer to the allocator object.

• mid – [in] Memory block ID.

• handle – [out] Pointer to the returned OS-specific handle.

Returns
MFX_ERR_NONE The function successfully returned the OS-specific handle.

MFX_ERR_UNSUPPORTED The function does not support obtaining OS-specific handle..

mfxStatus (*Free)(mfxHDL pthis, mfxFrameAllocResponse *response)
De-allocates all allocated frames.

Parameters
• pthis – [in] Pointer to the allocator object.

• response – [in] Pointer to the mfxFrameAllocResponse structure returned by the Alloc
function.

Returns MFX_ERR_NONE The function successfully de-allocated the memory block.

mfxFrameAllocRequest

struct mfxFrameAllocRequest
Describes multiple frame allocations when initializing encoders, decoders, and video preprocessors. A range
specifies the number of video frames. Applications are free to allocate additional frames. In all cases, the
minimum number of frames must be at least NumFrameMin or the called API function will return an error.

Public Members

mfxU32 AllocId
Unique (within the session) ID of component requested the allocation.

mfxFrameInfo Info
Describes the properties of allocated frames.

mfxU16 Type
Allocated memory type. See the ExtMemFrameType enumerator for details.

mfxU16 NumFrameMin
Minimum number of allocated frames.

mfxU16 NumFrameSuggested
Suggested number of allocated frames.

10.5. oneVPL API Reference 839

oneAPI Specification, Release 1.1-rev-1

mfxFrameAllocResponse

struct mfxFrameAllocResponse
Describes the response to multiple frame allocations. The calling API function returns the number of video
frames actually allocated and pointers to their memory IDs.

Public Members

mfxU32 AllocId
Unique (within the session) ID of component requested the allocation.

mfxMemId *mids
Pointer to the array of the returned memory IDs. The application allocates or frees this array.

mfxU16 NumFrameActual
Number of frames actually allocated.

mfxFrameData

struct mfxY410
Specifies “pixel” in Y410 color format.

Public Members

mfxU32 U
U component.

mfxU32 Y
Y component.

mfxU32 V
V component.

mfxU32 A
A component.

struct mfxY416
Specifies “pixel” in Y416 color format.

10.5. oneVPL API Reference 840

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxU32 U
U component.

mfxU32 Y
Y component.

mfxU32 V
V component.

mfxU32 A
A component.

struct mfxA2RGB10
Specifies “pixel” in A2RGB10 color format

Public Members

mfxU32 B
B component.

mfxU32 G
G component.

mfxU32 R
R component.

mfxU32 A
A component.

struct mfxFrameData
Describes frame buffer pointers.

Extension Buffers

mfxU16 NumExtParam
The number of extra configuration structures attached to this structure.

10.5. oneVPL API Reference 841

oneAPI Specification, Release 1.1-rev-1

General members

mfxU16 reserved[9]
Reserved for future use.

mfxU16 MemType
Allocated memory type. See the ExtMemFrameType enumerator for details. Used for better integration of
3rd party plugins into the pipeline.

mfxU16 PitchHigh
Distance in bytes between the start of two consecutive rows in a frame.

mfxU64 TimeStamp
Time stamp of the video frame in units of 90KHz. Divide TimeStamp by 90,000 (90 KHz) to obtain the
time in seconds. A value of MFX_TIMESTAMP_UNKNOWN indicates that there is no time stamp.

mfxU32 FrameOrder
Current frame counter for the top field of the current frame. An invalid value of
MFX_FRAMEORDER_UNKNOWN indicates that API functions that generate the frame output do
not use this frame.

mfxU16 Locked
Counter flag for the application. If Locked is greater than zero then the application locks the frame or field
pair. Do not move, alter or delete the frame.

Color Planes

Data pointers to corresponding color channels (planes). The frame buffer pointers must be 16-byte aligned. The
application has to specify pointers to all color channels even for packed formats. For example, for YUY2 format
the application must specify Y, U, and V pointers. For RGB32 format, the application must specify R, G, B, and
A pointers.

mfxU8 *A
A channel.

mfxMemId MemId
Memory ID of the data buffers. Ignored if any of the preceding data pointers is non-zero.

Additional Flags

mfxU16 Corrupted
Some part of the frame or field pair is corrupted. See the Corruption enumerator for details.

mfxU16 DataFlag
Additional flags to indicate frame data properties. See the FrameDataFlag enumerator for details.

10.5. oneVPL API Reference 842

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxExtBuffer **ExtParam
Points to an array of pointers to the extra configuration structures. See the ExtendedBufferID enumerator
for a list of extended configurations.

mfxU16 PitchLow
Distance in bytes between the start of two consecutive rows in a frame.

mfxU8 *Y
Y channel.

mfxU16 *Y16
Y16 channel.

mfxU8 *R
R channel.

mfxU8 *UV
UV channel for UV merged formats.

mfxU8 *VU
YU channel for VU merged formats.

mfxU8 *CbCr
CbCr channel for CbCr merged formats.

mfxU8 *CrCb
CrCb channel for CrCb merged formats.

mfxU8 *Cb
Cb channel.

mfxU8 *U
U channel.

mfxU16 *U16
U16 channel.

mfxU8 *G
G channel.

mfxY410 *Y410
T410 channel for Y410 format (merged AVYU).

mfxY416 *Y416
This format is a packed 16-bit representation that includes 16 bits of alpha.

mfxU8 *Cr
Cr channel.

10.5. oneVPL API Reference 843

oneAPI Specification, Release 1.1-rev-1

mfxU8 *V
V channel.

mfxU16 *V16
V16 channel.

mfxU8 *B
B channel.

mfxA2RGB10 *A2RGB10
A2RGB10 channel for A2RGB10 format (merged ARGB).

mfxFrameInfo

struct mfxFrameInfo
Specifies properties of video frames. See also “Configuration Parameter Constraints” chapter.

FrameRate

Specify the frame rate with the following formula: FrameRateExtN / FrameRateExtD.

For encoding, frame rate must be specified. For decoding, frame rate may be unspecified (FrameRateExtN and
FrameRateExtD are all zeros.) In this case, the frame rate is defaulted to 30 frames per second.

mfxU32 FrameRateExtN
Frame rate numerator.

mfxU32 FrameRateExtD
Frame rate denominator.

AspectRatio

AspectRatioW and AspectRatioH are used to specify the sample aspect ratio. If sample aspect ratio is explicitly
defined by the standards (see Table 6-3 in the MPEG-2 specification or Table E-1 in the H.264 specification),
AspectRatioW and AspectRatioH should be the defined values. Otherwise, the sample aspect ratio can be derived
as follows:

• AspectRatioW=display_aspect_ratio_width*display_height

• AspectRatioH=display_aspect_ratio_height*display_width

For MPEG-2, the above display aspect ratio must be one of the defined values in Table 6-3 in the MPEG-2
specification. For H.264, there is no restriction on display aspect ratio values.

If both parameters are zero, the encoder uses the default value of sample aspect ratio.

mfxU16 AspectRatioW
Aspect Ratio for width.

10.5. oneVPL API Reference 844

oneAPI Specification, Release 1.1-rev-1

mfxU16 AspectRatioH
Aspect Ratio for height.

ROI

The region of interest of the frame. Specify the display width and height in mfxVideoParam.

mfxU16 CropX
X coordinate.

mfxU16 CropY
Y coordinate.

mfxU16 CropW
Width in pixels.

mfxU16 CropH
Height in pixels.

Public Members

mfxU32 reserved[4]
Reserved for future use.

mfxU16 ChannelId
The unique ID of each VPP channel set by application. It’s required that during Init/Reset application
fills ChannelId for each mfxVideoChannelParam provided by the application and the SDK sets it back to
the correspondent mfxSurfaceArray::mfxFrameSurface1 to distinguish different channels. It’s expected
that surfaces for some channels might be returned with some delay so application has to use mfxFrame-
Info::ChannelId to distinguish what returned surface belongs to what VPP channel. Decoder’s initialization
parameters are always sent through channel with mfxFrameInfo::ChannelId equals to zero. It’s allowed to
skip setting of decoder’s parameters for simplified decoding procedure

mfxU16 BitDepthLuma
Number of bits used to represent luma samples.

Note: Not all codecs and implementations support this value. Use the Query API function to check if this
feature is supported.

mfxU16 BitDepthChroma
Number of bits used to represent chroma samples.

Note: Not all codecs and implementations support this value. Use the Query API function to check if this
feature is supported.

mfxU16 Shift
When the value is not zero, indicates that values of luma and chroma samples are shifted. Use BitDepth-

10.5. oneVPL API Reference 845

oneAPI Specification, Release 1.1-rev-1

Luma and BitDepthChroma to calculate shift size. Use zero value to indicate absence of shift. See example
data alignment below.

Note: Not all codecs and implementations support this value. Use the Query API function to check if this
feature is supported.

mfxFrameId FrameId
Describes the view and layer of a frame picture.

mfxU32 FourCC
FourCC code of the color format. See the ColorFourCC enumerator for details.

mfxU16 Width
Width of the video frame in pixels. Must be a multiple of 16.

mfxU16 Height
Height of the video frame in pixels. Must be a multiple of 16 for progressive frame sequence and a multiple
of 32 otherwise.

mfxU64 BufferSize
Size of frame buffer in bytes. Valid only for plain formats (when FourCC is P8). In this case, Width, Height,
and crop values are invalid.

mfxU16 PicStruct
Picture type as specified in the PicStruct enumerator.

mfxU16 ChromaFormat
Color sampling method. Value is the same as that of ChromaFormatIdc. ChromaFormat is not defined if
FourCC is zero.

Note: Example data alignment for Shift = 0:

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value 0 0 0 0 0 0 Valid data

Example data alignment for Shift != 0:

10.5. oneVPL API Reference 846

oneAPI Specification, Release 1.1-rev-1

Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value Valid data 0 0 0 0 0 0

mfxFrameSurface1

struct mfxFrameSurface1
Defines the uncompressed frames surface information and data buffers. The frame surface is in the frame or
complementary field pairs of pixels up to four color-channels, in two parts: mfxFrameInfo and mfxFrameData.

Public Members

struct mfxFrameSurfaceInterface *FrameInterface
Specifies interface to work with surface.

mfxFrameInfo Info
Specifies surface properties.

mfxFrameData Data
Describes the actual frame buffer.

mfxFrameSurfaceInterface

struct mfxFrameSurfaceInterface

Public Members

mfxHDL Context
The context of the memory interface. User should not touch (change, set, null) this pointer.

mfxStructVersion Version
The version of the structure.

mfxStatus (*AddRef)(mfxFrameSurface1 *surface)
Increments the internal reference counter of the surface. The surface is not destroyed until the surface
is released using the mfxFrameSurfaceInterface::Release function. mfxFrameSurfaceInterface::AddRef
should be used each time a new link to the surface is created (for example, copy structure) for proper
surface management.

10.5. oneVPL API Reference 847

oneAPI Specification, Release 1.1-rev-1

Parameters surface – [in] Valid surface.

Returns
MFX_ERR_NONE If no error.

MFX_ERR_NULL_PTR If surface is NULL.

MFX_ERR_INVALID_HANDLE If mfxFrameSurfaceInterface->Context is invalid (for ex-
ample NULL).

MFX_ERR_UNKNOWN Any internal error.

mfxStatus (*Release)(mfxFrameSurface1 *surface)
Decrements the internal reference counter of the surface. mfxFrameSurfaceInterface::Release should be
called after using the mfxFrameSurfaceInterface::AddRef function to add a surface or when allocation
logic requires it. For example, call mfxFrameSurfaceInterface::Release to release a surface obtained with
the GetSurfaceForXXX function.

Parameters surface – [in] Valid surface.

Returns
MFX_ERR_NONE If no error.

MFX_ERR_NULL_PTR If surface is NULL.

MFX_ERR_INVALID_HANDLE If mfxFrameSurfaceInterface->Context is invalid (for ex-
ample NULL).

MFX_ERR_UNDEFINED_BEHAVIOR If Reference Counter of surface is zero before call.

MFX_ERR_UNKNOWN Any internal error.

mfxStatus (*GetRefCounter)(mfxFrameSurface1 *surface, mfxU32 *counter)
Returns current reference counter of mfxFrameSurface1 structure.

Parameters
• surface – [in] Valid surface.

• counter – [out] Sets counter to the current reference counter value.

Returns
MFX_ERR_NONE If no error.

MFX_ERR_NULL_PTR If surface or counter is NULL.

MFX_ERR_INVALID_HANDLE If mfxFrameSurfaceInterface->Context is invalid (for ex-
ample NULL).

MFX_ERR_UNKNOWN Any internal error.

mfxStatus (*Map)(mfxFrameSurface1 *surface, mfxU32 flags)
Sets pointers of surface->Info.Data to actual pixel data, providing read-write access.

In case of video memory, the surface with data in video memory becomes mapped to system memory. An
application can map a surface for read access with any value of mfxFrameSurface1::Data::Locked, but can
map a surface for write access only when mfxFrameSurface1::Data::Locked equals to 0.

Note: A surface allows shared read access, but exclusive write access. Consider the following cases:

10.5. oneVPL API Reference 848

oneAPI Specification, Release 1.1-rev-1

• Map with Write or Read|Write flags. A request during active another read or write access returns
MFX_ERR_LOCK_MEMORY error immediately, without waiting. MFX_MAP_NOWAIT does not
impact behavior. This type of request does not lead to any implicit synchronizations.

• Map with Read flag. A request during active write access will wait for resource to become free, or exits
immediately with error if MFX_MAP_NOWAIT flag was set. This request may lead to the implicit
synchronization (with same logic as Synchronize call) waiting for surface to become ready to use (all
dependencies should be resolved and upstream components finished writing to this surface).

It is guaranteed that read access will be acquired right after synchronization without allowing another thread
to acquire this surface for writing.

If MFX_MAP_NOWAIT was set and the surface is not ready yet (for example the surface has unresolved
data dependencies or active processing), the read access request exits immediately with error.

Read-write access with MFX_MAP_READ_WRITE provides exclusive simultaneous reading and writing
access.

Note: Bitwise copying of mfxFrameSurface1 object between map / unmap calls may result in having
dangling data pointers in copies.

Parameters
• surface – [in] Valid surface.

• flags – [out] Specify mapping mode.

• surface->Info.Data – [out] Pointers set to actual pixel data.

Returns
MFX_ERR_NONE If no error.

MFX_ERR_NULL_PTR If surface is NULL.

MFX_ERR_INVALID_HANDLE If mfxFrameSurfaceInterface->Context is invalid (for ex-
ample NULL).

MFX_ERR_UNSUPPORTED If flags are invalid.

MFX_ERR_LOCK_MEMORY If user wants to map the surface for write and surface-
>Data.Locked does not equal to 0.

MFX_ERR_UNKNOWN Any internal error.

mfxStatus (*Unmap)(mfxFrameSurface1 *surface)
Invalidates pointers of surface->Info.Data and sets them to NULL. In case of video memory, the underlying
texture becomes unmapped after last reader or writer unmap.

Parameters
• surface – [in] Valid surface.

• surface->Info.Data – [out] Pointers set to NULL.

Returns
MFX_ERR_NONE If no error.

MFX_ERR_NULL_PTR If surface is NULL.

10.5. oneVPL API Reference 849

oneAPI Specification, Release 1.1-rev-1

MFX_ERR_INVALID_HANDLE If mfxFrameSurfaceInterface->Context is invalid (for ex-
ample NULL).

MFX_ERR_UNSUPPORTED If surface is already unmapped.

MFX_ERR_UNKNOWN Any internal error.

mfxStatus (*GetNativeHandle)(mfxFrameSurface1 *surface, mfxHDL *resource, mfxResourceType
*resource_type)

Returns a native resource’s handle and type. The handle is returned as-is, meaning that the reference counter
of base resources is not incremented. The native resource is not detached from surface and the library still
owns the resource. User must not destroy the native resource or assume that the resource will be alive after
mfxFrameSurfaceInterface::Release.

Parameters
• surface – [in] Valid surface.

• resource – [out] Pointer is set to the native handle of the resource.

• resource_type – [out] Type of native resource. See mfxResourceType enumeration).

Returns
MFX_ERR_NONE If no error.

MFX_ERR_NULL_PTR If any of surface, resource or resource_type is NULL.

MFX_ERR_INVALID_HANDLE If any of surface, resource or resource_type is not valid
object (no native resource was allocated).

MFX_ERR_UNSUPPORTED If surface is in system memory.

MFX_ERR_UNKNOWN Any internal error.

mfxStatus (*GetDeviceHandle)(mfxFrameSurface1 *surface, mfxHDL *device_handle, mfxHandleType
*device_type)

Returns a device abstraction that was used to create that resource. The handle is returned as-is, meaning
that the reference counter for the device abstraction is not incremented. The native resource is not detached
from the surface and the library still has a reference to the resource. User must not destroy the device or
assume that the device will be alive after mfxFrameSurfaceInterface::Release.

Parameters
• surface – [in] Valid surface.

• device_handle – [out] Pointer is set to the device which created the resource

• device_type – [out] Type of device (see mfxHandleType enumeration).

Returns
MFX_ERR_NONE If no error.

MFX_ERR_NULL_PTR If any of surface, device_handle or device_type is NULL.

MFX_ERR_INVALID_HANDLE If any of surface, resource or resource_type is not valid
object (no native resource was allocated).

MFX_ERR_UNSUPPORTED If surface is in system memory.

MFX_ERR_UNKNOWN Any internal error.

10.5. oneVPL API Reference 850

oneAPI Specification, Release 1.1-rev-1

mfxStatus (*Synchronize)(mfxFrameSurface1 *surface, mfxU32 wait)
Guarantees readiness of both the data (pixels) and any frame’s meta information (for example corruption
flags) after a function completes.

Instead of MFXVideoCORE_SyncOperation, users may directly call the mfxFrameSurfaceInter-
face::Synchronize function after the corresponding Decode or VPP function calls (MFXVideoDE-
CODE_DecodeFrameAsync or MFXVideoVPP_RunFrameVPPAsync). The prerequisites to call the func-
tions are:

• The main processing functions return MFX_ERR_NONE.

• A valid mfxFrameSurface1 object.

Parameters
• surface – [in] Valid surface.

• wait – [out] Wait time in milliseconds.

Returns
MFX_ERR_NONE If no error.

MFX_ERR_NULL_PTR If surface is NULL.

MFX_ERR_INVALID_HANDLE If any of surface is not valid object .

MFX_WRN_IN_EXECUTION If the given timeout is expired and the surface is not ready.

MFX_ERR_ABORTED If the specified asynchronous function aborted due to data depen-
dency on a previous asynchronous function that did not complete.

MFX_ERR_UNKNOWN Any internal error.

void (*OnComplete)(mfxStatus sts)
The library calls the function after complete of associated video operation notifying the application that
frame surface is ready.

It is expected that the function is low-intrusive designed otherwise it may impact performance.

Attention This is callback function and intended to be called by the library only.

Parameters sts – [in] The status of completed operation.

mfxStatus (*QueryInterface)(mfxFrameSurface1 *surface, mfxGUID guid, mfxHDL *iface)
Returns an interface defined by the GUID. If the returned interface is a reference counted object the caller
should release the obtained interface to avoid memory leaks.

Parameters
• surface – [in] Valid surface.

• guid – [in] GUID of the requested interface.

• iface – [out] Interface.

10.5. oneVPL API Reference 851

oneAPI Specification, Release 1.1-rev-1

Returns
MFX_ERR_NONE If no error.

MFX_ERR_NULL_PTR If interface or surface is NULL.

MFX_ERR_UNSUPPORTED If requested interface is not supported.

MFX_ERR_NOT_IMPLEMENTED If requested interface is not implemented.

MFX_ERR_NOT_INITIALIZED If requested interface is not available (not created or al-
ready deleted).

MFX_ERR_UNKNOWN Any internal error.

mfxSurfacePoolInterface

struct mfxSurfacePoolInterface
Specifies the surface pool interface.

Public Members

mfxHDL Context
The context of the surface pool interface. User should not touch (change, set, null) this pointer.

mfxStatus (*AddRef)(struct mfxSurfacePoolInterface *pool)
Increments the internal reference counter of the mfxSurfacePoolInterface. The mfxSurfacePoolInterface is
not destroyed until the mfxSurfacePoolInterface is destroyed with mfxSurfacePoolInterface::Release func-
tion. mfxSurfacePoolInterface::AddRef should be used each time a new link to the mfxSurfacePoolInterface
is created for proper management.

Parameters pool – [in] Valid pool.

Returns
MFX_ERR_NONE If no error.

MFX_ERR_NULL_PTR If pool is NULL.

MFX_ERR_INVALID_HANDLE If mfxSurfacePoolInterface->Context is invalid (for exam-
ple NULL).

MFX_ERR_UNKNOWN Any internal error.

mfxStatus (*Release)(struct mfxSurfacePoolInterface *pool)
Decrements the internal reference counter of the mfxSurfacePoolInterface. mfxSurfacePoolInter-
face::Release should be called after using the mfxSurfacePoolInterface::AddRef function to add a mfxSur-
facePoolInterface or when allocation logic requires it. For example, call mfxSurfacePoolInterface::Release
to release a mfxSurfacePoolInterface obtained with the mfxFrameSurfaceInterface::QueryInterface func-
tion.

Parameters pool – [in] Valid pool.

Returns
MFX_ERR_NONE If no error.

MFX_ERR_NULL_PTR If pool is NULL.

10.5. oneVPL API Reference 852

oneAPI Specification, Release 1.1-rev-1

MFX_ERR_INVALID_HANDLE If mfxSurfacePoolInterface->Context is invalid (for exam-
ple NULL).

MFX_ERR_UNDEFINED_BEHAVIOR If Reference Counter of mfxSurfacePoolInterface is
zero before call.

MFX_ERR_UNKNOWN Any internal error.

mfxStatus (*GetRefCounter)(struct mfxSurfacePoolInterface *pool, mfxU32 *counter)
Returns current reference counter of mfxSurfacePoolInterface structure.

Parameters
• pool – [in] Valid pool.

• counter – [out] Sets counter to the current reference counter value.

Returns
MFX_ERR_NONE If no error.

MFX_ERR_NULL_PTR If pool or counter is NULL.

MFX_ERR_INVALID_HANDLE If mfxSurfacePoolInterface->Context is invalid (for exam-
ple NULL).

MFX_ERR_UNKNOWN Any internal error.

mfxStatus (*SetNumSurfaces)(struct mfxSurfacePoolInterface *pool, mfxU32 num_surfaces)
The function should be called by oneVPL components or application to specify how many surfaces it will
use concurrently. Internally, oneVPL allocates surfaces in the shared pool according to the component’s
policy set by mfxPoolAllocationPolicy. The exact moment of surfaces allocation is defined by the compo-
nent and generally independent from that call.

Parameters
• pool – [in] Valid pool.

• num_surfaces – [in] The number of surfaces required by the component.

Returns
MFX_ERR_NONE If no error.

MFX_ERR_NULL_PTR If pool is NULL.

MFX_ERR_INVALID_HANDLE If mfxSurfacePoolInterface->Context is invalid (for exam-
ple NULL).

MFX_WRN_INCOMPATIBLE_VIDEO_PARAM If pool has
MFX_ALLOCATION_UNLIMITED or MFX_ALLOCATION_LIMITED policy.

MFX_ERR_UNKNOWN Any internal error.

mfxStatus (*RevokeSurfaces)(struct mfxSurfacePoolInterface *pool, mfxU32 num_surfaces)
The function should be called by oneVPL components when component is closed or reset and doesn’t need
to use pool more. It helps to manage memory accordingly and release redundant memory. Important to
specify the same number of surfaces which is requested during SetNumSurfaces call, otherwise it may lead
to the pipeline stalls.

Parameters
• pool – [in] Valid pool.

10.5. oneVPL API Reference 853

oneAPI Specification, Release 1.1-rev-1

• num_surfaces – [in] The number of surfaces used by the component.

Returns
MFX_ERR_NONE If no error.

MFX_WRN_OUT_OF_RANGE If num_surfaces doesn’t equal to num_surfaces requested
during SetNumSurfaces call.

MFX_ERR_NULL_PTR If pool is NULL.

MFX_ERR_INVALID_HANDLE If mfxSurfacePoolInterface->Context is invalid (for exam-
ple NULL).

MFX_WRN_INCOMPATIBLE_VIDEO_PARAM If pool has
MFX_ALLOCATION_UNLIMITED or MFX_ALLOCATION_LIMITED policy.

MFX_ERR_UNKNOWN Any internal error.

mfxStatus (*GetAllocationPolicy)(struct mfxSurfacePoolInterface *pool, mfxPoolAllocationPolicy *policy)
Returns current allocation policy.

Parameters
• pool – [in] Valid pool.

• policy – [out] Sets policy to the current allocation policy value.

Returns
MFX_ERR_NONE If no error.

MFX_ERR_NULL_PTR If pool or policy is NULL.

MFX_ERR_INVALID_HANDLE If mfxSurfacePoolInterface->Context is invalid (for exam-
ple NULL).

MFX_ERR_UNKNOWN Any internal error.

mfxStatus (*GetMaximumPoolSize)(struct mfxSurfacePoolInterface *pool, mfxU32 *size)
Returns maximum pool size. In case of mfxPoolAllocationPolicy::MFX_ALLOCATION_UNLIMITED
policy 0xFFFFFFFF will be returned.

Parameters
• pool – [in] Valid pool.

• size – [out] Sets size to the maximum pool size value.

Returns
MFX_ERR_NONE If no error.

MFX_ERR_NULL_PTR If pool or size is NULL.

MFX_ERR_INVALID_HANDLE If mfxSurfacePoolInterface->Context is invalid (for exam-
ple NULL).

MFX_ERR_UNKNOWN Any internal error.

mfxStatus (*GetCurrentPoolSize)(struct mfxSurfacePoolInterface *pool, mfxU32 *size)
Returns current pool size.

Parameters
• pool – [in] Valid pool.

10.5. oneVPL API Reference 854

oneAPI Specification, Release 1.1-rev-1

• size – [out] Sets size to the current pool size value.

Returns
MFX_ERR_NONE If no error.

MFX_ERR_NULL_PTR If pool or size is NULL.

MFX_ERR_INVALID_HANDLE If mfxSurfacePoolInterface->Context is invalid (for exam-
ple NULL).

MFX_ERR_UNKNOWN Any internal error.

mfxHDL reserved[4]
Reserved for future use.

Implementation Management

Structures used for implementation management.

API

• mfxAdapterInfo

• mfxAdaptersInfo

• mfxExtThreadsParam

• mfxInitParam

• mfxPlatform

• mfxVersion

• mfxExtDeviceAffinityMask

• mfxInitializationParam

mfxAdapterInfo

struct mfxAdapterInfo
Contains a description of the graphics adapter for the Legacy mode.

Public Members

mfxPlatform Platform
Platform type description. See mfxPlatform for details.

mfxU32 Number
Value which uniquely characterizes media adapter. On Windows* this number can be used for initialization
through DXVA interface (see example).

10.5. oneVPL API Reference 855

https://docs.microsoft.com/en-us/windows/win32/api/dxgi/nf-dxgi-idxgifactory1-enumadapters1

oneAPI Specification, Release 1.1-rev-1

mfxAdaptersInfo

struct mfxAdaptersInfo
Contains description of all graphics adapters available on the current system.

Public Members

mfxAdapterInfo *Adapters
Pointer to array of mfxAdapterInfo structs allocated by user.

mfxU32 NumAlloc
Length of Adapters array.

mfxU32 NumActual
Number of Adapters entries filled by MFXQueryAdapters.

mfxExtThreadsParam

struct mfxExtThreadsParam
Specifies options for threads created by this session. Attached to the mfxInitParam structure during legacy Intel(r)
Media SDK session initialization.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_THREADS_PARAM.

mfxU16 NumThread
The number of threads.

mfxI32 SchedulingType
Scheduling policy for all threads.

mfxI32 Priority
Priority for all threads.

mfxU16 reserved[55]
Reserved for future use.

10.5. oneVPL API Reference 856

oneAPI Specification, Release 1.1-rev-1

mfxInitParam

struct mfxInitParam
Specifies advanced initialization parameters. A zero value in any of the fields indicates that the corresponding
field is not explicitly specified.

Public Members

mfxIMPL Implementation
Enumerator that indicates the desired legacy Intel(r) Media SDK implementation.

mfxVersion Version
Structure which specifies minimum library version or zero, if not specified.

mfxU16 ExternalThreads
Desired threading mode. Value 0 means internal threading, 1 – external.

mfxExtBuffer **ExtParam
Points to an array of pointers to the extra configuration structures; see the ExtendedBufferID enumerator
for a list of extended configurations.

mfxU16 NumExtParam
The number of extra configuration structures attached to this structure.

mfxU16 GPUCopy
Enables or disables GPU accelerated copying between video and system memory in legacy Intel(r) Media
SDK components. See the GPUCopy enumerator for a list of valid values.

mfxPlatform

struct mfxPlatform
Contains information about hardware platform for the Legacy mode.

Public Members

mfxU16 CodeName
Microarchitecture code name. See the PlatformCodeName enumerator for a list of possible values.

mfxU16 DeviceId
Unique identifier of graphics device.

mfxU16 MediaAdapterType
Description of graphics adapter type. See the mfxMediaAdapterType enumerator for a list of possible
values.

mfxU16 reserved[13]
Reserved for future use.

10.5. oneVPL API Reference 857

oneAPI Specification, Release 1.1-rev-1

mfxVersion

union mfxVersion
#include <mfxcommon.h> The mfxVersion union describes the version of the implementation.

Major and Minor fields

Anonymous structure with Major and Minor fields.

mfxU16 Minor
Minor number of the implementation.

mfxU16 Major
Major number of the implementation.

Public Members

struct mfxVersion::[anonymous] [anonymous]

mfxU32 Version
Implementation version number.

mfxExtDeviceAffinityMask

struct mfxExtDeviceAffinityMask
The mfxExtDeviceAffinityMask structure is used by the application to specify affinity mask for the device with
given device ID. See mfxDeviceDescription for the device ID definition and sub device indexes. If the imple-
mentation manages CPU threads for some purpose, the user can set the CPU thread affinity mask by using this
structure with DeviceID set to “CPU”.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_DEVICE_AFFINITY_MASK.

mfxChar DeviceID[MFX_STRFIELD_LEN]
Null terminated string with device ID. In case of CPU affinity mask it must be equal to “CPU”.

mfxU32 NumSubDevices
Number of sub devices or threads in case of CPU in the mask.

mfxU8 *Mask
Mask array. Every bit represents sub-device (or thread for CPU). “1” means execution is allowed. “0”
means that execution is prohibited on this sub-device (or thread). Length of the array is equal to the:
“max_subdevices / 8” and rounded to the closest (from the right) integer. Bits order within each entry of
the mask array is LSB: bit 0 holds data for sub device with index 0 and bit 8 for sub device with index 8.
Index of sub device is defined by the mfxDeviceDescription structure.

10.5. oneVPL API Reference 858

oneAPI Specification, Release 1.1-rev-1

mfxInitializationParam

struct mfxInitializationParam
Specifies initialization parameters for API version starting from 2.0.

Public Members

mfxAccelerationMode AccelerationMode
Hardware acceleration stack to use. OS dependent parameter. Use VA for Linux*, DX* for Windows* or
HDDL.

mfxU16 reserved[3]
Reserved for future use.

mfxU16 NumExtParam
The number of extra configuration structures attached to this structure.

mfxExtBuffer **ExtParam
Points to an array of pointers to the extra configuration structures; see the ExtendedBufferID enumerator
for a list of extended configurations.

mfxU32 VendorImplID
Vendor specific number with given implementation ID. Represents the same field from mfxImplDescription.

mfxU32 reserved2[3]
Reserved for future use.

Cross-component Structures

Structures used across library components.

API

• mfxComponentInfo

• mfxExtHEVCParam

• mfxExtJPEGHuffmanTables

• mfxExtJPEGQuantTables

• mfxExtMVCSeqDesc

• mfxExtMVCTargetViews

• mfxExtVideoSignalInfo

• mfxExtVP9Param

• mfxFrameId

• mfxInfoMFX

10.5. oneVPL API Reference 859

oneAPI Specification, Release 1.1-rev-1

• mfxMVCOperationPoint

• mfxMVCViewDependency

• mfxPayload

• mfxVideoParam

• mfxVP9SegmentParam

• mfxExtAV1FilmGrainParam

• mfxAV1FilmGrainPoint

• mfxRect

• mfxExtHyperModeParam

• mfxGUID

• mfxExtAllocationHints

mfxComponentInfo

struct mfxComponentInfo
Contains workload description, which is accepted by MFXQueryAdapters function.

Public Members

mfxComponentType Type
Type of workload: Encode, Decode, VPP. See mfxComponentType enumerator for values.

mfxVideoParam Requirements
Detailed description of workload. See mfxVideoParam for details.

mfxExtHEVCParam

struct mfxExtHEVCParam

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_HEVC_PARAM.

mfxU16 PicWidthInLumaSamples
Specifies the width of each coded picture in units of luma samples.

mfxU16 PicHeightInLumaSamples
Specifies the height of each coded picture in units of luma samples.

10.5. oneVPL API Reference 860

oneAPI Specification, Release 1.1-rev-1

mfxU64 GeneralConstraintFlags
Additional flags to specify exact profile and constraints. See the GeneralConstraintFlags enumerator for
values of this field.

mfxU16 SampleAdaptiveOffset
Controls SampleAdaptiveOffset encoding feature. See the SampleAdaptiveOffset enumerator for supported
values (bit-ORed). Valid during encoder Init and Runtime.

mfxU16 LCUSize
Specifies largest coding unit size (max luma coding block). Valid during encoder Init.

mfxExtJPEGHuffmanTables

struct mfxExtJPEGHuffmanTables
Specifies Huffman tables. The application may specify up to 2 quantization table pairs for baseline process. The
encoder assigns an ID to each table. That ID is equal to the table index in the DCTables and ACTables arrays.
Table “0” is used for encoding of the Y component and table “1” is used for encoding of the U and V component.
The application may specify only one table, in which case the table will be used for all components in the image.
The following table illustrates this behavior.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_JPEG_HUFFMAN.

mfxU16 NumDCTable
Number of DC quantization table in DCTables array.

mfxU16 NumACTable
Number of AC quantization table in ACTables array.

mfxU8 Bits[16]
Number of codes for each code length.

mfxU8 Values[12]
List of the 8-bit symbol values.

Array of AC tables.

struct mfxExtJPEGHuffmanTables::[anonymous] DCTables[4]
Array of DC tables.

struct mfxExtJPEGHuffmanTables::[anonymous] ACTables[4]
List of the 8-bit symbol values.

Table ID 0 1
Number of tables
0 Y, U, V
1 Y U, V

10.5. oneVPL API Reference 861

oneAPI Specification, Release 1.1-rev-1

mfxExtJPEGQuantTables

struct mfxExtJPEGQuantTables
Specifies quantization tables. The application may specify up to 4 quantization tables. The encoder assigns an
ID to each table. That ID is equal to the table index in the Qm array. Table “0” is used for encoding of the Y
component, table “1” for the U component, and table “2” for the V component. The application may specify
fewer tables than the number of components in the image. If two tables are specified, then table “1” is used for
both U and V components. If only one table is specified then it is used for all components in the image. The
following table illustrates this behavior.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_JPEG_QT.

mfxU16 NumTable
Number of quantization tables defined in Qmarray.

mfxU16 Qm[4][64]
Quantization table values.

Table ID 0 1 2
Number of tables
0 Y, U, V
1 Y U, V
2 Y U V

mfxExtMVCSeqDesc

struct mfxExtMVCSeqDesc
Describes the MVC stream information of view dependencies, view identifiers, and operation points. See the
ITU*-T H.264 specification chapter H.7.3.2.1.4 for details.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_MVC_SEQUENCE_DESCRIPTION.

mfxU32 NumView
Number of views.

mfxU32 NumViewAlloc
The allocated view dependency array size.

mfxMVCViewDependency *View
Pointer to a list of the mfxMVCViewDependency.

10.5. oneVPL API Reference 862

oneAPI Specification, Release 1.1-rev-1

mfxU32 NumViewId
Number of view identifiers.

mfxU32 NumViewIdAlloc
The allocated view identifier array size.

mfxU16 *ViewId
Pointer to the list of view identifier.

mfxU32 NumOP
Number of operation points.

mfxU32 NumOPAlloc
The allocated operation point array size.

mfxMVCOperationPoint *OP
Pointer to a list of the mfxMVCOperationPoint structure.

mfxU16 NumRefsTotal
Total number of reference frames in all views required to decode the stream. This value is returned from
the MFXVideoDECODE_Decodeheader function. Do not modify this value.

mfxExtMVCTargetViews

struct mfxExtMVCTargetViews
Configures views for the decoding output.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_MVC_TARGET_VIEWS.

mfxU16 TemporalId
The temporal identifier to be decoded.

mfxU32 NumView
The number of views to be decoded.

mfxU16 ViewId[1024]
List of view identifiers to be decoded.

10.5. oneVPL API Reference 863

oneAPI Specification, Release 1.1-rev-1

mfxExtVideoSignalInfo

struct mfxExtVideoSignalInfo
Defines the video signal information.

For H.264, see Annex E of the ISO/IEC 14496-10 specification for the definition of these parameters.

For MPEG-2, see section 6.3.6 of the ITU* H.262 specification for the definition of these parameters. The field
VideoFullRange is ignored.

For VC-1, see section 6.1.14.5 of the SMPTE* 421M specification. The fields VideoFormat and VideoFullRange
are ignored.

Note: If ColourDescriptionPresent is zero, the color description information (including ColourPrimaries, Trans-
ferCharacteristics, and MatrixCoefficients) does not present in the bitstream.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VIDEO_SIGNAL_INFO.

mfxU16 VideoFormat

mfxU16 VideoFullRange

mfxU16 ColourDescriptionPresent

mfxU16 ColourPrimaries

mfxU16 TransferCharacteristics

mfxU16 MatrixCoefficients

mfxExtVP9Param

struct mfxExtVP9Param
Structure attached to the mfxVideoParam structure. Extends the mfxVideoParam structure with VP9-specific
parameters. Used by both decoder and encoder.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VP9_PARAM.

mfxU16 FrameWidth
Width of the coded frame in pixels.

mfxU16 FrameHeight
Height of the coded frame in pixels.

10.5. oneVPL API Reference 864

oneAPI Specification, Release 1.1-rev-1

mfxU16 WriteIVFHeaders
Set this option to ON to make the encoder insert IVF container headers to the output stream. The NumFrame
field of the IVF sequence header will be zero. It is the responsibility of the application to update the
NumFrame field with the correct value. See the CodingOptionValue enumerator for values of this option.

mfxI16 QIndexDeltaLumaDC
Specifies an offset for a particular quantization parameter.

mfxI16 QIndexDeltaChromaAC
Specifies an offset for a particular quantization parameter.

mfxI16 QIndexDeltaChromaDC
Specifies an offset for a particular quantization parameter.

mfxU16 NumTileRows
Number of tile rows. Should be power of two. The maximum number of tile rows is 4, per the VP9
specification. In addition, the maximum supported number of tile rows may depend on the underlying
library implementation.

Use the Query API function to check if a particular pair of values (NumTileRows, NumTileColumns) is
supported. In VP9, tile rows have dependencies and cannot be encoded or decoded in parallel. Therefore,
tile rows are always encoded by the library in serial mode (one-by-one).

mfxU16 NumTileColumns
Number of tile columns. Should be power of two. Restricted with maximum and minimum tile width in
luma pixels, as defined in the VP9 specification (4096 and 256 respectively). In addition, the maximum
supported number of tile columns may depend on the underlying library implementation.

Use the Query API function to check if a particular pair of values (NumTileRows, NumTileColumns) is sup-
ported. In VP9, tile columns do not have dependencies and can be encoded/decoded in parallel. Therefore,
tile columns can be encoded by the library in both parallel and serial modes.

Parallel mode is automatically utilized by the library when NumTileColumns exceeds 1 and does not exceed
the number of tile coding engines on the platform. In other cases, serial mode is used. Parallel mode is
capable of encoding more than 1 tile row (within limitations provided by VP9 specification and particular
platform). Serial mode supports only tile grids 1xN and Nx1.

10.5. oneVPL API Reference 865

oneAPI Specification, Release 1.1-rev-1

mfxFrameId

struct mfxFrameId
Describes the view and layer of a frame picture.

Public Members

mfxU16 TemporalId
The temporal identifier as defined in the annex H of the ITU*-T H.264 specification.

mfxU16 PriorityId
Reserved and must be zero.

mfxU16 DependencyId
Reserved for future use.

mfxU16 QualityId
Reserved for future use.

mfxU16 ViewId
The view identifier as defined in the annex H of the ITU-T H.264 specification.

mfxInfoMFX

struct mfxInfoMFX
Specifies configurations for decoding, encoding, and transcoding processes. A zero value in any of these fields
indicates that the field is not explicitly specified.

Public Members

mfxU32 reserved[7]
Reserved for future use.

mfxU16 LowPower
For encoders, set this flag to ON to reduce power consumption and GPU usage. See the CodingOptionValue
enumerator for values of this option. Use the Query API function to check if this feature is supported.

mfxU16 BRCParamMultiplier
Specifies a multiplier for bitrate control parameters. Affects the following variables: InitialDelayInKB,
BufferSizeInKB, TargetKbps, MaxKbps. If this value is not equal to zero, the encoder calculates BRC
parameters as value * BRCParamMultiplier.

mfxFrameInfo FrameInfo
mfxFrameInfo structure that specifies frame parameters.

mfxU32 CodecId
Specifies the codec format identifier in the FourCC code; see the CodecFormatFourCC enumerator for
details. This is a mandated input parameter for the QueryIOSurf and Init API functions.

10.5. oneVPL API Reference 866

oneAPI Specification, Release 1.1-rev-1

mfxU16 CodecProfile
Specifies the codec profile; see the CodecProfile enumerator for details. Specify the codec profile explicitly
or the API functions will determine the correct profile from other sources, such as resolution and bitrate.

mfxU16 CodecLevel
Codec level; see the CodecLevel enumerator for details. Specify the codec level explicitly or the functions
will determine the correct level from other sources, such as resolution and bitrate.

mfxU16 TargetUsage
Target usage model that guides the encoding process; see the TargetUsage enumerator for details.

mfxU16 GopPicSize
Number of pictures within the current GOP (Group of Pictures); if GopPicSize = 0, then the GOP size is
unspecified. If GopPicSize = 1, only I-frames are used. The following pseudo-code that shows how the
library uses this parameter:

mfxU16 get_gop_sequence (...) {
pos=display_frame_order;
if (pos == 0)

return MFX_FRAMETYPE_I | MFX_FRAMETYPE_IDR | MFX_FRAMETYPE_REF;

If (GopPicSize == 1) // Only I-frames
return MFX_FRAMETYPE_I | MFX_FRAMETYPE_REF;

if (GopPicSize == 0)
frameInGOP = pos; //Unlimited GOP

else
frameInGOP = pos%GopPicSize;

if (frameInGOP == 0)
return MFX_FRAMETYPE_I | MFX_FRAMETYPE_REF;

if (GopRefDist == 1 || GopRefDist == 0) // Only I,P frames
return MFX_FRAMETYPE_P | MFX_FRAMETYPE_REF;

frameInPattern = (frameInGOP-1)%GopRefDist;
if (frameInPattern == GopRefDist - 1)

return MFX_FRAMETYPE_P | MFX_FRAMETYPE_REF;

return MFX_FRAMETYPE_B;
}

mfxU16 GopRefDist
Distance between I- or P (or GPB) - key frames; if it is zero, the GOP structure is unspecified. Note: If
GopRefDist = 1, there are no regular B-frames used (only P or GPB); if mfxExtCodingOption3::GPB is
ON, GPB frames (B without backward references) are used instead of P.

mfxU16 GopOptFlag
ORs of the GopOptFlag enumerator indicate the additional flags for the GOP specification.

mfxU16 IdrInterval
For H.264, specifies IDR-frame interval in terms of I-frames. For example:

10.5. oneVPL API Reference 867

oneAPI Specification, Release 1.1-rev-1

• If IdrInterval = 0, then every I-frame is an IDR-frame.

• If IdrInterval = 1, then every other I-frame is an IDR-frame.

For HEVC, if IdrInterval = 0, then only first I-frame is an IDR-frame. For example:

• If IdrInterval = 1, then every I-frame is an IDR-frame.

• If IdrInterval = 2, then every other I-frame is an IDR-frame.

For MPEG2, IdrInterval defines sequence header interval in terms of I-frames. For example:

• If IdrInterval = 0 (default), then the sequence header is inserted once at the beginning of the stream.

• If IdrInterval = N, then the sequence header is inserted before every Nth I-frame.

If GopPicSize or GopRefDist is zero, IdrInterval is undefined.

mfxU16 InitialDelayInKB
Initial size of the Video Buffering Verifier (VBV) buffer.

Note: In this context, KB is 1000 bytes and Kbps is 1000 bps.

mfxU16 QPI
Quantization Parameter (QP) for I-frames for constant QP mode (CQP). Zero QP is not valid and means
that the default value is assigned by the library. Non-zero QPI might be clipped to supported QPI range.

Note: Default QPI value is implementation dependent and subject to change without additional notice in
this document.

mfxU16 Accuracy
Specifies accuracy range in the unit of tenth of percent.

mfxU16 BufferSizeInKB
Represents the maximum possible size of any compressed frames.

mfxU16 TargetKbps
Constant bitrate TargetKbps. Used to estimate the targeted frame size by dividing the frame rate by the
bitrate.

mfxU16 QPP
Quantization Parameter (QP) for P-frames for constant QP mode (CQP). Zero QP is not valid and means
that the default value is assigned by the library. Non-zero QPP might be clipped to supported QPI range.

Note: Default QPP value is implementation dependent and subject to change without additional notice in
this document.

mfxU16 ICQQuality
Used by the Intelligent Constant Quality (ICQ) bitrate control algorithm. Values are in the 1 to 51 range,
where 1 corresponds the best quality.

10.5. oneVPL API Reference 868

oneAPI Specification, Release 1.1-rev-1

mfxU16 MaxKbps
The maximum bitrate at which the encoded data enters the Video Buffering Verifier (VBV) buffer.

mfxU16 QPB
Quantization Parameter (QP) for B-frames for constant QP mode (CQP). Zero QP is not valid and means
that the default value is assigned by the library. Non-zero QPI might be clipped to supported QPB range.

Note: Default QPB value is implementation dependent and subject to change without additional notice in
this document.

mfxU16 Convergence
Convergence period in the unit of 100 frames.

mfxU16 NumSlice
Number of slices in each video frame. Each slice contains one or more macro-block rows. If NumSlice
equals zero, the encoder may choose any slice partitioning allowed by the codec standard. See also mfx-
ExtCodingOption2::NumMbPerSlice.

mfxU16 NumRefFrame
Max number of all available reference frames (for AVC/HEVC, NumRefFrame defines DPB size). If Num-
RefFrame = 0, this parameter is not specified. See also NumRefActiveP, NumRefActiveBL0, and Num-
RefActiveBL1 in the mfxExtCodingOption3 structure, which set a number of active references.

mfxU16 EncodedOrder
If not zero, specifies that ENCODE takes the input surfaces in the encoded order and uses explicit frame
type control. The application must still provide GopRefDist and mfxExtCodingOption2::BRefType so the
library can pack headers and build reference lists correctly.

mfxU16 DecodedOrder
For AVC and HEVC, used to instruct the decoder to return output frames in the decoded order. Must be
zero for all other decoders. When enabled, correctness of mfxFrameData::TimeStamp and FrameOrder for
output surface is not guaranteed, the application should ignore them.

mfxU16 ExtendedPicStruct
Instructs DECODE to output extended picture structure values for additional display attributes. See the
PicStruct description for details.

mfxU16 TimeStampCalc
Time stamp calculation method. See the TimeStampCalc description for details.

mfxU16 SliceGroupsPresent
Nonzero value indicates that slice groups are present in the bitstream. Used only by AVC decoder.

mfxU16 MaxDecFrameBuffering
Nonzero value specifies the maximum required size of the decoded picture buffer in frames for AVC and
HEVC decoders.

mfxU16 EnableReallocRequest
For decoders supporting dynamic resolution change (VP9), set this option to ON to allow MFXVideoDE-

10.5. oneVPL API Reference 869

oneAPI Specification, Release 1.1-rev-1

CODE_DecodeFrameAsync return MFX_ERR_REALLOC_SURFACE. See the CodingOptionValue enu-
merator for values of this option. Use the Query API function to check if this feature is supported.

mfxU16 FilmGrain
Special parameter for AV1 decoder. Indicates presence/absence of film grain parameters in bitstream. Also
controls decoding behavior for streams with film grain parameters. MFXVideoDECODE_DecodeHeader
returns nonzero FilmGrain for streams with film grain parameters and zero for streams w/o them. De-
coding with film grain requires additional output surfaces. If FilmGrain` is non-zero then MFXVideoDE-
CODE_QueryIOSurf will request more surfaces in case of external allocated video memory at decoder
output. FilmGrain is passed to MFXVideoDECODE_Init function to control decoding operation for AV1
streams with film grain parameters. If FilmGrain is nonzero decoding of each frame require two output
surfaces (one for reconstructed frame and one for output frame with film grain applied). The decoder
returns MFX_ERR_MORE_SURFACE from MFXVideoDECODE_DecodeFrameAsync if it has insuffi-
cient output surfaces to decode frame. Application can forcibly disable the feature passing zero value of
FilmGrain to MFXVideoDECODE_Init. In this case the decoder will output reconstructed frames w/o film
grain applied. Application can retrieve film grain parameters for a frame by attaching extended buffer mfx-
ExtAV1FilmGrainParam to mfxFrameSurface1. If stream has no film grain parameters FilmGrain passed
to MFXVideoDECODE_Init is ignored by the decoder.

mfxU16 IgnoreLevelConstrain
If not zero, it forces SDK to attempt to decode bitstream even if a decoder may not support all features
associated with given CodecLevel. Decoder may produce visual artifacts. Only AVC decoder supports this
field.

mfxU16 SkipOutput
This flag is used to disable output of main decoding channel. When it’s ON SkipOutput =
MFX_CODINGOPTION_ON decoder outputs only video processed channels. For pure decode this flag
should be always disabled.

mfxU16 JPEGChromaFormat
Specify the chroma sampling format that has been used to encode a JPEG picture. See the ChromaFormat
enumerator for details.

mfxU16 Rotation
Rotation option of the output JPEG picture. See the Rotation enumerator for details.

mfxU16 JPEGColorFormat
Specify the color format that has been used to encode a JPEG picture. See the JPEGColorFormat enumer-
ator for details.

mfxU16 InterleavedDec
Specify JPEG scan type for decoder. See the JPEGScanType enumerator for details.

mfxU8 SamplingFactorH[4]
Horizontal sampling factor.

mfxU8 SamplingFactorV[4]
Vertical sampling factor.

mfxU16 Interleaved
Specify interleaved or non-interleaved scans. If it is equal to MFX_SCANTYPE_INTERLEAVED then

10.5. oneVPL API Reference 870

oneAPI Specification, Release 1.1-rev-1

the image is encoded as interleaved, all components are encoded in one scan. See the JPEG Scan Type
enumerator for details.

mfxU16 Quality
Specifies the image quality if the application does not specified quantization table. The value is from 1 to
100 inclusive. “100” is the best quality.

mfxU16 RestartInterval
Specifies the number of MCU in the restart interval. “0” means no restart interval.

Note: The mfxInfoMFX::InitialDelayInKB, mfxInfoMFX::TargetKbps, mfxInfoMFX::MaxKbps parameters
are used by the constant bitrate (CBR), variable bitrate control (VBR), and CQP HRD algorithms.

Encoders follow the Hypothetical Reference Decoding (HRD) model. The HRD model assumes that data flows into
a buffer of the fixed size BufferSizeInKB with a constant bitrate of TargetKbps. (Estimate the targeted frame size by
dividing frame rate by bitrate.)

The decoder starts decoding after the buffer reaches the initial size InitialDelayInKB, which is equivalent to reaching
an initial delay of InitialDelayInKB*8000/TargetKbpsms. In this context, KB is 1000 bytes and Kbps is 1000 bps.

If InitialDelayInKB or BufferSizeInKB is equal to zero, the value is calculated using bitrate, frame rate, profile, level,
and so on.

TargetKbps must be specified for encoding initialization.

For variable bitrate control, the MaxKbps parameter specifies the maximum bitrate at which the encoded data enters
the Video Buffering Verifier (VBV) buffer. If MaxKbps is equal to zero, the value is calculated from bitrate, frame
rate, profile, and level.

Note: The mfxInfoMFX::TargetKbps, mfxInfoMFX::Accuracy, mfxInfoMFX::Convergence parameters are
used by the average variable bitrate control (AVBR) algorithm. The algorithm focuses on overall encoding quality
while meeting the specified bitrate, TargetKbps, within the accuracy range, Accuracy, after a Convergence period. This
method does not follow HRD and the instant bitrate is not capped or padded.

mfxMVCOperationPoint

struct mfxMVCOperationPoint
Describes the MVC operation point.

Public Members

mfxU16 TemporalId
Temporal identifier of the operation point.

mfxU16 LevelIdc
Level value signaled for the operation point.

mfxU16 NumViews
Number of views required for decoding the target output views that correspond to the operation point.

10.5. oneVPL API Reference 871

oneAPI Specification, Release 1.1-rev-1

mfxU16 NumTargetViews
Number of target output views for the operation point.

mfxU16 *TargetViewId
Target output view identifiers for operation point.

mfxMVCViewDependency

struct mfxMVCViewDependency
Describes MVC view dependencies.

Public Members

mfxU16 ViewId
View identifier of this dependency structure.

mfxU16 NumAnchorRefsL0
Number of view components for inter-view prediction in the initial reference picture list RefPicList0 for
anchor view components.

mfxU16 NumAnchorRefsL1
Number of view components for inter-view prediction in the initial reference picture list RefPicList1 for
anchor view components.

mfxU16 AnchorRefL0[16]
View identifiers of the view components for inter-view prediction in the initial reference picture list RefPi-
cList0 for anchor view components.

mfxU16 AnchorRefL1[16]
View identifiers of the view components for inter-view prediction in the initial reference picture list RefPi-
cList1 for anchor view components.

mfxU16 NumNonAnchorRefsL0
Number of view components for inter-view prediction in the initial reference picture list RefPicList0 for
non-anchor view components.

mfxU16 NumNonAnchorRefsL1
Number of view components for inter-view prediction in the initial reference picture list RefPicList1 for
non-anchor view components.

mfxU16 NonAnchorRefL0[16]
View identifiers of the view components for inter-view prediction in the initial reference picture list RefPi-
cList0 for non-anchor view components.

10.5. oneVPL API Reference 872

oneAPI Specification, Release 1.1-rev-1

mfxPayload

struct mfxPayload
Describes user data payload in MPEG-2 or SEI message payload in H.264.

For encoding, these payloads can be inserted into the bitstream. The payload buffer must contain a valid formatted
payload.

For H.264, this is the sei_message() as specified in the section 7.3.2.3.1 ‘Supplemental enhancement information
message syntax’ of the ISO/IEC 14496-10 specification.

For MPEG-2, this is the section 6.2.2.2.2 ‘User data’ of the ISO/IEC 13818-2 specification, excluding the user
data start_code.

For decoding, these payloads can be retrieved as the decoder parses the bitstream and caches them in an internal
buffer.

Public Members

mfxU32 CtrlFlags
Additional payload properties. See the PayloadCtrlFlags enumerator for details.

mfxU8 *Data
Pointer to the actual payload data buffer.

mfxU32 NumBit
Number of bits in the payload data

mfxU16 Type
MPEG-2 user data start code or H.264 SEI message type.

mfxU16 BufSize
Payload buffer size in bytes.

CodecSupported Types
MPEG20x01B2 //User Data
AVC 02 //pan_scan_rect

03 //filler_payload
04 //user_data_registered_itu_t_t35
05 //user_data_unregistered
06 //recovery_point
09 //scene_info
13 //full_frame_freeze
14 //full_frame_freeze_release
15 //full_frame_snapshot
16 //progressive_refinement_segment_start
17 //progressive_refinement_segment_end
19 //film_grain_characteristics
20 //deblocking_filter_display_preference
21 //stereo_video_info
45 //frame_packing_arrangement

HEVCAll

10.5. oneVPL API Reference 873

oneAPI Specification, Release 1.1-rev-1

mfxVideoParam

struct mfxVideoParam
Configuration parameters for encoding, decoding, transcoding, and video processing.

Public Members

mfxU32 AllocId
Unique component ID that will be passed by the library to mfxFrameAllocRequest. Useful in pipelines
where several components of the same type share the same allocator.

mfxU16 AsyncDepth
Specifies how many asynchronous operations an application performs before the application explicitly syn-
chronizes the result. If zero, the value is not specified.

mfxInfoMFX mfx
Configurations related to encoding, decoding, and transcoding. See the definition of the mfxInfoMFX struc-
ture for details.

mfxInfoVPP vpp
Configurations related to video processing. See the definition of the mfxInfoVPP structure for details.

mfxU16 Protected
Specifies the content protection mechanism. See the Protected enumerator for a list of supported protection
schemes.

mfxU16 IOPattern
Input and output memory access types for functions. See the enumerator IOPattern for details. The Query
API functions return the natively supported IOPattern if the Query input argument is NULL. This param-
eter is a mandated input for QueryIOSurf and Init API functions. The output pattern must be specified
for DECODE. The input pattern must be specified for ENCODE. Both input and output pattern must be
specified for VPP.

mfxExtBuffer **ExtParam
The number of extra configuration structures attached to this structure.

mfxU16 NumExtParam
Points to an array of pointers to the extra configuration structures. See the ExtendedBufferID enumerator
for a list of extended configurations. The list of extended buffers should not contain duplicated entries, such
as entries of the same type. If the mfxVideoParam structure is used to query library capability, then the list
of extended buffers attached to the input and output mfxVideoParam structure should be equal, that is, it
should contain the same number of extended buffers of the same type.

10.5. oneVPL API Reference 874

oneAPI Specification, Release 1.1-rev-1

mfxVP9SegmentParam

struct mfxVP9SegmentParam
Contains features and parameters for the segment.

Public Members

mfxU16 FeatureEnabled
Indicates which features are enabled for the segment. See the SegmentFeature enumerator for values for
this option. Values from the enumerator can be bit-OR’ed. Support of a particular feature depends on
underlying hardware platform. Application can check which features are supported by calling Query.

mfxI16 QIndexDelta
Quantization index delta for the segment. Ignored if MFX_VP9_SEGMENT_FEATURE_QINDEX isn’t
set in FeatureEnabled. Valid range for this parameter is [-255, 255]. If QIndexDelta is out of this range, it
will be ignored. If QIndexDelta is within valid range, but sum of base quantization index and QIndexDelta
is out of [0, 255], QIndexDelta will be clamped.

mfxI16 LoopFilterLevelDelta
Loop filter level delta for the segment. Ignored if MFX_VP9_SEGMENT_FEATURE_LOOP_FILTER is
not set in FeatureEnabled. Valid range for this parameter is [-63, 63]. If LoopFilterLevelDelta is out of this
range, it will be ignored. If LoopFilterLevelDelta is within valid range, but sum of base loop filter level
and LoopFilterLevelDelta is out of [0, 63], LoopFilterLevelDelta will be clamped.

mfxU16 ReferenceFrame
Reference frame for the segment. See VP9ReferenceFrame enumerator for values for this option. Ignored
if MFX_VP9_SEGMENT_FEATURE_REFERENCE isn’t set in FeatureEnabled.

mfxExtAV1FilmGrainParam

struct mfxExtAV1FilmGrainParam
The structure is used by AV-1 decoder to report film grain parameters for decoded frame.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_AV1_FILM_GRAIN_PARAM.

mfxU16 FilmGrainFlags
Bit map with bit-ORed flags from FilmGrainFlags enum.

mfxU16 GrainSeed
Starting value for pseudo-random numbers used during film grain synthesis.

mfxU8 RefIdx
Indicate which reference frame contains the film grain parameters to be used for this frame.

10.5. oneVPL API Reference 875

oneAPI Specification, Release 1.1-rev-1

mfxU8 NumYPoints
The number of points for the piece-wise linear scaling function of the luma component.

mfxU8 NumCbPoints
The number of points for the piece-wise linear scaling function of the Cb component.

mfxU8 NumCrPoints
The number of points for the piece-wise linear scaling function of the Cr component.

mfxAV1FilmGrainPoint PointY[14]
The array of points for luma component.

mfxAV1FilmGrainPoint PointCb[10]
The array of points for Cb component.

mfxAV1FilmGrainPoint PointCr[10]
The array of points for Cr component.

mfxU8 GrainScalingMinus8
The shift – 8 applied to the values of the chroma component. The grain_scaling_minus_8 can take values
of 0..3 and determines the range and quantization step of the standard deviation of film grain.

mfxU8 ArCoeffLag
The number of auto-regressive coefficients for luma and chroma.

mfxU8 ArCoeffsYPlus128[24]
Auto-regressive coefficients used for the Y plane.

mfxU8 ArCoeffsCbPlus128[25]
Auto-regressive coefficients used for the Cb plane.

mfxU8 ArCoeffsCrPlus128[25]
The number of points for the piece-wise linear scaling function of the Cr component.

mfxU8 ArCoeffShiftMinus6
The range of the auto-regressive coefficients. Values of 0, 1, 2, and 3 correspond to the ranges for auto-
regressive coefficients of [-2, 2), [-1, 1), [-0.5, 0.5) and [-0.25, 0.25) respectively.

mfxU8 GrainScaleShift
Downscaling factor of the grain synthesis process for the Gaussian random numbers .

mfxU8 CbMult
The multiplier for the Cb component used in derivation of the input index to the Cb component scaling
function.

mfxU8 CbLumaMult
The multiplier for the average luma component used in derivation of the input index to the Cb component
scaling function.

mfxU16 CbOffset
The offset used in derivation of the input index to the Cb component scaling function.

10.5. oneVPL API Reference 876

oneAPI Specification, Release 1.1-rev-1

mfxU8 CrMult
The multiplier for the Cr component used in derivation of the input index to the Cr component scaling
function.

mfxU8 CrLumaMult
The multiplier for the average luma component used in derivation of the input index to the Cr component
scaling function.

mfxU16 CrOffset
The offset used in derivation of the input index to the Cr component scaling function.

mfxAV1FilmGrainPoint

struct mfxAV1FilmGrainPoint
Defines film grain point.

Public Members

mfxU8 Value
The x coordinate for the i-th point of the piece-wise linear scaling function for luma/Cb/Cr component.

mfxU8 Scaling
The scaling (output) value for the i-th point of the piecewise linear scaling function for luma/Cb/Cr com-
ponent.

mfxRect

struct mfxRect
The structure describes rectangle coordinates wat can bse used for ROI or for Cropping.

Public Members

mfxU16 Left
X coordinate of region of top-left corner of rectangle.

mfxU16 Top
Y coordinate of region of top-left corner of rectangle.

mfxU16 Right
X coordinate of region of bottom-right corner of rectangle.

mfxU16 Bottom
Y coordinate of region of bottom-right corner of rectangle.

10.5. oneVPL API Reference 877

oneAPI Specification, Release 1.1-rev-1

mfxExtHyperModeParam

struct mfxExtHyperModeParam
The structure is used for HyperMode initialization.

Public Members

mfxExtBuffer Header
Extension buffer header. BufferId must be equal to MFX_EXTBUFF_HYPER_MODE_PARAM.

mfxHyperMode Mode
HyperMode implementation behavior.

mfxGUID

struct mfxGUID
Represents Globally Unique Identifier (GUID) with memory layout compliant to RFC 4122. See https://www.
rfc-editor.org/info/rfc4122 for details.

Public Members

mfxU8 Data[16]
Array to keep GUID.

mfxExtAllocationHints

struct mfxExtAllocationHints
The extension buffer specifies surface pool management policy. Absence of the attached buffer means
MFX_ALLOCATION_UNLIMITED policy: each call of GetSurfaceForXXX leads to surface allocation.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_ALLOCATION_HINTS.

mfxPoolAllocationPolicy AllocationPolicy
Allocation policy.

mfxU32 NumberToPreAllocate
How many surfaces to allocate during Init. It’s applicable for any polices set by mfxPoolAllocationPol-
icy::AllocationPolicy even if the requested number exceeds recommended size of the pool.

mfxU32 DeltaToAllocateOnTheFly
DeltaToAllocateOnTheFly specifies how many surfaces are allocated in addition to NumberToPreAllocate

10.5. oneVPL API Reference 878

https://www.rfc-editor.org/info/rfc4122
https://www.rfc-editor.org/info/rfc4122

oneAPI Specification, Release 1.1-rev-1

in MFX_ALLOCATION_LIMITED mode. Maximum number of allocated frames will be NumberToPre-
Allocate + DeltaToAllocateOnTheFly.

mfxVPPPoolType VPPPoolType
Defines what VPP pool is targeted - input or output. Ignored for other components.

mfxU32 Wait
Time in milliseconds for GetSurfaceForXXX() and DecodeFrameAsync functions to wait until surface will
be available.

mfxU32 reserved1[4]
Reserved for future use

Decode Structures

Structures used by Decode only.

API

• mfxDecodeStat

• mfxExtDecodeErrorReport

• mfxExtDecodedFrameInfo

• mfxExtTimeCode

mfxDecodeStat

struct mfxDecodeStat
Returns statistics collected during decoding.

Public Members

mfxU32 NumFrame
Number of total decoded frames.

mfxU32 NumSkippedFrame
Number of skipped frames.

mfxU32 NumError
Number of errors recovered.

mfxU32 NumCachedFrame
Number of internally cached frames.

10.5. oneVPL API Reference 879

oneAPI Specification, Release 1.1-rev-1

mfxExtDecodeErrorReport

struct mfxExtDecodeErrorReport
Used by the decoders to report bitstream error information right after DecodeHeader or DecodeFrameAsync.
The application can attach this extended buffer to the mfxBitstream structure at runtime.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_DECODE_ERROR_REPORT.

mfxU32 ErrorTypes
Bitstream error types (bit-ORed values). See ErrorTypes enumerator for the list of types.

mfxExtDecodedFrameInfo

struct mfxExtDecodedFrameInfo
Used by the decoders to report additional information about a decoded frame. The application can attach this
extended buffer to the mfxFrameSurface1::mfxFrameData structure at runtime.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_DECODED_FRAME_INFO.

mfxU16 FrameType
Frame type. See FrameType enumerator for the list of types.

mfxExtTimeCode

struct mfxExtTimeCode
Used by the library to pass MPEG 2 specific timing information.

See ISO/IEC 13818-2 and ITU-T H.262, MPEG-2 Part 2 for the definition of these parameters.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_TIME_CODE.

mfxU16 DropFrameFlag
Indicated dropped frame.

mfxU16 TimeCodeHours
Hours.

10.5. oneVPL API Reference 880

oneAPI Specification, Release 1.1-rev-1

mfxU16 TimeCodeMinutes
Minutes.

mfxU16 TimeCodeSeconds
Seconds.

mfxU16 TimeCodePictures
Pictures.

Encode Structures

Structures used by Encode only.

API

• mfxBRCFrameCtrl

• mfxBRCFrameParam

• mfxBRCFrameStatus

• mfxEncodeCtrl

• mfxEncodedUnitInfo

• mfxEncodeStat

• mfxExtAVCEncodedFrameInfo

• mfxExtAVCRefListCtrl

• mfxExtAVCRefLists

• mfxExtAVCRoundingOffset

• mfxExtAvcTemporalLayers

• mfxExtBRC

• mfxExtChromaLocInfo

• mfxExtCodingOption

• mfxExtCodingOption2

• mfxExtCodingOption3

• mfxExtCodingOptionSPSPPS

• mfxExtCodingOptionVPS

• mfxExtContentLightLevelInfo

• mfxExtDirtyRect

• mfxExtEncodedUnitsInfo

• mfxExtEncoderCapability

• mfxExtEncoderIPCMArea

10.5. oneVPL API Reference 881

oneAPI Specification, Release 1.1-rev-1

• mfxExtEncoderResetOption

• mfxExtEncoderROI

• mfxExtHEVCRegion

• mfxExtHEVCTiles

• mfxExtInsertHeaders

• mfxExtMasteringDisplayColourVolume

• mfxExtMBDisableSkipMap

• mfxExtMBForceIntra

• mfxExtMBQP

• mfxExtMoveRect

• mfxExtMVOverPicBoundaries

• mfxExtPartialBitstreamParam

• mfxExtPictureTimingSEI

• mfxExtPredWeightTable

• mfxExtVP8CodingOption

• mfxExtVP9Segmentation

• mfxExtVP9TemporalLayers

• mfxQPandMode

• mfxVP9TemporalLayer

• mfxTemporalLayer

• mfxExtTemporalLayers

• mfxExtAV1BitstreamParam

• mfxExtAV1ResolutionParam

• mfxExtAV1TileParam

• mfxExtAV1Segmentation

mfxBRCFrameCtrl

struct mfxBRCFrameCtrl
Specifies controls for next frame encoding provided by external BRC functions.

10.5. oneVPL API Reference 882

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxI32 QpY
Frame-level Luma QP.

mfxU32 InitialCpbRemovalDelay
See initial_cpb_removal_delay in codec standard. Ignored if no HRD control: mfxExtCodin-
gOption::VuiNalHrdParameters = MFX_CODINGOPTION_OFF. Calculated by encoder if ini-
tial_cpb_removal_delay==0 && initial_cpb_removal_offset == 0 && HRD control is switched on.

mfxU32 InitialCpbRemovalOffset
See initial_cpb_removal_offset in codec standard. Ignored if no HRD control: mfxExtCodin-
gOption::VuiNalHrdParameters = MFX_CODINGOPTION_OFF. Calculated by encoder if ini-
tial_cpb_removal_delay==0 && initial_cpb_removal_offset == 0 && HRD control is switched on.

mfxU32 MaxFrameSize
Max frame size in bytes. Option for repack feature. Driver calls PAK until current frame size is less than
or equal to maxFrameSize, or number of repacking for this frame is equal to maxNumRePak. Repack is
available if there is driver support, MaxFrameSize !=0, and MaxNumRePak != 0. Ignored if maxNumRePak
== 0.

mfxU8 DeltaQP[8]
Option for repack feature. Ignored if maxNumRePak == 0 or maxNumRePak==0. If current frame size >
maxFrameSize and/or number of repacking (nRepack) for this frame <= maxNumRePak, PAK is called with
QP = mfxBRCFrameCtrl::QpY + Sum(DeltaQP[i]), where i = [0,nRepack]. Non zero DeltaQP[nRepack]
are ignored if nRepack > maxNumRePak. If repacking feature is on (maxFrameSize & maxNumRePak
are not zero), it is calculated by the encoder.

mfxU16 MaxNumRepak
Number of possible repacks in driver if current frame size > maxFrameSize. Ignored if maxFrameSize==0.
See maxFrameSize description. Possible values are in the range of 0 to 8.

mfxU16 NumExtParam
Reserved for future use.

mfxExtBuffer **ExtParam
Reserved for future use.

mfxBRCFrameParam

struct mfxBRCFrameParam
Describes frame parameters required for external BRC functions.

10.5. oneVPL API Reference 883

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxU16 SceneChange
Frame belongs to a new scene if non zero.

mfxU16 LongTerm
Frame is a Long Term Reference frame if non zero.

mfxU32 FrameCmplx
Frame Complexity Frame spatial complexity if non zero. Zero if complexity is not available.

mfxU32 EncodedOrder
The frame number in a sequence of reordered frames starting from encoder Init.

mfxU32 DisplayOrder
The frame number in a sequence of frames in display order starting from last IDR.

mfxU32 CodedFrameSize
Size of the frame in bytes after encoding.

mfxU16 FrameType
Frame type. See FrameType enumerator for possible values.

mfxU16 PyramidLayer
B-pyramid or P-pyramid layer that the frame belongs to.

mfxU16 NumRecode
Number of recodings performed for this frame.

mfxU16 NumExtParam
Reserved for future use.

mfxExtBuffer **ExtParam
Reserved for future use.

Frame spatial complexity is calculated according to the following formula:

10.5. oneVPL API Reference 884

oneAPI Specification, Release 1.1-rev-1

mfxBRCFrameStatus

struct mfxBRCFrameStatus
Specifies instructions for the encoder provided by external BRC after each frame encoding. See the BRCStatus
enumerator for details.

Public Members

mfxU32 MinFrameSize
Size in bytes, coded frame must be padded to when Status = MFX_BRC_PANIC_SMALL_FRAME.

mfxU16 BRCStatus
BRC status. See the BRCStatus enumerator for possible values.

mfxEncodeCtrl

struct mfxEncodeCtrl
Contains parameters for per-frame based encoding control.

Public Members

mfxExtBuffer Header
This extension buffer doesn’t have assigned buffer ID. Ignored.

mfxU16 MfxNalUnitType
Type of NAL unit that contains encoding frame. All supported values are defined by MfxNalUnitType
enumerator. Other values defined in ITU-T H.265 specification are not supported.

The encoder uses this field only if application sets mfxExtCodingOption3::EnableNalUnitType option to
ON during encoder initialization.

Note: Only encoded order is supported. If application specifies this value in display order or uses value
inappropriate for current frame or invalid value, then the encoder silently ignores it.

mfxU16 SkipFrame
Indicates that current frame should be skipped or the number of missed frames before the current frame.
See mfxExtCodingOption2::SkipFrame for details.

mfxU16 QP
If nonzero, this value overwrites the global QP value for the current frame in the constant QP mode.

mfxU16 FrameType
Encoding frame type. See the FrameType enumerator for details. If the encoder works in the encoded order,
the application must specify the frame type. If the encoder works in the display order, only key frames are
enforceable.

10.5. oneVPL API Reference 885

oneAPI Specification, Release 1.1-rev-1

mfxU16 NumExtParam
Number of extra control buffers.

mfxU16 NumPayload
Number of payload records to insert into the bitstream.

mfxExtBuffer **ExtParam
Pointer to an array of pointers to external buffers that provide additional information or control to the
encoder for this frame or field pair. A typical use is to pass the VPP auxiliary data generated by the video
processing pipeline to the encoder. See the ExtendedBufferID for the list of extended buffers.

mfxPayload **Payload
Pointer to an array of pointers to user data (MPEG-2) or SEI messages (H.264) for insertion into the bit-
stream. For field pictures, odd payloads are associated with the first field and even payloads are associated
with the second field. See the mfxPayload structure for payload definitions.

mfxEncodedUnitInfo

struct mfxEncodedUnitInfo
Used to report encoded unit information.

Public Members

mfxU16 Type
Codec-dependent coding unit type (NALU type for AVC/HEVC, start_code for MPEG2 etc).

mfxU32 Offset
Offset relative to the associated mfxBitstream::DataOffset.

mfxU32 Size
Unit size, including delimiter.

mfxEncodeStat

struct mfxEncodeStat
Returns statistics collected during encoding.

Public Members

mfxU32 NumFrame
Number of encoded frames.

mfxU64 NumBit
Number of bits for all encoded frames.

10.5. oneVPL API Reference 886

oneAPI Specification, Release 1.1-rev-1

mfxU32 NumCachedFrame
Number of internally cached frames.

mfxExtAVCEncodedFrameInfo

struct mfxExtAVCEncodedFrameInfo
Used by the encoder to report additional information about the encoded picture. The application can attach
this buffer to the mfxBitstream structure before calling MFXVideoENCODE_EncodeFrameAsync function. For
interlaced content the encoder requires two such structures. They correspond to fields in encoded order.

Note: Not all implementations of the encoder support this extended buffer. The application must use query
mode 1 to determine if the functionality is supported. To do this, the application must attach this extended
buffer to the mfxVideoParam structure and call the MFXVideoENCODE_Query function. If the function returns
MFX_ERR_NONE then the functionality is supported.

Reference Lists

The following structure members are used by the reference lists contained in the parent structure.

mfxU32 FrameOrder
Frame order of encoded picture.

Frame order of reference picture.

mfxU16 PicStruct
Picture structure of encoded picture.

Picture structure of reference picture.

mfxU16 LongTermIdx
Long term index of encoded picture if applicable.

Long term index of reference picture if applicable.

mfxU16 reserved[2]

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_ENCODED_FRAME_INFO.

mfxU32 MAD
Mean Absolute Difference between original pixels of the frame and motion compensated (for inter mac-
roblocks) or spatially predicted (for intra macroblocks) pixels. Only luma component, Y plane, is used in
calculation.

10.5. oneVPL API Reference 887

oneAPI Specification, Release 1.1-rev-1

mfxU16 BRCPanicMode
Bitrate control was not able to allocate enough bits for this frame. Frame quality may be unacceptably low.

mfxU16 QP
Luma QP.

mfxU32 SecondFieldOffset
Offset to second field. Second field starts at mfxBitstream::Data + mfxBitstream::DataOffset + mfxEx-
tAVCEncodedFrameInfo::SecondFieldOffset.

struct mfxExtAVCEncodedFrameInfo::[anonymous] UsedRefListL0[32]
Reference list that has been used to encode picture.

struct mfxExtAVCEncodedFrameInfo::[anonymous] UsedRefListL1[32]
Reference list that has been used to encode picture.

mfxExtAVCRefListCtrl

struct mfxExtAVCRefListCtrl
Configures reference frame options for the H.264 encoder.

See the Reference List Selection and Long Term Reference Frame sections for more details.

Note: Not all implementations of the encoder support LongTermIdx and ApplyLongTermIdx fields in this
structure. The application must use query mode 1 to determine if such functionality is supported. To do this,
the application must attach this extended buffer to the mfxVideoParam structure and call the MFXVideoEN-
CODE_Query function. If the function returns MFX_ERR_NONE and these fields were set to one, then the
functionality is supported. If the function fails or sets fields to zero, then the functionality is not supported.

Reference Lists

The following structure members are used by the reference lists contained in the parent structure.

mfxU32 FrameOrder
Together FrameOrder and PicStruct fields are used to identify reference picture. Use FrameOrder =
MFX_FRAMEORDER_UNKNOWN to mark unused entry.

mfxU16 PicStruct
Together FrameOrder and PicStruct fields are used to identify reference picture. Use FrameOrder =
MFX_FRAMEORDER_UNKNOWN to mark unused entry.

mfxU16 ViewId
Reserved and must be zero.

mfxU16 LongTermIdx
Index that should be used by the encoder to mark long-term reference frame.

10.5. oneVPL API Reference 888

oneAPI Specification, Release 1.1-rev-1

mfxU16 reserved[3]
Reserved

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_AVC_REFLIST_CTRL.

mfxU16 NumRefIdxL0Active
Specify the number of reference frames in the active reference list L0. This number should be less or equal
to the NumRefFrame parameter from encoding initialization.

mfxU16 NumRefIdxL1Active
Specify the number of reference frames in the active reference list L1. This number should be less or equal
to the NumRefFrame parameter from encoding initialization.

struct mfxExtAVCRefListCtrl::[anonymous] PreferredRefList[32]
Reference list that specifies the list of frames that should be used to predict the current frame.

struct mfxExtAVCRefListCtrl::[anonymous] RejectedRefList[16]
Reference list that specifies the list of frames that should not be used for prediction.

struct mfxExtAVCRefListCtrl::[anonymous] LongTermRefList[16]
Reference list that specifies the list of frames that should be marked as long-term reference frame.

mfxU16 ApplyLongTermIdx
If it is equal to zero, the encoder assigns long-term index according to internal algorithm. If it is equal to
one, the encoder uses LongTermIdx value as long-term index.

mfxExtAVCRefLists

struct mfxExtAVCRefLists
Specifies reference lists for the encoder. It may be used together with the mfxExtAVCRefListCtrl structure to
create customized reference lists. If both structures are used together, then the encoder takes reference lists from
the mfxExtAVCRefLists structure and modifies them according to the mfxExtAVCRefListCtrl instructions. In case
of interlaced coding, the first mfxExtAVCRefLists structure affects TOP field and the second – BOTTOM field.

Note: Not all implementations of the encoder support this structure. The application must use the Query API
function to determine if it is supported.

10.5. oneVPL API Reference 889

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_AVC_REFLISTS.

mfxU16 NumRefIdxL0Active
Specify the number of reference frames in the active reference list L0. This number should be less than or
equal to the NumRefFrame parameter from encoding initialization.

mfxU16 NumRefIdxL1Active
Specify the number of reference frames in the active reference list L1. This number should be less than or
equal to the NumRefFrame parameter from encoding initialization.

struct mfxExtAVCRefLists::mfxRefPic RefPicList0[32]
Specify L0 reference list.

struct mfxExtAVCRefLists::mfxRefPic RefPicList1[32]
Specify L1 reference list.

struct mfxRefPic
Used by the reference lists contained in the parent structure. Together these fields are used to identify
reference picture.

Public Members

mfxU32 FrameOrder
Use FrameOrder = MFX_FRAMEORDER_UNKNOWN to mark unused entry.

mfxU16 PicStruct
Use PicStruct = MFX_PICSTRUCT_FIELD_TFF for TOP field, PicStruct =
MFX_PICSTRUCT_FIELD_BFF for BOTTOM field.

10.5. oneVPL API Reference 890

oneAPI Specification, Release 1.1-rev-1

mfxExtAVCRoundingOffset

struct mfxExtAVCRoundingOffset
Used by encoders to set rounding offset parameters for quantization. It is per-frame based encoding control, and
can be attached to some frames and skipped for others. When the extension buffer is set the application can attach
it to the mfxEncodeCtrl during runtime.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_AVC_ROUNDING_OFFSET.

mfxU16 EnableRoundingIntra
Enable rounding offset for intra blocks. See the CodingOptionValue enumerator for values of this option.

mfxU16 RoundingOffsetIntra
Intra rounding offset. Value must be in the range of 0 to 7, inclusive.

mfxU16 EnableRoundingInter
Enable rounding offset for inter blocks. See the CodingOptionValue enumerator for values of this option.

mfxU16 RoundingOffsetInter
Inter rounding offset. Value must be in the range of 0 to 7, inclusive.

mfxExtAvcTemporalLayers

struct mfxExtAvcTemporalLayers
Configures the H.264 temporal layers hierarchy.

If the application attaches it to the mfxVideoParam structure during initialization, the encoder generates the
temporal layers and inserts the prefix NAL unit before each slice to indicate the temporal and priority IDs of the
layer.

This structure can be used with the display-order encoding mode only.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_AVC_TEMPORAL_LAYERS.

mfxU16 BaseLayerPID
The priority ID of the base layer. The encoder increases the ID for each temporal layer and writes to the
prefix NAL unit.

mfxU16 Scale
The ratio between the frame rates of the current temporal layer and the base layer.

10.5. oneVPL API Reference 891

oneAPI Specification, Release 1.1-rev-1

mfxExtBRC

struct mfxExtBRC
Contains a set of callbacks to perform external bitrate control. Can be attached to the mfxVideoParam structure
during encoder initialization. Set the mfxExtCodingOption2::ExtBRC option to ON to make the encoder use the
external BRC instead of the native one.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_BRC.

mfxHDL pthis
Pointer to the BRC object.

mfxStatus (*Init)(mfxHDL pthis, mfxVideoParam *par)
Initializes the BRC session according to parameters from input mfxVideoParam and attached structures.
It does not modify the input mfxVideoParam and attached structures. Invoked during MFXVideoEN-
CODE_Init.

Parameters
• pthis – [in] Pointer to the BRC object.

• par – [in] Pointer to the mfxVideoParam structure that was used for the encoder initializa-
tion.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_UNSUPPORTED The function detected unsupported video parameters.

mfxStatus (*Reset)(mfxHDL pthis, mfxVideoParam *par)
Resets BRC session according to new parameters. It does not modify the input mfxVideoParam and attached
structures. Invoked during MFXVideoENCODE_Reset.

Parameters
• pthis – [in] Pointer to the BRC object.

• par – [in] Pointer to the mfxVideoParam structure that was used for the encoder initializa-
tion.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_UNSUPPORTED The function detected unsupported video parameters.

MFX_ERR_INCOMPATIBLE_VIDEO_PARAM The function detected that the video pa-
rameters provided by the application are incompatible with initialization parameters. Reset
requires additional memory allocation and cannot be executed.

mfxStatus (*Close)(mfxHDL pthis)
Deallocates any internal resources acquired in Init for this BRC session. Invoked during MFXVideoEN-
CODE_Close.

10.5. oneVPL API Reference 892

oneAPI Specification, Release 1.1-rev-1

Parameters pthis – [in] Pointer to the BRC object.

Returns MFX_ERR_NONE The function completed successfully.

mfxStatus (*GetFrameCtrl)(mfxHDL pthis, mfxBRCFrameParam *par, mfxBRCFrameCtrl *ctrl)
Returns controls (ctrl) to encode next frame based on info from input mfxBRCFrameParam structure
(par) and internal BRC state. Invoked asynchronously before each frame encoding or recoding.

Parameters
• pthis – [in] Pointer to the BRC object.

• par – [in] Pointer to the mfxVideoParam structure that was used for the encoder initializa-
tion.

• ctrl – [out] Pointer to the output mfxBRCFrameCtrl structure.

Returns MFX_ERR_NONE The function completed successfully.

mfxStatus (*Update)(mfxHDL pthis, mfxBRCFrameParam *par, mfxBRCFrameCtrl *ctrl, mfxBRCFrameStatus
*status)

Updates internal BRC state and returns status to instruct encoder whether it should recode the previous
frame, skip the previous frame, do padding, or proceed to next frame based on info from input mfxBR-
CFrameParam and mfxBRCFrameCtrl structures. Invoked asynchronously after each frame encoding or
recoding.

Parameters
• pthis – [in] Pointer to the BRC object.

• par – [in] Pointer to the mfxVideoParam structure that was used for the encoder initializa-
tion.

• ctrl – [in] Pointer to the output mfxBRCFrameCtrl structure.

• status – [in] Pointer to the output mfxBRCFrameStatus structure.

Returns MFX_ERR_NONE The function completed successfully.

mfxExtChromaLocInfo

struct mfxExtChromaLocInfo
Members of this structure define the location of chroma samples information.

See Annex E of the ISO*\/IEC* 14496-10 specification for the definition of these parameters.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_CHROMA_LOC_INFO.

mfxU16 ChromaLocInfoPresentFlag

mfxU16 ChromaSampleLocTypeTopField

mfxU16 ChromaSampleLocTypeBottomField

mfxU16 reserved[9]

10.5. oneVPL API Reference 893

oneAPI Specification, Release 1.1-rev-1

mfxExtCodingOption

struct mfxExtCodingOption
Specifies additional options for encoding.

The application can attach this extended buffer to the mfxVideoParam structure to configure initialization.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_CODING_OPTION.

mfxU16 RateDistortionOpt
Set this flag if rate distortion optimization is needed. See the CodingOptionValue enumerator for values of
this option.

mfxU16 MECostType
Motion estimation cost type. This value is reserved and must be zero.

mfxU16 MESearchType
Motion estimation search algorithm. This value is reserved and must be zero.

mfxI16Pair MVSearchWindow
Rectangular size of the search window for motion estimation. This parameter is reserved and must be (0,
0).

mfxU16 FramePicture
Set this flag to encode interlaced fields as interlaced frames. This flag does not affect progressive input
frames. See the CodingOptionValue enumerator for values of this option.

mfxU16 CAVLC
If set, CAVLC is used; if unset, CABAC is used for encoding. See the CodingOptionValue enumerator for
values of this option.

mfxU16 RecoveryPointSEI
Set this flag to insert the recovery point SEI message at the beginning of every intra refresh cycle. See the
description of IntRefType in mfxExtCodingOption2 structure for details on how to enable and configure
intra refresh.

If intra refresh is not enabled then this flag is ignored.

See the CodingOptionValue enumerator for values of this option.

mfxU16 ViewOutput
Set this flag to instruct the MVC encoder to output each view in separate bitstream buffer. See the Codin-
gOptionValue enumerator for values of this option and the Multi-View Video Coding section for more
details about usage of this flag.

mfxU16 NalHrdConformance
If this option is turned ON, then AVC encoder produces an HRD conformant bitstream. If it is turned OFF,
then the AVC encoder may (but not necessarily) violate HRD conformance. That is, this option can force
the encoder to produce an HRD conformant stream, but cannot force it to produce a non-conformant stream.

10.5. oneVPL API Reference 894

oneAPI Specification, Release 1.1-rev-1

See the CodingOptionValue enumerator for values of this option.

mfxU16 SingleSeiNalUnit
If set, encoder puts all SEI messages in the singe NAL unit. It includes messages provided by application
and created by encoder. It is a three-states option. See CodingOptionValue enumerator for values of this
option. The three states are:

• UNKNOWN Put each SEI in its own NAL unit.

• ON Put all SEI messages in the same NAL unit.

• OFF The same as unknown.

mfxU16 VuiVclHrdParameters
If set and VBR rate control method is used, then VCL HRD parameters are written in bitstream with values
identical to the values of the NAL HRD parameters. See the CodingOptionValue enumerator for values of
this option.

mfxU16 RefPicListReordering
Set this flag to activate reference picture list reordering. This value is reserved and must be zero.

mfxU16 ResetRefList
Set this flag to reset the reference list to non-IDR I-frames of a GOP sequence. See the CodingOptionValue
enumerator for values of this option.

mfxU16 RefPicMarkRep
Set this flag to write the reference picture marking repetition SEI message into the output bitstream. See
the CodingOptionValue enumerator for values of this option.

mfxU16 FieldOutput
Set this flag to instruct the AVC encoder to output bitstreams immediately after the encoder encodes a field,
in the field-encoding mode. See the CodingOptionValue enumerator for values of this option.

mfxU16 IntraPredBlockSize
Minimum block size of intra-prediction. This value is reserved and must be zero.

mfxU16 InterPredBlockSize
Minimum block size of inter-prediction. This value is reserved and must be zero.

mfxU16 MVPrecision
Specify the motion estimation precision. This parameter is reserved and must be zero.

mfxU16 MaxDecFrameBuffering
Specifies the maximum number of frames buffered in a DPB. A value of zero means unspecified.

mfxU16 AUDelimiter
Set this flag to insert the Access Unit Delimiter NAL. See the CodingOptionValue enumerator for values
of this option.

mfxU16 PicTimingSEI
Set this flag to insert the picture timing SEI with pic_struct syntax element. See sub-clauses D.1.2 and D.2.2

10.5. oneVPL API Reference 895

oneAPI Specification, Release 1.1-rev-1

of the ISO/IEC 14496-10 specification for the definition of this syntax element. See the CodingOptionValue
enumerator for values of this option. The default value is ON.

mfxU16 VuiNalHrdParameters
Set this flag to insert NAL HRD parameters in the VUI header. See the CodingOptionValue enumerator
for values of this option.

mfxExtCodingOption2

struct mfxExtCodingOption2
Used with the mfxExtCodingOption structure to specify additional options for encoding.

The application can attach this extended buffer to the mfxVideoParam structure to configure initialization and to
the mfxEncodeCtrl during runtime.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_CODING_OPTION2.

mfxU16 IntRefType
Specifies intra refresh type. See the IntraRefreshTypes. The major goal of intra refresh is improvement
of error resilience without significant impact on encoded bitstream size caused by I-frames. The encoder
achieves this by encoding part of each frame in the refresh cycle using intra MBs.

This parameter is valid during initialization and runtime. When used with temporal scalability, intra refresh
applied only to base layer.

MFX_REFRESH_NO No refresh.

MFX_REFRESH_VERTICAL Vertical refresh, by column of MBs.

MFX_REFRESH_HORIZONTAL Horizontal refresh, by rows of MBs.

MFX_REFRESH_SLICE Horizontal refresh by slices without overlapping.

MFX_REFRESH_SLICE Library ignores IntRefCycleSize (size of refresh cycle equals number slices).

mfxU16 IntRefCycleSize
Specifies number of pictures within refresh cycle starting from 2. 0 and 1 are invalid values. This parameter
is valid only during initialization.

mfxI16 IntRefQPDelta
Specifies QP difference for inserted intra MBs. Signed values are in the -51 to 51 range. This parameter is
valid during initialization and runtime.

mfxU32 MaxFrameSize
Specify maximum encoded frame size in byte. This parameter is used in VBR based bitrate control
modes and ignored in others. The encoder tries to keep frame size below specified limit but minor over-
shoots are possible to preserve visual quality. This parameter is valid during initialization and runtime.
It is recommended to set MaxFrameSize to 5x-10x target frame size ((TargetKbps*1000)/(8* FrameRate-
ExtN/FrameRateExtD)) for I-frames and 2x-4x target frame size for P- and B-frames.

10.5. oneVPL API Reference 896

oneAPI Specification, Release 1.1-rev-1

mfxU32 MaxSliceSize
Specify maximum slice size in bytes. If this parameter is specified other controls over number of slices are
ignored.

Note: Not all codecs and implementations support this value. Use the Query API function to check if this
feature is supported.

mfxU16 BitrateLimit
Modifies bitrate to be in the range imposed by the encoder. The default value is ON, that is, bitrate is
limited. Setting this flag to OFF may lead to violation of HRD conformance.Specifying bitrate below the
encoder range might significantly affect quality.

If set to ON, this option takes effect in non CQP modes: if TargetKbps is not in the range imposed by the
encoder, it will be changed to be in the range.

This parameter is valid only during initialization. Flag works with MFX_CODEC_AVC only, it is ignored
with other codecs. See the CodingOptionValue enumerator for values of this option.

mfxU16 MBBRC
Setting this flag enables macroblock level bitrate control that generally improves subjective visual qual-
ity. Enabling this flag may have negative impact on performance and objective visual quality metric. See
the CodingOptionValue enumerator for values of this option. The default value depends on target usage
settings.

mfxU16 ExtBRC
Set this option to ON to enable external BRC. See the CodingOptionValue enumerator for values of this
option. Use the Query API function to check if this feature is supported.

mfxU16 LookAheadDepth
Specifies the depth of the look ahead rate control algorithm. The depth value is the number of frames that
the encoder analyzes before encoding. Values are in the 10 to 100 range, inclusive. To instruct the encoder
to use the default value the application should zero this field.

mfxU16 Trellis
Used to control trellis quantization in AVC encoder. See TrellisControl enumerator for values of this option.
This parameter is valid only during initialization.

mfxU16 RepeatPPS
Controls picture parameter set repetition in AVC encoder. Set this flag to ON to repeat PPS with each frame.
See the CodingOptionValue enumerator for values of this option. The default value is ON. This parameter
is valid only during initialization.

mfxU16 BRefType
Controls usage of B-frames as reference. See BRefControl enumerator for values of this option. This
parameter is valid only during initialization.

mfxU16 AdaptiveI
Controls insertion of I-frames by the encoder. Set this flag to ON to allow changing of frame type from P
and B to I. This option is ignored if GopOptFlag in mfxInfoMFX structure is equal to MFX_GOP_STRICT.
See the CodingOptionValue enumerator for values of this option. This parameter is valid only during
initialization.

10.5. oneVPL API Reference 897

oneAPI Specification, Release 1.1-rev-1

mfxU16 AdaptiveB
Controls changing of frame type from B to P. Set this flag to ON enable changing of frame type from B to
P. This option is ignored if GopOptFlag in mfxInfoMFX structure is equal to MFX_GOP_STRICT. See the
CodingOptionValue enumerator for values of this option. This parameter is valid only during initialization.

mfxU16 LookAheadDS
Controls down sampling in look ahead bitrate control mode. See LookAheadDownSampling enumerator
for values of this option. This parameter is valid only during initialization.

mfxU16 NumMbPerSlice
Specifies suggested slice size in number of macroblocks. The library can adjust this number based on
platform capability. If this option is specified, that is, if it is not equal to zero, the library ignores mfxIn-
foMFX::NumSlice parameter.

mfxU16 SkipFrame
Enables usage of mfxEncodeCtrl::SkipFrameparameter. See the SkipFrame enumerator for values of this
option.

Note: Not all codecs and implementations support this value. Use the Query API function to check if this
feature is supported.

mfxU8 MinQPI
Minimum allowed QP value for I-frame types. Valid range is 1 to 51 inclusive. Zero means default value,
that is, no limitations on QP.

Note: Not all codecs and implementations support this value. Use the Query API function to check if this
feature is supported.

mfxU8 MaxQPI
Maximum allowed QP value for I-frame types. Valid range is 1 to 51 inclusive. Zero means default value,
that is, no limitations on QP.

Note: Not all codecs and implementations support this value. Use the Query API function to check if this
feature is supported.

mfxU8 MinQPP
Minimum allowed QP value for P-frame types. Valid range is 1 to 51 inclusive. Zero means default value,
that is, no limitations on QP.

Note: Not all codecs and implementations support this value. Use the Query API function to check if this
feature is supported.

mfxU8 MaxQPP
Maximum allowed QP value for P-frame types. Valid range is 1 to 51 inclusive. Zero means default value,
that is, no limitations on QP.

10.5. oneVPL API Reference 898

oneAPI Specification, Release 1.1-rev-1

Note: Not all codecs and implementations support this value. Use the Query API function to check if this
feature is supported.

mfxU8 MinQPB
Minimum allowed QP value for B-frame types. Valid range is 1 to 51 inclusive. Zero means default value,
that is, no limitations on QP.

Note: Not all codecs and implementations support this value. Use the Query API function to check if this
feature is supported.

mfxU8 MaxQPB
Maximum allowed QP value for B-frame types. Valid range is 1 to 51 inclusive. Zero means default value,
that is, no limitations on QP.

Note: Not all codecs and implementations support this value. Use the Query API function to check if this
feature is supported.

mfxU16 FixedFrameRate
Sets fixed_frame_rate_flag in VUI.

Note: Not all codecs and implementations support this value. Use the Query API function to check if this
feature is supported.

mfxU16 DisableDeblockingIdc
Disables deblocking.

Note: Not all codecs and implementations support this value. Use the Query API function to check if this
feature is supported.

mfxU16 DisableVUI
Completely disables VUI in the output bitstream.

Note: Not all codecs and implementations support this value. Use the Query API function to check if this
feature is supported.

mfxU16 BufferingPeriodSEI
Controls insertion of buffering period SEI in the encoded bitstream. It should be one of the following
values:

MFX_BPSEI_DEFAULT Encoder decides when to insert BP SEI,

MFX_BPSEI_IFRAME BP SEI should be inserted with every I-frame.

mfxU16 EnableMAD

10.5. oneVPL API Reference 899

oneAPI Specification, Release 1.1-rev-1

Set this flag to ON to enable per-frame reporting of Mean Absolute Difference. This parameter is valid
only during initialization.

mfxU16 UseRawRef
Set this flag to ON to use raw frames for reference instead of reconstructed frames. This parameter is valid
during initialization and runtime (only if was turned ON during initialization).

Note: Not all codecs and implementations support this value. Use the Query API function to check if this
feature is supported.

mfxExtCodingOption3

struct mfxExtCodingOption3
Used with mfxExtCodingOption and mfxExtCodingOption2 structures to specify additional options for encoding.
The application can attach this extended buffer to the mfxVideoParam structure to configure initialization and to
the mfxEncodeCtrl during runtime.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_CODING_OPTION3.

mfxU16 NumSliceI
The number of slices for I-frames.

Note: Not all codecs and implementations support these values. Use the Query API function to check if
this feature is supported

mfxU16 NumSliceP
The number of slices for P-frames.

Note: Not all codecs and implementations support these values. Use the Query API function to check if
this feature is supported

mfxU16 NumSliceB
The number of slices for B-frames.

Note: Not all codecs and implementations support these values. Use the Query API function to check if
this feature is supported

mfxU16 WinBRCMaxAvgKbps
When rate control method is MFX_RATECONTROL_VBR, MFX_RATECONTROL_LA,

10.5. oneVPL API Reference 900

oneAPI Specification, Release 1.1-rev-1

MFX_RATECONTROL_LA_HRD, or MFX_RATECONTROL_QVBR this parameter specifies the maxi-
mum bitrate averaged over a sliding window specified by WinBRCSize. For MFX_RATECONTROL_CBR
this parameter is ignored and equals TargetKbps.

mfxU16 WinBRCSize
When rate control method is MFX_RATECONTROL_CBR, MFX_RATECONTROL_VBR,
MFX_RATECONTROL_LA, MFX_RATECONTROL_LA_HRD, or MFX_RATECONTROL_QVBR
this parameter specifies sliding window size in frames. Set this parameter to zero to disable sliding
window.

mfxU16 QVBRQuality
When rate control method is MFX_RATECONTROL_QVBR, this parameter specifies quality factor. Val-
ues are in the 1 to 51 range, where 1 corresponds to the best quality.

mfxU16 EnableMBQP
Set this flag to ON to enable per-macroblock QP control. Rate control method must be
MFX_RATECONTROL_CQP. See the CodingOptionValue enumerator for values of this option. This
parameter is valid only during initialization.

mfxU16 IntRefCycleDist
Distance between the beginnings of the intra-refresh cycles in frames. Zero means no distance between
cycles.

mfxU16 DirectBiasAdjustment
Set this flag to ON to enable the ENC mode decision algorithm to bias to fewer B Direct/Skip types. Applies
only to B-frames, all other frames will ignore this setting. See the CodingOptionValue enumerator for
values of this option.

mfxU16 GlobalMotionBiasAdjustment
Enables global motion bias. See the CodingOptionValue enumerator for values of this option.

mfxU16 MVCostScalingFactor
Values are:

• 0: Set MV cost to be 0.

• 1: Scale MV cost to be 1/2 of the default value.

• 2: Scale MV cost to be 1/4 of the default value.

• 3: Scale MV cost to be 1/8 of the default value.

mfxU16 MBDisableSkipMap
Set this flag to ON to enable usage of mfxExtMBDisableSkipMap. See the CodingOptionValue enumerator
for values of this option. This parameter is valid only during initialization.

mfxU16 WeightedPred
Weighted prediction mode. See the WeightedPred enumerator for values of these options.

mfxU16 WeightedBiPred
Weighted prediction mode. See the WeightedPred enumerator for values of these options.

10.5. oneVPL API Reference 901

oneAPI Specification, Release 1.1-rev-1

mfxU16 AspectRatioInfoPresent
Instructs encoder whether aspect ratio info should present in VUI parameters. See the CodingOptionValue
enumerator for values of this option.

mfxU16 OverscanInfoPresent
Instructs encoder whether overscan info should present in VUI parameters. See the CodingOptionValue
enumerator for values of this option.

mfxU16 OverscanAppropriate
ON indicates that the cropped decoded pictures output are suitable for display using overscan. OFF indicates
that the cropped decoded pictures output contain visually important information in the entire region out to
the edges of the cropping rectangle of the picture. See the CodingOptionValue enumerator for values of
this option.

mfxU16 TimingInfoPresent
Instructs encoder whether frame rate info should present in VUI parameters. See the CodingOptionValue
enumerator for values of this option.

mfxU16 BitstreamRestriction
Instructs encoder whether bitstream restriction info should present in VUI parameters. See the CodingOp-
tionValue enumerator for values of this option.

mfxU16 LowDelayHrd
Corresponds to AVC syntax element low_delay_hrd_flag (VUI). See the CodingOptionValue enumerator
for values of this option.

mfxU16 MotionVectorsOverPicBoundaries
When set to OFF, no sample outside the picture boundaries and no sample at a fractional sample position
for which the sample value is derived using one or more samples outside the picture boundaries is used for
inter prediction of any sample.

When set to ON, one or more samples outside picture boundaries may be used in inter prediction.

See the CodingOptionValue enumerator for values of this option.

mfxU16 ScenarioInfo
Provides a hint to encoder about the scenario for the encoding session. See the ScenarioInfo enumerator
for values of this option.

mfxU16 ContentInfo
Provides a hint to encoder about the content for the encoding session. See the ContentInfo enumerator for
values of this option.

mfxU16 PRefType
When GopRefDist=1, specifies the model of reference list construction and DPB management. See the
PRefType enumerator for values of this option.

mfxU16 FadeDetection
Instructs encoder whether internal fade detection algorithm should be used for calculation of weigh/offset
values for pred_weight_table unless application provided mfxExtPredWeightTable for this frame. See the
CodingOptionValue enumerator for values of this option.

10.5. oneVPL API Reference 902

oneAPI Specification, Release 1.1-rev-1

mfxU16 GPB
Set this flag to OFF to make HEVC encoder use regular P-frames instead of GPB. See the CodingOption-
Value enumerator for values of this option.

mfxU32 MaxFrameSizeI
Same as mfxExtCodingOption2::MaxFrameSize but affects only I-frames. MaxFrameSizeI must be set if
MaxFrameSizeP is set. If MaxFrameSizeI is not specified or greater than spec limitation, spec limitation
will be applied to the sizes of I-frames.

mfxU32 MaxFrameSizeP
Same as mfxExtCodingOption2::MaxFrameSize but affects only P/B-frames. If MaxFrameSizeP equals 0,
the library sets MaxFrameSizeP equal to MaxFrameSizeI. If MaxFrameSizeP is not specified or greater
than spec limitation, spec limitation will be applied to the sizes of P/B-frames.

mfxU16 EnableQPOffset
Enables QPOffset control. See the CodingOptionValue enumerator for values of this option.

mfxI16 QPOffset[8]
Specifies QP offset per pyramid layer when EnableQPOffset is set to ON and RateControlMethod is CQP.

For B-pyramid, B-frame QP = QPB + QPOffset[layer].

For P-pyramid, P-frame QP = QPP + QPOffset[layer].

mfxU16 NumRefActiveP[8]
Max number of active references for P-frames. Array index is pyramid layer.

mfxU16 NumRefActiveBL0[8]
Max number of active references for B-frames in reference picture list 0. Array index is pyramid layer.

mfxU16 NumRefActiveBL1[8]
Max number of active references for B-frames in reference picture list 1. Array index is pyramid layer.

mfxU16 TransformSkip
For HEVC if this option is turned ON, the transform_skip_enabled_flag will be set to 1 in PPS. OFF spec-
ifies that transform_skip_enabled_flag will be set to 0.

mfxU16 TargetChromaFormatPlus1
Minus 1 specifies target encoding chroma format (see ChromaFormatIdc enumerator). May differ from the
source format. TargetChromaFormatPlus1 = 0 specifies the default target chroma format which is equal
to source (mfxVideoParam::mfx::FrameInfo::ChromaFormat + 1), except RGB4 source format. In case of
RGB4 source format default target , chroma format is 4:2:0 (instead of 4:4:4) for the purpose of backward
compatibility.

mfxU16 TargetBitDepthLuma
Target encoding bit-depth for luma samples. May differ from source bit-depth. 0 specifies a default target
bit-depth that is equal to source (mfxVideoParam::mfx::FrameInfo::BitDepthLuma).

mfxU16 TargetBitDepthChroma
Target encoding bit-depth for chroma samples. May differ from source bit-depth. 0 specifies a default target
bit-depth that is equal to source (mfxVideoParam::mfx::FrameInfo::BitDepthChroma).

10.5. oneVPL API Reference 903

oneAPI Specification, Release 1.1-rev-1

mfxU16 BRCPanicMode
Controls panic mode in AVC and MPEG2 encoders.

mfxU16 LowDelayBRC
When rate control method is MFX_RATECONTROL_VBR, MFX_RATECONTROL_QVBR or
MFX_RATECONTROL_VCM this parameter specifies frame size tolerance. Set this parameter to
MFX_CODINGOPTION_ON to allow strictly obey average frame size set by MaxKbps, for example cases
when MaxFrameSize == (MaxKbps*1000)/(8* FrameRateExtN/FrameRateExtD). Also MaxFrameSizeI
and MaxFrameSizeP can be set separately.

mfxU16 EnableMBForceIntra
Set this flag to ON to enable usage of mfxExtMBForceIntra for AVC encoder. See the CodingOptionValue
enumerator for values of this option. This parameter is valid only during initialization.

mfxU16 AdaptiveMaxFrameSize
If this flag is set to ON, BRC may decide a larger P- or B-frame size than what MaxFrameSizeP dictates
when the scene change is detected. It may benefit the video quality. AdaptiveMaxFrameSize feature is not
supported with LowPower ON or if the value of MaxFrameSizeP = 0.

mfxU16 RepartitionCheckEnable
Controls AVC encoder attempts to predict from small partitions. Default value allows encoder
to choose preferred mode. MFX_CODINGOPTION_ON forces encoder to favor quality and
MFX_CODINGOPTION_OFF forces encoder to favor performance.

mfxU16 EncodedUnitsInfo
Set this flag to ON to make encoded units info available in mfxExtEncodedUnitsInfo.

mfxU16 EnableNalUnitType
If this flag is set to ON, the HEVC encoder uses the NAL unit type provided by the application in the
mfxEncodeCtrl::MfxNalUnitType field. This parameter is valid only during initialization.

Note: Not all codecs and implementations support this value. Use the Query API function to check if this
feature is supported.

mfxU16 AdaptiveLTR

If this flag is set to ON, encoder will mark, modify, or remove LTR frames based on encoding parameters
and content

properties. Turn OFF to prevent Adaptive marking of Long Term Reference Frames.

mfxU16 AdaptiveCQM
If this flag is set to ON, encoder adaptively selects one of implementation-defined quantization matrices
for each frame. Non-default quantization matrices aim to improve subjective visual quality under certain
conditions. Their number and definitions are API implementation specific. If this flag is set to OFF, default
quantization matrix is used for all frames. This parameter is valid only during initialization.

mfxU16 AdaptiveRef
If this flag is set to ON, encoder adaptively selects list of reference frames to imrove encoding quality.
Enabling of the flag can increase computation complexity and introduce additional delay. If this flag is set
to OFF, regular reference frames are used for encoding.

10.5. oneVPL API Reference 904

oneAPI Specification, Release 1.1-rev-1

mfxExtCodingOptionSPSPPS

struct mfxExtCodingOptionSPSPPS
Attach this structure as part of the extended buffers to configure the encoder during MFXVideoENCODE_Init.
The sequence or picture parameters specified by this structure overwrite any parameters specified by the structure
or any other attached extended buffers attached.

For H.264, SPSBuffer and PPSBuffer must point to valid bitstreams that contain the sequence parameter set and
picture parameter set, respectively.

For MPEG-2, SPSBuffer must point to valid bitstreams that contain the sequence header followed by any sequence
header extension. The PPSBuffer pointer is ignored.

The encoder imports parameters from these buffers. If the encoder does not support the specified parameters,
the encoder does not initialize and returns the status code MFX_ERR_INCOMPATIBLE_VIDEO_PARAM.

Check with the MFXVideoENCODE_Query function for the support of this multiple segment encoding feature.
If this feature is not supported, the query returns MFX_ERR_UNSUPPORTED.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_CODING_OPTION_SPSPPS.

mfxU8 *SPSBuffer
Pointer to a valid bitstream that contains the SPS (sequence parameter set for H.264 or sequence header
followed by any sequence header extension for MPEG-2) buffer. Can be NULL to skip specifying the SPS.

mfxU8 *PPSBuffer
Pointer to a valid bitstream that contains the PPS (picture parameter set for H.264 or picture header followed
by any picture header extension for MPEG-2) buffer. Can be NULL to skip specifying the PPS.

mfxU16 SPSBufSize
Size of the SPS in bytes.

mfxU16 PPSBufSize
Size of the PPS in bytes.

mfxU16 SPSId
SPS identifier. The value is reserved and must be zero.

mfxU16 PPSId
PPS identifier. The value is reserved and must be zero.

10.5. oneVPL API Reference 905

oneAPI Specification, Release 1.1-rev-1

mfxExtCodingOptionVPS

struct mfxExtCodingOptionVPS
Attach this structure as part of the extended buffers to configure the encoder during MFXVideoENCODE_Init.
The sequence or picture parameters specified by this structure overwrite any parameters specified by the structure
or any other attached extended buffers attached.

If the encoder does not support the specified parameters, the encoder does not initialize and returns the status
code MFX_ERR_INCOMPATIBLE_VIDEO_PARAM.

Check with the MFXVideoENCODE_Query function for the support of this multiple segment encoding feature.
If this feature is not supported, the query returns MFX_ERR_UNSUPPORTED.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_CODING_OPTION_VPS.

mfxU8 *VPSBuffer
Pointer to a valid bitstream that contains the VPS (video parameter set for HEVC) buffer.

mfxU16 VPSBufSize
Size of the VPS in bytes.

mfxU16 VPSId
VPS identifier; the value is reserved and must be zero.

mfxExtContentLightLevelInfo

struct mfxExtContentLightLevelInfo
Configures the HDR SEI message.

If the application attaches this structure to the mfxEncodeCtrl structure at runtime, the encoder inserts the HDR
SEI message for the current frame and ignores InsertPayloadToggle.

If the application attaches this structure to the mfxVideoParam structure during initialization or reset, the encoder
inserts the HDR SEI message based on InsertPayloadToggle.

If the application attaches this structure for video processing, InsertPayloadToggle will be ignored.

Field semantics are defined in ITU-T* H.265 Annex D.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to EXTBUFF_CONTENT_LIGHT_LEVEL_INFO.

mfxU16 InsertPayloadToggle
InsertHDRPayload enumerator value.

10.5. oneVPL API Reference 906

oneAPI Specification, Release 1.1-rev-1

mfxU16 MaxContentLightLevel
Maximum luminance level of the content. Field range is 1 to 65535.

mfxU16 MaxPicAverageLightLevel
Maximum average per-frame luminance level of the content. Field range is 1 to 65535.

mfxExtDirtyRect

struct mfxExtDirtyRect
Used by the application to specify dirty regions within a frame during encoding. It may be used at initialization
or at runtime.

Dirty rectangle definition is using end-point exclusive notation. In other words, the pixel with (Right, Bottom)
coordinates lies immediately outside of the dirty rectangle. Left, Top, Right, Bottom should be aligned by
codec-specific block boundaries (should be dividable by 16 for AVC, or by block size (8, 16, 32 or 64, depends
on platform) for HEVC).

Every dirty rectangle with unaligned coordinates will be expanded to a minimal-area block-aligned dirty rectan-
gle, enclosing the original one. For example, a (5, 5, 15, 31) dirty rectangle will be expanded to (0, 0, 16, 32) for
AVC encoder, or to (0, 0, 32, 32) for HEVC, if block size is 32.

Dirty rectangle (0, 0, 0, 0) is a valid dirty rectangle and means that the frame is not changed.

Dirty rectangle coordinates

The following structure members are used by the Rect array contained in the parent structure.

mfxU32 Left
Dirty region left coordinate.

mfxU32 Top
Dirty region top coordinate.

mfxU32 Right
Dirty region right coordinate.

mfxU32 Bottom
Dirty region bottom coordinate.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_DIRTY_RECTANGLES.

mfxU16 NumRect
Number of dirty rectangles.

struct mfxExtDirtyRect::[anonymous] Rect[256]
Array of dirty rectangles.

10.5. oneVPL API Reference 907

oneAPI Specification, Release 1.1-rev-1

mfxExtEncodedUnitsInfo

struct mfxExtEncodedUnitsInfo
If mfxExtCodingOption3::EncodedUnitsInfo was set to MFX_CODINGOPTION_ON during encoder initializa-
tion, the mfxExtEncodedUnitsInfo structure is attached to the mfxBitstream structure during encoding. It is used
to report information about coding units in the resulting bitstream.

The number of filled items in UnitInfo is min(NumUnitsEncoded, NumUnitsAlloc).

For counting a minimal amount of encoded units you can use the following algorithm:

nSEI = amountOfApplicationDefinedSEI;
if (CodingOption3.NumSlice[IPB] != 0 || mfxVideoParam.mfx.NumSlice != 0)
ExpectedAmount = 10 + nSEI + Max(CodingOption3.NumSlice[IPB], mfxVideoParam.mfx.

→˓NumSlice);
else if (CodingOption2.NumMBPerSlice != 0)
ExpectedAmount = 10 + nSEI + (FrameWidth * FrameHeight) / (256 * CodingOption2.

→˓NumMBPerSlice);
else if (CodingOption2.MaxSliceSize != 0)
ExpectedAmount = 10 + nSEI + Round(MaxBitrate / (FrameRate*CodingOption2.

→˓MaxSliceSize));
else
ExpectedAmount = 10 + nSEI;

if (mfxFrameInfo.PictStruct != MFX_PICSTRUCT_PROGRESSIVE)
ExpectedAmount = ExpectedAmount * 2;

if (temporalScaleabilityEnabled)
ExpectedAmount = ExpectedAmount * 2;

Note: Only supported by the AVC encoder.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_ENCODED_UNITS_INFO.

mfxEncodedUnitInfo *UnitInfo
Pointer to an array of mfxEncodedUnitsInfo structures whose size is equal to or greater than NumUnitsAl-
loc.

mfxU16 NumUnitsAlloc
UnitInfo array size.

mfxU16 NumUnitsEncoded
Output field. Number of coding units to report. If NumUnitsEncoded is greater than NumUnitsAlloc,
the UnitInfo array will contain information only for the first NumUnitsAlloc units. User may consider
reallocating the UnitInfo array to avoid this for subsequent frames.

10.5. oneVPL API Reference 908

oneAPI Specification, Release 1.1-rev-1

mfxExtEncoderCapability

struct mfxExtEncoderCapability
Used to retrieve encoder capability. See the description of mode 4 of the MFXVideoENCODE_Query function
for details on how to use this structure.

Note: Not all implementations of the encoder support this extended buffer. The application must use query
mode 1 to determine if the functionality is supported. To do this, the application must attach this extended
buffer to the mfxVideoParam structure and call the MFXVideoENCODE_Query function. If the function returns
MFX_ERR_NONE then the functionality is supported.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_ENCODER_CAPABILITY.

mfxU32 MBPerSec
Specify the maximum processing rate in macro blocks per second.

mfxExtEncoderIPCMArea

struct mfxExtEncoderIPCMArea
Specifies rectangle areas for IPCM coding mode.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_ENCODER_IPCM_AREA.

struct mfxExtEncoderIPCMArea::area *Areas
Array of areas.

struct area
Number of areas

10.5. oneVPL API Reference 909

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxU32 Left
Left area coordinate.

mfxU32 Top
Top area coordinate.

mfxU32 Right
Right area coordinate.

mfxU32 Bottom
Bottom area coordinate.

mfxExtEncoderResetOption

struct mfxExtEncoderResetOption
Used to control the encoder behavior during reset. By using this structure, the application instructs the encoder
to start a new coded sequence after reset or to continue encoding of the current sequence.

This structure is also used in mode 3 of the MFXVideoENCODE_Query function to check for reset outcome
before actual reset. The application should set StartNewSequence to the required behavior and call the query
function. If the query fails (see status codes below), then reset is not possible in current encoder state. If the
application sets StartNewSequence to MFX_CODINGOPTION_UNKNOWN, then the query function replaces
the coding option with the actual reset type: MFX_CODINGOPTION_ON if the encoder will begin a new
sequence after reset or MFX_CODINGOPTION_OFF if the encoder will continue the current sequence.

Using this structure may cause one of the following status codes from the MFXVideoENCODE_Reset and
MFXVideoENCODE_Queryfunctions:

• MFX_ERR_INVALID_VIDEO_PARAM If a reset is not possible. For example, the application sets Start-
NewSequence to off and requests resolution change.

• MFX_ERR_INCOMPATIBLE_VIDEO_PARAM If the application requests change that leads to memory
allocation. For example, the application sets StartNewSequence to on and requests resolution change to
greater than the initialization value.

• MFX_ERR_NONE If reset is possible.

The following limited list of parameters can be changed without starting a new coded sequence:

• The bitrate parameters, TargetKbps and MaxKbps, in the mfxInfoMFX structure.

• The number of slices, NumSlice, in the mfxInfoMFX structure. Number of slices should be equal to or less
than the number of slices during initialization.

• The number of temporal layers in the mfxExtAvcTemporalLayers structure. Reset should be called imme-
diately before encoding of frame from base layer and number of reference frames should be large enough
for the new temporal layers structure.

10.5. oneVPL API Reference 910

oneAPI Specification, Release 1.1-rev-1

• The quantization parameters, QPI, QPP and QPB, in the mfxInfoMFX structure.

The application should retrieve all cached frames before calling reset. When the Query API function checks for
reset outcome, it expects that this requirement be satisfied. If it is not true and there are some cached frames
inside the encoder, then the query result may differ from the reset result, because the encoder may insert an IDR
frame to produce valid coded sequence.

See the Configuration Change section for more information.

See the Streaming and Video Conferencing Features section for more information.

Note: Not all implementations of the encoder support this extended buffer. The application must use query
mode 1 to determine if the functionality is supported. To do this, the application must attach this extended
buffer to the mfxVideoParam structure and call the MFXVideoENCODE_Query function. If the function returns
MFX_ERR_NONE, then the functionality is supported.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_ENCODER_RESET_OPTION.

mfxU16 StartNewSequence
Instructs encoder to start new sequence after reset. Use one of the CodingOptionValue options:

• MFX_CODINGOPTION_ON The encoder completely reset internal state and begins new coded se-
quence after reset, including insertion of IDR frame, sequence, and picture headers.

• MFX_CODINGOPTION_OFF The encoder continues encoding of current coded sequence after reset,
without insertion of IDR frame.

• MFX_CODINGOPTION_UNKNOWN Depending on the current encoder state and changes in con-
figuration parameters, the encoder may or may not start new coded sequence. This value is also used
to query reset outcome.

mfxExtEncoderROI

struct mfxExtEncoderROI
Used by the application to specify different Region Of Interests during encoding. It may be used at initialization
or at runtime.

10.5. oneVPL API Reference 911

oneAPI Specification, Release 1.1-rev-1

ROI location rectangle

The ROI rectangle definition uses end-point exclusive notation. In other words, the pixel with (Right, Bottom)
coordinates lies immediately outside of the ROI. Left, Top, Right, Bottom should be aligned by codec-specific
block boundaries (should be dividable by 16 for AVC, or by 32 for HEVC). Every ROI with unaligned coordinates
will be expanded by the library to minimal-area block-aligned ROI, enclosing the original one. For example (5,
5, 15, 31) ROI will be expanded to (0, 0, 16, 32) for AVC encoder, or to (0, 0, 32, 32) for HEVC.

mfxU32 Left
Left ROI’s coordinate.

mfxU32 Top
Top ROI’s coordinate.

mfxU32 Right
Right ROI’s coordinate.

mfxU32 Bottom
Bottom ROI’s coordinate.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_ENCODER_ROI.

mfxU16 NumROI
Number of ROI descriptions in array. The Query API function mode 2 returns maximum supported value
(set it to 256 and query will update it to maximum supported value).

mfxU16 ROIMode
QP adjustment mode for ROIs. Defines if Priority or DeltaQP is used during encoding.

mfxI16 Priority
Priority of ROI. Used if ROIMode = MFX_ROI_MODE_PRIORITY.This is an absolute value in the range
of -3 to 3, which will be added to the MB QP. Priority is deprecated mode and is used only for backward
compatibility. Bigger value produces better quality.

mfxI16 DeltaQP
Delta QP of ROI. Used if ROIMode = MFX_ROI_MODE_QP_DELTA. This is an absolute value in the
range of -51 to 51, which will be added to the MB QP. Lesser value produces better quality.

struct mfxExtEncoderROI::[anonymous] ROI[256]
Array of ROIs. Different ROI may overlap each other. If macroblock belongs to several ROI, Priority from
ROI with lowest index is used.

10.5. oneVPL API Reference 912

oneAPI Specification, Release 1.1-rev-1

mfxExtHEVCRegion

struct mfxExtHEVCRegion
Attached to the mfxVideoParam structure during HEVC encoder initialization. Specifies the region to encode.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_HEVC_REGION.

mfxU32 RegionId
ID of region.

mfxU16 RegionType
Type of region. See HEVCRegionType enumerator for the list of types.

mfxU16 RegionEncoding
Set to MFX_HEVC_REGION_ENCODING_ON to encode only specified region.

mfxExtHEVCTiles

struct mfxExtHEVCTiles
Configures tiles options for the HEVC encoder. The application can attach this extended buffer to the mfxVideoP-
aram structure to configure initialization.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_HEVC_TILES.

mfxU16 NumTileRows
Number of tile rows.

mfxU16 NumTileColumns
Number of tile columns.

mfxExtInsertHeaders

struct mfxExtInsertHeaders
Runtime ctrl buffer for SPS/PPS insertion with current encoding frame.

10.5. oneVPL API Reference 913

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_INSERT_HEADERS.

mfxU16 SPS
Tri-state option to insert SPS.

mfxU16 PPS
Tri-state option to insert PPS.

mfxU16 reserved[8]

mfxExtMasteringDisplayColourVolume

struct mfxExtMasteringDisplayColourVolume
Configures the HDR SEI message.

If the application attaches this structure to the mfxEncodeCtrl structure at runtime, the encoder inserts the HDR
SEI message for the current frame and ignores InsertPayloadToggle.

If the application attaches this structure to the mfxVideoParam structure during initialization or reset, the encoder
inserts the HDR SEI message based on InsertPayloadToggle.

If the application attaches this structure for video processing, InsertPayloadToggle will be ignored.

Field semantics are defined in ITU-T* H.265 Annex D.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_MASTERING_DISPLAY_COLOUR_VOLUME.

mfxU16 InsertPayloadToggle
InsertHDRPayload enumerator value.

mfxU16 DisplayPrimariesX[3]
Color primaries for a video source in increments of 0.00002. Consist of RGB x coordinates and define how
to convert colors from RGB color space to CIE XYZ color space. Fields range is 0 to 50000.

mfxU16 DisplayPrimariesY[3]
Color primaries for a video source in increments of 0.00002. Consists of RGB y coordinates and defines
how to convert colors from RGB color space to CIE XYZ color space. Field range is 0 to 50000.

mfxU16 WhitePointX
White point X coordinate.

mfxU16 WhitePointY
White point Y coordinate.

10.5. oneVPL API Reference 914

oneAPI Specification, Release 1.1-rev-1

mfxU32 MaxDisplayMasteringLuminance
Specify maximum luminance of the display on which the content was authored in units of 0.00001 candelas
per square meter. Field range is 1 to 65535.

mfxU32 MinDisplayMasteringLuminance
Specify minimum luminance of the display on which the content was authored in units of 0.00001 candelas
per square meter. Field range is 1 to 65535.

mfxExtMBDisableSkipMap

struct mfxExtMBDisableSkipMap
Specifies macroblock map for current frame which forces specified macroblocks to be non-skip if mfxExtCodin-
gOption3::MBDisableSkipMap was turned ON during encoder initialization. The application can attach this
extended buffer to the mfxEncodeCtrl structure during runtime.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_MB_DISABLE_SKIP_MAP.

mfxU32 MapSize
Macroblock map size.

mfxU8 *Map
Pointer to a list of non-skip macroblock flags in raster scan order. Each flag is one byte in map. Set flag to
1 to force corresponding macroblock to be non-skip. In case of interlaced encoding, the first half of map
affects the top field and the second half of map affects the bottom field.

mfxExtMBForceIntra

struct mfxExtMBForceIntra
Specifies macroblock map for current frame which forces specified macroblocks to be encoded as intra if mfx-
ExtCodingOption3::EnableMBForceIntra was turned ON during encoder initialization. The application can
attach this extended buffer to the mfxEncodeCtrl structure during runtime.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_MB_FORCE_INTRA.

mfxU32 MapSize
Macroblock map size.

mfxU8 *Map
Pointer to a list of force intra macroblock flags in raster scan order. Each flag is one byte in map. Set flag
to 1 to force corresponding macroblock to be encoded as intra. In case of interlaced encoding, the first half
of map affects top field and the second half of map affects the bottom field.

10.5. oneVPL API Reference 915

oneAPI Specification, Release 1.1-rev-1

mfxExtMBQP

struct mfxExtMBQP
Specifies per-macroblock QP for current frame if mfxExtCodingOption3::EnableMBQP was turned ON during
encoder initialization. The application can attach this extended buffer to the mfxEncodeCtrl structure during
runtime.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_MBQP.

mfxU16 Mode
Defines QP update mode. See MBQPMode enumerator for more details.

mfxU16 BlockSize
QP block size, valid for HEVC only during Init and Runtime.

mfxU32 NumQPAlloc
Size of allocated by application QP or DeltaQP array.

mfxU8 *QP
Pointer to a list of per-macroblock QP in raster scan order. In case of interlaced encoding the first half of
QP array affects the top field and the second half of QP array affects the bottom field. Valid when Mode =
MFX_MBQP_MODE_QP_VALUE.

For AVC, the valid range is 1 to 51.

For HEVC, the valid range is 1 to 51. Application’s provided QP values should be valid. Otherwise in-
valid QP values may cause undefined behavior. MBQP map should be aligned for 16x16 block size. The
alignment rule is (width +15 /16) && (height +15 /16).

For MPEG2, QP corresponds to quantizer_scale of the ISO*\/IEC* 13818-2 specification and has a valid
range of 1 to 112.

mfxI8 *DeltaQP
Pointer to a list of per-macroblock QP deltas in raster scan order. For block i: QP[i] = BrcQP[i] +
DeltaQP[i]. Valid when Mode = MFX_MBQP_MODE_QP_DELTA.

mfxQPandMode *QPmode
Block-granularity modes when MFX_MBQP_MODE_QP_ADAPTIVE is set.

10.5. oneVPL API Reference 916

oneAPI Specification, Release 1.1-rev-1

mfxExtMoveRect

struct mfxExtMoveRect
Used by the application to specify moving regions within a frame during encoding.

Destination rectangle location should be aligned to MB boundaries (should be dividable by 16). If not, the
encoder truncates it to MB boundaries, for example, both 17 and 31 will be truncated to 16.

Destination and source rectangle location

The following structure members are used by the Rect array contained in the parent structure.

mfxU32 DestLeft
Destination rectangle location.

mfxU32 DestTop
Destination rectangle location.

mfxU32 DestRight
Destination rectangle location.

mfxU32 DestBottom
Destination rectangle location.

mfxU32 SourceLeft
Source rectangle location.

mfxU32 SourceTop
Source rectangle location.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_MOVING_RECTANGLE.

mfxU16 NumRect
Number of moving rectangles.

struct mfxExtMoveRect::[anonymous] Rect[256]
Array of moving rectangles.

10.5. oneVPL API Reference 917

oneAPI Specification, Release 1.1-rev-1

mfxExtMVOverPicBoundaries

struct mfxExtMVOverPicBoundaries
Instructs encoder to use or not use samples over specified picture border for inter prediction. Attached to the
mfxVideoParam structure.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_MV_OVER_PIC_BOUNDARIES.

mfxU16 StickTop
When set to OFF, one or more samples outside corresponding picture boundary may be used in inter pre-
diction. See the CodingOptionValue enumerator for values of this option.

mfxU16 StickBottom
When set to OFF, one or more samples outside corresponding picture boundary may be used in inter pre-
diction. See the CodingOptionValue enumerator for values of this option.

mfxU16 StickLeft
When set to OFF, one or more samples outside corresponding picture boundary may be used in inter pre-
diction. See the CodingOptionValue enumerator for values of this option.

mfxU16 StickRight
When set to OFF, one or more samples outside corresponding picture boundary may be used in inter pre-
diction. See the CodingOptionValue enumerator for values of this option.

mfxExtPartialBitstreamParam

struct mfxExtPartialBitstreamParam
Used by an encoder to output parts of the bitstream as soon as they are ready. The application can attach this
extended buffer to the mfxVideoParam structure at initialization. If this option is turned ON (Granularity !=
MFX_PARTIAL_BITSTREAM_NONE), then the encoder can output bitstream by part based on the required
granularity.

This parameter is valid only during initialization and reset. Absence of this buffer means default or previously
configured bitstream output behavior.

Note: Not all codecs and implementations support this feature. Use the Query API function to check if this
feature is supported.

10.5. oneVPL API Reference 918

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_PARTIAL_BITSTREAM_PARAM.

mfxU32 BlockSize
Output block granularity for PartialBitstreamGranularity. Valid only for
MFX_PARTIAL_BITSTREAM_BLOCK.

mfxU16 Granularity
Granularity of the partial bitstream: slice/block/any, all types of granularity state in PartialBitstreamOutput
enum.

mfxExtPictureTimingSEI

struct mfxExtPictureTimingSEI
Configures the H.264 picture timing SEI message. The encoder ignores it if HRD information in the stream is
absent and the PicTimingSEI option in the mfxExtCodingOption structure is turned off. See mfxExtCodingOption
for details.

If the application attaches this structure to the mfxVideoParam structure during initialization, the encoder inserts
the picture timing SEI message based on provided template in every access unit of coded bitstream.

If application attaches this structure to the mfxEncodeCtrl structure at runtime, the encoder inserts the picture
timing SEI message based on provided template in access unit that represents current frame.

These parameters define the picture timing information. An invalid value of 0xFFFF indicates that application
does not set the value and encoder must calculate it.

See Annex D of the ISO*\/IEC* 14496-10 specification for the definition of these parameters.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_PICTURE_TIMING_SEI.

mfxU32 reserved[14]

mfxU16 ClockTimestampFlag

mfxU16 CtType

mfxU16 NuitFieldBasedFlag

mfxU16 CountingType

mfxU16 FullTimestampFlag

mfxU16 DiscontinuityFlag

mfxU16 CntDroppedFlag

mfxU16 NFrames

mfxU16 SecondsFlag

mfxU16 MinutesFlag

10.5. oneVPL API Reference 919

oneAPI Specification, Release 1.1-rev-1

mfxU16 HoursFlag

mfxU16 SecondsValue

mfxU16 MinutesValue

mfxU16 HoursValue

mfxU32 TimeOffset

struct mfxExtPictureTimingSEI::[anonymous] TimeStamp[3]

mfxExtPredWeightTable

struct mfxExtPredWeightTable
Specifies weighted prediction table for current frame when all of the following conditions are met:

• mfxExtCodingOption3::WeightedPred was set to explicit during encoder Init or Reset .

• The current frame is P-frame or mfxExtCodingOption3::WeightedBiPred was set to explicit during encoder
Init or Reset.

• The current frame is B-frame and is attached to the mfxEncodeCtrl structure.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_PRED_WEIGHT_TABLE.

mfxU16 LumaLog2WeightDenom
Base 2 logarithm of the denominator for all luma weighting factors. Value must be in the range of 0 to 7,
inclusive.

mfxU16 ChromaLog2WeightDenom
Base 2 logarithm of the denominator for all chroma weighting factors. Value must be in the range of 0 to
7, inclusive.

mfxU16 LumaWeightFlag[2][32]
LumaWeightFlag[L][R] equal to 1 specifies that the weighting factors for the luma component are specified
for R’s entry of RefPicList L.

mfxU16 ChromaWeightFlag[2][32]
ChromaWeightFlag[L][R] equal to 1 specifies that the weighting factors for the chroma component are
specified for R’s entry of RefPicList L.

mfxI16 Weights[2][32][3][2]
The values of the weights and offsets used in the encoding processing. The value of Weights[i][j][k][m] is
interpreted as: i refers to reference picture list 0 or 1; j refers to reference list entry 0-31; k refers to data
for the luma component when it is 0, the Cb chroma component when it is 1 and the Cr chroma component
when it is 2; m refers to weight when it is 0 and offset when it is 1

10.5. oneVPL API Reference 920

oneAPI Specification, Release 1.1-rev-1

mfxExtVP8CodingOption

struct mfxExtVP8CodingOption
Describes VP8 coding options.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VP8_CODING_OPTION.

mfxU16 Version
Determines the bitstream version. Corresponds to the same VP8 syntax element in frame_tag.

mfxU16 EnableMultipleSegments
Set this option to ON to enable segmentation. This is tri-state option. See the CodingOptionValue enumer-
ator for values of this option.

mfxU16 LoopFilterType
Select the type of filter (normal or simple). Corresponds to VP8 syntax element filter_type.

mfxU16 LoopFilterLevel[4]
Controls the filter strength. Corresponds to VP8 syntax element loop_filter_level.

mfxU16 SharpnessLevel
Controls the filter sensitivity. Corresponds to VP8 syntax element sharpness_level.

mfxU16 NumTokenPartitions
Specifies number of token partitions in the coded frame.

mfxI16 LoopFilterRefTypeDelta[4]
Loop filter level delta for reference type (intra, last, golden, altref).

mfxI16 LoopFilterMbModeDelta[4]
Loop filter level delta for MB modes.

mfxI16 SegmentQPDelta[4]
QP delta for segment.

mfxI16 CoeffTypeQPDelta[5]
QP delta for coefficient type (YDC, Y2AC, Y2DC, UVAC, UVDC).

mfxU16 WriteIVFHeaders
Set this option to ON to enable insertion of IVF container headers into bitstream. This is tri-state option.
See the CodingOptionValue enumerator for values of this option

mfxU32 NumFramesForIVFHeader
Specifies number of frames for IVF header when WriteIVFHeaders is ON.

10.5. oneVPL API Reference 921

oneAPI Specification, Release 1.1-rev-1

mfxExtVP9Segmentation

struct mfxExtVP9Segmentation
In the VP9 encoder it is possible to divide a frame into up to 8 segments and apply particular features (like delta
for quantization index or for loop filter level) on a per-segment basis. “Uncompressed header” of every frame
indicates if segmentation is enabled for the current frame, and (if segmentation enabled) contains full information
about features applied to every segment. Every “Mode info block” of a coded frame has segment_id in the range
of 0 to 7.

To enable Segmentation, the mfxExtVP9Segmentation structure with correct settings should be passed to the en-
coder. It can be attached to the mfxVideoParam structure during initialization or the MFXVideoENCODE_Reset
call (static configuration). If the mfxExtVP9Segmentation buffer isn’t attached during initialization, segmenta-
tion is disabled for static configuration. If the buffer isn’t attached for the Reset call, the encoder continues to use
static configuration for segmentation which was the default before this Reset call. If the mfxExtVP9Segmentation
buffer with NumSegments=0 is provided during initialization or Reset call, segmentation becomes disabled for
static configuration.

The buffer can be attached to the mfxEncodeCtrl structure during runtime (dynamic configuration). Dynamic
configuration is applied to the current frame only. After encoding of the current frame, the encoder will switch
to the next dynamic configuration or to static configuration if dynamic configuration is not provided for next
frame).

The SegmentIdBlockSize, NumSegmentIdAlloc, and SegmentId parameters represent a segmentation map.
Here, the segmentation map is an array of segment_ids (one byte per segment_id) for blocks of size NxN in
raster scan order. The size NxN is specified by the application and is constant for the whole frame. If mfx-
ExtVP9Segmentation is attached during initialization and/or during runtime, all three parameters should be set
to proper values that do not conflict with each other and with NumSegments. If any of the parameters are not set
or any conflict or error in these parameters is detected by the library, the segmentation map will be discarded.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VP9_SEGMENTATION.

mfxU16 NumSegments
Number of segments for frame. Value 0 means that segmentation is disabled. Sending 0 for a particular
frame will disable segmentation for this frame only. Sending 0 to the Reset API function will disable
segmentation permanently. Segmentation can be enabled again by a subsequent Reset call.

mfxVP9SegmentParam Segment[8]
Array of mfxVP9SegmentParam structures containing features and parameters for every segment. Entries
with indexes bigger than NumSegments-1 are ignored. See the mfxVP9SegmentParam structure for defini-
tions of segment features and their parameters.

mfxU16 SegmentIdBlockSize
Size of block (NxN) for segmentation map. See SegmentIdBlockSize enumerator for values for this option.
An encoded block that is bigger than SegmentIdBlockSize uses segment_id taken from it’s top-left sub-
block from the segmentation map. The application can check if a particular block size is supported by
calling Query.

mfxU32 NumSegmentIdAlloc
Size of buffer allocated for segmentation map (in bytes). Application must assure that NumSegmentI-

10.5. oneVPL API Reference 922

oneAPI Specification, Release 1.1-rev-1

dAlloc is large enough to cover frame resolution with blocks of size SegmentIdBlockSize. Otherwise the
segmentation map will be discarded.

mfxU8 *SegmentId
Pointer to the segmentation map buffer which holds the array of segment_ids in raster scan order. The
application is responsible for allocation and release of this memory. The buffer pointed to by SegmentId,
provided during initialization or Reset call should be considered in use until another SegmentId is provided
via Reset call (if any), or until MFXVideoENCODE_Close is called. The buffer pointed to by SegmentId
provided with mfxEncodeCtrl should be considered in use while the input surface is locked by the library.
Every segment_id in the map should be in the range of 0 to NumSegments-1. If some segment_id is out of
valid range, the segmentation map cannot be applied. If the mfxExtVP9Segmentation buffer is attached to
the mfxEncodeCtrl structure in runtime, SegmentId can be zero. In this case, the segmentation map from
static configuration will be used.

mfxExtVP9TemporalLayers

struct mfxExtVP9TemporalLayers
API allows the encoding of VP9 bitstreams that contain several subset bitstreams that differ in frame rates, also
called “temporal layers”.

When decoding, each temporal layer can be extracted from the coded stream and decoded separately. The
mfxExtVP9TemporalLayers structure configures the temporal layers for the VP9 encoder. It can be attached
to the mfxVideoParam structure during initialization or the MFXVideoENCODE_Reset call. If the mfx-
ExtVP9TemporalLayers buffer isn’t attached during initialization, temporal scalability is disabled. If the buffer
isn’t attached for the Reset call, the encoder continues to use the temporal scalability configuration that was
defined before the Reset call.

In the API, temporal layers are ordered by their frame rates in ascending order. Temporal layer 0 (having the
lowest frame rate) is called the base layer. Each subsequent temporal layer includes all previous layers.

The temporal scalability feature requires a minimum number of allocated reference frames (controlled by the
NumRefFrame parameter). If the NumRefFrame value set by the application isn’t enough to build the reference
structure for the requested number of temporal layers, the library corrects the NumRefFrame value. The temporal
layer structure is reset (re-started) after key-frames.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VP9_TEMPORAL_LAYERS.

mfxVP9TemporalLayer Layer[8]
The array of temporal layers. Layer[0] specifies the base layer.

The library reads layers from the array when they are defined (FrameRateScale > 0). All layers starting
from first layer with FrameRateScale = 0 are ignored. The last layer that is not ignored is considered the
“highest layer”.

The frame rate of the highest layer is specified in the mfxVideoParam structure. Frame rates of lower layers
are calculated using their FrameRateScale.

TargetKbps of the highest layer should be equal to the TargetKbps value specified in the mfxVideoParam
structure. If it is not true, TargetKbps of highest temporal layers has priority.

10.5. oneVPL API Reference 923

oneAPI Specification, Release 1.1-rev-1

If there are no defined layers in the Layer array, the temporal scalability feature is disabled. For example,
to disable temporal scalability in runtime, the application should pass mfxExtVP9TemporalLayers buffer to
Reset with all FrameRateScales set to 0.

mfxQPandMode

struct mfxQPandMode
Specifies per-MB or per-CU mode and QP or deltaQP value depending on the mode type.

Public Members

mfxU8 QP
QP for MB or CU. Valid when Mode = MFX_MBQP_MODE_QP_VALUE.

For AVC, the valid range is 1 to 51.

For HEVC, the valid range is 1 to 51. The application’s provided QP values should be valid, otherwise
invalid QP values may cause undefined behavior.

MBQP map should be aligned for 16x16 block size. The align rule is: (width +15 /16) && (height +15
/16).

For MPEG2, the valid range is 1 to 112. QP corresponds to quantizer_scale of the ISO*\/IEC* 13818-2
specification.

mfxI8 DeltaQP
Per-macroblock QP delta. Valid when Mode = MFX_MBQP_MODE_QP_DELTA.

mfxU16 Mode
Defines QP update mode. Can be equal to MFX_MBQP_MODE_QP_VALUE or
MFX_MBQP_MODE_QP_DELTA.

mfxVP9TemporalLayer

struct mfxVP9TemporalLayer
Specifies temporal layer.

Public Members

mfxU16 FrameRateScale
The ratio between the frame rates of the current temporal layer and the base layer. The library treats a
particular temporal layer as “defined” if it has FrameRateScale > 0. If the base layer is defined, it must
have FrameRateScale = 1. FrameRateScale of each subsequent layer (if defined) must be a multiple of and
greater than the FrameRateScale value of previous layer.

mfxU16 TargetKbps
Target bitrate for the current temporal layer. Ignored if RateControlMethod is CQP. If RateControlMethod
is not CQP, the application must provide TargetKbps for every defined temporal layer. TargetKbps of each
subsequent layer (if defined) must be greater than the TargetKbps value of the previous layer.

10.5. oneVPL API Reference 924

oneAPI Specification, Release 1.1-rev-1

mfxTemporalLayer

struct mfxTemporalLayer
The structure is used for universal temporal layer description.

Public Members

mfxU16 FrameRateScale
The ratio between the frame rates of the current temporal layer and the base layer. The library treats a
particular temporal layer as “defined” if it has FrameRateScale > 0. If the base layer is defined, it must
have FrameRateScale = 1. FrameRateScale of each subsequent layer (if defined) must be a multiple of and
greater than the FrameRateScale value of previous layer.

mfxU16 reserved[3]
Reserved for future use.

mfxU32 InitialDelayInKB
Initial size of the Video Buffering Verifier (VBV) buffer for the current temporal layer.

Note: In this context, KB is 1000 bytes and Kbps is 1000 bps.

mfxU32 BufferSizeInKB
Represents the maximum possible size of any compressed frames for the current temporal layer.

mfxU32 TargetKbps
Target bitrate for the current temporal layer. If RateControlMethod is not CQP, the application can provide
TargetKbps for every defined temporal layer. If TargetKbps per temporal layer is not set then encoder
doesn’t apply any special bitrate limitations for the layer.

mfxU32 MaxKbps
The maximum bitrate at which the encoded data enters the Video Buffering Verifier (VBV) buffer for the
current temporal layer.

mfxU32 reserved1[16]
Reserved for future use.

mfxI32 QPI
Quantization Parameter (QP) for I-frames for constant QP mode (CQP) for the current temporal layer. Zero
QP is not valid and means that the default value is assigned by the library. Non-zero QPI might be clipped
to supported QPI range.

Note: Default QPI value is implementation dependent and subject to change without additional notice in
this document.

mfxI32 QPP
Quantization Parameter (QP) for P-frames for constant QP mode (CQP) for the current temporal layer. Zero

10.5. oneVPL API Reference 925

oneAPI Specification, Release 1.1-rev-1

QP is not valid and means that the default value is assigned by the library. Non-zero QPP might be clipped
to supported QPI range.

Note: Default QPP value is implementation dependent and subject to change without additional notice in
this document.

mfxI32 QPB
Quantization Parameter (QP) for B-frames for constant QP mode (CQP) for the current temporal layer. Zero
QP is not valid and means that the default value is assigned by the library. Non-zero QPI might be clipped
to supported QPB range.

Note: Default QPB value is implementation dependent and subject to change without additional notice in
this document.

mfxU16 reserved2[4]
Reserved for future use.

mfxExtTemporalLayers

struct mfxExtTemporalLayers
The structure is used for universal temporal layers description.

Public Members

mfxU16 NumLayers
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_UNIVERSAL_TEMPORAL_LAYERS.
The number of temporal layers.

mfxU16 BaseLayerPID
The priority ID of the base layer. The encoder increases the ID for each temporal layer and writes to the
prefix NAL unit for AVC and HEVC.

mfxU16 reserved[2]
Reserved for future use.

mfxTemporalLayer *Layers
The array of temporal layers.

mfxU16 reserved1[8]
Reserved for future use.

10.5. oneVPL API Reference 926

oneAPI Specification, Release 1.1-rev-1

mfxExtAV1BitstreamParam

struct mfxExtAV1BitstreamParam
The structure is used by AV1 encoder with more parameter control to encode frame.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_AV1_BITSTREAM_PARAM.

mfxU16 WriteIVFHeaders
Tri-state option to control IVF headers insertion, default is ON.

mfxExtAV1ResolutionParam

struct mfxExtAV1ResolutionParam
The structure is used by AV1 encoder with more parameter control to encode frame.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_AV1_RESOLUTION_PARAM.

mfxU32 FrameWidth
Width of the coded frame in pixels, default value is from mfxFrameInfo.

mfxU32 FrameHeight
Height of the coded frame in pixels, default value is from mfxFrameInfo.

mfxExtAV1TileParam

struct mfxExtAV1TileParam
The structure is used by AV1 encoder with more parameter control to encode frame.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_AV1_TILE_PARAM.

mfxU16 NumTileRows
Number of tile rows, default value is 1.

mfxU16 NumTileColumns
Number of tile columns, default value is 1.

10.5. oneVPL API Reference 927

oneAPI Specification, Release 1.1-rev-1

mfxU16 NumTileGroups
Number of tile groups, it will be ingored if the tile groups num is invalid, default value is 1.

mfxExtAV1Segmentation

struct mfxExtAV1Segmentation
In the AV1 encoder it is possible to divide a frame into up to 8 segments and apply particular features (like
delta for quantization index or for loop filter level) on a per-segment basis. “Uncompressed header” of every
frame indicates if segmentation is enabled for the current frame, and (if segmentation enabled) contains full in-
formation about features applied to every segment. Every “Mode info block” of a coded frame has segment_id
in the range of 0 to 7. To enable Segmentation, the mfxExtAV1Segmentation structure with correct settings
should be passed to the encoder. It can be attached to the mfxVideoParam structure during initialization or the
MFXVideoENCODE_Reset call (static configuration). If the mfxExtAV1Segmentation buffer isn’t attached dur-
ing initialization, segmentation is disabled for static configuration. If the buffer isn’t attached for the Reset call,
the encoder continues to use static configuration for segmentation which was the default before this Reset call.
If the mfxExtAV1Segmentation buffer with NumSegments=0 is provided during initialization or Reset call, seg-
mentation becomes disabled for static configuration. The buffer can be attached to the mfxEncodeCtrl structure
during runtime (dynamic configuration). Dynamic configuration is applied to the current frame only. After en-
coding of the current frame, the encoder will switch to the next dynamic configuration or to static configuration
if dynamic configuration is not provided for next frame). The SegmentIdBlockSize, NumSegmentIdAlloc, and
SegmentId parameters represent a segmentation map. Here, the segmentation map is an array of segment_ids
(one byte per segment_id) for blocks of size NxN in raster scan order. The size NxN is specified by the appli-
cation and is constant for the whole frame. If mfxExtAV1Segmentation is attached during initialization and/or
during runtime, all three parameters should be set to proper values that do not conflict with each other and with
NumSegments. If any of the parameters are not set or any conflict or error in these parameters is detected by the
library, the segmentation map will be discarded.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_AV1_SEGMENTATION.

mfxU8 NumSegments
Number of segments for frame. Value 0 means that segmentation is disabled. Sending 0 for a particular
frame will disable segmentation for this frame only. Sending 0 to the Reset API function will disable
segmentation permanently. Segmentation can be enabled again by a subsequent Reset call.

mfxAV1SegmentParam Segment[8]
Array of mfxAV1SegmentParam structures containing features and parameters for every segment. Entries
with indexes bigger than NumSegments-1 are ignored. See the mfxAV1SegmentParam structure for defi-
nitions of segment features and their parameters.

mfxU16 SegmentIdBlockSize
Size of block (NxN) for segmentation map. See AV1 SegmentIdBlockSize enumerator for values for this
option. An encoded block that is bigger than AV1 SegmentIdBlockSize uses segment_id taken from it’s top-
left sub-block from the segmentation map. The application can check if a particular block size is supported
by calling Query.

mfxU32 NumSegmentIdAlloc
Size of buffer allocated for segmentation map (in bytes). Application must assure that NumSegmentI-

10.5. oneVPL API Reference 928

oneAPI Specification, Release 1.1-rev-1

dAlloc is large enough to cover frame resolution with blocks of size SegmentIdBlockSize. Otherwise the
segmentation map will be discarded.

mfxU8 *SegmentIds
Pointer to the segmentation map buffer which holds the array of segment_ids in raster scan order. The
application is responsible for allocation and release of this memory. The buffer pointed to by SegmentId,
provided during initialization or Reset call should be considered in use until another SegmentId is provided
via Reset call (if any), or until MFXVideoENCODE_Close is called. The buffer pointed to by SegmentId
provided with mfxEncodeCtrl should be considered in use while the input surface is locked by the library.
Every segment_id in the map should be in the range of 0 to NumSegments-1. If some segment_id is out of
valid range, the segmentation map cannot be applied. If the mfxExtAV1Segmentation buffer is attached to
the mfxEncodeCtrl structure in runtime, SegmentId can be zero. In this case, the segmentation map from
static configuration will be used.

VPP Structures

Structures used by VPP only.

API

• mfxExtColorConversion

• mfxExtDecVideoProcessing

• mfxExtEncodedSlicesInfo

• mfxExtVppAuxData

• mfxExtVPPColorFill

• mfxExtVPPComposite

• mfxExtVPPDeinterlacing

• mfxExtVPPDenoise

• mfxExtVPPDenoise2

• mfxExtVPPDetail

• mfxExtVPPDoNotUse

• mfxExtVPPDoUse

• mfxExtVPPFieldProcessing

• mfxExtVPPFrameRateConversion

• mfxExtVPPImageStab

• mfxExtVppMctf

• mfxExtVPPMirroring

• mfxExtVPPProcAmp

• mfxExtVPPRotation

• mfxExtVPPScaling

10.5. oneVPL API Reference 929

oneAPI Specification, Release 1.1-rev-1

• mfxChannel

• mfx3DLutSystemBuffer

• mfx3DLutVideoBuffer

• mfxExtVPP3DLut

• mfxExtVPPVideoSignalInfo

• mfxInfoVPP

• mfxVPPCompInputStream

• mfxVPPStat

mfxExtColorConversion

struct mfxExtColorConversion
A hint structure that tunes the VPP Color Conversion algorithm when attached to the mfxVideoParam structure
during VPP Init.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_COLOR_CONVERSION.

mfxU16 ChromaSiting
See ChromaSiting enumerator for details.

ChromaSiting is applied on input or output surface depending on the scenario:

VPP Input VPP Output ChromaSiting Indicates
MFX_CHROMAFORMAT_YUV420
MFX_CHROMAFORMAT_YUV422

MFX_CHROMAFORMAT_YUV444 Chroma location for input

MFX_CHROMAFORMAT_YUV444 MFX_CHROMAFORMAT_YUV420
MFX_CHROMAFORMAT_YUV422

Chroma location for output

MFX_CHROMAFORMAT_YUV420 MFX_CHROMAFORMAT_YUV420 Chroma location for input and
output

MFX_CHROMAFORMAT_YUV420 MFX_CHROMAFORMAT_YUV422 Horizontal location for input and
output, vertical location for input

mfxExtDecVideoProcessing

struct mfxExtDecVideoProcessing
If attached to the mfxVideoParam structure during the Init stage, this buffer will instruct the decoder to resize
output frames via the fixed function resize engine (if supported by hardware), utilizing direct pipe connection and
bypassing intermediate memory operations. The main benefits of this mode of pipeline operation are offloading
resize operation to a dedicated engine, thus reducing power consumption and memory traffic.

10.5. oneVPL API Reference 930

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_DEC_VIDEO_PROCESSING.

struct mfxExtDecVideoProcessing::mfxIn In
Input surface description.

struct mfxExtDecVideoProcessing::mfxOut Out
Output surface description.

struct mfxIn
Input surface description.

Public Members

mfxU16 CropX
X coordinate of region of interest of the input surface.

mfxU16 CropY
Y coordinate of region of interest of the input surface.

mfxU16 CropW
Width coordinate of region of interest of the input surface.

mfxU16 CropH
Height coordinate of region of interest of the input surface.

struct mfxOut
Output surface description.

Public Members

mfxU32 FourCC
FourCC of output surface Note: Should be MFX_FOURCC_NV12.

mfxU16 ChromaFormat
Chroma Format of output surface.

Note: Should be MFX_CHROMAFORMAT_YUV420

mfxU16 Width
Width of output surface.

mfxU16 Height
Height of output surface.

10.5. oneVPL API Reference 931

oneAPI Specification, Release 1.1-rev-1

mfxU16 CropX
X coordinate of region of interest of the output surface.

mfxU16 CropY
Y coordinate of region of interest of the output surface.

mfxU16 CropW
Width coordinate of region of interest of the output surface.

mfxU16 CropH
Height coordinate of region of interest of the output surface.

mfxExtEncodedSlicesInfo

struct mfxExtEncodedSlicesInfo
Used by the encoder to report additional information about encoded slices. The application can attach this buffer
to the mfxBitstream structure before calling the MFXVideoENCODE_EncodeFrameAsync function.

Note: Not all implementations of the encoder support this extended buffer. The application must use query
mode 1 to determine if the functionality is supported. To do this, the application must attach this extended
buffer to the mfxVideoParam structure and call the MFXVideoENCODE_Query function. If the function returns
MFX_ERR_NONE, then the functionality is supported.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_ENCODED_SLICES_INFO.

mfxU16 SliceSizeOverflow
When mfxExtCodingOption2::MaxSliceSize is used, indicates the requested slice size was not met for one
or more generated slices.

mfxU16 NumSliceNonCopliant
When mfxExtCodingOption2::MaxSliceSize is used, indicates the number of generated slices exceeds spec-
ification limits.

mfxU16 NumEncodedSlice
Number of encoded slices.

mfxU16 NumSliceSizeAlloc
SliceSize array allocation size. Must be specified by application.

mfxU16 *SliceSize
Slice size in bytes. Array must be allocated by application.

10.5. oneVPL API Reference 932

oneAPI Specification, Release 1.1-rev-1

mfxExtVppAuxData

struct mfxExtVppAuxData
Returns auxiliary data generated by the video processing pipeline. The encoding process may use the auxiliary
data by attaching this structure to the mfxEncodeCtrl structure.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_AUXDATA.

mfxU16 PicStruct
Detected picture structure - top field first, bottom field first, progressive or unknown if video processor
cannot detect picture structure. See the PicStruct enumerator for definition of these values.

mfxExtVPPColorFill

struct mfxExtVPPColorFill
Configures the VPP ColorFill filter algorithm.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_COLORFILL.

mfxU16 Enable
Set to ON makes VPP fill the area between Width/Height and Crop borders. See the CodingOptionValue
enumerator for values of this option.

mfxExtVPPComposite

struct mfxExtVPPComposite
Used to control composition of several input surfaces in one output. In this mode, the VPP skips any other
filters. The VPP returns an error if any mandatory filter is specified and returns the filter skipped warning if an
optional filter is specified. The only supported filters are deinterlacing and interlaced scaling. The only supported
combinations of input and output color formats are:

• RGB to RGB,

• NV12 to NV12,

• RGB and NV12 to NV12, for per the pixel alpha blending use case.

The VPP returns MFX_ERR_MORE_DATA for additional input until an output is ready. When the output is
ready, the VPP returns MFX_ERR_NONE. The application must process the output frame after synchronization.

The composition process is controlled by:

10.5. oneVPL API Reference 933

oneAPI Specification, Release 1.1-rev-1

• mfxFrameInfo::CropXYWH in the input surface defines the location of the picture in the input frame.

• InputStream[i].DstXYWH defines the location of the cropped input picture in the output frame.

• mfxFrameInfo::CropXYWH in the output surface defines the actual part of the output frame. All pixels in
the output frame outside this region will be filled by the specified color.

If the application uses the composition process on video streams with different frame sizes, the application should
provide maximum frame size in the mfxVideoParam structure during the initialization, reset, or query operations.

If the application uses the composition process, the MFXVideoVPP_QueryIOSurf function returns the cumula-
tive number of input surfaces, that is, the number required to process all input video streams. The function sets
the frame size in the mfxFrameAllocRequest equal to the size provided by the application in the mfxVideoParam
structure.

The composition process supports all types of surfaces.

All input surfaces should have the same type and color format, except for the per pixel alpha blending case, where
it is allowable to mix NV12 and RGB surfaces.

There are three different blending use cases:

• Luma keying. All input surfaces should have the NV12 color format specified during VPP initializa-
tion. Part of each surface, including the first one, may be rendered transparent by using LumaKeyEnable,
LumaKeyMin, and LumaKeyMax values.

• Global alpha blending. All input surfaces should have the same color format, NV12 or RGB, specified
during VPP initialization. Each input surface, including the first one, can be blended with underlying
surfaces by using GlobalAlphaEnable and GlobalAlpha values.

• Per-pixel alpha blending. It is allowed to mix NV12 and RGB input surfaces. Each RGB input surface,
including the first one, can be blended with underlying surfaces by using PixelAlphaEnable value.

It is not allowed to mix different blending use cases in the same function call.

In the special case where the destination region of the output surface defined by output crops is fully covered with
destination sub-regions of the surfaces, the fast compositing mode can be enabled. The main use case for this
mode is a video-wall scenario with a fixed destination surface partition into sub-regions of potentially different
size.

In order to trigger this mode, the application must cluster input surfaces into tiles, defining at least one tile by
setting the NumTiles field to be greater than 0, and assigning surfaces to the corresponding tiles by setting the
TileId field to the value within the 0 to NumTiles range per input surface. Tiles should also satisfy the following
additional constraints:

• Each tile should not have more than 8 surfaces assigned to it.

• Tile bounding boxes, as defined by the enclosing rectangles of a union of a surfaces assigned to this tile,
should not intersect.

Background color may be changed dynamically through Reset. There is no default value. YUV black is
(0;128;128) or (16;128;128) depending on the sample range. The library uses a YUV or RGB triple depend-
ing on output color format.

10.5. oneVPL API Reference 934

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_COMPOSITE.

mfxU16 Y
Y value of the background color.

mfxU16 R
R value of the background color.

mfxU16 U
U value of the background color.

mfxU16 G
G value of the background color.

mfxU16 V
V value of the background color.

mfxU16 B
B value of the background color.

mfxU16 NumTiles
Number of input surface clusters grouped together to enable fast compositing. May be changed dynamically
at runtime through Reset.

mfxU16 NumInputStream
Number of input surfaces to compose one output. May be changed dynamically at runtime through Reset.
Number of surfaces can be decreased or increased, but should not exceed the number specified during
initialization. Query mode 2 should be used to find the maximum supported number.

mfxVPPCompInputStream *InputStream
An array of mfxVPPCompInputStream structures that describe composition of input video streams. It
should consist of exactly NumInputStream elements.

10.5. oneVPL API Reference 935

oneAPI Specification, Release 1.1-rev-1

mfxExtVPPDeinterlacing

struct mfxExtVPPDeinterlacing
Used by the application to specify different deinterlacing algorithms.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_DEINTERLACING.

mfxU16 Mode
Deinterlacing algorithm. See the DeinterlacingMode enumerator for details.

mfxU16 TelecinePattern
Specifies telecine pattern when Mode = MFX_DEINTERLACING_FIXED_TELECINE_PATTERN. See
the TelecinePattern enumerator for details.

mfxU16 TelecineLocation
Specifies position inside a sequence of 5 frames where the artifacts start when TelecinePattern =
MFX_TELECINE_POSITION_PROVIDED

mfxU16 reserved[9]
Reserved for future use.

mfxExtVPPDenoise

struct mfxExtVPPDenoise
A hint structure that configures the VPP denoise filter algorithm.

Deprecated:
Deprecated in API version 2.5. Use mfxExtVPPDenoise2 instead.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_DENOISE.

mfxU16 DenoiseFactor
Indicates the level of noise to remove. Value range of 0 to 100 (inclusive).

10.5. oneVPL API Reference 936

oneAPI Specification, Release 1.1-rev-1

mfxExtVPPDenoise2

struct mfxExtVPPDenoise2
A hint structure that configures the VPP denoise filter algorithm.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_DENOISE2.

mfxDenoiseMode Mode
Indicates the mode of denoise. mfxDenoiseMode enumerator.

mfxU16 Strength
Denoise strength in manaul mode. Value of 0-100 (inclusive) indicates the strength of denoise. The strength
of denoise controls degree of possible changes of pixel values; the bigger the strength the larger the change
is.

mfxU16 reserved[15]

mfxExtVPPDetail

struct mfxExtVPPDetail
A hint structure that configures the VPP detail/edge enhancement filter algorithm.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_DETAIL.

mfxU16 DetailFactor
Indicates the level of details to be enhanced. Value range of 0 to 100 (inclusive).

mfxExtVPPDoNotUse

struct mfxExtVPPDoNotUse
Tells the VPP not to use certain filters in pipeline. See “Configurable VPP filters” table for complete list of
configurable filters. The user can attach this structure to the mfxVideoParam structure when initializing video
processing.

10.5. oneVPL API Reference 937

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_DONOTUSE.

mfxU32 NumAlg
Number of filters (algorithms) not to use

mfxU32 *AlgList
Pointer to a list of filters (algorithms) not to use

mfxExtVPPDoUse

struct mfxExtVPPDoUse
Tells the VPP to include certain filters in the pipeline.

Each filter may be included in the pipeline in one of two different ways:

• Adding a filter ID to this structure. In this method, the default filter parameters are used.

• Attaching a filter configuration structure directly to the mfxVideoParam structure. In this method, adding
filter ID to the mfxExtVPPDoUse structure is optional.

See Table “Configurable VPP filters” for complete list of configurable filters, their IDs, and configuration struc-
tures.

The user can attach this structure to the mfxVideoParam structure when initializing video processing.

Note: MFX_EXTBUFF_VPP_COMPOSITE cannot be enabled using mfxExtVPPDoUse because default pa-
rameters are undefined for this filter. The application must attach the appropriate filter configuration structure
directly to the mfxVideoParam structure to enable it.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_DOUSE.

mfxU32 NumAlg
Number of filters (algorithms) to use

mfxU32 *AlgList
Pointer to a list of filters (algorithms) to use

10.5. oneVPL API Reference 938

oneAPI Specification, Release 1.1-rev-1

mfxExtVPPFieldProcessing

struct mfxExtVPPFieldProcessing
Configures the VPP field processing algorithm. The application can attach this extended buffer to the mfxVideoP-
aram structure to configure initialization and/or to the mfxFrameData during runtime. Runtime configuration
has priority over initialization configuration. If the field processing algorithm was activated via the mfxExtVPP-
DoUse structure and the mfxExtVPPFieldProcessing extended buffer was not provided during initialization, this
buffer must be attached to the mfxFrameData structure of each input surface.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_FIELD_PROCESSING.

mfxU16 Mode
Specifies the mode of the field processing algorithm. See the VPPFieldProcessingMode enumerator for
values of this option.

mfxU16 InField
When Mode is MFX_VPP_COPY_FIELD, specifies input field. See the PicType enumerator for values of
this parameter.

mfxU16 OutField
When Mode is MFX_VPP_COPY_FIELD, specifies output field. See the PicType enumerator for values
of this parameter.

mfxExtVPPFrameRateConversion

struct mfxExtVPPFrameRateConversion
Configures the VPP frame rate conversion filter. The user can attach this structure to the mfxVideoParam structure
when initializing, resetting, or querying capability of video processing.

On some platforms the advanced frame rate conversion algorithm (the algorithm based on
frame interpolation) is not supported. To query its support, the application should add the
MFX_FRCALGM_FRAME_INTERPOLATION flag to the Algorithm value in the mfxExtVPPFrameR-
ateConversion structure, attach it to the structure, and call the MFXVideoVPP_Query function. If the filter is
supported, the function returns a MFX_ERR_NONE status and copies the content of the input structure to the
output structure. If an advanced filter is not supported, then a simple filter will be used and the function returns
MFX_WRN_INCOMPATIBLE_VIDEO_PARAM, copies content of the input structure to the output structure,
and corrects the Algorithm value.

If advanced FRC algorithm is not supported, both MFXVideoVPP_Init and MFXVideoVPP_Reset functions
return the MFX_WRN_INCOMPATIBLE_VIDEO_PARAM status.

10.5. oneVPL API Reference 939

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_FRAME_RATE_CONVERSION.

mfxU16 Algorithm
See the FrcAlgm enumerator for a list of frame rate conversion algorithms.

mfxExtVPPImageStab

struct mfxExtVPPImageStab
A hint structure that configures the VPP image stabilization filter.

On some platforms this filter is not supported. To query its support, the application should use the same approach
that it uses to configure VPP filters: adding the filter ID to the mfxExtVPPDoUse structure or by attaching the
mfxExtVPPImageStab structure directly to the mfxVideoParam structure and calling the MFXVideoVPP_Query
function.

If this filter is supported, the function returns a MFX_ERR_NONE status and copies the content of the input struc-
ture to the output structure. If the filter is not supported, the function returns MFX_WRN_FILTER_SKIPPED,
removes the filter from the mfxExtVPPDoUse structure, and zeroes the mfxExtVPPImageStab structure.

If the image stabilization filter is not supported, both MFXVideoVPP_Init and MFXVideoVPP_Reset functions
return a MFX_WRN_FILTER_SKIPPED status.

The application can retrieve the list of active filters by attaching the mfxExtVPPDoUse structure to the mfxVideoP-
aram structure and calling the MFXVideoVPP_GetVideoParam function. The application must allocate enough
memory for the filter list.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_IMAGE_STABILIZATION.

mfxU16 Mode
Image stabilization mode. See ImageStabMode enumerator for values.

mfxExtVppMctf

struct mfxExtVppMctf
Provides setup for the Motion-Compensated Temporal Filter (MCTF) during the VPP initialization and
for control parameters at runtime. By default, MCTF is off. An application may enable it by adding
MFX_EXTBUFF_VPP_MCTF to the mfxExtVPPDoUse buffer or by attaching mfxExtVppMctf to the
mfxVideoParam structure during initialization or reset.

10.5. oneVPL API Reference 940

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_MCTF.

mfxU16 FilterStrength
Value in range of 0 to 20 (inclusive) to indicate the filter strength of MCTF.

The strength of the MCTF process controls the degree of possible change of pixel values eligible for MCTF
- the greater the strength value, the larger the change. It is a dimensionless quantity - values in the range of
1 to 20 inclusively imply strength; value 0 stands for AUTO mode and is valid during initialization or reset
only

If an invalid value is given, it is fixed to the default value of 0. If the field value is in the range of 1 to 20
inclusive, MCTF operates in fixed-strength mode with the given strength of MCTF process.

At runtime, values of 0 and greater than 20 are ignored.

mfxExtVPPMirroring

struct mfxExtVPPMirroring
Configures the VPP Mirroring filter algorithm.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_MIRRORING.

mfxU16 Type
Mirroring type. See MirroringType for values.

mfxExtVPPProcAmp

struct mfxExtVPPProcAmp
A hint structure that configures the VPP ProcAmp filter algorithm. The structure parameters will be clipped to
their corresponding range and rounded by their corresponding increment.

Note: There are no default values for fields in this structure, all settings must be explicitly specified every time
this buffer is submitted for processing.

10.5. oneVPL API Reference 941

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_PROCAMP.

mfxF64 Brightness
The brightness parameter is in the range of -100.0F to 100.0F, in increments of 0.1F. Setting this field to
0.0F will disable brightness adjustment.

mfxF64 Contrast
The contrast parameter in the range of 0.0F to 10.0F, in increments of 0.01F, is used for manual contrast
adjustment. Setting this field to 1.0F will disable contrast adjustment. If the parameter is negative, contrast
will be adjusted automatically.

mfxF64 Hue
The hue parameter is in the range of -180F to 180F, in increments of 0.1F. Setting this field to 0.0F will
disable hue adjustment.

mfxF64 Saturation
The saturation parameter is in the range of 0.0F to 10.0F, in increments of 0.01F. Setting this field to 1.0F
will disable saturation adjustment.

mfxExtVPPRotation

struct mfxExtVPPRotation
Configures the VPP Rotation filter algorithm.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_ROTATION.

mfxU16 Angle
Rotation angle. See Angle enumerator for supported values.

mfxExtVPPScaling

struct mfxExtVPPScaling
Configures the VPP Scaling filter algorithm. Not all combinations of ScalingMode and InterpolationMethod
are supported in the library. The application must use the Query API function to determine if a combination is
supported.

10.5. oneVPL API Reference 942

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_SCALING.

mfxU16 ScalingMode
Scaling mode. See ScalingMode for values.

mfxU16 InterpolationMethod
Interpolation mode for scaling algorithm. See InterpolationMode for values.

mfxChannel

struct mfxChannel
A hint structure that configures the data channel.

Public Members

mfxDataType DataType
Data type, mfxDataType enumerator.

mfxU32 Size
Size of Look up table, the number of elements per dimension.

mfxU8 *Data
The pointer to 3DLUT data, 8 bit unsigned integer.

mfxU16 *Data16
The pointer to 3DLUT data, 16 bit unsigned integer.

mfxU32 reserved[4]
Reserved for future extension.

mfx3DLutSystemBuffer

struct mfx3DLutSystemBuffer
A hint structure that configures 3DLUT system buffer.

10.5. oneVPL API Reference 943

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxChannel Channel[3]
3 Channels, can be RGB or YUV, mfxChannel structure.

mfxU32 reserved[8]
Reserved for future extension.

mfx3DLutVideoBuffer

struct mfx3DLutVideoBuffer
A hint structure that configures 3DLUT video buffer.

Public Members

mfxDataType DataType
Data type, mfxDataType enumerator.

mfx3DLutMemoryLayout MemLayout
Indicates 3DLUT memory layout. mfx3DLutMemoryLayout enumerator.

mfxMemId MemId
Memory ID for holding the lookup table data. One MemID is dedicated for one instance of VPP.

mfxU32 reserved[8]
Reserved for future extension.

mfxExtVPP3DLut

struct mfxExtVPP3DLut
A hint structure that configures 3DLUT filter.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_3DLUT..

mfx3DLutChannelMapping ChannelMapping
Indicates 3DLUT channel mapping. mfx3DLutChannelMapping enumerator.

mfxResourceType BufferType
Indicates 3DLUT buffer type. mfxResourceType enumerator, can be system memory, VA surface, DX11
texture/buffer etc.

mfx3DLutSystemBuffer SystemBuffer
The 3DLUT system buffer. mfx3DLutSystemBuffer structure describes the details of the buffer.

10.5. oneVPL API Reference 944

oneAPI Specification, Release 1.1-rev-1

mfx3DLutVideoBuffer VideoBuffer
The 3DLUT video buffer. mfx3DLutVideoBuffer describes the details of 3DLUT video buffer.

mfxU32 reserved[4]
Reserved for future extension.

mfxExtVPPVideoSignalInfo

struct mfxExtVPPVideoSignalInfo
Used to control transfer matrix and nominal range of YUV frames. The application should provide this during
initialization. Supported for multiple conversions, for example YUV to YUV, YUV to RGB, and RGB to YUV.

Note: This structure is used by VPP only and is not compatible with mfxExtVideoSignalInfo.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_VPP_VIDEO_SIGNAL_INFO.

mfxU16 TransferMatrix
Transfer matrix.

mfxU16 NominalRange
Nominal range.

mfxInfoVPP

struct mfxInfoVPP
Specifies configurations for video processing. A zero value in any of the fields indicates that the corresponding
field is not explicitly specified.

Public Members

mfxFrameInfo In
Input format for video processing.

mfxFrameInfo Out
Output format for video processing.

10.5. oneVPL API Reference 945

oneAPI Specification, Release 1.1-rev-1

mfxVPPCompInputStream

struct mfxVPPCompInputStream
Used to specify input stream details for composition of several input surfaces in the one output.

Public Members

mfxU32 DstX
X coordinate of location of input stream in output surface.

mfxU32 DstY
Y coordinate of location of input stream in output surface.

mfxU32 DstW
Width of of location of input stream in output surface.

mfxU32 DstH
Height of of location of input stream in output surface.

mfxU16 LumaKeyEnable
Non-zero value enables luma keying for the input stream. Luma keying is used to mark some of the areas
of the frame with specified luma values as transparent. It may, for example, be used for closed captioning.

mfxU16 LumaKeyMin
Minimum value of luma key, inclusive. Pixels whose luma values fit in this range are rendered transparent.

mfxU16 LumaKeyMax
Maximum value of luma key, inclusive. Pixels whose luma values fit in this range are rendered transparent.

mfxU16 GlobalAlphaEnable
Non-zero value enables global alpha blending for this input stream.

mfxU16 GlobalAlpha
Alpha value for this stream. Should be in the range of 0 to 255, where 0 is transparent and 255 is opaque.

mfxU16 PixelAlphaEnable
Non-zero value enables per pixel alpha blending for this input stream. The stream should have RGB color
format.

mfxU16 TileId
Specify the tile this video stream is assigned to. Should be in the range of 0 to NumTiles. Valid only if
NumTiles > 0.

10.5. oneVPL API Reference 946

oneAPI Specification, Release 1.1-rev-1

mfxVPPStat

struct mfxVPPStat
Returns statistics collected during video processing.

Public Members

mfxU32 NumFrame
Total number of frames processed.

mfxU32 NumCachedFrame
Number of internally cached frames.

Protected Structures

Protected structures.

API

• mfxExtCencParam

mfxExtCencParam

struct _mfxExtCencParam
Used to pass the decryption status report index for the Common Encryption usage model. The application can
attach this extended buffer to the mfxBitstream structure at runtime.

Public Members

mfxExtBuffer Header
Extension buffer header. Header.BufferId must be equal to MFX_EXTBUFF_CENC_PARAM.

mfxU32 StatusReportIndex
Decryption status report index.

10.5. oneVPL API Reference 947

oneAPI Specification, Release 1.1-rev-1

DECODDE_VPP Structures

Structures used by DECODE_VPP only.

API

• mfxSurfaceArray

• mfxVideoChannelParam

• mfxExtInCrops

mfxSurfaceArray

struct mfxSurfaceArray
The structure is reference counted object to return array of surfaces allocated and processed by the library.

Public Members

mfxHDL Context
The context of the memory interface. User should not touch (change, set, null) this pointer.

mfxStructVersion Version
The version of the structure.

mfxStatus (*AddRef)(struct mfxSurfaceArray *surface_array)
Increments the internal reference counter of the surface. The surface is not destroyed until the surface
is released using the mfxSurfaceArray::Release function. mfxSurfaceArray::AddRef should be used each
time a new link to the surface is created (for example, copy structure) for proper surface management.

Parameters surface – [in] Valid mfxSurfaceArray.

Returns
MFX_ERR_NONE If no error.

MFX_ERR_NULL_PTR If surface is NULL.

MFX_ERR_INVALID_HANDLE If mfxSurfaceArray->Context is invalid (for example
NULL).

MFX_ERR_UNKNOWN Any internal error.

mfxStatus (*Release)(struct mfxSurfaceArray *surface_array)
Decrements the internal reference counter of the surface. mfxSurfaceArray::Release should be called after
using the mfxSurfaceArray::AddRef function to add a surface or when allocation logic requires it.

Parameters surface_array – [in] Valid mfxSurfaceArray.

Returns
MFX_ERR_NONE If no error.

MFX_ERR_NULL_PTR If surface is NULL.

10.5. oneVPL API Reference 948

oneAPI Specification, Release 1.1-rev-1

MFX_ERR_INVALID_HANDLE If mfxSurfaceArray->Context is invalid (for example
NULL).

MFX_ERR_UNDEFINED_BEHAVIOR If Reference Counter of surface is zero before call.

MFX_ERR_UNKNOWN Any internal error.

mfxStatus (*GetRefCounter)(struct mfxSurfaceArray *surface_array, mfxU32 *counter)
Returns current reference counter of mfxSurfaceArray structure.

Parameters
• surface – [in] Valid surface_array.

• counter – [out] Sets counter to the current reference counter value.

Returns
MFX_ERR_NONE If no error.

MFX_ERR_NULL_PTR If surface or counter is NULL.

MFX_ERR_INVALID_HANDLE If mfxSurfaceArray->Context is invalid (for example
NULL).

MFX_ERR_UNKNOWN Any internal error.

mfxFrameSurface1 **Surfaces
The array of pointers to mfxFrameSurface1. mfxFrameSurface1 surfaces are allocated by the same agent
who allocates mfxSurfaceArray.

mfxU32 NumSurfaces
The size of array of pointers to mfxFrameSurface1.

mfxVideoChannelParam

struct mfxVideoChannelParam
The structure is used for VPP channels initializtion in Decode_VPP component.

Public Members

mfxFrameInfo VPP
The configuration parameters of VPP filters per each channel.

mfxU16 Protected
Specifies the content protection mechanism.

mfxU16 IOPattern
Output memory access types for SDK functions.

mfxExtBuffer **ExtParam
Points to an array of pointers to the extra configuration structures; see the ExtendedBufferID enumerator
for a list of extended configurations.

10.5. oneVPL API Reference 949

oneAPI Specification, Release 1.1-rev-1

mfxU16 NumExtParam
The number of extra configuration structures attached to the structure.

mfxExtInCrops

struct mfxExtInCrops
The structure contains crop parameters which applied by Decode_VPP component to input surfaces before video
processing operation. It is used for letterboxing operations.

Public Members

mfxRect Crops
Extension buffer header. BufferId must be equal to MFX_EXTBUFF_CROPS. Crops parameters for let-
terboxing operations.

10.5.3 Enumerator Reference

Angle

The Angle enumerator itemizes valid rotation angles.

enumerator MFX_ANGLE_0
0 degrees.

enumerator MFX_ANGLE_90
90 degrees.

enumerator MFX_ANGLE_180
180 degrees.

enumerator MFX_ANGLE_270
270 degrees.

BitstreamDataFlag

The BitstreamDataFlag enumerator uses bit-ORed values to itemize additional information about the bitstream buffer.

enumerator MFX_BITSTREAM_NO_FLAG
The bitstream doesn’t contain any flags.

enumerator MFX_BITSTREAM_COMPLETE_FRAME
The bitstream buffer contains a complete frame or complementary field pair of data for the bitstream. For de-
coding, this means that the decoder can proceed with this buffer without waiting for the start of the next frame,
which effectively reduces decoding latency. If this flag is set, but the bitstream buffer contains incomplete frame
or pair of field, then decoder will produce corrupted output.

10.5. oneVPL API Reference 950

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_BITSTREAM_EOS
The bitstream buffer contains the end of the stream. For decoding, this means that the application does not have
any additional bitstream data to send to decoder.

BPSEIControl

The BPSEIControl enumerator is used to control insertion of buffering period SEI in the encoded bitstream.

enumerator MFX_BPSEI_DEFAULT
encoder decides when to insert BP SEI.

enumerator MFX_BPSEI_IFRAME
BP SEI should be inserted with every I-frame

BRCStatus

The BRCStatus enumerator itemizes instructions to the encoder by mfxExtBrc::Update.

enumerator MFX_BRC_OK
CodedFrameSize is acceptable, no further recoding/padding/skip required, proceed to next frame.

enumerator MFX_BRC_BIG_FRAME
Coded frame is too big, recoding required.

enumerator MFX_BRC_SMALL_FRAME
Coded frame is too small, recoding required.

enumerator MFX_BRC_PANIC_BIG_FRAME
Coded frame is too big, no further recoding possible - skip frame.

enumerator MFX_BRC_PANIC_SMALL_FRAME
Coded frame is too small, no further recoding possible - required padding to mfxBRCFrameSta-
tus::MinFrameSize.

BRefControl

The BRefControl enumerator is used to control usage of B frames as reference in AVC encoder.

enumerator MFX_B_REF_UNKNOWN
Default value, it is up to the encoder to use B-frames as reference.

enumerator MFX_B_REF_OFF
Do not use B-frames as reference.

enumerator MFX_B_REF_PYRAMID
Arrange B-frames in so-called “B pyramid” reference structure.

10.5. oneVPL API Reference 951

oneAPI Specification, Release 1.1-rev-1

ChromaFormateIdc

The ChromaFormatIdc enumerator itemizes color-sampling formats.

enumerator MFX_CHROMAFORMAT_MONOCHROME
Monochrome.

enumerator MFX_CHROMAFORMAT_YUV420
4:2:0 color.

enumerator MFX_CHROMAFORMAT_YUV422
4:2:2 color.

enumerator MFX_CHROMAFORMAT_YUV444
4:4:4 color.

enumerator MFX_CHROMAFORMAT_YUV400
Equal to monochrome.

enumerator MFX_CHROMAFORMAT_YUV411
4:1:1 color.

enumerator MFX_CHROMAFORMAT_YUV422H
4:2:2 color, horizontal sub-sampling. It is equal to 4:2:2 color.

enumerator MFX_CHROMAFORMAT_YUV422V
4:2:2 color, vertical sub-sampling.

enumerator MFX_CHROMAFORMAT_RESERVED1
Reserved.

enumerator MFX_CHROMAFORMAT_JPEG_SAMPLING
Color sampling specified via mfxInfoMFX::SamplingFactorH and SamplingFactorV.

ChromaSiting

The ChromaSiting enumerator defines chroma location. Use bit-OR’ed values to specify the desired location.

enumerator MFX_CHROMA_SITING_UNKNOWN
Unspecified.

enumerator MFX_CHROMA_SITING_VERTICAL_TOP
Chroma samples are co-sited vertically on the top with the luma samples.

enumerator MFX_CHROMA_SITING_VERTICAL_CENTER
Chroma samples are not co-sited vertically with the luma samples.

enumerator MFX_CHROMA_SITING_VERTICAL_BOTTOM
Chroma samples are co-sited vertically on the bottom with the luma samples.

10.5. oneVPL API Reference 952

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_CHROMA_SITING_HORIZONTAL_LEFT
Chroma samples are co-sited horizontally on the left with the luma samples.

enumerator MFX_CHROMA_SITING_HORIZONTAL_CENTER
Chroma samples are not co-sited horizontally with the luma samples.

CodecFormatFourCC

The CodecFormatFourCC enumerator itemizes codecs in the FourCC format.

enumerator MFX_CODEC_AVC
AVC, H.264, or MPEG-4, part 10 codec.

enumerator MFX_CODEC_HEVC
HEVC codec.

enumerator MFX_CODEC_MPEG2
MPEG-2 codec.

enumerator MFX_CODEC_VC1
VC-1 codec.

enumerator MFX_CODEC_VP9
VP9 codec.

enumerator MFX_CODEC_AV1
AV1 codec.

enumerator MFX_CODEC_JPEG
JPEG codec

CodecLevel

The CodecLevel enumerator itemizes codec levels for all codecs.

enumerator MFX_LEVEL_UNKNOWN
Unspecified level.

H.264 Level 1-1.3

enumerator MFX_LEVEL_AVC_1

enumerator MFX_LEVEL_AVC_1b

enumerator MFX_LEVEL_AVC_11

enumerator MFX_LEVEL_AVC_12

enumerator MFX_LEVEL_AVC_13

10.5. oneVPL API Reference 953

oneAPI Specification, Release 1.1-rev-1

H.264 Level 2-2.2

enumerator MFX_LEVEL_AVC_2

enumerator MFX_LEVEL_AVC_21

enumerator MFX_LEVEL_AVC_22

H.264 Level 3-3.2

enumerator MFX_LEVEL_AVC_3

enumerator MFX_LEVEL_AVC_31

enumerator MFX_LEVEL_AVC_32

H.264 Level 4-4.2

enumerator MFX_LEVEL_AVC_4

enumerator MFX_LEVEL_AVC_41

enumerator MFX_LEVEL_AVC_42

H.264 Level 5-5.2

enumerator MFX_LEVEL_AVC_5

enumerator MFX_LEVEL_AVC_51

enumerator MFX_LEVEL_AVC_52

H.264 Level 6-6.2

enumerator MFX_LEVEL_AVC_6

enumerator MFX_LEVEL_AVC_61

enumerator MFX_LEVEL_AVC_62

MPEG2 Levels

enumerator MFX_LEVEL_MPEG2_LOW

enumerator MFX_LEVEL_MPEG2_MAIN

enumerator MFX_LEVEL_MPEG2_HIGH

enumerator MFX_LEVEL_MPEG2_HIGH1440

10.5. oneVPL API Reference 954

oneAPI Specification, Release 1.1-rev-1

VC-1 Level Low (Simple and Main Profiles)

enumerator MFX_LEVEL_VC1_LOW

enumerator MFX_LEVEL_VC1_MEDIAN

enumerator MFX_LEVEL_VC1_HIGH

VC-1 Advanced Profile Levels

enumerator MFX_LEVEL_VC1_0

enumerator MFX_LEVEL_VC1_1

enumerator MFX_LEVEL_VC1_2

enumerator MFX_LEVEL_VC1_3

enumerator MFX_LEVEL_VC1_4

HEVC Levels

enumerator MFX_LEVEL_HEVC_1

enumerator MFX_LEVEL_HEVC_2

enumerator MFX_LEVEL_HEVC_21

enumerator MFX_LEVEL_HEVC_3

enumerator MFX_LEVEL_HEVC_31

enumerator MFX_LEVEL_HEVC_4

enumerator MFX_LEVEL_HEVC_41

enumerator MFX_LEVEL_HEVC_5

enumerator MFX_LEVEL_HEVC_51

enumerator MFX_LEVEL_HEVC_52

enumerator MFX_LEVEL_HEVC_6

enumerator MFX_LEVEL_HEVC_61

enumerator MFX_LEVEL_HEVC_62

10.5. oneVPL API Reference 955

oneAPI Specification, Release 1.1-rev-1

AV1 Levels

enumerator MFX_LEVEL_AV1_2

enumerator MFX_LEVEL_AV1_21

enumerator MFX_LEVEL_AV1_22

enumerator MFX_LEVEL_AV1_23

enumerator MFX_LEVEL_AV1_3

enumerator MFX_LEVEL_AV1_31

enumerator MFX_LEVEL_AV1_32

enumerator MFX_LEVEL_AV1_33

enumerator MFX_LEVEL_AV1_4

enumerator MFX_LEVEL_AV1_41

enumerator MFX_LEVEL_AV1_42

enumerator MFX_LEVEL_AV1_43

enumerator MFX_LEVEL_AV1_5

enumerator MFX_LEVEL_AV1_51

enumerator MFX_LEVEL_AV1_52

enumerator MFX_LEVEL_AV1_53

enumerator MFX_LEVEL_AV1_6

enumerator MFX_LEVEL_AV1_61

enumerator MFX_LEVEL_AV1_62

enumerator MFX_LEVEL_AV1_63

enumerator MFX_LEVEL_AV1_7

enumerator MFX_LEVEL_AV1_71

enumerator MFX_LEVEL_AV1_72

enumerator MFX_LEVEL_AV1_73

CodecProfile

The CodecProfile enumerator itemizes codec profiles for all codecs.

enumerator MFX_PROFILE_UNKNOWN
Unspecified profile.

10.5. oneVPL API Reference 956

oneAPI Specification, Release 1.1-rev-1

H.264 Profiles

enumerator MFX_PROFILE_AVC_BASELINE

enumerator MFX_PROFILE_AVC_MAIN

enumerator MFX_PROFILE_AVC_EXTENDED

enumerator MFX_PROFILE_AVC_HIGH

enumerator MFX_PROFILE_AVC_HIGH10

enumerator MFX_PROFILE_AVC_HIGH_422

enumerator MFX_PROFILE_AVC_CONSTRAINED_BASELINE

enumerator MFX_PROFILE_AVC_CONSTRAINED_HIGH

AV1 Profiles

enumerator MFX_PROFILE_AV1_MAIN

enumerator MFX_PROFILE_AV1_HIGH

enumerator MFX_PROFILE_AV1_PRO

VC-1 Profiles

enumerator MFX_PROFILE_VC1_SIMPLE

enumerator MFX_PROFILE_VC1_MAIN

enumerator MFX_PROFILE_VC1_ADVANCED

VP8 Profiles

enumerator MFX_PROFILE_VP8_0

enumerator MFX_PROFILE_VP8_1

enumerator MFX_PROFILE_VP8_2

enumerator MFX_PROFILE_VP8_3

10.5. oneVPL API Reference 957

oneAPI Specification, Release 1.1-rev-1

VP9 Profiles

enumerator MFX_PROFILE_VP9_0

enumerator MFX_PROFILE_VP9_1

enumerator MFX_PROFILE_VP9_2

enumerator MFX_PROFILE_VP9_3

H.264 Constraints

Combined with H.264 profile, these flags impose additional constraints. See the H.264 specification for the list of
constraints.

enumerator MFX_PROFILE_AVC_CONSTRAINT_SET0

enumerator MFX_PROFILE_AVC_CONSTRAINT_SET1

enumerator MFX_PROFILE_AVC_CONSTRAINT_SET2

enumerator MFX_PROFILE_AVC_CONSTRAINT_SET3

enumerator MFX_PROFILE_AVC_CONSTRAINT_SET4

enumerator MFX_PROFILE_AVC_CONSTRAINT_SET5

JPEG Profiles

enumerator MFX_PROFILE_JPEG_BASELINE
Baseline JPEG profile.

CodingOptionValue

The CodingOptionValue enumerator defines a three-state coding option setting.

enumerator MFX_CODINGOPTION_UNKNOWN
Unspecified.

enumerator MFX_CODINGOPTION_ON
Coding option set.

enumerator MFX_CODINGOPTION_OFF
Coding option not set.

enumerator MFX_CODINGOPTION_ADAPTIVE
Reserved.

10.5. oneVPL API Reference 958

oneAPI Specification, Release 1.1-rev-1

ColorFourCC

The ColorFourCC enumerator itemizes color formats.

enumerator MFX_FOURCC_NV12
NV12 color planes. Native format for 4:2:0/8b Gen hardware implementation.

enumerator MFX_FOURCC_NV21
Same as NV12 but with weaved V and U values.

enumerator MFX_FOURCC_YV12
YV12 color planes.

enumerator MFX_FOURCC_IYUV
Same as YV12 except that the U and V plane order is reversed.

enumerator MFX_FOURCC_I420
Alias for the IYUV color format.

enumerator MFX_FOURCC_I422
Same as YV16 except that the U and V plane order is reversed

enumerator MFX_FOURCC_NV16
4:2:2 color format with similar to NV12 layout.

enumerator MFX_FOURCC_YUY2
YUY2 color planes.

enumerator MFX_FOURCC_RGB565
2 bytes per pixel, uint16 in little-endian format, where 0-4 bits are blue, bits 5-10 are green and bits 11-15 are
red.

enumerator MFX_FOURCC_RGBP
RGB 24 bit planar layout (3 separate channels, 8-bits per sample each). This format should be mapped to
D3DFMT_R8G8B8 or VA_FOURCC_RGBP.

enumerator MFX_FOURCC_RGB4
RGB4 (RGB32) color planes. BGRA is the order, ‘B’ is 8 MSBs, then 8 bits for ‘G’ channel, then ‘R’ and ‘A’
channels.

enumerator MFX_FOURCC_BGRA
Alias for the RGB4 color format.

enumerator MFX_FOURCC_P8
Internal color format. The application should use the following functions to create a surface that corresponds to
the Direct3D* version in use.

For Direct3D* 9: IDirectXVideoDecoderService::CreateSurface()

For Direct3D* 11: ID3D11Device::CreateBuffer()

10.5. oneVPL API Reference 959

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_FOURCC_P8_TEXTURE
Internal color format. The application should use the following functions to create a surface that corresponds to
the Direct3D* version in use.

For Direct3D 9: IDirectXVideoDecoderService::CreateSurface()

For Direct3D 11: ID3D11Device::CreateTexture2D()

enumerator MFX_FOURCC_P010
P010 color format. This is 10 bit per sample format with similar to NV12 layout. This format should be mapped
to DXGI_FORMAT_P010.

enumerator MFX_FOURCC_I010
10-bit YUV 4:2:0, each component has its own plane.

enumerator MFX_FOURCC_I210
10-bit YUV 4:2:2, each component has its own plane.

enumerator MFX_FOURCC_P016
P016 color format. This is 16 bit per sample format with similar to NV12 layout. This format should be mapped
to DXGI_FORMAT_P016.

enumerator MFX_FOURCC_P210
10 bit per sample 4:2:2 color format with similar to NV12 layout.

enumerator MFX_FOURCC_BGR4
RGBA color format. It is similar to MFX_FOURCC_RGB4 but with different order of channels. ‘R’ is 8 MSBs,
then 8 bits for ‘G’ channel, then ‘B’ and ‘A’ channels.

enumerator MFX_FOURCC_A2RGB10
10 bits ARGB color format packed in 32 bits. ‘A’ channel is two MSBs, then ‘R’, then ‘G’ and then ‘B’ channels.
This format should be mapped to DXGI_FORMAT_R10G10B10A2_UNORM or D3DFMT_A2R10G10B10.

enumerator MFX_FOURCC_ARGB16
10 bits ARGB color format packed in 64 bits. ‘A’ channel is 16 MSBs, then ‘R’, then ‘G’ and then ‘B’ channels.
This format should be mapped to DXGI_FORMAT_R16G16B16A16_UINT or D3DFMT_A16B16G16R16 for-
mats.

enumerator MFX_FOURCC_ABGR16
10 bits ABGR color format packed in 64 bits. ‘A’ channel is 16 MSBs, then ‘B’, then ‘G’ and then ‘R’ channels.
This format should be mapped to DXGI_FORMAT_R16G16B16A16_UINT or D3DFMT_A16B16G16R16 for-
mats.

enumerator MFX_FOURCC_R16
16 bits single channel color format. This format should be mapped to DXGI_FORMAT_R16_TYPELESS or
D3DFMT_R16F.

enumerator MFX_FOURCC_AYUV
YUV 4:4:4, AYUV color format. This format should be mapped to DXGI_FORMAT_AYUV.

enumerator MFX_FOURCC_AYUV_RGB4
RGB4 stored in AYUV surface. This format should be mapped to DXGI_FORMAT_AYUV.

10.5. oneVPL API Reference 960

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_FOURCC_UYVY
UYVY color planes. Same as YUY2 except the byte order is reversed.

enumerator MFX_FOURCC_Y210
10 bit per sample 4:2:2 packed color format with similar to YUY2 layout. This format should be mapped to
DXGI_FORMAT_Y210.

enumerator MFX_FOURCC_Y410
10 bit per sample 4:4:4 packed color format. This format should be mapped to DXGI_FORMAT_Y410.

enumerator MFX_FOURCC_Y216
16 bit per sample 4:2:2 packed color format with similar to YUY2 layout. This format should be mapped to
DXGI_FORMAT_Y216.

enumerator MFX_FOURCC_Y416
16 bit per sample 4:4:4 packed color format. This format should be mapped to DXGI_FORMAT_Y416.

enumerator MFX_FOURCC_BGRP
BGR 24 bit planar layout (3 separate channels, 8-bits per sample each). This format should be mapped to
VA_FOURCC_BGRP.

ContentInfo

The ContentInfo enumerator itemizes content types for the encoding session.

enumerator MFX_CONTENT_UNKNOWN

enumerator MFX_CONTENT_FULL_SCREEN_VIDEO

enumerator MFX_CONTENT_NON_VIDEO_SCREEN

Corruption

The Corruption enumerator itemizes the decoding corruption types. It is a bit-OR’ed value of the following.

enumerator MFX_CORRUPTION_NO
No corruption.

enumerator MFX_CORRUPTION_MINOR
Minor corruption in decoding certain macro-blocks.

enumerator MFX_CORRUPTION_MAJOR
Major corruption in decoding the frame - incomplete data, for example.

enumerator MFX_CORRUPTION_ABSENT_TOP_FIELD
Top field of frame is absent in bitstream. Only bottom field has been decoded.

enumerator MFX_CORRUPTION_ABSENT_BOTTOM_FIELD
Bottom field of frame is absent in bitstream. Only top filed has been decoded.

10.5. oneVPL API Reference 961

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_CORRUPTION_REFERENCE_FRAME
Decoding used a corrupted reference frame. A corrupted reference frame was used for decoding this frame. For
example, if the frame uses a reference frame that was decoded with minor/major corruption flag, then this frame
is also marked with a reference corruption flag.

enumerator MFX_CORRUPTION_REFERENCE_LIST
The reference list information of this frame does not match what is specified in the Reference Picture Marking
Repetition SEI message. (ITU-T H.264 D.1.8 dec_ref_pic_marking_repetition)

Note: Flag MFX_CORRUPTION_ABSENT_TOP_FIELD/MFX_CORRUPTION_ABSENT_BOTTOM_FIELD is
set by the AVC decoder when it detects that one of fields is not present in the bitstream. Which field is absent depends
on value of bottom_field_flag (ITU-T* H.264 7.4.3).

DeinterlacingMode

The DeinterlacingMode enumerator itemizes VPP deinterlacing modes.

enumerator MFX_DEINTERLACING_BOB
BOB deinterlacing mode.

enumerator MFX_DEINTERLACING_ADVANCED
Advanced deinterlacing mode.

enumerator MFX_DEINTERLACING_AUTO_DOUBLE
Auto mode with deinterlacing double frame rate output.

enumerator MFX_DEINTERLACING_AUTO_SINGLE
Auto mode with deinterlacing single frame rate output.

enumerator MFX_DEINTERLACING_FULL_FR_OUT
Deinterlace only mode with full frame rate output.

enumerator MFX_DEINTERLACING_HALF_FR_OUT
Deinterlace only Mode with half frame rate output.

enumerator MFX_DEINTERLACING_24FPS_OUT
24 fps fixed output mode.

enumerator MFX_DEINTERLACING_FIXED_TELECINE_PATTERN
Fixed telecine pattern removal mode.

enumerator MFX_DEINTERLACING_30FPS_OUT
30 fps fixed output mode.

enumerator MFX_DEINTERLACING_DETECT_INTERLACE
Only interlace detection.

enumerator MFX_DEINTERLACING_ADVANCED_NOREF
Advanced deinterlacing mode without using of reference frames.

10.5. oneVPL API Reference 962

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_DEINTERLACING_ADVANCED_SCD
Advanced deinterlacing mode with scene change detection.

enumerator MFX_DEINTERLACING_FIELD_WEAVING
Field weaving.

ErrorTypes

The ErrorTypes enumerator uses bit-ORed values to itemize bitstream error types.

enumerator MFX_ERROR_NO
No error in bitstream.

enumerator MFX_ERROR_PPS
Invalid/corrupted PPS.

enumerator MFX_ERROR_SPS
Invalid/corrupted SPS.

enumerator MFX_ERROR_SLICEHEADER
Invalid/corrupted slice header.

enumerator MFX_ERROR_SLICEDATA
Invalid/corrupted slice data.

enumerator MFX_ERROR_FRAME_GAP
Missed frames.

ExtendedBufferID

The ExtendedBufferID enumerator itemizes and defines identifiers (BufferId) for extended buffers or video processing
algorithm identifiers.

enumerator MFX_EXTBUFF_THREADS_PARAM
mfxExtThreadsParam buffer ID

enumerator MFX_EXTBUFF_CODING_OPTION
This extended buffer defines additional encoding controls. See the mfxExtCodingOption structure for details.
The application can attach this buffer to the structure for encoding initialization.

enumerator MFX_EXTBUFF_CODING_OPTION_SPSPPS
This extended buffer defines sequence header and picture header for encoders and decoders. See the mfx-
ExtCodingOptionSPSPPS structure for details. The application can attach this buffer to the mfxVideoParam
structure for encoding initialization, and for obtaining raw headers from the decoders and encoders.

enumerator MFX_EXTBUFF_VPP_DONOTUSE
This extended buffer defines a list of VPP algorithms that applications should not use. See the mfxExtVPP-
DoNotUse structure for details. The application can attach this buffer to the mfxVideoParam structure for video
processing initialization.

10.5. oneVPL API Reference 963

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_EXTBUFF_VPP_AUXDATA
This extended buffer defines auxiliary information at the VPP output. See the mfxExtVppAuxData structure for
details. The application can attach this buffer to the mfxEncodeCtrl structure for per-frame encoding control.

enumerator MFX_EXTBUFF_VPP_DENOISE
Deprecated in 2.2 API version.

enumerator MFX_EXTBUFF_VPP_DENOISE2
The extended buffer defines control parameters for the VPP denoise filter algorithm. See the mfxExtVPPDenoise2
structure for details. The application can attach this buffer to the mfxVideoParam structure for video processing
initialization.

enumerator MFX_EXTBUFF_VPP_3DLUT
See the mfxExtVPP3DLut structure for more details.

enumerator MFX_EXTBUFF_VPP_SCENE_ANALYSIS

enumerator MFX_EXTBUFF_VPP_PROCAMP
The extended buffer defines control parameters for the VPP ProcAmp filter algorithm. See the mfxExtVPPP-
rocAmp structure for details. The application can attach this buffer to the mfxVideoParam structure for video
processing initialization or to the mfxFrameData structure in the mfxFrameSurface1 structure of output surface
for per-frame processing configuration.

enumerator MFX_EXTBUFF_VPP_DETAIL
The extended buffer defines control parameters for the VPP detail filter algorithm. See the mfxExtVPPDetail
structure for details. The application can attach this buffer to the structure for video processing initialization.

enumerator MFX_EXTBUFF_VIDEO_SIGNAL_INFO
This extended buffer defines video signal type. See the mfxExtVideoSignalInfo structure for details. The appli-
cation can attach this buffer to the mfxVideoParam structure for encoding initialization, and for retrieving such
information from the decoders. If video signal info changes per frame, the application can attach this buffer to
the mfxFrameData structure for video processing.

enumerator MFX_EXTBUFF_VIDEO_SIGNAL_INFO_IN
This extended buffer defines video signal type. See the mfxExtVideoSignalInfo structure for details. The appli-
cation can attach this buffer to the mfxVideoParam structure for the input of video processing if the input video
signal information changes in sequence base.

enumerator MFX_EXTBUFF_VIDEO_SIGNAL_INFO_OUT
This extended buffer defines video signal type. See the mfxExtVideoSignalInfo structure for details. The applica-
tion can attach this buffer to the mfxVideoParam structure for the output of video processing if the output video
signal information changes in sequence base.

enumerator MFX_EXTBUFF_VPP_DOUSE
This extended buffer defines a list of VPP algorithms that applications should use. See the mfxExtVPPDoUse
structure for details. The application can attach this buffer to the structure for video processing initialization.

enumerator MFX_EXTBUFF_AVC_REFLIST_CTRL
This extended buffer defines additional encoding controls for reference list. See the mfxExtAVCRefListCtrl struc-
ture for details. The application can attach this buffer to the mfxVideoParam structure for encoding & decoding
initialization, or the mfxEncodeCtrl structure for per-frame encoding configuration.

10.5. oneVPL API Reference 964

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_EXTBUFF_VPP_FRAME_RATE_CONVERSION
This extended buffer defines control parameters for the VPP frame rate conversion algorithm. See the mfx-
ExtVPPFrameRateConversion structure for details. The application can attach this buffer to the mfxVideoParam
structure for video processing initialization.

enumerator MFX_EXTBUFF_PICTURE_TIMING_SEI
This extended buffer configures the H.264 picture timing SEI message. See the mfxExtPictureTimingSEI struc-
ture for details. The application can attach this buffer to the mfxVideoParam structure for encoding initialization,
or the mfxEncodeCtrl structure for per-frame encoding configuration.

enumerator MFX_EXTBUFF_AVC_TEMPORAL_LAYERS
This extended buffer configures the structure of temporal layers inside the encoded H.264 bitstream. See the
mfxExtAvcTemporalLayers structure for details. The application can attach this buffer to the mfxVideoParam
structure for encoding initialization.

enumerator MFX_EXTBUFF_CODING_OPTION2
This extended buffer defines additional encoding controls. See the mfxExtCodingOption2 structure for details.
The application can attach this buffer to the structure for encoding initialization.

enumerator MFX_EXTBUFF_VPP_IMAGE_STABILIZATION
This extended buffer defines control parameters for the VPP image stabilization filter algorithm. See the mfx-
ExtVPPImageStab structure for details. The application can attach this buffer to the mfxVideoParam structure
for video processing initialization.

enumerator MFX_EXTBUFF_ENCODER_CAPABILITY
This extended buffer is used to retrieve encoder capability. See the mfxExtEncoderCapability structure for details.
The application can attach this buffer to the mfxVideoParam structure before calling MFXVideoENCODE_Query
function.

enumerator MFX_EXTBUFF_ENCODER_RESET_OPTION
This extended buffer is used to control encoder reset behavior and also to query possible encoder reset outcome.
See the mfxExtEncoderResetOption structure for details. The application can attach this buffer to the mfxVideoP-
aram structure before calling MFXVideoENCODE_Query or MFXVideoENCODE_Reset functions.

enumerator MFX_EXTBUFF_ENCODED_FRAME_INFO
This extended buffer is used by the encoder to report additional information about encoded picture. See the
mfxExtAVCEncodedFrameInfo structure for details. The application can attach this buffer to the mfxBitstream
structure before calling MFXVideoENCODE_EncodeFrameAsync function.

enumerator MFX_EXTBUFF_VPP_COMPOSITE
This extended buffer is used to control composition of several input surfaces in the one output. In this mode, the
VPP skips any other filters. The VPP returns error if any mandatory filter is specified and filter skipped warning
for optional filter. The only supported filters are deinterlacing and interlaced scaling.

enumerator MFX_EXTBUFF_VPP_VIDEO_SIGNAL_INFO
This extended buffer is used to control transfer matrix and nominal range of YUV frames. The application should
provide it during initialization.

enumerator MFX_EXTBUFF_ENCODER_ROI
This extended buffer is used by the application to specify different Region Of Interests during encoding. The
application should provide it at initialization or at runtime.

10.5. oneVPL API Reference 965

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_EXTBUFF_VPP_DEINTERLACING
This extended buffer is used by the application to specify different deinterlacing algorithms.

enumerator MFX_EXTBUFF_AVC_REFLISTS
This extended buffer specifies reference lists for the encoder.

enumerator MFX_EXTBUFF_DEC_VIDEO_PROCESSING
See the mfxExtDecVideoProcessing structure for details.

enumerator MFX_EXTBUFF_VPP_FIELD_PROCESSING
The extended buffer defines control parameters for the VPP field-processing algorithm. See the mfxExtVPP-
FieldProcessing structure for details. The application can attach this buffer to the mfxVideoParam structure for
video processing initialization or to the mfxFrameData structure during runtime.

enumerator MFX_EXTBUFF_CODING_OPTION3
This extended buffer defines additional encoding controls. See the mfxExtCodingOption3 structure for details.
The application can attach this buffer to the structure for encoding initialization.

enumerator MFX_EXTBUFF_CHROMA_LOC_INFO
This extended buffer defines chroma samples location information. See the mfxExtChromaLocInfo structure for
details. The application can attach this buffer to the mfxVideoParam structure for encoding initialization.

enumerator MFX_EXTBUFF_MBQP
This extended buffer defines per-macroblock QP. See the mfxExtMBQP structure for details. The application can
attach this buffer to the mfxEncodeCtrl structure for per-frame encoding configuration.

enumerator MFX_EXTBUFF_MB_FORCE_INTRA
This extended buffer defines per-macroblock force intra flag. See the mfxExtMBForceIntra structure for details.
The application can attach this buffer to the mfxEncodeCtrl structure for per-frame encoding configuration.

enumerator MFX_EXTBUFF_HEVC_TILES
This extended buffer defines additional encoding controls for HEVC tiles. See the mfxExtHEVCTiles structure
for details. The application can attach this buffer to the mfxVideoParam structure for encoding initialization.

enumerator MFX_EXTBUFF_MB_DISABLE_SKIP_MAP
This extended buffer defines macroblock map for current frame which forces specified macroblocks to be non
skip. See the mfxExtMBDisableSkipMap structure for details. The application can attach this buffer to the mfx-
EncodeCtrl structure for per-frame encoding configuration.

enumerator MFX_EXTBUFF_HEVC_PARAM
See the mfxExtHEVCParam structure for details.

enumerator MFX_EXTBUFF_DECODED_FRAME_INFO
This extended buffer is used by decoders to report additional information about decoded frame. See the mfx-
ExtDecodedFrameInfo structure for more details.

enumerator MFX_EXTBUFF_TIME_CODE
See the mfxExtTimeCode structure for more details.

enumerator MFX_EXTBUFF_HEVC_REGION
This extended buffer specifies the region to encode. The application can attach this buffer to the mfxVideoParam

10.5. oneVPL API Reference 966

oneAPI Specification, Release 1.1-rev-1

structure during HEVC encoder initialization.

enumerator MFX_EXTBUFF_PRED_WEIGHT_TABLE
See the mfxExtPredWeightTable structure for details.

enumerator MFX_EXTBUFF_DIRTY_RECTANGLES
See the mfxExtDitrtyRect structure for details.

enumerator MFX_EXTBUFF_MOVING_RECTANGLES
See the mfxExtMoveRect structure for details.

enumerator MFX_EXTBUFF_CODING_OPTION_VPS
See the mfxExtCodingOptionVPS structure for details.

enumerator MFX_EXTBUFF_VPP_ROTATION
See the mfxExtVPPRotation structure for details.

enumerator MFX_EXTBUFF_ENCODED_SLICES_INFO
See the mfxExtEncodedSlicesInfo structure for details.

enumerator MFX_EXTBUFF_VPP_SCALING
See the mfxExtVPPScaling structure for details.

enumerator MFX_EXTBUFF_HEVC_REFLIST_CTRL
This extended buffer defines additional encoding controls for reference list. See the mfxExtAVCRefListCtrl struc-
ture for details. The application can attach this buffer to the mfxVideoParam structure for encoding & decoding
initialization, or the mfxEncodeCtrl structure for per-frame encoding configuration.

enumerator MFX_EXTBUFF_HEVC_REFLISTS
This extended buffer specifies reference lists for the encoder.

enumerator MFX_EXTBUFF_HEVC_TEMPORAL_LAYERS
This extended buffer configures the structure of temporal layers inside the encoded H.264 bitstream. See the
mfxExtAvcTemporalLayers structure for details. The application can attach this buffer to the mfxVideoParam
structure for encoding initialization.

enumerator MFX_EXTBUFF_VPP_MIRRORING
See the mfxExtVPPMirroring structure for details.

enumerator MFX_EXTBUFF_MV_OVER_PIC_BOUNDARIES
See the mfxExtMVOverPicBoundaries structure for details.

enumerator MFX_EXTBUFF_VPP_COLORFILL
See the mfxExtVPPColorFill structure for details.

enumerator MFX_EXTBUFF_DECODE_ERROR_REPORT
This extended buffer is used by decoders to report error information before frames get decoded. See the mfx-
ExtDecodeErrorReport structure for more details.

enumerator MFX_EXTBUFF_VPP_COLOR_CONVERSION
See the mfxExtColorConversion structure for details.

10.5. oneVPL API Reference 967

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_EXTBUFF_CONTENT_LIGHT_LEVEL_INFO
This extended buffer configures HDR SEI message. See the mfxExtContentLightLevelInfo structure for details.

enumerator MFX_EXTBUFF_MASTERING_DISPLAY_COLOUR_VOLUME
This extended buffer configures HDR SEI message. See the mfxExtMasteringDisplayColourVolume structure for
details. If colour volume changes per frame, the application can attach this buffer to the mfxFrameData structure
for video processing.

enumerator MFX_EXTBUFF_MASTERING_DISPLAY_COLOUR_VOLUME_IN
This extended buffer configures HDR SEI message. See the mfxExtMasteringDisplayColourVolume structure for
details. The application can attach this buffer to the mfxVideoParam structure for the input of video processing
if the mastering display colour volume changes per sequence. In this case, this buffer should be together with
MFX_EXTBUFF_CONTENT_LIGHT_LEVEL_INFO to indicate the light level and mastering colour volume
of the input of video processing. If colour Volume changes per frame instead of per sequence, the application can
attach MFX_EXTBUFF_MASTERING_DISPLAY_COLOUR_VOLUME to mfxFrameData for frame based
processing.

enumerator MFX_EXTBUFF_MASTERING_DISPLAY_COLOUR_VOLUME_OUT
This extended buffer configures HDR SEI message. See the mfxExtMasteringDisplayColourVolume structure
for details. The application can attach this buffer to the mfxVideoParam structure for the output of video pro-
cessing if the mastering display colour volume changes per sequence. If colour volume changes per frame
instead of per sequence, the application can attach the buffer with MFX_EXTBUFF_MASTERING_ DIS-
PLAY_COLOUR_VOLUME to mfxFrameData for frame based processing.

enumerator MFX_EXTBUFF_ENCODED_UNITS_INFO
See the mfxExtEncodedUnitsInfo structure for details.

enumerator MFX_EXTBUFF_VPP_MCTF
This video processing algorithm identifier is used to enable MCTF via mfxExtVPPDoUse and together with
mfxExtVppMctf

enumerator MFX_EXTBUFF_VP9_SEGMENTATION
Extends mfxVideoParam structure with VP9 segmentation parameters. See the mfxExtVP9Segmentation struc-
ture for details.

enumerator MFX_EXTBUFF_VP9_TEMPORAL_LAYERS
Extends mfxVideoParam structure with parameters for VP9 temporal scalability. See the mfx-
ExtVP9TemporalLayers structure for details.

enumerator MFX_EXTBUFF_VP9_PARAM
Extends mfxVideoParam structure with VP9-specific parameters. See the mfxExtVP9Param structure for details.

enumerator MFX_EXTBUFF_AVC_ROUNDING_OFFSET
See the mfxExtAVCRoundingOffset structure for details.

enumerator MFX_EXTBUFF_PARTIAL_BITSTREAM_PARAM
See the mfxExtPartialBitstreamParam structure for details.

enumerator MFX_EXTBUFF_BRC

enumerator MFX_EXTBUFF_VP8_CODING_OPTION

10.5. oneVPL API Reference 968

oneAPI Specification, Release 1.1-rev-1

This extended buffer describes VP8 encoder configuration parameters. See the mfxExtVP8CodingOption struc-
ture for details. The application can attach this buffer to the mfxVideoParam structure for encoding initialization.

enumerator MFX_EXTBUFF_JPEG_QT
This extended buffer defines quantization tables for JPEG encoder.

enumerator MFX_EXTBUFF_JPEG_HUFFMAN
This extended buffer defines Huffman tables for JPEG encoder.

enumerator MFX_EXTBUFF_ENCODER_IPCM_AREA
See the mfxExtEncoderIPCMArea structure for details.

enumerator MFX_EXTBUFF_INSERT_HEADERS
See the mfxExtInsertHeaders structure for details.

enumerator MFX_EXTBUFF_MVC_SEQ_DESC
This extended buffer describes the MVC stream information of view dependencies, view identifiers, and operation
points. See the ITU*-T H.264 specification chapter H.7.3.2.1.4 for details.

enumerator MFX_EXTBUFF_MVC_TARGET_VIEWS
This extended buffer defines target views at the decoder output.

enumerator MFX_EXTBUFF_CENC_PARAM
This structure is used to pass decryption status report index for Common Encryption usage model. See the
mfxExtCencParam structure for more details.

enumerator MFX_EXTBUFF_DEVICE_AFFINITY_MASK
See the mfxExtDeviceAffinityMask structure for details.

enumerator MFX_EXTBUFF_CROPS
See the mfxExtInCrops structure for details.

enumerator MFX_EXTBUFF_AV1_FILM_GRAIN_PARAM
See the mfxExtAV1FilmGrainParam structure for more details.

enumerator MFX_EXTBUFF_AV1_SEGMENTATION
See the mfxExtAV1Segmentation structure for more details.

enumerator MFX_EXTBUFF_ALLOCATION_HINTS
See the mfxExtAllocationHints structure for more details.

enumerator MFX_EXTBUFF_UNIVERSAL_TEMPORAL_LAYERS
See the mfxExtTemporalLayers structure for more details.

10.5. oneVPL API Reference 969

oneAPI Specification, Release 1.1-rev-1

ExtMemBufferType

enumerator MFX_MEMTYPE_PERSISTENT_MEMORY
Memory page for persistent use.

ExtMemFrameType

The ExtMemFrameType enumerator specifies the memory type of frame. It is a bit-ORed value of one of the following.
For information on working with video memory surfaces, see the Working with Hardware Acceleration section.

enumerator MFX_MEMTYPE_DXVA2_DECODER_TARGET
Frames are in video memory and belong to video decoder render targets.

enumerator MFX_MEMTYPE_DXVA2_PROCESSOR_TARGET
Frames are in video memory and belong to video processor render targets.

enumerator MFX_MEMTYPE_VIDEO_MEMORY_DECODER_TARGET
Frames are in video memory and belong to video decoder render targets.

enumerator MFX_MEMTYPE_VIDEO_MEMORY_PROCESSOR_TARGET
Frames are in video memory and belong to video processor render targets.

enumerator MFX_MEMTYPE_SYSTEM_MEMORY
The frames are in system memory.

enumerator MFX_MEMTYPE_RESERVED1

enumerator MFX_MEMTYPE_FROM_ENCODE
Allocation request comes from an ENCODE function

enumerator MFX_MEMTYPE_FROM_DECODE
Allocation request comes from a DECODE function

enumerator MFX_MEMTYPE_FROM_VPPIN
Allocation request comes from a VPP function for input frame allocation

enumerator MFX_MEMTYPE_FROM_VPPOUT
Allocation request comes from a VPP function for output frame allocation

enumerator MFX_MEMTYPE_FROM_ENC
Allocation request comes from an ENC function

enumerator MFX_MEMTYPE_INTERNAL_FRAME
Allocation request for internal frames

enumerator MFX_MEMTYPE_EXTERNAL_FRAME
Allocation request for I/O frames

enumerator MFX_MEMTYPE_EXPORT_FRAME
Application requests frame handle export to some associated object. For Linux frame handle can be considered

10.5. oneVPL API Reference 970

oneAPI Specification, Release 1.1-rev-1

to be exported to DRM Prime FD, DRM FLink or DRM FrameBuffer Handle. Specifics of export types and
export procedure depends on external frame allocator implementation

enumerator MFX_MEMTYPE_SHARED_RESOURCE
For DX11 allocation use shared resource bind flag.

enumerator MFX_MEMTYPE_VIDEO_MEMORY_ENCODER_TARGET
Frames are in video memory and belong to video encoder render targets.

Frame Data Flags

enumerator MFX_TIMESTAMP_UNKNOWN
Indicates that time stamp is unknown for this frame/bitstream portion.

enumerator MFX_FRAMEORDER_UNKNOWN
Unused entry or API functions that generate the frame output do not use this frame.

enumerator MFX_FRAMEDATA_TIMESTAMP_UNKNOWN
Indicates the time stamp of this frame is unknown and will be calculated by SDK.

enumerator MFX_FRAMEDATA_ORIGINAL_TIMESTAMP
Indicates the time stamp of this frame is not calculated and is a pass-through of the original time stamp.

FrameType

The FrameType enumerator itemizes frame types. Use bit-ORed values to specify all that apply.

enumerator MFX_FRAMETYPE_UNKNOWN
Frame type is unspecified.

enumerator MFX_FRAMETYPE_I
This frame or the first field is encoded as an I-frame/field.

enumerator MFX_FRAMETYPE_P
This frame or the first field is encoded as an P-frame/field.

enumerator MFX_FRAMETYPE_B
This frame or the first field is encoded as an B-frame/field.

enumerator MFX_FRAMETYPE_S
This frame or the first field is either an SI- or SP-frame/field.

enumerator MFX_FRAMETYPE_REF
This frame or the first field is encoded as a reference.

enumerator MFX_FRAMETYPE_IDR
This frame or the first field is encoded as an IDR.

enumerator MFX_FRAMETYPE_xI
The second field is encoded as an I-field.

10.5. oneVPL API Reference 971

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_FRAMETYPE_xP
The second field is encoded as an P-field.

enumerator MFX_FRAMETYPE_xB
The second field is encoded as an S-field.

enumerator MFX_FRAMETYPE_xS
The second field is an SI- or SP-field.

enumerator MFX_FRAMETYPE_xREF
The second field is encoded as a reference.

enumerator MFX_FRAMETYPE_xIDR
The second field is encoded as an IDR.

FrcAlgm

The FrcAlgm enumerator itemizes frame rate conversion algorithms. See description of mfxExtVPPFrameRateCon-
version structure for more details.

enumerator MFX_FRCALGM_PRESERVE_TIMESTAMP
Frame dropping/repetition based frame rate conversion algorithm with preserved original time stamps. Any
inserted frames will carry MFX_TIMESTAMP_UNKNOWN.

enumerator MFX_FRCALGM_DISTRIBUTED_TIMESTAMP
Frame dropping/repetition based frame rate conversion algorithm with distributed time stamps. The algorithm
distributes output time stamps evenly according to the output frame rate.

enumerator MFX_FRCALGM_FRAME_INTERPOLATION
Frame rate conversion algorithm based on frame interpolation. This flag may be combined with
MFX_FRCALGM_PRESERVE_TIMESTAMP or MFX_FRCALGM_DISTRIBUTED_TIMESTAMP flags.

GeneralConstraintFlags

The GeneralConstraintFlags enumerator uses bit-ORed values to itemize HEVC bitstream indications for specific
profiles. Each value indicates for format range extensions profiles. To specify HEVC Main 10 Still Picture pro-
file applications have to set mfxInfoMFX::CodecProfile == MFX_PROFILE_HEVC_MAIN10 and mfxExtHEVC-
Param::GeneralConstraintFlags == MFX_HEVC_CONSTR_REXT_ONE_PICTURE_ONLY.

enumerator MFX_HEVC_CONSTR_REXT_MAX_12BIT

enumerator MFX_HEVC_CONSTR_REXT_MAX_10BIT

enumerator MFX_HEVC_CONSTR_REXT_MAX_8BIT

enumerator MFX_HEVC_CONSTR_REXT_MAX_422CHROMA

enumerator MFX_HEVC_CONSTR_REXT_MAX_420CHROMA

enumerator MFX_HEVC_CONSTR_REXT_MAX_MONOCHROME

enumerator MFX_HEVC_CONSTR_REXT_INTRA

enumerator MFX_HEVC_CONSTR_REXT_ONE_PICTURE_ONLY

10.5. oneVPL API Reference 972

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_HEVC_CONSTR_REXT_LOWER_BIT_RATE

GopOptFlag

The GopOptFlag enumerator itemizes special properties in the GOP (Group of Pictures) sequence.

enumerator MFX_GOP_CLOSED
The encoder generates closed GOP if this flag is set. Frames in this GOP do not use frames in previous GOP as
reference.

The encoder generates open GOP if this flag is not set. In this GOP frames prior to the first frame of GOP in
display order may use frames from previous GOP as reference. Frames subsequent to the first frame of GOP in
display order do not use frames from previous GOP as reference.

The AVC encoder ignores this flag if IdrInterval in mfxInfoMFX structure is set to 0, i.e. if every GOP starts
from IDR frame. In this case, GOP is encoded as closed.

This flag does not affect long-term reference frames.

enumerator MFX_GOP_STRICT
The encoder must strictly follow the given GOP structure as defined by parameter GopPicSize, GopRefDist
etc in the mfxVideoParam structure. Otherwise, the encoder can adapt the GOP structure for better efficiency,
whose range is constrained by parameter GopPicSize and GopRefDist etc. See also description of AdaptiveI and
AdaptiveB fields in the mfxExtCodingOption2 structure.

GPUCopy

enumerator MFX_GPUCOPY_DEFAULT
Use default mode for the legacy Intel(r) Media SDK implementation.

enumerator MFX_GPUCOPY_ON
Enable GPU accelerated copying.

enumerator MFX_GPUCOPY_OFF
Disable GPU accelerated copying.

HEVC Profiles

enumerator MFX_PROFILE_HEVC_MAIN

enumerator MFX_PROFILE_HEVC_MAIN10

enumerator MFX_PROFILE_HEVC_MAINSP

enumerator MFX_PROFILE_HEVC_REXT

enumerator MFX_PROFILE_HEVC_SCC

10.5. oneVPL API Reference 973

oneAPI Specification, Release 1.1-rev-1

HEVC Tiers

enumerator MFX_TIER_HEVC_MAIN

enumerator MFX_TIER_HEVC_HIGH

HEVCRegionEncoding

The HEVCRegionEncoding enumerator itemizes HEVC region’s encoding.

enumerator MFX_HEVC_REGION_ENCODING_ON

enumerator MFX_HEVC_REGION_ENCODING_OFF

HEVCRegionType

The HEVCRegionType enumerator itemizes type of HEVC region.

enumerator MFX_HEVC_REGION_SLICE
Slice type.

ImageStabMode

The ImageStabMode enumerator itemizes image stabilization modes. See description of mfxExtVPPImageStab struc-
ture for more details.

enumerator MFX_IMAGESTAB_MODE_UPSCALE
Upscale mode.

enumerator MFX_IMAGESTAB_MODE_BOXING
Boxing mode.

InsertHDRPayload

The InsertHDRPayload enumerator itemizes HDR payloads insertion rules.

enumerator MFX_PAYLOAD_OFF
Do not insert payload.

enumerator MFX_PAYLOAD_IDR
Insert payload on IDR frames.

10.5. oneVPL API Reference 974

oneAPI Specification, Release 1.1-rev-1

InterpolationMode

The InterpolationMode enumerator specifies type of interpolation method used by VPP scaling filter.

enumerator MFX_INTERPOLATION_DEFAULT
Default interpolation mode for scaling. Library selects the most appropriate scaling method.

enumerator MFX_INTERPOLATION_NEAREST_NEIGHBOR
Nearest neighbor interpolation method.

enumerator MFX_INTERPOLATION_BILINEAR
Bilinear interpolation method.

enumerator MFX_INTERPOLATION_ADVANCED
Advanced interpolation method is defined by each implementation and usually gives best quality.

DataType

enum mfxDataType
The mfxDataType enumerates data type for mfxDataType.

Values:

enumerator MFX_DATA_TYPE_UNSET
Undefined type.

enumerator MFX_DATA_TYPE_U8
8-bit unsigned integer.

enumerator MFX_DATA_TYPE_I8
8-bit signed integer.

enumerator MFX_DATA_TYPE_U16
16-bit unsigned integer.

enumerator MFX_DATA_TYPE_I16
16-bit signed integer.

enumerator MFX_DATA_TYPE_U32
32-bit unsigned integer.

enumerator MFX_DATA_TYPE_I32
32-bit signed integer.

enumerator MFX_DATA_TYPE_U64
64-bit unsigned integer.

enumerator MFX_DATA_TYPE_I64
64-bit signed integer.

10.5. oneVPL API Reference 975

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_DATA_TYPE_F32
32-bit single precision floating point.

enumerator MFX_DATA_TYPE_F64
64-bit double precision floating point.

3DLutChannelMapping

enum mfx3DLutChannelMapping
The mfx3DLutChannelMapping enumerator specifies the channel mapping of 3DLUT.

Values:

enumerator MFX_3DLUT_CHANNEL_MAPPING_DEFAULT
Default 3DLUT channel mapping. The library selects the most appropriate 3DLUT channel mapping.

enumerator MFX_3DLUT_CHANNEL_MAPPING_RGB_RGB
3DLUT RGB channels map to RGB channels.

enumerator MFX_3DLUT_CHANNEL_MAPPING_YUV_RGB
3DLUT YUV channels map to RGB channels.

enumerator MFX_3DLUT_CHANNEL_MAPPING_VUY_RGB
3DLUT VUY channels map to RGB channels.

3DLutMemoryLayout

enum mfx3DLutMemoryLayout
The mfx3DLutMemoryLayout enumerator specifies the memory layout of 3DLUT.

Values:

enumerator MFX_3DLUT_MEMORY_LAYOUT_DEFAULT
Default 3DLUT memory layout. The library selects the most appropriate 3DLUT memory layout.

enumerator MFX_3DLUT_MEMORY_LAYOUT_VENDOR
The enumeration to separate default above and vendor specific.

enumerator MFX_3DLUT_MEMORY_LAYOUT_INTEL_17LUT
Intel specific memory layout. The enumerator indicates the attributes and memory layout of 3DLUT.
3DLUT size is 17(the number of elements per dimension), 4 channels(3 valid channels, 1 channel is re-
served), every channel must be 16-bit unsigned integer. 3DLUT contains 17x17x32 entries with holes that
are not filled. Take RGB as example, the nodes RxGx17 to RxGx31 are not filled, are “don’t care” bits, and
not accessed for the 17x17x17 nodes.

enumerator MFX_3DLUT_MEMORY_LAYOUT_INTEL_33LUT
Intel specific memory layout. The enumerator indicates the attributes and memory layout of 3DLUT.
3DLUT size is 33(the number of elements per dimension), 4 channels(3 valid channels, 1 channel is re-
served), every channel must be 16-bit unsigned integer. 3DLUT contains 33x33x64 entries with holes that

10.5. oneVPL API Reference 976

oneAPI Specification, Release 1.1-rev-1

are not filled. Take RGB as example, the nodes RxGx33 to RxGx63 are not filled, are “don’t care” bits, and
not accessed for the 33x33x33 nodes.

enumerator MFX_3DLUT_MEMORY_LAYOUT_INTEL_65LUT
Intel specific memory layout. The enumerator indicates the attributes and memory layout of 3DLUT.
3DLUT size is 65(the number of elements per dimension), 4 channels(3 valid channels, 1 channel is re-
served), every channel must be 16-bit unsigned integer. 3DLUT contains 65x65x128 entries with holes that
are not filled. Take RGB as example, the nodes RxGx65 to RxGx127 are not filled, are “don’t care” bits,
and not accessed for the 65x65x65 nodes.

IntraPredBlockSize/InterPredBlockSize

IntraPredBlockSize/InterPredBlockSize specifies minimum block size of inter-prediction.

enumerator MFX_BLOCKSIZE_UNKNOWN
Unspecified.

enumerator MFX_BLOCKSIZE_MIN_16X16
16x16 minimum block size.

enumerator MFX_BLOCKSIZE_MIN_8X8
8x8 minimum block size. May be 16x16 or 8x8.

enumerator MFX_BLOCKSIZE_MIN_4X4
4x4 minimum block size. May be 16x16, 8x8, or 4x4.

IntraRefreshTypes

The IntraRefreshTypes enumerator itemizes types of intra refresh.

enumerator MFX_REFRESH_NO
Encode without refresh.

enumerator MFX_REFRESH_VERTICAL
Vertical refresh, by column of MBs.

enumerator MFX_REFRESH_HORIZONTAL
Horizontal refresh, by rows of MBs.

enumerator MFX_REFRESH_SLICE
Horizontal refresh by slices without overlapping.

10.5. oneVPL API Reference 977

oneAPI Specification, Release 1.1-rev-1

IOPattern

The IOPattern enumerator itemizes memory access patterns for API functions. Use bit-ORed values to specify input
and output access patterns.

enumerator MFX_IOPATTERN_IN_VIDEO_MEMORY
Input to functions is a video memory surface.

enumerator MFX_IOPATTERN_IN_SYSTEM_MEMORY
Input to functions is a linear buffer directly in system memory or in system memory through an external allocator.

enumerator MFX_IOPATTERN_OUT_VIDEO_MEMORY
Output to functions is a video memory surface.

enumerator MFX_IOPATTERN_OUT_SYSTEM_MEMORY
Output to functions is a linear buffer directly in system memory or in system memory through an external allo-
cator.

JPEGColorFormat

The JPEGColorFormat enumerator itemizes the JPEG color format options.

enumerator MFX_JPEG_COLORFORMAT_UNKNOWN

enumerator MFX_JPEG_COLORFORMAT_YCbCr
Unknown color format. The decoder tries to determine color format from available in bitstream information. If
such information is not present, then MFX_JPEG_COLORFORMAT_YCbCr color format is assumed.

enumerator MFX_JPEG_COLORFORMAT_RGB
Bitstream contains Y, Cb and Cr components.

JPEGScanType

The JPEGScanType enumerator itemizes the JPEG scan types.

enumerator MFX_SCANTYPE_UNKNOWN
Unknown scan type.

enumerator MFX_SCANTYPE_INTERLEAVED
Interleaved scan.

enumerator MFX_SCANTYPE_NONINTERLEAVED
Non-interleaved scan.

10.5. oneVPL API Reference 978

oneAPI Specification, Release 1.1-rev-1

LongTermIdx

The LongTermIdx specifies long term index of picture control

enumerator MFX_LONGTERM_IDX_NO_IDX
Long term index of picture is undefined.

LookAheadDownSampling

The LookAheadDownSampling enumerator is used to control down sampling in look ahead bitrate control mode in
AVC encoder.

enumerator MFX_LOOKAHEAD_DS_UNKNOWN
Default value, it is up to the encoder what down sampling value to use.

enumerator MFX_LOOKAHEAD_DS_OFF
Do not use down sampling, perform estimation on original size frames. This is the slowest setting that produces
the best quality.

enumerator MFX_LOOKAHEAD_DS_2x
Down sample frames two times before estimation.

enumerator MFX_LOOKAHEAD_DS_4x
Down sample frames four times before estimation. This option may significantly degrade quality.

MBQPMode

The MBQPMode enumerator itemizes QP update modes.

enumerator MFX_MBQP_MODE_QP_VALUE
QP array contains QP values.

enumerator MFX_MBQP_MODE_QP_DELTA
QP array contains deltas for QP.

enumerator MFX_MBQP_MODE_QP_ADAPTIVE
QP array contains deltas for QP or absolute QP values.

mfxComponentType

enum mfxComponentType
Describes type of workload passed to MFXQueryAdapters.

Values:

enumerator MFX_COMPONENT_ENCODE
Encode workload.

enumerator MFX_COMPONENT_DECODE
Decode workload.

10.5. oneVPL API Reference 979

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_COMPONENT_VPP
VPP workload.

mfxHandleType

enum mfxHandleType
The mfxHandleType enumerator itemizes system handle types that implementations might use.

Values:

enumerator MFX_HANDLE_DIRECT3D_DEVICE_MANAGER9
Pointer to the IDirect3DDeviceManager9 interface. See Working with Microsoft* DirectX* Applications
for more details on how to use this handle.

enumerator MFX_HANDLE_D3D9_DEVICE_MANAGER
Pointer to the IDirect3DDeviceManager9 interface. See Working with Microsoft* DirectX* Applications
for more details on how to use this handle.

enumerator MFX_HANDLE_RESERVED1

enumerator MFX_HANDLE_D3D11_DEVICE
Pointer to the ID3D11Device interface. See Working with Microsoft* DirectX* Applications for more
details on how to use this handle.

enumerator MFX_HANDLE_VA_DISPLAY
Pointer to VADisplay interface. See Working with VA-API Applications for more details on how to use
this handle.

enumerator MFX_HANDLE_RESERVED3

enumerator MFX_HANDLE_VA_CONFIG_ID
Pointer to VAConfigID interface. It represents external VA config for Common Encryption usage model.

enumerator MFX_HANDLE_VA_CONTEXT_ID
Pointer to VAContextID interface. It represents external VA context for Common Encryption usage model.

enumerator MFX_HANDLE_CM_DEVICE
Pointer to CmDevice interface (Intel(r) C for Metal Runtime).

enumerator MFX_HANDLE_HDDLUNITE_WORKLOADCONTEXT
Pointer to HddlUnite::WorkloadContext interface.

10.5. oneVPL API Reference 980

oneAPI Specification, Release 1.1-rev-1

mfxIMPL

typedef mfxI32 mfxIMPL
This enumerator itemizes implementation types. The implementation type is a bit OR’ed value of the base type
and any decorative flags.

Note: This enumerator is for legacy dispatcher compatibility only. The new dispatcher does not use it.

enumerator MFX_IMPL_AUTO
Auto Selection/In or Not Supported/Out.

enumerator MFX_IMPL_SOFTWARE
Pure software implementation.

enumerator MFX_IMPL_HARDWARE
Hardware accelerated implementation (default device).

enumerator MFX_IMPL_AUTO_ANY
Auto selection of any hardware/software implementation.

enumerator MFX_IMPL_HARDWARE_ANY
Auto selection of any hardware implementation.

enumerator MFX_IMPL_HARDWARE2
Hardware accelerated implementation (2nd device).

enumerator MFX_IMPL_HARDWARE3
Hardware accelerated implementation (3rd device).

enumerator MFX_IMPL_HARDWARE4
Hardware accelerated implementation (4th device).

enumerator MFX_IMPL_RUNTIME
This value cannot be used for session initialization. It may be returned by the MFXQueryIMPL function to show
that the session has been initialized in run-time mode.

enumerator MFX_IMPL_VIA_ANY
Hardware acceleration can go through any supported OS infrastructure. This is the default value. The default
value is used by the legacy Intel(r) Media SDK if none of the MFX_IMPL_VIA_xxx flags are specified by the
application.

enumerator MFX_IMPL_VIA_D3D9
Hardware acceleration goes through the Microsoft* Direct3D* 9 infrastructure.

enumerator MFX_IMPL_VIA_D3D11
Hardware acceleration goes through the Microsoft* Direct3D* 11 infrastructure.

enumerator MFX_IMPL_VIA_VAAPI
Hardware acceleration goes through the Linux* VA-API infrastructure.

10.5. oneVPL API Reference 981

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_IMPL_VIA_HDDLUNITE
Hardware acceleration goes through the HDDL* Unite*.

enumerator MFX_IMPL_UNSUPPORTED
One of the MFXQueryIMPL returns.

MFX_IMPL_BASETYPE(x)
The application can use the macro MFX_IMPL_BASETYPE(x) to obtain the base implementation type.

mfxImplCapsDeliveryFormat

enum mfxImplCapsDeliveryFormat
Values:

enumerator MFX_IMPLCAPS_IMPLDESCSTRUCTURE
Deliver capabilities as mfxImplDescription structure.

enumerator MFX_IMPLCAPS_IMPLEMENTEDFUNCTIONS
Deliver capabilities as mfxImplementedFunctions structure.

enumerator MFX_IMPLCAPS_IMPLPATH
Deliver pointer to the null-terminated string with the path to the implementation. String is delivered in a
form of buffer of mfxChar type.

mfxMediaAdapterType

enum mfxMediaAdapterType
The mfxMediaAdapterType enumerator itemizes types of graphics adapters.

Values:

enumerator MFX_MEDIA_UNKNOWN
Unknown type.

enumerator MFX_MEDIA_INTEGRATED
Integrated graphics adapter.

enumerator MFX_MEDIA_DISCRETE
Discrete graphics adapter.

mfxMemoryFlags

enum mfxMemoryFlags
The mfxMemoryFlags enumerator specifies memory access mode.

Values:

enumerator MFX_MAP_READ
The surface is mapped for reading.

10.5. oneVPL API Reference 982

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_MAP_WRITE
The surface is mapped for writing.

enumerator MFX_MAP_READ_WRITE
The surface is mapped for reading and writing.

enumerator MFX_MAP_NOWAIT
The mapping would be done immediately without any implicit synchronizations.

Attention This flag is optional.

MfxNalUnitType

Specifies NAL unit types supported by the HEVC encoder.

enumerator MFX_HEVC_NALU_TYPE_UNKNOWN
The encoder will decide what NAL unit type to use.

enumerator MFX_HEVC_NALU_TYPE_TRAIL_N
See Table 7-1 of the ITU-T H.265 specification for the definition of these type.

enumerator MFX_HEVC_NALU_TYPE_TRAIL_R
See Table 7-1 of the ITU-T H.265 specification for the definition of these type.

enumerator MFX_HEVC_NALU_TYPE_RADL_N
See Table 7-1 of the ITU-T H.265 specification for the definition of these type.

enumerator MFX_HEVC_NALU_TYPE_RADL_R
See Table 7-1 of the ITU-T H.265 specification for the definition of these type.

enumerator MFX_HEVC_NALU_TYPE_RASL_N
See Table 7-1 of the ITU-T H.265 specification for the definition of these type.

enumerator MFX_HEVC_NALU_TYPE_RASL_R
See Table 7-1 of the ITU-T H.265 specification for the definition of these type.

enumerator MFX_HEVC_NALU_TYPE_IDR_W_RADL
See Table 7-1 of the ITU-T H.265 specification for the definition of these type.

enumerator MFX_HEVC_NALU_TYPE_IDR_N_LP
See Table 7-1 of the ITU-T H.265 specification for the definition of these type.

enumerator MFX_HEVC_NALU_TYPE_CRA_NUT
See Table 7-1 of the ITU-T H.265 specification for the definition of these type.

10.5. oneVPL API Reference 983

oneAPI Specification, Release 1.1-rev-1

mfxPriority

enum mfxPriority
The mfxPriority enumerator describes the session priority.

Values:

enumerator MFX_PRIORITY_LOW
Low priority: the session operation halts when high priority tasks are executing and more than 75% of the
CPU is being used for normal priority tasks.

enumerator MFX_PRIORITY_NORMAL
Normal priority: the session operation is halted if there are high priority tasks.

enumerator MFX_PRIORITY_HIGH
High priority: the session operation blocks other lower priority session operations.

mfxResourceType

enum mfxResourceType
Values:

enumerator MFX_RESOURCE_SYSTEM_SURFACE
System memory.

enumerator MFX_RESOURCE_VA_SURFACE_PTR
Pointer to VA surface index.

enumerator MFX_RESOURCE_VA_SURFACE
Pointer to VA surface index.

enumerator MFX_RESOURCE_VA_BUFFER_PTR
Pointer to VA buffer index.

enumerator MFX_RESOURCE_VA_BUFFER
Pointer to VA buffer index.

enumerator MFX_RESOURCE_DX9_SURFACE
IDirect3DSurface9.

enumerator MFX_RESOURCE_DX11_TEXTURE
ID3D11Texture2D.

enumerator MFX_RESOURCE_DX12_RESOURCE
ID3D12Resource.

enumerator MFX_RESOURCE_DMA_RESOURCE
DMA resource.

enumerator MFX_RESOURCE_HDDLUNITE_REMOTE_MEMORY
HDDL Unite Remote memory handle.

10.5. oneVPL API Reference 984

oneAPI Specification, Release 1.1-rev-1

mfxSkipMode

enum mfxSkipMode
The mfxSkipMode enumerator describes the decoder skip-mode options.

Values:

enumerator MFX_SKIPMODE_NOSKIP

enumerator MFX_SKIPMODE_MORE
Do not skip any frames.

enumerator MFX_SKIPMODE_LESS
Skip more frames.

mfxStatus

enum mfxStatus
Itemizes status codes returned by API functions.

Values:

enumerator MFX_ERR_NONE
No error.

enumerator MFX_ERR_UNKNOWN
Unknown error.

enumerator MFX_ERR_NULL_PTR
Null pointer.

enumerator MFX_ERR_UNSUPPORTED
Unsupported feature.

enumerator MFX_ERR_MEMORY_ALLOC
Failed to allocate memory.

enumerator MFX_ERR_NOT_ENOUGH_BUFFER
Insufficient buffer at input/output.

enumerator MFX_ERR_INVALID_HANDLE
Invalid handle.

enumerator MFX_ERR_LOCK_MEMORY
Failed to lock the memory block.

enumerator MFX_ERR_NOT_INITIALIZED
Member function called before initialization.

enumerator MFX_ERR_NOT_FOUND
The specified object is not found.

10.5. oneVPL API Reference 985

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_ERR_MORE_DATA
Expect more data at input.

enumerator MFX_ERR_MORE_SURFACE
Expect more surface at output.

enumerator MFX_ERR_ABORTED
Operation aborted.

enumerator MFX_ERR_DEVICE_LOST
Lose the hardware acceleration device.

enumerator MFX_ERR_INCOMPATIBLE_VIDEO_PARAM
Incompatible video parameters.

enumerator MFX_ERR_INVALID_VIDEO_PARAM
Invalid video parameters.

enumerator MFX_ERR_UNDEFINED_BEHAVIOR
Undefined behavior.

enumerator MFX_ERR_DEVICE_FAILED
Device operation failure.

enumerator MFX_ERR_MORE_BITSTREAM
Expect more bitstream buffers at output.

enumerator MFX_ERR_GPU_HANG
Device operation failure caused by GPU hang.

enumerator MFX_ERR_REALLOC_SURFACE
Bigger output surface required.

enumerator MFX_ERR_RESOURCE_MAPPED
Write access is already acquired and user requested another write access, or read access with
MFX_MEMORY_NO_WAIT flag.

enumerator MFX_ERR_NOT_IMPLEMENTED
Feature or function not implemented.

enumerator MFX_WRN_IN_EXECUTION
The previous asynchronous operation is in execution.

enumerator MFX_WRN_DEVICE_BUSY
The hardware acceleration device is busy.

enumerator MFX_WRN_VIDEO_PARAM_CHANGED
The video parameters are changed during decoding.

enumerator MFX_WRN_PARTIAL_ACCELERATION
Software acceleration is used.

10.5. oneVPL API Reference 986

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_WRN_INCOMPATIBLE_VIDEO_PARAM
Incompatible video parameters.

enumerator MFX_WRN_VALUE_NOT_CHANGED
The value is saturated based on its valid range.

enumerator MFX_WRN_OUT_OF_RANGE
The value is out of valid range.

enumerator MFX_WRN_FILTER_SKIPPED
One of requested filters has been skipped.

enumerator MFX_ERR_NONE_PARTIAL_OUTPUT
Frame is not ready, but bitstream contains partial output.

enumerator MFX_WRN_ALLOC_TIMEOUT_EXPIRED
Timeout expired for internal frame allocation.

enumerator MFX_TASK_DONE
Task has been completed.

enumerator MFX_TASK_WORKING
There is some more work to do.

enumerator MFX_TASK_BUSY
Task is waiting for resources.

enumerator MFX_ERR_MORE_DATA_SUBMIT_TASK
Return MFX_ERR_MORE_DATA but submit internal asynchronous task.

MirroringType

The MirroringType enumerator itemizes mirroring types.

enumerator MFX_MIRRORING_DISABLED

enumerator MFX_MIRRORING_HORIZONTAL

enumerator MFX_MIRRORING_VERTICAL

DenoiseMode

The mfxDenoiseMode enumerator itemizes denoise modes.

enum mfxDenoiseMode
The mfxDenoiseMode enumerator specifies the mode of denoise.

Values:

enumerator MFX_DENOISE_MODE_DEFAULT
Default denoise mode. The library selects the most appropriate denoise mode.

10.5. oneVPL API Reference 987

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_DENOISE_MODE_VENDOR
The enumeration to separate common denoise mode above and vendor specific.

enumerator MFX_DENOISE_MODE_INTEL_HVS_AUTO_BDRATE
Indicates auto BD rate improvement in pre-processing before video encoding, ignore Strength.

enumerator MFX_DENOISE_MODE_INTEL_HVS_AUTO_SUBJECTIVE
Indicates auto subjective quality improvement in pre-processing before video encoding, ignore Strength.

enumerator MFX_DENOISE_MODE_INTEL_HVS_AUTO_ADJUST
Indicates auto adjust subjective quality in post-processing (after decoding) for video playback, ignore
Strength.

enumerator MFX_DENOISE_MODE_INTEL_HVS_PRE_MANUAL
Indicates manual mode for pre-processing before video encoding, allow to adjust the denoise strength man-
ually.

enumerator MFX_DENOISE_MODE_INTEL_HVS_POST_MANUAL
Indicates manual mode for post-processing for video playback, allow to adjust the denoise strength manu-
ally.

MPEG-2 Profiles

enumerator MFX_PROFILE_MPEG2_SIMPLE

enumerator MFX_PROFILE_MPEG2_MAIN

enumerator MFX_PROFILE_MPEG2_HIGH

Multi-view Video Coding Extension Profiles

enumerator MFX_PROFILE_AVC_MULTIVIEW_HIGH
Multi-view high profile.

enumerator MFX_PROFILE_AVC_STEREO_HIGH
Stereo high profile.

MVPrecision

The MVPrecision enumerator specifies the motion estimation precision

enumerator MFX_MVPRECISION_UNKNOWN

enumerator MFX_MVPRECISION_INTEGER

enumerator MFX_MVPRECISION_HALFPEL

enumerator MFX_MVPRECISION_QUARTERPEL

10.5. oneVPL API Reference 988

oneAPI Specification, Release 1.1-rev-1

NominalRange

The NominalRange enumerator itemizes pixel’s value nominal range.

enumerator MFX_NOMINALRANGE_UNKNOWN
Range is not defined.

enumerator MFX_NOMINALRANGE_0_255
Range is from 0 to 255.

enumerator MFX_NOMINALRANGE_16_235
Range is from 16 to 235.

PartialBitstreamOutput

The PartialBitstreamOutput enumerator indicates flags of partial bitstream output type.

enumerator MFX_PARTIAL_BITSTREAM_NONE
Do not use partial output

enumerator MFX_PARTIAL_BITSTREAM_SLICE
Partial bitstream output will be aligned to slice granularity

enumerator MFX_PARTIAL_BITSTREAM_BLOCK
Partial bitstream output will be aligned to user-defined block size granularity

enumerator MFX_PARTIAL_BITSTREAM_ANY
Partial bitstream output will be return any coded data available at the end of SyncOperation timeout

PayloadCtrlFlags

The PayloadCtrlFlags enumerator itemizes additional payload properties.

enumerator MFX_PAYLOAD_CTRL_SUFFIX
Insert this payload into HEVC Suffix SEI NAL-unit.

PicStruct

The PicStruct enumerator itemizes picture structure. Use bit-OR’ed values to specify the desired picture type.

enumerator MFX_PICSTRUCT_UNKNOWN
Unspecified or mixed progressive/interlaced/field pictures.

enumerator MFX_PICSTRUCT_PROGRESSIVE
Progressive picture.

enumerator MFX_PICSTRUCT_FIELD_TFF
Top field in first interlaced picture.

10.5. oneVPL API Reference 989

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_PICSTRUCT_FIELD_BFF
Bottom field in first interlaced picture.

enumerator MFX_PICSTRUCT_FIELD_REPEATED
First field repeated: pic_struct=5 or 6 in H.264.

enumerator MFX_PICSTRUCT_FRAME_DOUBLING
Double the frame for display: pic_struct=7 in H.264.

enumerator MFX_PICSTRUCT_FRAME_TRIPLING
Triple the frame for display: pic_struct=8 in H.264.

enumerator MFX_PICSTRUCT_FIELD_SINGLE
Single field in a picture.

enumerator MFX_PICSTRUCT_FIELD_TOP
Top field in a picture: pic_struct = 1 in H.265.

enumerator MFX_PICSTRUCT_FIELD_BOTTOM
Bottom field in a picture: pic_struct = 2 in H.265.

enumerator MFX_PICSTRUCT_FIELD_PAIRED_PREV
Paired with previous field: pic_struct = 9 or 10 in H.265.

enumerator MFX_PICSTRUCT_FIELD_PAIRED_NEXT
Paired with next field: pic_struct = 11 or 12 in H.265

PicType

The PicType enumerator itemizes picture type.

enumerator MFX_PICTYPE_UNKNOWN
Picture type is unknown.

enumerator MFX_PICTYPE_FRAME
Picture is a frame.

enumerator MFX_PICTYPE_TOPFIELD
Picture is a top field.

enumerator MFX_PICTYPE_BOTTOMFIELD
Picture is a bottom field.

10.5. oneVPL API Reference 990

oneAPI Specification, Release 1.1-rev-1

PlatformCodeName

enumerator MFX_PLATFORM_UNKNOWN
Unknown platform.

enumerator MFX_PLATFORM_SANDYBRIDGE
Intel(r) microarchitecture code name Sandy Bridge.

enumerator MFX_PLATFORM_IVYBRIDGE
Intel(r) microarchitecture code name Ivy Bridge.

enumerator MFX_PLATFORM_HASWELL
Code name Haswell.

enumerator MFX_PLATFORM_BAYTRAIL
Code name Bay Trail.

enumerator MFX_PLATFORM_BROADWELL
Intel(r) microarchitecture code name Broadwell.

enumerator MFX_PLATFORM_CHERRYTRAIL
Code name Cherry Trail.

enumerator MFX_PLATFORM_SKYLAKE
Intel(r) microarchitecture code name Skylake.

enumerator MFX_PLATFORM_APOLLOLAKE
Code name Apollo Lake.

enumerator MFX_PLATFORM_KABYLAKE
Code name Kaby Lake.

enumerator MFX_PLATFORM_GEMINILAKE
Code name Gemini Lake.

enumerator MFX_PLATFORM_COFFEELAKE
Code name Coffee Lake.

enumerator MFX_PLATFORM_CANNONLAKE
Code name Cannon Lake.

enumerator MFX_PLATFORM_ICELAKE
Code name Ice Lake.

enumerator MFX_PLATFORM_JASPERLAKE
Code name Jasper Lake.

enumerator MFX_PLATFORM_ELKHARTLAKE
Code name Elkhart Lake.

10.5. oneVPL API Reference 991

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_PLATFORM_TIGERLAKE
Code name Tiger Lake.

enumerator MFX_PLATFORM_ROCKETLAKE
Code name Rocket Lake.

enumerator MFX_PLATFORM_ALDERLAKE_S
Code name Alder Lake S.

enumerator MFX_PLATFORM_ALDERLAKE_P
Code name Alder Lake P.

enumerator MFX_PLATFORM_XEHP_SDV
Code name XeHP SDV.

enumerator MFX_PLATFORM_KEEMBAY
Code name Keem Bay.

PRefType

The PRefType enumerator itemizes models of reference list construction and DPB management when GopRefDist=1.

enumerator MFX_P_REF_DEFAULT
Allow encoder to decide.

enumerator MFX_P_REF_SIMPLE
Regular sliding window used for DPB removal process.

enumerator MFX_P_REF_PYRAMID
Let N be the max reference list’s size. Encoder treats each N’s frame as a ‘strong’ reference and the others as
‘weak’ references. The encoder uses a ‘weak’ reference only for prediction of the next frame and removes it from
DPB immediately after use. ‘Strong’ references are removed from DPB by a sliding window.

Protected

The Protected enumerator describes the protection schemes.

enumerator MFX_PROTECTION_CENC_WV_CLASSIC
The protection scheme is based on the Widevine* DRM from Google*.

enumerator MFX_PROTECTION_CENC_WV_GOOGLE_DASH
The protection scheme is based on the Widevine* Modular DRM* from Google*.

10.5. oneVPL API Reference 992

oneAPI Specification, Release 1.1-rev-1

RateControlMethod

The RateControlMethod enumerator itemizes bitrate control methods.

enumerator MFX_RATECONTROL_CBR
Use the constant bitrate control algorithm.

enumerator MFX_RATECONTROL_VBR
Use the variable bitrate control algorithm.

enumerator MFX_RATECONTROL_CQP
Use the constant quantization parameter algorithm.

enumerator MFX_RATECONTROL_AVBR
Use the average variable bitrate control algorithm.

enumerator MFX_RATECONTROL_LA
Use the VBR algorithm with look ahead. It is a special bitrate control mode in the AVC encoder that has been
designed to improve encoding quality. It works by performing extensive analysis of several dozen frames before
the actual encoding and as a side effect significantly increases encoding delay and memory consumption.

The only available rate control parameter in this mode is mfxInfoMFX::TargetKbps. Two other parameters,
MaxKbps and InitialDelayInKB, are ignored. To control LA depth the application can use mfxExtCodingOp-
tion2::LookAheadDepth parameter.

This method is not HRD compliant.

enumerator MFX_RATECONTROL_ICQ
Use the Intelligent Constant Quality algorithm. This algorithm improves subjective video quality of encoded
stream. Depending on content, it may or may not decrease objective video quality. Only one control parameter
is used - quality factor, specified by mfxInfoMFX::ICQQuality.

enumerator MFX_RATECONTROL_VCM
Use the Video Conferencing Mode algorithm. This algorithm is similar to the VBR and uses the same set
of parameters mfxInfoMFX::InitialDelayInKB, TargetKbpsandMaxKbps. It is tuned for IPPP GOP pattern and
streams with strong temporal correlation between frames. It produces better objective and subjective video
quality in these conditions than other bitrate control algorithms. It does not support interlaced content, B-frames
and produced stream is not HRD compliant.

enumerator MFX_RATECONTROL_LA_ICQ
Use Intelligent Constant Quality algorithm with look ahead. Quality factor is specified by mfxIn-
foMFX::ICQQuality. To control LA depth the application can use mfxExtCodingOption2::LookAheadDepth
parameter.

This method is not HRD compliant.

enumerator MFX_RATECONTROL_LA_HRD
MFX_RATECONTROL_LA_EXT has been removed

Use HRD compliant look ahead rate control algorithm.

enumerator MFX_RATECONTROL_QVBR
Use the variable bitrate control algorithm with constant quality. This algorithm trying to achieve the target sub-

10.5. oneVPL API Reference 993

oneAPI Specification, Release 1.1-rev-1

jective quality with the minimum number of bits, while the bitrate constraint and HRD compliance are satisfied.
It uses the same set of parameters as VBR and quality factor specified by mfxExtCodingOption3::QVBRQuality.

ROImode

The ROImode enumerator itemizes QP adjustment mode for ROIs.

enumerator MFX_ROI_MODE_PRIORITY
Priority mode.

enumerator MFX_ROI_MODE_QP_DELTA
QP mode

enumerator MFX_ROI_MODE_QP_VALUE
Absolute QP

Rotation

The Rotation enumerator itemizes the JPEG rotation options.

enumerator MFX_ROTATION_0
No rotation.

enumerator MFX_ROTATION_90
90 degree rotation.

enumerator MFX_ROTATION_180
180 degree rotation.

enumerator MFX_ROTATION_270
270 degree rotation.

SampleAdaptiveOffset

The SampleAdaptiveOffset enumerator uses bit-ORed values to itemize corresponding HEVC encoding feature.

enumerator MFX_SAO_UNKNOWN
Use default value for platform/TargetUsage.

enumerator MFX_SAO_DISABLE
Disable SAO. If set during Init leads to SPS sample_adaptive_offset_enabled_flag = 0. If set during Runtime,
leads to to slice_sao_luma_flag = 0 and slice_sao_chroma_flag = 0 for current frame.

enumerator MFX_SAO_ENABLE_LUMA
Enable SAO for luma (slice_sao_luma_flag = 1).

enumerator MFX_SAO_ENABLE_CHROMA
Enable SAO for chroma (slice_sao_chroma_flag = 1).

10.5. oneVPL API Reference 994

oneAPI Specification, Release 1.1-rev-1

ScalingMode

The ScalingMode enumerator itemizes variants of scaling filter implementation.

enumerator MFX_SCALING_MODE_DEFAULT
Default scaling mode. The library selects the most appropriate scaling method.

enumerator MFX_SCALING_MODE_LOWPOWER
Low power scaling mode which is applicable for library implementations. The exact scaling algorithm is defined
by the library.

enumerator MFX_SCALING_MODE_QUALITY
The best quality scaling mode.

enumerator MFX_SCALING_MODE_VENDOR
The enumeration to separate common scaling controls above and vendor specific.

enumerator MFX_SCALING_MODE_INTEL_GEN_COMPUTE

enumerator MFX_SCALING_MODE_INTEL_GEN_VDBOX
The mode to run scaling operation on Execution Units (EUs).

enumerator MFX_SCALING_MODE_INTEL_GEN_VEBOX
The special optimization mode where scaling operation running on SFC (Scaler & Format Converter) is cou-
pled with VDBOX (also known as Multi-Format Codec fixed-function engine). This mode is applicable for
DECODE_VPP domain functions.

ScenarioInfo

The ScenarioInfo enumerator itemizes scenarios for the encoding session.

enumerator MFX_SCENARIO_UNKNOWN

enumerator MFX_SCENARIO_DISPLAY_REMOTING

enumerator MFX_SCENARIO_VIDEO_CONFERENCE

enumerator MFX_SCENARIO_ARCHIVE

enumerator MFX_SCENARIO_LIVE_STREAMING

enumerator MFX_SCENARIO_CAMERA_CAPTURE

enumerator MFX_SCENARIO_VIDEO_SURVEILLANCE

enumerator MFX_SCENARIO_GAME_STREAMING

enumerator MFX_SCENARIO_REMOTE_GAMING

10.5. oneVPL API Reference 995

oneAPI Specification, Release 1.1-rev-1

SegmentFeature

The SegmentFeature enumerator indicates features enabled for the segment. These values are used with the
mfxVP9SegmentParam::FeatureEnabled parameter.

enumerator MFX_VP9_SEGMENT_FEATURE_QINDEX
Quantization index delta.

enumerator MFX_VP9_SEGMENT_FEATURE_LOOP_FILTER
Loop filter level delta.

enumerator MFX_VP9_SEGMENT_FEATURE_REFERENCE
Reference frame.

enumerator MFX_VP9_SEGMENT_FEATURE_SKIP
Skip.

SegmentIdBlockSize

The SegmentIdBlockSize enumerator indicates the block size represented by each segment_id in segmentation map.
These values are used with the mfxExtVP9Segmentation::SegmentIdBlockSize parameter.

enumerator MFX_VP9_SEGMENT_ID_BLOCK_SIZE_UNKNOWN
Unspecified block size.

enumerator MFX_VP9_SEGMENT_ID_BLOCK_SIZE_8x8
8x8 block size.

enumerator MFX_VP9_SEGMENT_ID_BLOCK_SIZE_16x16
16x16 block size.

enumerator MFX_VP9_SEGMENT_ID_BLOCK_SIZE_32x32
32x32 block size.

enumerator MFX_VP9_SEGMENT_ID_BLOCK_SIZE_64x64
64x64 block size.

SkipFrame

The SkipFrame enumerator is used to define usage of mfxEncodeCtrl::SkipFrame parameter.

enumerator MFX_SKIPFRAME_NO_SKIP
Frame skipping is disabled, mfxEncodeCtrl::SkipFrame is ignored.

enumerator MFX_SKIPFRAME_INSERT_DUMMY
Skipping is allowed, when mfxEncodeCtrl::SkipFrame is set encoder inserts into bitstream frame where all mac-
roblocks are encoded as skipped. Only non-reference P- and B-frames can be skipped. If GopRefDist = 1 and
mfxEncodeCtrl::SkipFrame is set for reference P-frame, it will be encoded as non-reference.

10.5. oneVPL API Reference 996

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_SKIPFRAME_INSERT_NOTHING
Similar to MFX_SKIPFRAME_INSERT_DUMMY, but when mfxEncodeCtrl::SkipFrame is set encoder inserts
nothing into bitstream.

enumerator MFX_SKIPFRAME_BRC_ONLY
mfxEncodeCtrl::SkipFrame indicates number of missed frames before the current frame. Affects only BRC,
current frame will be encoded as usual.

TargetUsage

The TargetUsage enumerator itemizes a range of numbers from MFX_TARGETUSAGE_1, best quality, to
MFX_TARGETUSAGE_7, best speed. It indicates trade-offs between quality and speed. The application can use
any number in the range. The actual number of supported target usages depends on implementation. If the specified
target usage is not supported, the encoder will use the closest supported value.

enumerator MFX_TARGETUSAGE_1
Best quality

enumerator MFX_TARGETUSAGE_2

enumerator MFX_TARGETUSAGE_3

enumerator MFX_TARGETUSAGE_4
Balanced quality and speed.

enumerator MFX_TARGETUSAGE_5

enumerator MFX_TARGETUSAGE_6

enumerator MFX_TARGETUSAGE_7
Best speed

enumerator MFX_TARGETUSAGE_UNKNOWN
Unspecified target usage.

enumerator MFX_TARGETUSAGE_BEST_QUALITY
Best quality.

enumerator MFX_TARGETUSAGE_BALANCED
Balanced quality and speed.

enumerator MFX_TARGETUSAGE_BEST_SPEED
Best speed.

10.5. oneVPL API Reference 997

oneAPI Specification, Release 1.1-rev-1

TelecinePattern

The TelecinePattern enumerator itemizes telecine patterns.

enumerator MFX_TELECINE_PATTERN_32
3:2 telecine.

enumerator MFX_TELECINE_PATTERN_2332
2:3:3:2 telecine.

enumerator MFX_TELECINE_PATTERN_FRAME_REPEAT
One frame repeat telecine.

enumerator MFX_TELECINE_PATTERN_41
4:1 telecine.

enumerator MFX_TELECINE_POSITION_PROVIDED
User must provide position inside a sequence of 5 frames where the artifacts start.

TimeStampCalc

The TimeStampCalc enumerator itemizes time-stamp calculation methods.

enumerator MFX_TIMESTAMPCALC_UNKNOWN
The time stamp calculation is based on the input frame rate if time stamp is not explicitly specified.

enumerator MFX_TIMESTAMPCALC_TELECINE
Adjust time stamp to 29.97fps on 24fps progressively encoded sequences if telecine attributes are available in
the bitstream and time stamp is not explicitly specified. The input frame rate must be specified.

TransferMatrix

The TransferMatrix enumerator itemizes color transfer matrices.

enumerator MFX_TRANSFERMATRIX_UNKNOWN
Transfer matrix is not specified

enumerator MFX_TRANSFERMATRIX_BT709
Transfer matrix from ITU-R BT.709 standard.

enumerator MFX_TRANSFERMATRIX_BT601
Transfer matrix from ITU-R BT.601 standard.

10.5. oneVPL API Reference 998

oneAPI Specification, Release 1.1-rev-1

TrellisControl

The TrellisControl enumerator is used to control trellis quantization in AVC encoder. The application can turn it on or off
for any combination of I, P, and B frames by combining different enumerator values. For example, MFX_TRELLIS_I
| MFX_TRELLIS_B turns it on for I and B frames.

enumerator MFX_TRELLIS_UNKNOWN
Default value, it is up to the encoder to turn trellis quantization on or off.

enumerator MFX_TRELLIS_OFF
Turn trellis quantization off for all frame types.

enumerator MFX_TRELLIS_I
Turn trellis quantization on for I-frames.

enumerator MFX_TRELLIS_P
Turn trellis quantization on for P-frames.

enumerator MFX_TRELLIS_B
Turn trellis quantization on for B-frames.

VP9ReferenceFrame

The VP9ReferenceFrame enumerator itemizes reference frame type by the mfxVP9SegmentParam::ReferenceFrame
parameter.

enumerator MFX_VP9_REF_INTRA
Intra.

enumerator MFX_VP9_REF_LAST
Last.

enumerator MFX_VP9_REF_GOLDEN
Golden.

enumerator MFX_VP9_REF_ALTREF
Alternative reference.

VPPFieldProcessingMode

The VPPFieldProcessingMode enumerator is used to control VPP field processing algorithm.

enumerator MFX_VPP_COPY_FRAME
Copy the whole frame.

enumerator MFX_VPP_COPY_FIELD
Copy only one field.

enumerator MFX_VPP_SWAP_FIELDS
Swap top and bottom fields.

10.5. oneVPL API Reference 999

oneAPI Specification, Release 1.1-rev-1

WeightedPred

The WeightedPred enumerator itemizes weighted prediction modes.

enumerator MFX_WEIGHTED_PRED_UNKNOWN
Allow encoder to decide.

enumerator MFX_WEIGHTED_PRED_DEFAULT
Use default weighted prediction.

enumerator MFX_WEIGHTED_PRED_EXPLICIT
Use explicit weighted prediction.

enumerator MFX_WEIGHTED_PRED_IMPLICIT
Use implicit weighted prediction (for B-frames only).

FilmGrainFlags

The FilmGrainFlags enumerator itemizes flags in AV1 film grain parameters.

enumerator MFX_FILM_GRAIN_NO
Film grain isn’t added to this frame.

enumerator MFX_FILM_GRAIN_APPLY
Film grain is added to this frame.

enumerator MFX_FILM_GRAIN_UPDATE
New set of film grain parameters is sent for this frame.

enumerator MFX_FILM_GRAIN_CHROMA_SCALING_FROM_LUMA
Chroma scaling is inferred from luma scaling.

enumerator MFX_FILM_GRAIN_OVERLAP
Overlap between film grain blocks is applied.

enumerator MFX_FILM_GRAIN_CLIP_TO_RESTRICTED_RANGE
Clipping to the restricted (studio) range is applied after adding the film grain.

mfxHyperMode

enum mfxHyperMode
The mfxHyperMode enumerator describes HyperMode implementation behavior.

Values:

enumerator MFX_HYPERMODE_OFF
Don’t use HyperMode implementation.

enumerator MFX_HYPERMODE_ON
Enable HyperMode implementation and return error if some issue on initialization.

10.5. oneVPL API Reference 1000

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_HYPERMODE_ADAPTIVE
Enable HyperMode implementation and switch to single fallback if some issue on initialization.

mfxPoolAllocationPolicy

enum mfxPoolAllocationPolicy
Specifies the surface pool allocation policies.

Values:

enumerator MFX_ALLOCATION_OPTIMAL
Recommends to limit max pool size by sum of requested surfaces asked by components.

enumerator MFX_ALLOCATION_UNLIMITED
Dynamic allocation with no limit.

enumerator MFX_ALLOCATION_LIMITED
Max pool size is limited by NumberToPreAllocate + DeltaToAllocateOnTheFly.

mfxVPPPoolType

enum mfxVPPPoolType
Values:

enumerator MFX_VPP_POOL_IN
Input pool.

enumerator MFX_VPP_POOL_OUT
Output pool.

mfxAV1SegmentIdBlockSize

The mfxAV1SegmentIdBlockSize enumerator indicates the block size represented by each segment_id in segmentation
map.

enum mfxAV1SegmentIdBlockSize
The AV1 SegmentIdBlockSize enumerator indicates the block size represented by each segment_id in segmen-
tation map. These values are used with the mfxExtAV1Segmentation::SegmentIdBlockSize parameter.

Values:

enumerator MFX_AV1_SEGMENT_ID_BLOCK_SIZE_UNSPECIFIED
Unspecified block size.

enumerator MFX_AV1_SEGMENT_ID_BLOCK_SIZE_4x4
block size 4x4

enumerator MFX_AV1_SEGMENT_ID_BLOCK_SIZE_8x8
block size 8x8

10.5. oneVPL API Reference 1001

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_AV1_SEGMENT_ID_BLOCK_SIZE_16x16
block size 16x16

enumerator MFX_AV1_SEGMENT_ID_BLOCK_SIZE_32x32
block size 32x32

enumerator MFX_AV1_SEGMENT_ID_BLOCK_SIZE_64x64
block size 64x64

enumerator MFX_AV1_SEGMENT_ID_BLOCK_SIZE_128x128
block size 128x128

AV1SegmentFeature

The AV1SegmentFeature enumerator indicates features enabled for the segment.

enumerator MFX_AV1_SEGMENT_FEATURE_ALT_QINDEX
use alternate Quantizer.

enumerator MFX_AV1_SEGMENT_FEATURE_ALT_LF_Y_VERT
use alternate loop filter value on y plane vertical.

enumerator MFX_AV1_SEGMENT_FEATURE_ALT_LF_Y_HORZ
use alternate loop filter value on y plane horizontal.

enumerator MFX_AV1_SEGMENT_FEATURE_ALT_LF_U
use alternate loop filter value on u plane.

enumerator MFX_AV1_SEGMENT_FEATURE_ALT_LF_V
use alternate loop filter value on v plane.

enumerator MFX_AV1_SEGMENT_FEATURE_REFERENCE
use segment reference frame.

enumerator MFX_AV1_SEGMENT_FEATURE_SKIP
use segment (0,0) + skip mode.

enumerator MFX_AV1_SEGMENT_FEATURE_GLOBALMV
use global motion vector.

10.5.4 Define Reference

API

MFX_DECODERDESCRIPTION_VERSION

MFX_DEVICEDESCRIPTION_VERSION
The current version of mfxDeviceDescription structure.

MFX_ENCODERDESCRIPTION_VERSION

10.5. oneVPL API Reference 1002

oneAPI Specification, Release 1.1-rev-1

MFX_FRAMESURFACE1_VERSION

MFX_FRAMESURFACEINTERFACE_VERSION

MFX_IMPLDESCRIPTION_VERSION
The current version of mfxImplDescription structure.

MFX_LEGACY_VERSION
The corresponding version of the Intel(r) Media SDK legacy API that is used as a basis for the current API.

MFX_STRUCT_VERSION(MAJOR, MINOR)

MFX_VARIANT_VERSION

MFX_VERSION

MFX_VERSION_MAJOR

MFX_VERSION_MINOR

MFX_VPPDESCRIPTION_VERSION

MFX_SURFACEARRAY_VERSION

10.5.5 Type Reference

• Basic Types

• Typedefs

Basic Types

typedef char mfxChar
UTF-8 byte.

typedef float mfxF32
Single-precision floating point, 32 bit type.

typedef double mfxF64
Double-precision floating point, 64 bit type.

typedef void *mfxHDL
Handle type.

typedef char mfxI8
Signed integer, 8 bit type.

typedef short mfxI16
Signed integer, 16 bit type.

10.5. oneVPL API Reference 1003

oneAPI Specification, Release 1.1-rev-1

typedef int mfxI32
Signed integer, 32 bit type.

typedef long long mfxI64
Signed integer, 64 bit type.

typedef int mfxL32
Signed integer, 32 bit type.

typedef mfxHDL mfxMemId
Memory ID type.

typedef void *mfxThreadTask
Thread task type.

typedef unsigned char mfxU8
Unsigned integer, 8 bit type.

typedef unsigned short mfxU16
Unsigned integer, 16 bit type.

typedef unsigned int mfxU32
Unsigned integer, 32 bit type.

typedef unsigned long long mfxU64
Unsigned integer, 64 bit type.

typedef unsigned int mfxUL32
Unsigned integer, 32 bit type.

Typedefs

typedef struct _mfxConfig *mfxConfig
Config handle.

typedef struct _mfxLoader *mfxLoader
Loader handle.

typedef struct _mfxSession *mfxSession
Session handle.

typedef struct _mfxSyncPoint *mfxSyncPoint
Synchronization point object handle.

10.5. oneVPL API Reference 1004

oneAPI Specification, Release 1.1-rev-1

10.5.6 Dispatcher API

Use the Dispatcher API to load and execute the appropriate library implementation and get capabilities for the imple-
mentations available on the platform.

Dispatcher API Function Reference

API

• MFXCreateConfig

• MFXCreateSession

• MFXDispReleaseImplDescription

• MFXEnumImplementations

• MFXLoad

• MFXSetConfigFilterProperty

• MFXUnload

MFXCreateConfig

mfxConfig MFXCreateConfig(mfxLoader loader)
Creates dispatcher configuration.

Creates the dispatcher internal configuration, which is used to filter out available implementations. This con-
figuration is used to walk through selected implementations to gather more details and select the appropriate
implementation to load. The loader object remembers all created mfxConfig objects and destroys them during
the mfxUnload function call.

Multiple configurations per single mfxLoader object are possible.

Usage example:

mfxLoader loader = MFXLoad();
mfxConfig cfg = MFXCreateConfig(loader);
MFXCreateSession(loader,0,&session);

Since This function is available since API version 2.0.

Parameters loader – [in] Loader handle.

Returns Config handle or NULL pointer is failed.

10.5. oneVPL API Reference 1005

oneAPI Specification, Release 1.1-rev-1

MFXCreateSession

mfxStatus MFXCreateSession(mfxLoader loader, mfxU32 i, mfxSession *session)
Loads and initializes the implementation.

mfxLoader loader = MFXLoad();
int i=0;
while(1) {

mfxImplDescription *idesc;
MFXEnumImplementations(loader, i, MFX_IMPLCAPS_IMPLDESCSTRUCTURE, (mfxHDL*)&

→˓idesc);
if(is_good(idesc)) {

MFXCreateSession(loader, i,&session);
// ...
MFXDispReleaseImplDescription(loader, idesc);

}
else
{

MFXDispReleaseImplDescription(loader, idesc);
break;

}
}

Since This function is available since API version 2.0.

Parameters
• loader – [in] Loader handle.

• i – [in] Index of the implementation.

• session – [out] Pointer to the session handle.

Returns
MFX_ERR_NONE The function completed successfully. The session contains a pointer to the
session handle.

MFX_ERR_NULL_PTR If loader is NULL.

MFX_ERR_NULL_PTR If session is NULL.

MFX_ERR_NOT_FOUND Provided index is out of possible range.

MFXDispReleaseImplDescription

mfxStatus MFXDispReleaseImplDescription(mfxLoader loader, mfxHDL hdl)
Destroys handle allocated by the MFXEnumImplementations function.

Since This function is available since API version 2.0.

Parameters
• loader – [in] Loader handle.

10.5. oneVPL API Reference 1006

oneAPI Specification, Release 1.1-rev-1

• hdl – [in] Handle to destroy. Can be equal to NULL.

Returns
MFX_ERR_NONE The function completed successfully.

MFX_ERR_NULL_PTR If loader is NULL.

MFX_ERR_INVALID_HANDLE Provided hdl handle is not associated with this loader.

MFXEnumImplementations

mfxStatus MFXEnumImplementations(mfxLoader loader, mfxU32 i, mfxImplCapsDeliveryFormat format, mfxHDL
*idesc)

Iterates over filtered out implementations to gather their details. This function allocates memory to store mfxIm-
plDescription structure instance. Use the MFXDispReleaseImplDescription function to free memory allocated
to the mfxImplDescription structure.

Since This function is available since API version 2.0.

Parameters
• loader – [in] Loader handle.

• i – [in] Index of the implementation.

• format – [in] Format in which capabilities need to be delivered. See the mfxImplCapsDe-
liveryFormat enumerator for more details.

• idesc – [out] Pointer to the mfxImplDescription structure.

Returns
MFX_ERR_NONE The function completed successfully. The idesc contains valid information.

MFX_ERR_NULL_PTR If loader is NULL.

MFX_ERR_NULL_PTR If idesc is NULL.

MFX_ERR_NOT_FOUND Provided index is out of possible range.

MFX_ERR_UNSUPPORTED If requested format is not supported.

MFXLoad

mfxLoader MFXLoad(void)
Creates the loader.

Since This function is available since API version 2.0.

Returns Loader Loader handle or NULL if failed.

10.5. oneVPL API Reference 1007

oneAPI Specification, Release 1.1-rev-1

MFXSetConfigFilterProperty

mfxStatus MFXSetConfigFilterProperty(mfxConfig config, const mfxU8 *name, mfxVariant value)
Adds additional filter properties (any fields of the mfxImplDescription structure) to the configuration of the loader
object. One mfxConfig properties can hold only single filter property.

Since This function is available since API version 2.0.

Note: Each new call with the same parameter name will overwrite the previously set value. This may invalidate
other properties.

Note: Each new call with another parameter name will delete the previous property and create a new property
based on new name’s value.

Parameters
• config – [in] Config handle.

• name – [in] Name of the parameter (see mfxImplDescription structure and example).

• value – [in] Value of the parameter.

Returns
MFX_ERR_NONE The function completed successfully. MFX_ERR_NULL_PTR If config is
NULL.

MFX_ERR_NULL_PTR If name is NULL.

MFX_ERR_NOT_FOUND If name contains unknown parameter name.
MFX_ERR_UNSUPPORTED If value data type does not equal the parameter with pro-
vided name.

MFXUnload

void MFXUnload(mfxLoader loader)
Destroys the dispatcher.

Since This function is available since API version 2.0.

Parameters loader – [in] Loader handle.

10.5. oneVPL API Reference 1008

oneAPI Specification, Release 1.1-rev-1

Dispatcher API Structure Reference

API

• mfxDecoderDescription

• mfxDeviceDescription

• mfxEncoderDescription

• mfxImplDescription

• mfxVariant

• mfxVPPDescription

• mfxAccelerationModeDescription

• mfxImplementedFunctions

• mfxPoolPolicyDescription

mfxDecoderDescription

struct mfxDecoderDescription
The mfxDecoderDescription structure represents the description of a decoder.

Public Members

mfxStructVersion Version
Version of the structure.

mfxU16 reserved[7]
Reserved for future use.

mfxU16 NumCodecs
Number of supported decoders.

struct mfxDecoderDescription::decoder *Codecs
Pointer to the array of decoders.

struct decoder
This structure represents the decoder description.

10.5. oneVPL API Reference 1009

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxU32 CodecID
Decoder ID in FourCC format.

mfxU16 reserved[8]
Reserved for future use.

mfxU16 MaxcodecLevel
Maximum supported codec level. See the CodecProfile enumerator for possible values.

mfxU16 NumProfiles
Number of supported profiles.

struct mfxDecoderDescription::decoder::decprofile *Profiles
Pointer to the array of profiles supported by the codec.

struct decprofile
This structure represents the codec profile description.

Public Members

mfxU32 Profile
Profile ID. See the CodecProfile enumerator for possible values.

mfxU16 reserved[7]
Reserved for future use.

mfxU16 NumMemTypes
Number of supported memory types.

struct mfxDecoderDescription::decoder::decprofile::decmemdesc *MemDesc
Pointer to the array of memory types.

struct decmemdesc
This structure represents the underlying details of the memory type.

Public Members

mfxResourceType MemHandleType
Memory handle type.

mfxRange32U Width
Range of supported image widths.

mfxRange32U Height
Range of supported image heights.

10.5. oneVPL API Reference 1010

oneAPI Specification, Release 1.1-rev-1

mfxU16 reserved[7]
Reserved for future use.

mfxU16 NumColorFormats
Number of supported output color formats.

mfxU32 *ColorFormats
Pointer to the array of supported output color formats (in FOURCC).

mfxDeviceDescription

struct mfxDeviceDescription
This structure represents device description.

Public Members

mfxStructVersion Version
Version of the structure.

mfxU16 reserved[6]
reserved for future use.

mfxU16 MediaAdapterType
Graphics adapter type. See the mfxMediaAdapterType enumerator for a list of possible values.

mfxChar DeviceID[MFX_STRFIELD_LEN]
Null terminated string with device ID.

mfxU16 NumSubDevices
Number of available uniform sub-devices. Pure software implementation can report 0.

struct mfxDeviceDescription::subdevices *SubDevices
Pointer to the array of available sub-devices.

struct subdevices
This structure represents sub-device description.

Public Members

mfxU32 Index
Index of the sub-device, started from 0 and increased by 1.

mfxChar SubDeviceID[MFX_STRFIELD_LEN]
Null terminated string with unique sub-device ID, mapped to the system ID.

mfxU32 reserved[7]
reserved for future use.

10.5. oneVPL API Reference 1011

oneAPI Specification, Release 1.1-rev-1

mfxEncoderDescription

struct mfxEncoderDescription
This structure represents an encoder description.

Public Members

mfxStructVersion Version
Version of the structure.

mfxU16 reserved[7]
Reserved for future use.

mfxU16 NumCodecs
Number of supported encoders.

struct mfxEncoderDescription::encoder *Codecs
Pointer to the array of encoders.

struct encoder
This structure represents encoder description.

Public Members

mfxU32 CodecID
Encoder ID in FourCC format.

mfxU16 MaxcodecLevel
Maximum supported codec level. See the CodecProfile enumerator for possible values.

mfxU16 BiDirectionalPrediction
Indicates B-frames support.

mfxU16 reserved[7]
Reserved for future use.

mfxU16 NumProfiles
Number of supported profiles.

struct mfxEncoderDescription::encoder::encprofile *Profiles
Pointer to the array of profiles supported by the codec.

struct encprofile
This structure represents the codec profile description.

10.5. oneVPL API Reference 1012

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxU32 Profile
Profile ID. See the CodecProfile enumerator for possible values.

mfxU16 reserved[7]
Reserved for future use.

mfxU16 NumMemTypes
Number of supported memory types.

struct mfxEncoderDescription::encoder::encprofile::encmemdesc *MemDesc
Pointer to the array of memory types.

struct encmemdesc
This structure represents the underlying details of the memory type.

Public Members

mfxResourceType MemHandleType
Memory handle type.

mfxRange32U Width
Range of supported image widths.

mfxRange32U Height
Range of supported image heights.

mfxU16 reserved[7]
Reserved for future use.

mfxU16 NumColorFormats
Number of supported input color formats.

mfxU32 *ColorFormats
Pointer to the array of supported input color formats (in FOURCC).

mfxImplDescription

struct mfxImplDescription
This structure represents the implementation description.

10.5. oneVPL API Reference 1013

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxStructVersion Version
Version of the structure.

mfxImplType Impl
Impl type: software/hardware.

mfxAccelerationMode AccelerationMode
Default Hardware acceleration stack to use. OS dependent parameter. Use VA for Linux* and DX* for
Windows*.

mfxVersion ApiVersion
Supported API version.

mfxChar ImplName[MFX_IMPL_NAME_LEN]
Null-terminated string with implementation name given by vendor.

mfxChar License[MFX_STRFIELD_LEN]
Null-terminated string with comma-separated list of license names of the implementation.

mfxChar Keywords[MFX_STRFIELD_LEN]
Null-terminated string with comma-separated list of keywords specific to this implementation that dis-
patcher can search for.

mfxU32 VendorID
Standard vendor ID 0x8086 - Intel.

mfxU32 VendorImplID
Vendor specific number with given implementation ID.

mfxDeviceDescription Dev
Supported device.

mfxDecoderDescription Dec
Decoder configuration.

mfxEncoderDescription Enc
Encoder configuration.

mfxVPPDescription VPP
VPP configuration.

mfxAccelerationModeDescription AccelerationModeDescription
Supported acceleration modes.

mfxPoolPolicyDescription PoolPolicies
Supported surface pool polices.

mfxU32 reserved[8]
Reserved for future use.

10.5. oneVPL API Reference 1014

oneAPI Specification, Release 1.1-rev-1

mfxU32 NumExtParam
Number of extension buffers. Reserved for future use. Must be 0.

mfxExtBuffer **ExtParam
Array of extension buffers.

mfxU64 Reserved2
Reserved for future use.

union mfxImplDescription::[anonymous] ExtParams
Extension buffers. Reserved for future.

mfxVariant

struct mfxVariant
The mfxVariantType enumerator data types for mfxVarianf type.

Public Members

mfxStructVersion Version
Version of the structure.

mfxVariantType Type
Value type.

union mfxVariant::data Data
Value data member.

union data
Value data holder.

Public Members

mfxU8 U8
mfxU8 data.

mfxI8 I8
mfxI8 data.

mfxU16 U16
mfxU16 data.

mfxI16 I16
mfxI16 data.

mfxU32 U32
mfxU32 data.

10.5. oneVPL API Reference 1015

oneAPI Specification, Release 1.1-rev-1

mfxI32 I32
mfxI32 data.

mfxU64 U64
mfxU64 data.

mfxI64 I64
mfxI64 data.

mfxF32 F32
mfxF32 data.

mfxF64 F64
mfxF64 data.

mfxHDL Ptr
Pointer.

enum mfxVariantType
The mfxVariantType enumerator data types for mfxVariantType.

Values:

enumerator MFX_VARIANT_TYPE_UNSET
Undefined type.

enumerator MFX_VARIANT_TYPE_U8
8-bit unsigned integer.

enumerator MFX_VARIANT_TYPE_I8
8-bit signed integer.

enumerator MFX_VARIANT_TYPE_U16
16-bit unsigned integer.

enumerator MFX_VARIANT_TYPE_I16
16-bit signed integer.

enumerator MFX_VARIANT_TYPE_U32
32-bit unsigned integer.

enumerator MFX_VARIANT_TYPE_I32
32-bit signed integer.

enumerator MFX_VARIANT_TYPE_U64
64-bit unsigned integer.

enumerator MFX_VARIANT_TYPE_I64
64-bit signed integer.

10.5. oneVPL API Reference 1016

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_VARIANT_TYPE_F32
32-bit single precision floating point.

enumerator MFX_VARIANT_TYPE_F64
64-bit double precision floating point.

enumerator MFX_VARIANT_TYPE_PTR
Generic type pointer.

mfxVPPDescription

struct mfxVPPDescription
This structure represents VPP description.

Public Members

mfxStructVersion Version
Version of the structure.

mfxU16 reserved[7]
Reserved for future use.

mfxU16 NumFilters
Number of supported VPP filters.

struct mfxVPPDescription::filter *Filters
Pointer to the array of supported filters.

struct filter
This structure represents the VPP filters description.

Public Members

mfxU32 FilterFourCC
Filter ID in FourCC format.

mfxU16 MaxDelayInFrames
Introduced output delay in frames.

mfxU16 reserved[7]
Reserved for future use.

mfxU16 NumMemTypes
Number of supported memory types.

struct mfxVPPDescription::filter::memdesc *MemDesc
Pointer to the array of memory types.

10.5. oneVPL API Reference 1017

oneAPI Specification, Release 1.1-rev-1

struct memdesc
This structure represents the underlying details of the memory type.

Public Members

mfxResourceType MemHandleType
Memory handle type.

mfxRange32U Width
Range of supported image widths.

mfxRange32U Height
Range of supported image heights.

mfxU16 reserved[7]
Reserved for future use.

mfxU16 NumInFormats
Number of supported input color formats.

struct mfxVPPDescription::filter::memdesc::format *Formats
Pointer to the array of supported formats.

struct format
This structure represents the input color format description.

Public Members

mfxU32 InFormat
Input color in FourCC format.

mfxU16 reserved[5]
Reserved for future use.

mfxU16 NumOutFormat
Number of supported output color formats.

mfxU32 *OutFormats
Pointer to the array of supported output color formats (in FOURCC).

10.5. oneVPL API Reference 1018

oneAPI Specification, Release 1.1-rev-1

mfxAccelerationModeDescription

struct mfxAccelerationModeDescription
This structure represents acceleration modes description.

Public Members

mfxStructVersion Version
Version of the structure.

mfxU16 reserved[2]
reserved for future use.

mfxU16 NumAccelerationModes
Number of supported acceleration modes.

mfxAccelerationMode *Mode
Pointer to the array of supported acceleration modes.

mfxImplementedFunctions

struct mfxImplementedFunctions
This structure represents the list of names of implemented functions.

Public Members

mfxU16 NumFunctions
Number of function names in the FunctionsName array.

mfxChar **FunctionsName
Array of the null-terminated strings. Each string contains name of the implemented function.

mfxPoolPolicyDescription

struct mfxPoolPolicyDescription
This structure represents pool policy description.

10.5. oneVPL API Reference 1019

oneAPI Specification, Release 1.1-rev-1

Public Members

mfxStructVersion Version
Version of the structure.

mfxU16 reserved[2]
reserved for future use.

mfxU16 NumPoolPolicies
Number of supported pool policies.

mfxPoolAllocationPolicy *Policy
Pointer to the array of supported pool policies.

Dispatcher API Enumeration Reference

API

• mfxAccelerationMode

• mfxImplType

mfxAccelerationMode

enum mfxAccelerationMode
This enum itemizes hardware acceleration stack to use.

Values:

enumerator MFX_ACCEL_MODE_NA
Hardware acceleration is not applicable.

enumerator MFX_ACCEL_MODE_VIA_D3D9
Hardware acceleration goes through the Microsoft* Direct3D9* infrastructure.

enumerator MFX_ACCEL_MODE_VIA_D3D11
Hardware acceleration goes through the Microsoft* Direct3D11* infrastructure.

enumerator MFX_ACCEL_MODE_VIA_VAAPI
Hardware acceleration goes through the Linux* VA-API infrastructure.

enumerator MFX_ACCEL_MODE_VIA_VAAPI_DRM_RENDER_NODE
Hardware acceleration goes through the Linux* VA-API infrastructure with DRM RENDER MODE as
default acceleration access point.

enumerator MFX_ACCEL_MODE_VIA_VAAPI_DRM_MODESET
Hardware acceleration goes through the Linux* VA-API infrastructure with DRM MODESET as default
acceleration access point.

10.5. oneVPL API Reference 1020

oneAPI Specification, Release 1.1-rev-1

enumerator MFX_ACCEL_MODE_VIA_VAAPI_GLX

enumerator MFX_ACCEL_MODE_VIA_VAAPI_X11
Hardware acceleration goes through the Linux* VA-API infrastructure with OpenGL Extension to the X
Window System as default acceleration access point. Hardware acceleration goes through the Linux* VA-
API infrastructure with X11 as default acceleration access point.

enumerator MFX_ACCEL_MODE_VIA_VAAPI_WAYLAND
Hardware acceleration goes through the Linux* VA-API infrastructure with Wayland as default acceleration
access point.

enumerator MFX_ACCEL_MODE_VIA_HDDLUNITE
Hardware acceleration goes through the HDDL* Unite*.

mfxImplType

enum mfxImplType
This enum itemizes implementation type.

Values:

enumerator MFX_IMPL_TYPE_SOFTWARE
Pure Software Implementation.

enumerator MFX_IMPL_TYPE_HARDWARE
Hardware Accelerated Implementation.

Dispatcher API Define Reference

API

• MFX_IMPL_NAME_LEN

• MFX_STRFIELD_LEN

• MFX_ADD_PROPERTY_U32

• MFX_ADD_PROPERTY_U16

• MFX_ADD_PROPERTY_PTR

• MFX_UPDATE_PROPERTY_U32

• MFX_UPDATE_PROPERTY_U16

• MFX_UPDATE_PROPERTY_PTR

10.5. oneVPL API Reference 1021

oneAPI Specification, Release 1.1-rev-1

MFX_IMPL_NAME_LEN

MFX_IMPL_NAME_LEN
Maximum allowed length of the implementation name.

MFX_STRFIELD_LEN

MFX_STRFIELD_LEN
Maximum allowed length of the implementation name.

Helper macro definitions to add property with single value.

MFX_ADD_PROPERTY_U32

MFX_ADD_PROPERTY_U32(loader, name, value)
Adds single property of mfxU32 type.

Parameters
• loader – [in] Valid mfxLoader object

• name – [in] Property name string

• value – [in] Property value

MFX_ADD_PROPERTY_U16

MFX_ADD_PROPERTY_U16(loader, name, value)
Adds single property of mfxU16 type.

Parameters
• loader – [in] Valid mfxLoader object

• name – [in] Property name string

• value – [in] Property value

MFX_ADD_PROPERTY_PTR

MFX_ADD_PROPERTY_PTR(loader, name, value)
Adds single property of pointer type.

Parameters
• loader – [in] Valid mfxLoader object

• name – [in] Property name string

• value – [in] Property value

Helper macro definitions to update existing property.

10.5. oneVPL API Reference 1022

oneAPI Specification, Release 1.1-rev-1

MFX_UPDATE_PROPERTY_U32

MFX_UPDATE_PROPERTY_U32(loader, config, name, value)
Update existing property of mfxU32 type.

Parameters
• loader – [in] Valid mfxLoader object

• config – [in] Valid mfxConfig object

• name – [in] Property name string

• value – [in] Property value

MFX_UPDATE_PROPERTY_U16

MFX_UPDATE_PROPERTY_U16(loader, config, name, value)
Update existing property of mfxU16 type.

Parameters
• loader – [in] Valid mfxLoader object

• config – [in] Valid mfxConfig object

• name – [in] Property name string

• value – [in] Property value

MFX_UPDATE_PROPERTY_PTR

MFX_UPDATE_PROPERTY_PTR(loader, config, name, value)
Update existing property of pointer type.

Parameters
• loader – [in] Valid mfxLoader object

• config – [in] Valid mfxConfig object

• name – [in] Property name string

• value – [in] Property value

10.5.7 GUIDs Reference

API

static const mfxGUID MFX_GUID_SURFACE_POOL = {{0x35, 0x24, 0xf3, 0xda, 0x96, 0x4e, 0x47, 0xf1, 0xaf, 0xb4,
0xec, 0xb1, 0x15, 0x08, 0x06, 0xb1}}

GUID to obtain mfxSurfacePoolInterface.

10.5. oneVPL API Reference 1023

oneAPI Specification, Release 1.1-rev-1

10.6 oneVPL API Versioning

oneVPL is the successor to Intel® Media Software Development Kit. oneVPL API versioning starts from 2.0. There
is a correspondent version of Intel® Media Software Development Kit API which is used as a basis for oneVPL and
defined as the MFX_LEGACY_VERSION macro.

10.7 Appendices

10.7.1 Configuration Parameter Constraints

The mfxFrameInfo structure is used by both the mfxVideoParam structure during oneVPL class initialization and the
mfxFrameSurface1 structure during the actual oneVPL class operation. The parameter constraints described in the
following tables apply.

DECODE, ENCODE, and VPP Constraints

The DECODE, ENCODE, and VPP Constraints table lists parameter constraints common to DECODE, ENCODE,
and VPP.

Table 15: DECODE, ENCODE, and VPP Constraints
Parameters Use During Initialization Use During Operation
FourCC Any valid value. The value must be the same as the initialization value.

The only exception is VPP in composition mode, where
in some cases it is allowed to mix RGB and NV12 sur-
faces. See mfxExtVPPComposite for more details.

ChromaFormat Any valid value. The value must be the same as the initialization value.

DECODE Constraints

The DECODE Constraints table lists DECODE parameter constraints.

10.6. oneVPL API Versioning 1024

oneAPI Specification, Release 1.1-rev-1

Table 16: DECODE Constraints
Parameters Use During Initialization Use During Operation
Width, Height Aligned frame size. The values must be the equal to or larger than the initial-

ization values.

CropX, CropY
CropW, CropH

Ignored. DECODE output. The cropping values are per-frame
based.

AspectRatioW,
AspectRatioH

Any valid values or unspeci-
fied (zero); if unspecified, values
from the input bitstream will be
used. See note below the table.

DECODE output.

FrameRateExtN,
FrameRateExtD

If unspecified, values from the
input bitstream will be used. See
note below the table.

DECODE output.

PicStruct Ignored. DECODE output.

Note: If the application explicitly sets FrameRateExtN/FrameRateExtD or AspectRatioW/AspectRatioH during ini-
tialization, then the decoder will use these values during decoding regardless of the values from bitstream and does not
update them on new SPS. If the application sets them to 0, then the decoder uses values from the stream and updates
them on each SPS.

ENCODE Constraints

The ENCODE Constraints table lists ENCODE parameter constraints.

10.7. Appendices 1025

oneAPI Specification, Release 1.1-rev-1

Table 17: ENCODE Constraints
Parameters Use During Initialization Use During Operation
Width, Height Encoded frame size. The values must be the equal to or larger than

the initialization values.

CropX, CropY
CropW, CropH

H.264: Cropped frame size
MPEG-2: CropW and CropH

Specify the real width and height (may be
unaligned) of the coded frames. CropX and
CropY must be zero.

Ignored.

AspectRatioW,
AspectRatioH

Any valid values. Ignored.

FrameRateExtN,
FrameRateExtD

Any valid values. Ignored.

PicStruct

MFX_PICSTRUCT_UNKNOWN

MFX_PICSTRUCT_PROGRESSIVE

MFX_PICSTRUCT_FIELD_TFF

MFX_PICSTRUCT_FIELD_BFF

The base value must be the same
as the initialization value unless
MFX_PICSTRUCT_UNKNOWN is speci-
fied during initialization. Add other
decorative picture structure flags to
indicate additional display attributes.
Use MFX_PICSTRUCT_UNKNOWN dur-
ing initialization for field attributes and
MFX_PICSTRUCT_PROGRESSIVE for frame
attributes. See the PicStruct enumerator for
details.

VPP Constraints

The VPP Constraints table lists VPP parameter constraints.

10.7. Appendices 1026

oneAPI Specification, Release 1.1-rev-1

Table 18: VPP Constraints
Parameters During Initialization During Operation
Width, Height Any valid values The values must be the equal to or larger than

the initialization values.

CropX, CropY,
CropW, CropH

Ignored These parameters specify the region of inter-
est from input to output.

AspectRatioW,
AspectRatioH

Ignored Aspect ratio values will be passed through
from input to output.

FrameRateExtN,
FrameRateExtD

Any valid values Frame rate values will be updated with the
initialization value at output.

PicStruct

MFX_PICSTRUCT_UNKNOWN

MFX_PICSTRUCT_PROGRESSIVE

MFX_PICSTRUCT_FIELD_TFF

MFX_PICSTRUCT_FIELD_BFF

MFX_PICSTRUCT_FIELD_SINGLE

MFX_PICSTRUCT_FIELD_TOP

MFX_PICSTRUCT_FIELD_BOTTOM

The base value must be the same
as the initialization value unless
MFX_PICSTRUCT_UNKNOWN is specified
during initialization. Other decorative
picture structure flags are passed through
or added as needed. See the PicStruct
enumerator for details.

Specifying Configuration Parameters

The following Configuration Parameters tables summarize how to specify the configuration parameters during initial-
ization, encoding, decoding, and video processing.

Table 19: mfxVideoParam Configuration Parameters

Structure
(param)

ENCODE
Init

ENCODE
Encoding

DECODE
Init

DECODE
Decoding

VPP
Init

VPP
Processing

Protected R • R • R •

IOPattern M • M • M •

ExtParam O • O • O •

Nu-
mExtParam

O • O • O •

10.7. Appendices 1027

oneAPI Specification, Release 1.1-rev-1

Table 20: mfxInfoMFX Configuration Parameters

Structure
(param)

ENCODE
Init

ENCODE
Encoding

DECODE
Init

DECODE
Decoding

VPP
Init

VPP
Processing

CodecId M • M • • •

CodecProfile O • O/M* • • •

CodecLevel O • O • • •

NumThread O • O • • •

TargetUsage O • • • • •

GopPicSize O • • • • •

GopRefDist O • • • • •

GopOptFlag O • • • • •

IdrInterval O • • • • •

RateControl-
Method

O • • • • •

InitialDelayInKB O • • • • •

BufferSizeInKB O • • • • •

TargetKbps M • • • • •

MaxKbps O • • • • •

NumSlice O • • • • •

NumRefFrame O • • • • •

EncodedOrder M • • • • •

10.7. Appendices 1028

oneAPI Specification, Release 1.1-rev-1

Table 21: mfxFrameInfo Configuration Parameters

Structure
(param)

ENCODE
Init

ENCODE
Encoding

DECODE
Init

DECODE
Decoding

VPP
Init

VPP
Processing

FourCC M M M M M M
Width M M M M M M
Height M M M M M M
CropX M Ign Ign U Ign M
CropY M Ign Ign U Ign M
CropW M Ign Ign U Ign M
CropH M Ign Ign U Ign M
FrameRateExtN M Ign O U M U
FrameRateExtD M Ign O U M U
AspectRatioW O Ign O U Ign PT
AspectRatioH O Ign O U Ign PT
PicStruct O M Ign U M M/U
ChromaFormat M M M M Ign Ign

Table 22: Abbreviations used in configuration parameter tables
Abbreviation Meaning
Ign Ignored
PT Pass Through

• Does Not Apply

M Mandated
R Reserved
O Optional
U Updated at output

Note: CodecProfile is mandated for HEVC REXT and SCC profiles and optional for other cases. If the application
does not explicitly set CodecProfile during initialization, the HEVC decoder will use a profile up to Main10.

10.7.2 Multiple-segment Encoding

Multiple-segment encoding is useful in video editing applications during production, for example when the encoder
encodes multiple video clips according to their time line. In general, one can define multiple-segment encoding as
dividing an input sequence of frames into segments and encoding them in different encoding sessions with the same or
different parameter sets. For example:

Segment Already Encoded Segment in Encoding Segment to be Encoded
0s 200s 500s

Note: Different encoders can also be used.

10.7. Appendices 1029

oneAPI Specification, Release 1.1-rev-1

The application must be able to:

• Extract encoding parameters from the bitstream of previously encoded segment.

• Import these encoding parameters to configure the encoder.

Encoding can then continue on the current segment using either the same or similar encoding parameters.

Extracting the header that contains the encoding parameter set from the encoded bitstream is usually the task of a format
splitter (de-multiplexer). Alternatively, the MFXVideoDECODE_DecodeHeader() function can export the raw header
if the application attaches the mfxExtCodingOptionSPSPPS structure as part of the parameters.

The encoder can use the mfxExtCodingOptionSPSPPS structure to import the encoding parameters during
MFXVideoENCODE_Init(). The encoding parameters are in the encoded bitstream format. Upon a successful import
of the header parameters, the encoder will generate bitstreams with a compatible (not necessarily bit-exact) header.
The Header Import Functions table shows all functions that can import a header and their error codes if there are
unsupported parameters in the header or the encoder is unable to achieve compatibility with the imported header.

Table 23: Header Import Functions
Function Name Error Code if Import Fails
MFXVideoENCODE_Init() MFX_ERR_INCOMPATIBLE_VIDEO_PARAM
MFXVideoENCODE_QueryIOSurf() MFX_ERR_INCOMPATIBLE_VIDEO_PARAM
MFXVideoENCODE_Reset() MFX_ERR_INCOMPATIBLE_VIDEO_PARAM
MFXVideoENCODE_Query() MFX_ERR_UNSUPPORTED

The encoder must encode frames to a GOP sequence starting with an IDR frame for H.264 (or I frame for MPEG-2)
to ensure that the current segment encoding does not refer to any frames in the previous segment. This ensures that
the encoded segment is self-contained, allowing the application to insert the segment anywhere in the final bitstream.
After encoding, each encoded segment is HRD compliant. Concatenated segments may not be HRD compliant.

The following example shows the encoder initialization procedure that imports H.264 sequence and picture parameter
sets:

1 mfxStatus init_encoder() {
2 mfxExtCodingOptionSPSPPS option, *option_array;
3

4 /* configure mfxExtCodingOptionSPSPPS */
5 memset(&option,0,sizeof(option));
6 option.Header.BufferId=MFX_EXTBUFF_CODING_OPTION_SPSPPS;
7 option.Header.BufferSz=sizeof(option);
8 option.SPSBuffer=sps_buffer;
9 option.SPSBufSize=sps_buffer_length;

10 option.PPSBuffer=pps_buffer;
11 option.PPSBufSize=pps_buffer_length;
12

13 /* configure mfxVideoParam */
14 mfxVideoParam param;
15 //...
16 param.NumExtParam=1;
17 option_array=&option;
18 param.ExtParam=(mfxExtBuffer**)&option_array;
19

20 /* encoder initialization */
21 mfxStatus status;
22 status=MFXVideoENCODE_Init(session, ¶m);
23 if (status==MFX_ERR_INCOMPATIBLE_VIDEO_PARAM) {

(continues on next page)

10.7. Appendices 1030

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

24 printf("Initialization failed.\n");
25 } else {
26 printf("Initialized.\n");
27 }
28 return status;
29 }

10.7.3 Streaming and Video Conferencing Features

The following sections address some aspects of additional requirements that streaming or video conferencing applica-
tions may use in the encoding or transcoding process. See the Configuration Change section for additional information.

Dynamic Bitrate Change

The oneVPL encoder supports dynamic bitrate change according to bitrate control mode and HRD conformance re-
quirements. If HRD conformance is required, for example if the application sets the NalHrdConformance option in the
mfxExtCodingOption structure to ON, the only allowed bitrate control mode is VBR. In this mode, the application can
change the TargetKbps and MaxKbps values of the mfxInfoMFX structure by calling the MFXVideoENCODE_Reset()
function. This sort of change in bitrate usually results in the generation of a new keyframe and sequence header. There
are exceptions, such as if HRD information is absent in the stream. In this scenario, the change of TargetKbps does
not require a change in the sequence header and as a result the encoder does not insert a keyframe.

If HRD conformance is not required, for example if the application turns off the NalHrdConformance option in the
mfxExtCodingOption structure, all bitrate control modes are available. In CBR and AVBR modes the application
can change TargetKbps. In VBR mode the application can change TargetKbps and MaxKbps values. This sort of
change in bitrate will not result in the generation of a new keyframe or sequence header.

The oneVPL encoder may change some initialization parameters provided by the application during initialization. That
in turn may lead to incompatibility between the parameters provided by the application during reset and the working set
of parameters used by the encoder. For this reason, it is strongly recommended to retrieve the actual working parameters
using the MFXVideoENCODE_GetVideoParam() function before making any changes to bitrate settings.

In all modes, oneVPL encoders will respond to the bitrate changes as quickly as the underlying algorithm allows,
without breaking other encoding restrictions such as HRD compliance if it is enabled. How quickly the actual bitrate
can catch up with the specified bitrate is implementation dependent.

Alternatively, the application may use the CQP encoding mode to perform customized bitrate adjustment on a per-frame
base. The application may use any of the encoded or display order modes to use per-frame CQP.

Dynamic Resolution Change

The oneVPL encoder supports dynamic resolution change in all bitrate control modes. The application may change
resolution by calling the MFXVideoENCODE_Reset() function. The application may decrease or increase resolution
up to the size specified during encoder initialization.

Resolution change always results in the insertion of a key IDR frame and a new sequence parameter set in the header.
The only exception is the oneVPL VP9 encoder (see section for Dynamic reference frame scaling). The oneVPL encoder
does not guarantee HRD conformance across the resolution change point.

The oneVPL encoder may change some initialization parameters provided by the application during initialization. That
in turn may lead to incompatibility of parameters provide by the application during reset and working set of parameters
used by the encoder. Due to this potential incompatibility, it is strongly recommended to retrieve the actual working
parameters set by MFXVideoENCODE_GetVideoParam() function before making any resolution change.

10.7. Appendices 1031

oneAPI Specification, Release 1.1-rev-1

Dynamic Reference Frame Scaling

The VP9 standard allows changing the resolution without the insertion of a keyframe. This is possible because the
VP9 encoder has the built-in capability to upscale and downscale reference frames to match the resolution of the frame
being encoded. By default the oneVPL VP9 encoder inserts a keyframe when the application does Dynamic Resolution
Change. In this case, the first frame with a new resolution is encoded using inter prediction from the scaled reference
frame of the previous resolution. Dynamic scaling has the following limitations, described in the VP9 specification:

• The resolution of any active reference frame cannot exceed 2x the resolution of the current frame.

• The resolution of any active reference frame cannot be smaller than 1/16 of the current frame resolution.

In the case of dynamic scaling, the oneVPL VP9 encoder always uses a single active reference frame for the first frame
after a resolution change. The VP9 encoder has the following limitations for dynamic resolution change:

• The new resolution should not exceed 16x the resolution of the current frame.

• The new resolution should be less than 1/2 of current frame resolution.

The application may force insertion of a keyframe at the point of resolution change by invoking encoder reset with
mfxExtEncoderResetOption::StartNewSequence set to MFX_CODINGOPTION_ON. If a keyframe is inserted, the
dynamic resolution limitations are not enforced.

Note that resolution change with dynamic reference scaling is compatible with multiref (mfxInfoMFX::NumRefFrame
> 1). For multiref configuration, the oneVPL VP9 encoder uses multiple references within stream pieces of the same
resolution and uses a single reference at the place of resolution change.

Forced Keyframe Generation

oneVPL supports forced keyframe generation during encoding. The application can set the FrameType parameter of
the mfxEncodeCtrl structure to control how the current frame is encoded, as follows:

• If the oneVPL encoder works in the display order, the application can enforce any current frame to be a keyframe.
The application cannot change the frame type of already buffered frames inside the encoder.

• If the oneVPL encoder works in the encoded order, the application must specify exact frame type for every frame.
In this way, the application can enforce the current frame to have any frame type that the particular coding standard
allows.

Reference List Selection

During streaming or video conferencing, if the application can obtain feedback about how well the client receives
certain frames, the application may need to adjust the encoding process to use or not use certain frames as reference.
This section describes how to fine-tune the encoding process based on client feedback.

The application can specify the reference window size by specifying the mfxInfoMFX::NumRefFrame parameter
during encoding initialization. Certain platforms may have limits on the the size of the reference window. Use the
MFXVideoENCODE_GetVideoParam() function to retrieve the current working set of parameters.

During encoding, the application can specify the actual reference list lengths by attaching the mfxExtAVCRefListCtrl
structure to the MFXVideoENCODE_EncodeFrameAsync() function. NumRefIdxL0Active specifies the length of the
reference list L0 and NumRefIdxL1Active specifies the length of the reference list L1. These two numbers must be
less than or equal to the mfxInfoMFX::NumRefFrame parameter during encoding initialization.

The application can instruct the oneVPL encoder to use or not use certain reference frames. To
do this, there is a prerequisite that the application uniquely identify each input frame by setting the
mfxFrameData::FrameOrder parameter. The application then specifies the preferred reference frame list
PreferredRefList and/or the rejected frame list RejectedRefList, and attaches the mfxExtAVCRefListCtrl

10.7. Appendices 1032

oneAPI Specification, Release 1.1-rev-1

structure to the MFXVideoENCODE_EncodeFrameAsync() function. The two lists fine-tune how the encoder chooses
the reference frames for the current frame. The encoder does not keep PreferredRefList and the application must
send it for each frame if necessary. There are limitations as follows:

• The frames in the lists are ignored if they are out of the reference window.

• If by going through the lists, the oneVPL encoder cannot find a reference frame for the current frame, the encoder
will encode the current frame without using any reference frames.

• If the GOP pattern contains B-frames, the oneVPL encoder may not be able to follow the
mfxExtAVCRefListCtrl instructions.

Low Latency Encoding and Decoding

The application can set mfxVideoParam::AsyncDepth = 1 to disable any decoder buffering of output frames, which
is aimed to improve the transcoding throughput. With mfxVideoParam::AsyncDepth = 1, the application must
synchronize after the decoding or transcoding operation of each frame.

The application can adjust mfxExtCodingOption::MaxDecFrameBuffering during encoding initialization to im-
prove decoding latency. It is recommended to set this value equal to the number of reference frames.

Reference Picture Marking Repetition SEI Message

The application can request writing the reference picture marking repetition SEI message during encoding initialization
by setting RefPicMarkRep of the mfxExtCodingOption structure. The reference picture marking repetition SEI
message repeats certain reference frame information in the output bitstream for robust streaming.

The oneVPL decoder will respond to the reference picture marking repetition SEI message if the message exists in the
bitstream and compare it to the reference list information specified in the sequence/picture headers. The decoder will
report any mismatch of the SEI message with the reference list information in the mfxFrameData::Corrupted field.

Long Term Reference Frame

The application may use long term reference frames to improve coding efficiency or robustness for video conferencing
applications. The application controls the long term frame marking process by attaching the mfxExtAVCRefListCtrl
extended buffer during encoding. The oneVPL encoder itself never marks a frame as long term.

There are two control lists in the mfxExtAVCRefListCtrl extended buffer. The LongTermRefList list contains the
frame orders (the FrameOrder value in the mfxFrameData structure) of the frames that should be marked as long
term frames. The RejectedRefList list contains the frame order of the frames that should be unmarked as long term
frames. The application can only mark or unmark the frames that are buffered inside the encoder. Because of this,
it is recommended that the application marks a frame when it is submitted for encoding. The application can either
explicitly unmark long term reference frames or wait for the IDR frame. When the IDR frame is reached, all long term
reference frames will be unmarked.

The oneVPL encoder puts all long term reference frames at the end of a reference frame list. If the number of active ref-
erence frames (the NumRefIdxL0Active and NumRefIdxL1Active values in the mfxExtAVCRefListCtrl extended
buffer) is less than than the total reference frame number (the NumRefFrame value in the mfxInfoMFX structure during
the encoding initialization), the encoder may ignore some or all long term reference frames. The application may avoid
this by providing a list of preferred reference frames in the PreferredRefList list in the mfxExtAVCRefListCtrl
extended buffer. In this case, the encoder reorders the reference list based on the specified list.

10.7. Appendices 1033

oneAPI Specification, Release 1.1-rev-1

Temporal Scalability

The application may specify the temporal hierarchy of frames by using the mfxExtAvcTemporalLayers extended
buffer during the encoder initialization in the display order encoding mode. oneVPL inserts the prefix NAL unit before
each slice with a unique temporal and priority ID. The temporal ID starts from zero and the priority ID starts from the
BaseLayerPID value. oneVPL increases the temporal ID and priority ID value by one for each consecutive layer.

If the application needs to specify a unique sequence or picture parameter set ID, the application must use the
mfxExtCodingOptionSPSPPS extended buffer, with all pointers and sizes set to zero and valid SPSId and PPSId
fields. The same SPS and PPS ID will be used for all temporal layers.

Each temporal layer is a set of frames with the same temporal ID. Each layer is defined by the Scale value. The scale
for layer N is equal to the ratio between the frame rate of subsequent temporal layers with a temporal ID less than or
equal to N and the frame rate of the base temporal layer. The application may skip some temporal layers by specifying
the Scale value as zero. The application should use an integer ratio of the frame rates for two consecutive temporal
layers.

For example, a video sequence with 30 frames/second is typically separated by three temporal layers that can be decoded
as 7.5 fps (base layer), 15 fps (base and first temporal layer) and 30 fps (all three layers). In this scenario, Scale should
have the values {1,2,4,0,0,0,0,0}.

10.7.4 Switchable Graphics and Multiple Monitors

The following sections discuss support for switchable graphics and multiple monitor configurations.

Switchable Graphics

Switchable Graphics refers to the machine configuration that multiple graphic devices are available (integrated device
for power saving and discrete devices for performance.) Usually at one time or instance, one of the graphic devices
drives display and becomes the active device, and others become inactive. There are different variations of software or
hardware mechanisms to switch between the graphic devices. In one of the switchable graphics variations, it is possible
to register an application in an affinity list to certain graphic device so that the launch of the application automatically
triggers a switch. The actual techniques to enable such a switch are outside the scope of this document. This section
discusses the implication of switchable graphics to Intel® Media Software Development Kit and Intel® Media Software
Development Kit applications.

As Intel® Media Software Development Kit performs hardware acceleration through graphic devices, it is critical
that Intel® Media Software Development Kit can access the graphic device in the switchable graphics setting. It is
recommended to add the application to the graphic device affinity list. If this is not possible, the application should
handle the following cases:

• By design, during legacy Intel® Media Software Development Kit library initialization, the MFXInit() func-
tion searches for graphic devices. If a Intel® Media Software Development Kit implementation is success-
fully loaded, the MFXInit() function returns mfxStatus::MFX_ERR_NONE and the MFXQueryIMPL() func-
tion returns the actual implementation type. If no Intel® Media Software Development Kit implementation
is loaded, the MFXInit() function returns mfxStatus::MFX_ERR_UNSUPPORTED. In the switchable graph-
ics environment, if the application is not in the graphic device affinity list, it is possible that the graphic de-
vice will not be accessible during the library initialization. The fact that the MFXInit() function returns
mfxStatus::MFX_ERR_UNSUPPORTED does not mean that hardware acceleration is permanently impossible.
The user may switch the graphics later and the graphic device will become accessible. It is recommended that
the application initialize the library right before the actual decoding, video processing, and encoding operations
to determine the hardware acceleration capability.

• During decoding, video processing, and encoding operations, if the application is not in the graphic de-
vice affinity list, the previously accessible graphic device may become inaccessible due to a switch event.

10.7. Appendices 1034

oneAPI Specification, Release 1.1-rev-1

The Intel® Media Software Development Kit functions will return mfxStatus::MFX_ERR_DEVICE_LOST or
mfxStatus::MFX_ERR_DEVICE_FAILED, depending on when the switch occurs and what stage the Intel® Me-
dia Software Development Kit functions operate. The application should handle these errors and exit gracefully.

Multiple Monitors

Multiple monitors refer to the machine configuration that multiple graphic devices are available. Some graphic devices
connect to a display and become active and accessible under the Microsoft* DirectX* infrastructure. Graphic devices
that are not connected to a display are inactive. Using the Microsoft Direct3D* 9 infrastructure, devices that are not
connected to a display are not accessible.

The legacy Intel® Media Software Development Kit uses the adapter number to access a specific graphic device. Usu-
ally, the graphic device driving the main desktop becomes the primary adapter. Other graphic devices take subsequent
adapter numbers after the primary adapter. Under the Microsoft Direct3D 9 infrastructure, only active adapters are
accessible and have an adapter number.

Intel® Media Software Development Kit extends the mfxIMPL implementation type as shown in the Intel® Media SDK
mfxIMPL Implementation Type Definitions table:

Table 24: Intel® Media SDK mfxIMPL Implementation Type Definitions
Implementation Type Definition
MFX_IMPL_HARDWARE Intel® Media Software Development Kit should initialize on the pri-

mary adapter
MFX_IMPL_HARDWARE2 Intel® Media Software Development Kit should initialize on the 2nd

graphic adapter
MFX_IMPL_HARDWARE3 Intel® Media Software Development Kit should initialize on the 3rd

graphic adapter
MFX_IMPL_HARDWARE4 Intel® Media Software Development Kit should initialize on the 4th

graphic adapter
MFX_IMPL_HARDWARE_ANY Intel® Media Software Development Kit should initialize on any

graphic adapter.
MFX_IMPL_AUTO_ANY Intel® Media Software Development Kit should initialize on any

graphic adapter. If not successful, load the software implementa-
tion.

The application can use the first four definitions shown in the Intel® Media SDK mfxIMPL Implementation Type Def-
initions table to instruct the legacy Intel® Media Software Development Kit library to initialize on a specific graphic
device. The application can use the definitions for MFX_IMPL_HARDWARE_ANY and MFX_IMPL_AUTO_ANY for automatic
detection.

If the application uses the Microsoft DirectX surfaces for I/O, it is critical that the application and Intel® Media Software
Development Kit work on the same graphic device. It is recommended that the application use the following procedure:

1. The application uses the MFXInit() function to initialize the legacy Intel® Media Software Development
Kit, with option MFX_IMPL_HARDWARE_ANY or MFX_IMPL_AUTO_ANY . The MFXInit() function returns
mfxStatus::MFX_ERR_NONE if successful.

2. The application uses the MFXQueryIMPL() function to check the actual implementation type. The implemen-
tation type MFX_IMPL_HARDWARE, MFX_IMPL_HARDWARE2, MFX_IMPL_HARDWARE3, or MFX_IMPL_HARDWARE4
indicates the graphic adapter the Intel® Media Software Development Kit works on.

3. The application creates the Direct3D device on the respective graphic adapter and passes it to Intel® Media
Software Development Kit through the MFXVideoCORE_SetHandle() function.

Similar to the switchable graphics cases, interruption may result if the user disconnects monitors from the graphic
devices or remaps the primary adapter. If the interruption occurs during the Intel® Media Software Development Kit

10.7. Appendices 1035

oneAPI Specification, Release 1.1-rev-1

library initialization, the MFXInit() function may return mfxStatus::MFX_ERR_UNSUPPORTED. This means hard-
ware acceleration is currently not available. It is recommended that the application initialize Intel® Media Software
Development Kit right before the actual decoding, video processing, and encoding operations to determine the hardware
acceleration capability.

If the interruption occurs during decoding, video processing, or encoding operations, oneVPL functions will return
mfxStatus::MFX_ERR_DEVICE_LOST or mfxStatus::MFX_ERR_DEVICE_FAILED. The application should handle
these errors and exit gracefully.

10.7.5 Working Directly with VA API for Linux*

Intel® Media Software Development Kit takes care of all memory and synchronization related operations in the VA
API. The application may need to extend Intel® Media Software Development Kit functionality by working directly
with the VA API for Linux*, for example to implement a customized external allocator. This section describes basic
memory management and synchronization techniques.

To create the VA surface pool, the application should call the vaCreateSurfaces function:

1 const int num_surfaces = 5;
2 VASurfaceID surfaces[num_surfaces];
3 VASurfaceAttrib attrib;
4

5 attrib.type = VASurfaceAttribPixelFormat;
6 attrib.value.type = VAGenericValueTypeInteger;
7 attrib.value.value.i = VA_FOURCC_NV12;
8 attrib.flags = VA_SURFACE_ATTRIB_SETTABLE;
9

10 vaCreateSurfaces(va_display, VA_RT_FORMAT_YUV420, width, height,
11 surfaces, num_surfaces, &attrib, 1);

To destroy the surface pool, the application should call the vaDestroySurfaces function:

1 vaDestroySurfaces(va_display, surfaces, num_surfaces);

If the application works with hardware acceleration through Intel® Media Software Development Kit, then it can access
surface data immediately after successful completion of the MFXVideoCORE_SyncOperation() call. If the application
works with hardware acceleration directly, then it must check surface status before accessing data in video memory.
This check can be done asynchronously by calling the vaQuerySurfaceStatus function or synchronously by calling the
vaSyncSurface function.

After successful synchronization, the application can access surface data. Accessing surface data is performed in two
steps:

1. Create VAImage from surface.

2. Map image buffer to system memory.

After mapping, the VAImage.offsets[3] array holds offsets to each color plain in a mapped buffer and the VAIm-
age.pitches[3] array holds color plain pitches in bytes. For packed data formats, only first entries in these arrays are
valid. The following example shows how to access data in a NV12 surface:

1 VAImage image;
2 unsigned char *Y, *U, *V;
3 void* buffer;
4

5 vaDeriveImage(va_display, surfaceToMap, &image);
(continues on next page)

10.7. Appendices 1036

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

6 vaMapBuffer(va_display, image.buf, &buffer);
7

8 /* NV12 */
9 Y = (unsigned char*)buffer + image.offsets[0];

10 U = (unsigned char*)buffer + image.offsets[1];
11 V = U + 1;

After processing data in a VA surface, the application should release resources allocated for the mapped buffer and
VAImage object:

1 vaUnmapBuffer(va_display, image.buf);
2 vaDestroyImage(va_display, image.image_id);

In some cases, in order to retrieve encoded bitstream data from video memory, the application must use the VABuffer
to store data. The following example shows how to create, use, and destroy the VABuffer:

1 VABufferID buf_id;
2 size_t size;
3 uint32_t offset;
4 void *buf;
5

6 /* create buffer */
7 vaCreateBuffer(va_display, va_context, VAEncCodedBufferType, buf_size, 1, NULL, & buf_

→˓id);
8

9 /* encode frame */
10 // ...
11

12 /* map buffer */
13 VACodedBufferSegment *coded_buffer_segment;
14

15 vaMapBuffer(va_display, buf_id, (void **)(&coded_buffer_segment));
16

17 size = coded_buffer_segment->size;
18 offset = coded_buffer_segment->bit_offset;
19 buf = coded_buffer_segment->buf;
20

21 /* retrieve encoded data*/
22 // ...
23

24 /* unmap and destroy buffer */
25 vaUnmapBuffer(va_display, buf_id);
26 vaDestroyBuffer(va_display, buf_id);

Note that the vaMapBuffer function returns pointers to different objects depending on the mapped buffer type. The
VAImage is a plain data buffer and the encoded bitstream is a VACodedBufferSegment structure. The application
cannot use VABuffer for synchronization. If encoding, it is recommended to synchronize using the VA surface as
described above.

10.7. Appendices 1037

oneAPI Specification, Release 1.1-rev-1

10.7.6 CQP HRD Mode Encoding

The application can configure an AVC encoder to work in CQP rate control mode with HRD model parameters. oneVPL
will place HRD information to SPS/VUI and choose the appropriate profile/level. It’s the responsibility of the applica-
tion to provide per-frame QP, track HRD conformance, and insert required SEI messages to the bitstream.

The following example shows how to enable CQP HRD mode. The application should set RateControlMethod to CQP,
mfxExtCodingOption::VuiNalHrdParameters to ON, mfxExtCodingOption::NalHrdConformance to OFF,
and set rate control parameters similar to CBR or VBR modes (instead of QPI, QPP, and QPB). oneVPL will choose
CBR or VBR HRD mode based on the MaxKbps parameter. If MaxKbps is set to zero, oneVPL will use CBR HRD
model (write cbr_flag = 1 to VUI), otherwise the VBR model will be used (and cbr_flag = 0 is written to VUI).

Note: For CQP, if implementation does not support individual QPI, QPP and QPB parameters, then QPI parameter
should be used as a QP parameter across all frames.

1 mfxExtCodingOption option, *option_array;
2

3 /* configure mfxExtCodingOption */
4 memset(&option,0,sizeof(option));
5 option.Header.BufferId = MFX_EXTBUFF_CODING_OPTION;
6 option.Header.BufferSz = sizeof(option);
7 option.VuiNalHrdParameters = MFX_CODINGOPTION_ON;
8 option.NalHrdConformance = MFX_CODINGOPTION_OFF;
9

10 /* configure mfxVideoParam */
11 mfxVideoParam param;
12

13 // ...
14

15 param.mfx.RateControlMethod = MFX_RATECONTROL_CQP;
16 param.mfx.FrameInfo.FrameRateExtN = valid_non_zero_value;
17 param.mfx.FrameInfo.FrameRateExtD = valid_non_zero_value;
18 param.mfx.BufferSizeInKB = valid_non_zero_value;
19 param.mfx.InitialDelayInKB = valid_non_zero_value;
20 param.mfx.TargetKbps = valid_non_zero_value;
21

22 if (write_cbr_flag == 1)
23 param.mfx.MaxKbps = 0;
24 else /* write_cbr_flag = 0 */
25 param.mfx.MaxKbps = valid_non_zero_value;
26

27 param.NumExtParam = 1;
28 option_array = &option;
29 param.ExtParam = (mfxExtBuffer **)&option_array;
30

31 /* encoder initialization */
32 mfxStatus sts;
33 sts = MFXVideoENCODE_Init(session, ¶m);
34

35 // ...
36

37 /* encoding */
(continues on next page)

10.7. Appendices 1038

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

38 mfxEncodeCtrl ctrl;
39 memset(&ctrl,0,sizeof(ctrl));
40 ctrl.QP = frame_qp;
41

42 sts=MFXVideoENCODE_EncodeFrameAsync(session,&ctrl,surface2,bits,&syncp);

10.8 Glossary

The oneVPL API and documentation uses a standard set of acronyms and terms. This section describes these conven-
tions.

• Acronyms and Terms

• Video Formats

• Color Formats

10.8.1 Acronyms and Terms

AVC Advanced video codec (same as H.264 and MPEG-4, part 10).

BRC Bit rate control.

CQP Constant quantization parameter.

DRM Digital rights management.

DXVA2 Microsoft DirectX* Video Acceleration standard 2.0.

GOP Group of pictures. In video coding, a group of frames in a specific order. In the H.264 standard, a group of
I-frames, B-frames and P-frames.

GPB Generalized P/B picture. B-picture, containing only forward references in both L0 and L1.

H.264 Video coding standard. See ISO*/IEC* 14496-10 and ITU-T* H.264, MPEG-4 Part 10, Advanced Video
Coding, May 2005.

HDR High dynamic range.

HRD Hypothetical reference decoder, a term used in the H.264 specification.

IDR Instantaneous decoding fresh picture, a term used in the H.264 specification.

LA Look ahead. Special encoding mode where encoder performs pre-analysis of several frames before actual encoding
starts.

MCTF Motion compensated temporal filter. Special type of noise reduction filter which utilizes motion to improve
efficiency of video denoising.

NAL Network abstraction layer.

PPS Picture parameter set.

QP Quantization parameter.

SEI Supplemental enhancement information.

SPS Sequence parameter set.

10.8. Glossary 1039

oneAPI Specification, Release 1.1-rev-1

VA API Video acceleration API.

VBR Variable bit rate.

VBV Video buffering verifier.

Video memory Memory used by a hardware acceleration device, also known as GPU, to hold frame and other types
of video data.

VUI Video usability information.

10.8.2 Video Formats

MPEG Moving Picture Experts Group video file.

MPEG-2 Moving Picture Experts Group video file. See ISO/IEC 13818-2 and ITU-T H.262, MPEG-2 Part 2, Infor-
mation Technology- Generic Coding of Moving Pictures and Associate Audio Information: Video, 2000.

NV12 YUV 4:2:0 video format, 12 bits per pixel.

NV16 YUV 4:2:2 video format, 16 bits per pixel.

P010 YUV 4:2:0 video format, extends NV12, 10 bits per pixel.

P210 YUV 4:2:2 video format, 10 bits per pixel.

UYVY YUV 4:2:2 video format, 16 bits per pixel.

VC-1 Video coding format. See SMPTE* 421M, SMPTE Standard for Television: VC-1 Compressed Video Bitstream
Format and Decoding Process, August 2005.

10.8.3 Color Formats

I010 Color format for raw video frames, extends IYUV/I420 for 10 bit.

IYUV A color format for raw video frames, also known as I420.

RGB32 Thirty-two-bit RGB color format.

RGB4 Thirty-two-bit RGB color format. Also known as RGB32.

YUY2 A color format for raw video frames.

YV12 A color format for raw video frames, similar to IYUV with U and V reversed.

10.9 Deprecated API

The following is a list of deprecated interfaces, starting from API version 2.0.

10.9. Deprecated API 1040

oneAPI Specification, Release 1.1-rev-1

Table 25: Deprecated API
API Deprecated in

API Version
Removed in
API Version

Alternatives Behaviour change of dep-
recated API

MFXInit() 2.3 MFXLoad() +
MFXCreateSession()

API may return
MFX_ERR_NOT_IMPLEMENTED
status

MFXInitEx() 2.3 MFXLoad() +
MFXCreateSession()

API may return
MFX_ERR_NOT_IMPLEMENTED
status

mfxExtVPPDenoise2.5 Use
mfxExtVPPDenoise2

No change

10.10 Change Log

This section describes the API evolution from version to version.

• Version 2.5

• Version 2.4

• Version 2.3

10.10.1 Version 2.5

New in this release:

• Added mfxMediaAdapterType to capability reporting.

• Added surface pool interface.

• Helper macro definition to simplify filter properties set up process for dispatcher.

• Added mfxExtAV1BitstreamParam, mfxExtAV1ResolutionParam and mfxExtAV1TileParam for AV1e.

• Added MFX_RESOURCE_VA_SURFACE_PTR and MFX_RESOURCE_VA_BUFFER_PTR enumerators.

• Clarified HEVC Main 10 Still Picture Profile configuration.

• External Buffer ID of mfxExtVideoSignalInfo and mfxExtMasteringDisplayColourVolume for video processing.

• New MFX_WRN_ALLOC_TIMEOUT_EXPIRED return status. Indicates that all surfaces are currently in use
and timeout set by mfxExtAllocationHints for allocation of new surfaces through functions GetSurfaceForXXX
expired.

• Introduced universal temporal layering structure.

• Added MFX_RESOURCE_VA_SURFACE_PTR and MFX_RESOURCE_VA_BUFFER_PTR enumerators.

• Introduced segmentation interface for AV1e, including ext-buffers and enums.

• Introduced planar I422 and I210 FourCC codes.

Bug Fixes:

• Dispatcher: Removed /etc/ld.so.cache from oneVPL search order.

• mfxSurfaceArray: CDECL attribute added to the member-functions.

10.10. Change Log 1041

oneAPI Specification, Release 1.1-rev-1

Deprecated:

• mfxExtVPPDenoise extension buffer.

10.10.2 Version 2.4

• Added ability to retrieve path to the shared library with the implementation.

• Added 3DLUT (Three-Dimensional Look Up Table) filter in VPP.

• Added mfxGUID structure to specify Globally Unique Identifiers (GUIDs).

• Added QueryInterface function to mfxFrameSurfaceInterface.

• Added AdaptiveRef and alias for ExtBrcAdaptiveLTR.

• Added MFX_FOURCC_BGRP FourCC for Planar BGR format.

• Enviromental variables to control dispatcher’s logger.

10.10.3 Version 2.3

• Encoding in Hyper mode.

• New product names for platforms:

– Code name Rocket Lake,

– Code name Alder Lake S,

– Code name Alder Lake P,

– Code name for Arctic Sound P.

– For spec version 2.3.1 MFX_PLATFORM_XEHP_SDV alias was added

• mfx.h header file is added which includes all header files.

• Added deprecation messages (deprecation macro) to the functions MFXInit and MFXInitEx functions definition.

10.10. Change Log 1042

CHAPTER

ELEVEN

ONEMKL

The oneAPI Math Kernel Library (oneMKL) defines a set of fundamental mathematical routines for use in high-
performance computing and other applications. As part of oneAPI, oneMKL is designed to allow execution on a wide
variety of computational devices: CPUs, GPUs, FPGAs, and other accelerators. The functionality is subdivided into
several domains: dense linear algebra, sparse linear algebra, discrete Fourier transforms, random number generators
and vector math.

The general assumptions, design features and requirements for the oneMKL library and host-to-device computational
routines will be described in oneMKL Architecture. The individual domains and their APIs are described in oneMKL
Domains. Other design considerations that are not necessarily part of the oneMKL specification but that are worth
mentioning will be discussed in oneMKL Appendix.

11.1 oneMKL Architecture

The oneMKL element of oneAPI has several general assumptions, requirements and recommendations for all domains
contained therein. These will be addressed in this architecture section. In particular, DPC++ allows for a great control
over the execution of kernels on the various devices. We discuss the supported execution models of oneMKL APIs in
Execution Model. A discussion of how data is stored and passed in and out of the APIs is addressed in Memory Model.
The general structure and design of oneMKL APIs including namespaces and common data types are expressed in
API Design. The exceptions and error handling are described in Exceptions and Error Handling. Finally all the other
necessary aspects related to oneMKL architecture can be found in Other Features including versioning and discussion
of pre and post conditions. Other nonessential, but useful aspects of the oneMKL architecture and design may also be
found in the oneMKL Appendix.

1043

oneAPI Specification, Release 1.1-rev-1

11.1.1 Execution Model

This section describes the execution environment common to all oneMKL functionality. The execution environment
includes how data is provided to computational routines in Use of Queues, support for several devices in Device Usage,
synchronous and asynchronous execution models in Asynchronous Execution and Host Thread Safety.

Use of Queues

The sycl::queue defined in the oneAPI DPC++ specification is used to specify the device and features enabled on
that device on which a task will be enqueued. There are two forms of computational routines in oneMKL: class based
Member Functions and standalone Non-Member Functions. As these may interact with the sycl::queue in different
ways, we provide a section for each one to describe assumptions.

Non-Member Functions

Each oneMKL non-member computational routine takes a sycl::queue reference as its first parameter:

mkl::domain::routine(sycl::queue &q, ...);

All computation performed by the routine shall be done on the hardware device(s) associated with this queue, with
possible aid from the host, unless otherwise specified. In the case of an ordered queue, all computation shall also be
ordered with respect to other kernels as if enqueued on that queue.

A particular oneMKL implementation may not support the execution of a given oneMKL routine on the specified
device(s). In this case, the implementation may either perform the computation on the host or throw an exception. See
Exceptions and Error Handling for the possible exceptions.

Member Functions

oneMKL class-based APIs, such as those in the RNG and DFT domains, require a sycl::queue as an argument to the
constructor or another setup routine. The execution requirements for computational routines from the previous section
also apply to computational class methods.

Device Usage

oneMKL itself does not currently provide any interfaces for controlling device usage: for instance, controlling the
number of cores used on the CPU, or the number of execution units on a GPU. However, such functionality may be
available by partitioning a sycl::device instance into subdevices, when supported by the device.

When given a queue associated with such a subdevice, a oneMKL implementation shall only perform computation on
that subdevice.

11.1. oneMKL Architecture 1044

oneAPI Specification, Release 1.1-rev-1

Asynchronous Execution

The oneMKL API is designed to allow asynchronous execution of computational routines, to facilitate concurrent usage
of multiple devices in the system. Each computational routine enqueues work to be performed on the selected device,
and may (but is not required to) return before execution completes.

Hence, it is the calling application’s responsibility to ensure that any inputs are valid until computation is complete, and
likewise to wait for computation completion before reading any outputs. This can be done automatically when using
DPC++ buffers, or manually when using Unified Shared Memory (USM) pointers, as described in the sections below.

Unless otherwise specified, asynchronous execution is allowed, but not guaranteed, by any oneMKL computational
routine, and may vary between implementations and/or versions. oneMKL implementations must clearly document
whether execution is guaranteed to be asynchronous for each supported routine. Regardless, calling applications shall
not launch any oneMKL computational routine with a dependency on a future oneMKL API call, even if this computa-
tional routine executes asynchronously (i.e. a oneMKL implementation may assume no antidependencies are present).
This guarantee allows oneMKL implementations to reserve resources for execution without risking deadlock.

Synchronization When Using Buffers

sycl::buffer objects automatically manage synchronization between kernel launches linked by a data dependency
(either read-after-write, write-after-write, or write-after-read).

oneMKL routines are not required to perform any additional synchronization of sycl::buffer arguments.

Synchronization When Using USM APIs

When USM pointers are used as input to, or output from, a oneMKL routine, it becomes the calling application’s
responsibility to manage possible asynchronicity.

To help the calling application, all oneMKL routines with at least one USM pointer argument also take an optional
reference to a list of input events, of type std::vector<sycl::event>, and have a return value of type sycl::event
representing computation completion:

sycl::event mkl::domain::routine(..., std::vector<sycl::event> &in_events = {});

The routine shall ensure that all input events (if the list is present and non-empty) have occurred before any USM pointers
are accessed. Likewise, the routine’s output event shall not be complete until the routine has finished accessing all USM
pointer arguments.

For class methods, “argument” includes any USM pointers previously provided to the object via the class constructor
or other class methods.

Host Thread Safety

All oneMKL member and non-member functions shall be host thread safe. That is, they may be safely called simul-
taneously from concurrent host threads. However, oneMKL objects in class-based APIs may not be shared between
concurrent host threads unless otherwise specified.

11.1. oneMKL Architecture 1045

oneAPI Specification, Release 1.1-rev-1

11.1.2 Memory Model

The oneMKL memory model shall follow directly from the oneAPI memory model. Mainly, oneMKL shall support
two modes of encapsulating data for consumption on the device: the buffer memory abstraction model and the pointer-
based memory model using Unified Shared Memory (USM). These two paradigms shall also support both synchronous
and asynchronous execution models as described in Asynchronous Execution.

The Buffer Memory Model

The SYCL 1.2.1 specification defines the buffer container templated on the provided data type which encapsulates the
data in a SYCL application across both host and devices. It provides the concept of accessors as the mechanism to
access the buffer data with different modes to read and or write into that data. These accessors allow SYCL to create
and manage the data dependencies in the SYCL graph that order the kernel executions. With the buffer model, all data
movement is handled by the SYCL runtime supporting both synchronous and asynchronous execution.

oneMKL provides APIs where buffers (in particular 1D buffers, sycl::buffer<T,1>) contain the memory for all non
scalar input and output data arguments. See Synchronization When Using Buffers for details on how oneMKL routines
manage any data dependencies with buffer arguments. Any higher dimensional buffer must be converted to a 1D buffer
prior to use in oneMKL APIs, e.g., via buffer::reinterpret.

Unified Shared Memory Model

While the buffer model is powerful and elegantly expresses data dependencies, it can be a burden for programmers to
replace all pointers and arrays by buffers in their C++ applications. DPC++ also provides pointer-based addressing for
device-accessible data, using the Unified Shared Memory (USM) model. Correspondingly, oneMKL provides USM
APIs in which non-scalar input and output data arguments are passed by USM pointer.

USM devices and system configurations vary in their ability to share data between devices and between a device and
the host. oneMKL implementations may only assume that user-provided USM pointers are accessible by the device
associated with the user-provided queue. In particular, an implementation must not assume that USM pointers can be
accessed by any other device, or by the host, without querying the DPC++ runtime. An implementation must accept
any device-accessible USM pointer regardless of how it was created (sycl::malloc_device, sycl::malloc_shared, etc.).

Unlike buffers, USM pointers cannot automatically manage data dependencies between kernels. Users may use in-
order queues to ensure ordered execution, or explicitly manage dependencies with sycl::event objects. To support
the second use case, oneMKL USM APIs accept input events (prerequisites before computation can begin) and return
an output event (indicating computation is complete). See Synchronization When Using USM APIs for details.

11.1.3 API Design

This section discusses the general features of oneMKL API design. In particular, it covers the use of namespaces and
data types from C++, from DPC++ and new ones introduced for oneMKL APIs.

11.1. oneMKL Architecture 1046

oneAPI Specification, Release 1.1-rev-1

oneMKL namespaces

The oneMKL library uses C++ namespaces to organize routines by mathematical domain. All oneMKL objects and
routines shall be contained within the oneapi::mkl base namespace. The individual oneMKL domains use a sec-
ondary namespace layer as follows:

names-
pace

oneMKL domain or content

oneapi::mkloneMKL base namespace, contains general oneMKL data types, objects, exceptions and routines
oneapi::mkl::blasDense linear algebra routines from BLAS and BLAS like extensions. The oneapi::mkl::blas names-

pace should contain two namespaces column_major and row_major to support both matrix layouts.
See BLAS Routines

oneapi::mkl::lapackDense linear algebra routines from LAPACK and LAPACK like extensions. See LAPACK Routines
oneapi::mkl::sparseSparse linear algebra routines from Sparse BLAS and Sparse Solvers. See Sparse Linear Algebra
oneapi::mkl::dftDiscrete and fast Fourier transformations. See Discrete Fourier Transform Functions
oneapi::mkl::rngRandom number generator routines. See Random Number Generators
oneapi::mkl::vmVector mathematics routines, e.g. trigonometric, exponential functions acting on elements of a vector.

See Vector Math

Note: Inside each oneMKL domain, there are many routines, classes, enums and objects defined which constitute the
breadth and scope of that oneMKL domain. It is permitted for a library implementation of the oneMKL specification to
implement either all, one or more than one of the domains in oneMKL. However, within an implementation of a specific
domain, all relevant routines, classes, enums and objects (including those relevant enums and objects which live outside
a particular domain in the general oneapi::mkl namespace must be both declared and defined in the library so that
an application that uses that domain could build and link against that library implementation successfully.

It is however acceptable to throw the runtime exception oneapi::mkl::unimplemented inside of the routines or class
member functions in that domain that have not been fully implemented. For instance, a library may choose to implement
the oneMKL BLAS functionality and in particular may choose to implement only the gemm api for their library, in
which case they must also include all the other blas namespaced routines and throw the oneapi::mkl::unimplemented
exception inside all the others.

In such a case, the implemented routines in such a library should be communicated clearly and easily understood by
users of that library.

Standard C++ datatype usage

oneMKL uses C++ STL data types for scalars where applicable:

• Integer scalars are C++ fixed-size integer types (std::intN_t, std::uintN_t).

• Complex numbers are represented by C++ std::complex types.

In general, scalar integer arguments to oneMKL routines are 64-bit integers (std::int64_t or std::uint64_t).
Integer vectors and matrices may have varying bit widths, defined on a per-routine basis.

11.1. oneMKL Architecture 1047

oneAPI Specification, Release 1.1-rev-1

DPC++ datatype usage

oneMKL uses the following DPC++ data types:

• SYCL queue sycl::queue for scheduling kernels on a SYCL device. See Use of Queues for more details.

• SYCL buffer sycl::buffer for buffer-based memory access. See The Buffer Memory Model for more details.

• Unified Shared Memory (USM) for pointer-based memory access. See Unified Shared Memory Model for more
details.

• SYCL event sycl::event for output event synchronization in oneMKL routines with USM pointers. See Syn-
chronization When Using USM APIs for more details.

• Vector of SYCL events std::vector<sycl::event> for input events synchronization in oneMKL routines
with USM pointers. See Synchronization When Using USM APIs for more details.

Note: The class sycl::vector_class has been removed from SYCL 2020 and the standard class std::vector
should be used instead for vector of SYCL events in oneMKL routines with USM pointers

oneMKL defined datatypes

oneMKL dense and sparse linear algebra routines use scoped enum types as type-safe replacements for the tradi-
tional character arguments used in C/Fortran implementations of BLAS and LAPACK. These types all belong to the
oneapi::mkl namespace.

Each enumeration value comes with two names: A single-character name (the traditional BLAS/LAPACK character)
and a longer, more descriptive name. The two names are exactly equivalent and may be used interchangeably.

transpose

The transpose type specifies whether an input matrix should be transposed and/or conjugated. It can
take the following values:

Short
Name

Long Name Description

transpose::Ntranspose::nontransDo not transpose or conjugate the matrix.
transpose::Ttranspose::trans Transpose the matrix.
transpose::Ctranspose::conjtransPerform Hermitian transpose (transpose and conjugate). Only ap-

plicable to complex matrices.

uplo

The uplo type specifies whether the lower or upper triangle of a triangular, symmetric, or Hermitian matrix
should be accessed. It can take the following values:

Short Name Long Name Description
uplo::U uplo::upper Access the upper triangle of the matrix.
uplo::L uplo::lower Access the lower triangle of the matrix.

In both cases, elements that are not in the selected triangle are not accessed or updated.

11.1. oneMKL Architecture 1048

oneAPI Specification, Release 1.1-rev-1

diag

The diag type specifies the values on the diagonal of a triangular matrix. It can take the following values:

Short
Name

Long
Name

Description

diag::N diag::nonunitThe matrix is not unit triangular. The diagonal entries are stored with the
matrix data.

diag::U diag::unit The matrix is unit triangular (the diagonal entries are all 1’s). The diagonal
entries in the matrix data are not accessed.

side

The side type specifies the order of matrix multiplication when one matrix has a special form (triangular,
symmetric, or Hermitian):

Short Name Long Name Description
side::L side::left The special form matrix is on the left in the multiplication.
side::R side::right The special form matrix is on the right in the multiplication.

offset

The offset type specifies whether the offset to apply to an output matrix is a fix offset, column offset or
row offset. It can take the following values

Short
Name

Long
Name

Description

offset::Foffset::fixThe offset to apply to the output matrix is fix, all the inputs in the C_offset
matrix has the same value given by the first element in the co array.

offset::Coffset::columnThe offset to apply to the output matrix is a column offset, that is to say all the
columns in the C_offset matrix are the same and given by the elements in the
co array.

offset::Roffset::rowThe offset to apply to the output matrix is a row offset, that is to say all the rows
in the C_offset matrix are the same and given by the elements in the co array.

index_base

The index_base type specifies how values in index arrays are interpreted. For instance, a sparse matrix
stores nonzero values and the indices that they correspond to. The indices are traditionally provided in
one of two forms: C/C++-style using zero-based indices, or Fortran-style using one-based indices. The
index_base type can take the following values:

Name Description
index_base::zeroIndex arrays for an input matrix are provided using zero-based (C/C++ style) index

values. That is, indices start at 0.
index_base::oneIndex arrays for an input matrix are provided using one-based (Fortran style) index

values. That is, indices start at 1.

11.1. oneMKL Architecture 1049

oneAPI Specification, Release 1.1-rev-1

layout

The layout type specifies how a dense matrix A with leading dimension lda is stored as one dimen-
sional array in memory. The layouts are traditionally provided in one of two forms: C/C++-style using
row_major layout, or Fortran-style using column_major layout. The layout type can take the following
values:

Short
Name

Long
Name

Description

layout::Rlayout::row_majorFor row major layout, the elements of each row of a dense matrix A are contiguous
in memory while the elements of each column are at distance lda from the element
in the same column and the previous row.

layout::Clayout::col_majorFor column major layout, the elements of each column a dense matrix A are con-
tiguous in memory while the elements of each row are at distance lda from the
element in the same row and the previous column.

Note: oneMKL Appendix may contain other API design decisions or recommendations that may be of use to the
general developer of oneMKL, but which may not necessarily be part of the oneMKL specification.

11.1.4 Exceptions and Error Handling

oneMKL error handling relies on the mechanism of C++ exceptions. Should error occur, it will be propagated at the
point of a function call where it is caught using standard C++ error handling mechanism.

Exception classification

Exception classification in oneMKL is aligned with C++ Standard Library classification. oneMKL introduces class that
defines the base class in the hierarchy of oneMKL exception classes. All oneMKL routines throw exceptions inherited
from this base class. In the hierarchy of oneMKL exceptions, oneapi::mkl::exception is the base class inherited
from std::exception class. All other oneMKL exception classes are derived from this base class.

This specification does not require implementations to perform error-checking. However, if an implementation does
provide error-checking, it shall use the following exception classes. Additional implementation-specific exception
classes can be used for exceptional conditions not fitting any of these classes.

11.1. oneMKL Architecture 1050

oneAPI Specification, Release 1.1-rev-1

Common exceptions

Exception class Description

oneapi::mkl::exception
Reports general unspecified problem

oneapi::mkl::unsupported_device
Reports a problem when the routine is not supported on a specific
device

oneapi::mkl::host_bad_alloc
Reports a problem that occurred during memory allocation on the
host

oneapi::mkl::device_bad_alloc
Reports a problem that occurred during memory allocation on a spe-
cific device

oneapi::mkl::unimplemented
Reports a problem when a specific routine has not been implemented
for the specified parameters

oneapi::mkl::invalid_argument
Reports problem when arguments to the routine were rejected

oneapi::mkl::uninitialized
Reports problem when a handle (descriptor) has not been initialized

oneapi::mkl::computation_error
Reports any computation errors that have occurred inside a oneMKL
routine

oneapi::mkl::batch_error
Reports errors that have occurred inside a batch oneMKL routine

LAPACK specific exceptions

Exception class Description

oneapi::mkl::lapack::exception
Base class for all LAPACK exceptions providing access to info code
familiar to users of conventional LAPACK API. All LAPACK re-
lated exceptions can be handled with catch block for this class.

oneapi::mkl::lapack::invalid_argument
Reports errors when arguments provided to the LAPACK subroutine
are inconsistent or do not match expected values. Class extends base
oneapi::mkl::invalid_argumentwith ability to access conven-
tional status info code.

oneapi::mkl::lapack::computation_error
Reports computation errors that have occurred dur-
ing call to LAPACK subroutine. Class extends base
oneapi::mkl::computation_error with ability to access
conventional status info code familiar to LAPACK users.

oneapi::mkl::lapack::batch_error
Reports errors that have occurred during batch LAPACK computa-
tions. Class extends base oneapi::mkl::batch_error with abil-
ity to access individual exception objects for each of the issues ob-
served in a batch and an info code. The info code contains the num-
ber of errors that occurred in a batch. Positions of problems in a
supplied batch that experienced issues during computations can be
retrieved with ids() method, and list of particular exceptions can be
obtained with exceptions() method of the exception object. Possible
exceptions for a batch are documented for corresponding non-batch
API.

11.1. oneMKL Architecture 1051

oneAPI Specification, Release 1.1-rev-1

11.1.5 Other Features

This section covers all other features in the design of oneMKL architecture.

Current Version of this oneMKL Specification

This is the oneMKL specification which is part of the oneAPI specification version 1.0.0.

Pre/Post Condition Checking

The individual oneMKL computational routines will define any preconditions and postconditions and will define in
this specification any specific checks or verifications that should be enabled for all implementations.

11.2 oneMKL Domains

This section describes the Data Parallel C++ (DPC++) interface.

11.2.1 Dense Linear Algebra

This section contains information about dense linear algebra routines:

Matrix Storage provides information about dense matrix and vector storage formats that are used by oneMKL BLAS
Routines and LAPACK Routines.

BLAS Routines provides vector, matrix-vector, and matrix-matrix routines for dense matrices and vector operations.

LAPACK Routines provides more complex dense linear algebra routines, e.g., matrix factorization, solving dense sys-
tems of linear equations, least square problems, eigenvalue and singular value problems, and performing a number of
related computational tasks.

Matrix Storage

The oneMKL BLAS and LAPACK routines for DPC++ use several matrix and vector storage formats. These are the
same formats used in traditional Fortran BLAS/LAPACK.

General Matrix

A general matrix A of m rows and n columns with leading dimension lda is represented as a one dimensional array a of
size of at least lda * n if column major layout is used and at least lda * m if row major layout is used. Before entry in
any BLAS function using a general matrix, the leading m by n part of the array a must contain the matrix A. For column
(respectively row) major layout, the elements of each column (respectively row) are contiguous in memory while the
elements of each row (respectively column) are at distance lda from the element in the same row (respectively column)
and the previous column (respectively row).

Visually, the matrix

𝐴 =

⎡⎢⎢⎢⎢⎢⎣
𝐴11 𝐴12 𝐴13 . . . 𝐴1𝑛

𝐴21 𝐴22 𝐴23 . . . 𝐴2𝑛

𝐴31 𝐴32 𝐴33 . . . 𝐴3𝑛

...
...

...
. . .

...
𝐴𝑚1 𝐴𝑚2 𝐴𝑚3 . . . 𝐴𝑚𝑛

⎤⎥⎥⎥⎥⎥⎦
11.2. oneMKL Domains 1052

oneAPI Specification, Release 1.1-rev-1

is stored in memory as an array

• For column major layout,

𝑎=[𝐴11, 𝐴21, 𝐴31, ..., 𝐴𝑚1, *, ..., *⏟ ⏞
lda

, 𝐴12, 𝐴22, 𝐴32, ..., 𝐴𝑚2, *, ..., *⏟ ⏞
lda

, ..., 𝐴1𝑛, 𝐴2𝑛, 𝐴3𝑛, ..., 𝐴𝑚𝑛, *, ..., *⏟ ⏞
lda⏟ ⏞

lda x n

]

• For row major layout,

𝑎=[𝐴11, 𝐴12, 𝐴13, ..., 𝐴1𝑛, *, ..., *⏟ ⏞
lda

, 𝐴21, 𝐴22, 𝐴23, ..., 𝐴2𝑛, *, ..., *⏟ ⏞
lda

, ..., 𝐴𝑚1, 𝐴𝑚2, 𝐴𝑚3, ..., 𝐴𝑚𝑛, *, ..., *⏟ ⏞
lda⏟ ⏞

m x lda

]

Triangular Matrix

A triangular matrix A of n rows and n columns with leading dimension lda is represented as a one dimensional array
a, of a size of at least lda * n. When column (respectively row) major layout is used, the elements of each column
(respectively row) are contiguous in memory while the elements of each row (respectively column) are at distance lda
from the element in the same row (respectively column) and the previous column (respectively row).

Before entry in any BLAS function using a triangular matrix,

• If upper_lower = uplo::upper, the leading n by n upper triangular part of the array amust contain the upper
triangular part of the matrix A. The strictly lower triangular part of the array a is not referenced. In other words,
the matrix

𝐴 =

⎡⎢⎢⎢⎢⎢⎣
𝐴11 𝐴12 𝐴13 . . . 𝐴1𝑛

* 𝐴22 𝐴23 . . . 𝐴2𝑛

* * 𝐴33 . . . 𝐴3𝑛

...
...

...
. . .

...
* * * . . . 𝐴𝑛𝑛

⎤⎥⎥⎥⎥⎥⎦
is stored in memory as the array

– For column major layout,

𝑎=[𝐴11, *, ..., *⏟ ⏞
lda

, 𝐴12, 𝐴22, *, ..., *⏟ ⏞
lda

, ..., 𝐴1𝑛, 𝐴2𝑛, 𝐴3𝑛, ..., 𝐴𝑛𝑛, *, ..., *⏟ ⏞
lda⏟ ⏞

lda x n

]

– For row major layout,

𝑎=[𝐴11, 𝐴12, 𝐴13, ..., 𝐴1𝑛, *, ..., *⏟ ⏞
lda

, *, 𝐴22, 𝐴23, ..., 𝐴2𝑛, *, ..., *⏟ ⏞
lda

, ..., *, ..., *, 𝐴𝑛𝑛, *, ..., *⏟ ⏞
lda⏟ ⏞

lda x n

]

• If upper_lower = uplo::lower, the leading n by n lower triangular part of the array a must contain the lower
triangular part of the matrix A. The strictly upper triangular part of the array a is not referenced. That is, the
matrix

𝐴 =

⎡⎢⎢⎢⎢⎢⎣
𝐴11 * * . . . *
𝐴21 𝐴22 * . . . *
𝐴31 𝐴32 𝐴33 . . . *

...
...

...
. . .

...
𝐴𝑛1 𝐴𝑛2 𝐴𝑛3 . . . 𝐴𝑛𝑛

⎤⎥⎥⎥⎥⎥⎦
is stored in memory as the array

11.2. oneMKL Domains 1053

oneAPI Specification, Release 1.1-rev-1

– For column major layout,

𝑎=[𝐴11, 𝐴21, 𝐴31, .., 𝐴𝑛1, *, ..., *⏟ ⏞
lda

, *, 𝐴22, 𝐴32, ..., 𝐴𝑛2, *, ..., *⏟ ⏞
lda

, ..., *, ..., *, 𝐴𝑛𝑛, *, ..., *⏟ ⏞
lda⏟ ⏞

lda x n

]

– For row major layout,

𝑎=[𝐴11, *, ..., *⏟ ⏞
lda

, 𝐴21, 𝐴22, *, ..., *⏟ ⏞
lda

, ..., 𝐴𝑛1, 𝐴𝑛2, 𝐴𝑛3, ..., 𝐴𝑛𝑛, *, ..., *⏟ ⏞
lda⏟ ⏞

lda x n

]

Band Matrix

A general band matrix A of m rows and n columns with kl sub-diagonals, ku super-diagonals, and leading dimension
lda is represented as a one dimensional array a of a size of at least lda * n (respectively lda * m) if column (respectively
row) major layout is used.

Before entry in any BLAS function using a general band matrix, the leading (kl + ku + 1) by n (respectively m) part of
the array a must contain the matrix A. This matrix must be supplied column-by-column (respectively row-by-row), with
the main diagonal of the matrix in row ku (respectively kl) of the array (0-based indexing), the first super-diagonal
starting at position 1 (respectively 0) in row (ku - 1) (respectively column (kl + 1)), the first sub-diagonal starting at
position 0 (respectively 1) in row (ku + 1) (respectively column (kl - 1)), and so on. Elements in the array a that do
not correspond to elements in the band matrix (such as the top left ku by ku triangle) are not referenced.

Visually, the matrix A

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴11 𝐴12 𝐴13 ... 𝐴1,𝑘𝑢+1 * *
𝐴21 𝐴22 𝐴23 𝐴24 ... 𝐴2,𝑘𝑢+2 * *
𝐴31 𝐴32 𝐴33 𝐴34 𝐴35 ... 𝐴3,𝑘𝑢+3 * *
... 𝐴42 𝐴43

. *
...

𝐴𝑘𝑙+1,1

... 𝐴53

. * ...
...

* 𝐴𝑘𝑙+2,2

...
. .

...
... * 𝐴𝑘𝑙+3,3

. *
...

... *
. 𝐴𝑛−𝑘𝑢,𝑛

...
...

... *
. .

...
...

...
...

... *
. 𝐴𝑚−2,𝑛

...
...

...
...

...
. 𝐴𝑚−1,𝑛

* * * * 𝐴𝑚,𝑚−𝑘𝑙 ... 𝐴𝑚,𝑛−2 𝐴𝑚,𝑛−1 𝐴𝑚,𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is stored in memory as an array

• For column major layout,

𝑎=[*, ..., *⏟ ⏞
ku

, 𝐴11, 𝐴12, ..., 𝐴𝑚𝑖𝑛(𝑘𝑙+1,𝑚),1, *, ..., *

⏟ ⏞
lda

, *, ..., *⏟ ⏞
ku-1

, 𝐴𝑚𝑎𝑥(1,2−𝑘𝑢),2, ..., 𝐴𝑚𝑖𝑛(𝑘𝑙+2,𝑚),2, *, ...*

⏟ ⏞
lda

, ..., *, ..., *⏟ ⏞
max(0,ku-n+1)

, 𝐴𝑚𝑎𝑥(1,𝑛−𝑘𝑢),𝑛, ..., 𝐴𝑚𝑖𝑛(𝑘𝑙+𝑛,𝑚),𝑛, *, ...*

⏟ ⏞
lda⏟ ⏞

lda x n

]

• For row major layout,

𝑎=[*, ..., *⏟ ⏞
kl

, 𝐴11, 𝐴12, ..., 𝐴1,𝑚𝑖𝑛(𝑘𝑢+1,𝑛), *, ..., *

⏟ ⏞
lda

, *, ..., *⏟ ⏞
kl-1

, 𝐴2,𝑚𝑎𝑥(1,2−𝑘𝑙), ..., 𝐴2,𝑚𝑖𝑛(𝑘𝑢+2,𝑛), *, ...*

⏟ ⏞
lda

, ..., *, ..., *⏟ ⏞
max(0,kl-m+1)

, 𝐴𝑚,𝑚𝑎𝑥(1,𝑚−𝑘𝑙), ..., 𝐴𝑚,𝑚𝑖𝑛(𝑘𝑢+𝑚,𝑛), *, ...*

⏟ ⏞
lda⏟ ⏞

lda x m

]

11.2. oneMKL Domains 1054

oneAPI Specification, Release 1.1-rev-1

The following program segment transfers a band matrix from conventional full matrix storage (variable matrix, with
leading dimension ldm) to band storage (variable a, with leading dimension lda):

• Using matrices stored with column major layout,

for (j = 0; j < n; j++) {
k = ku – j;
for (i = max(0, j – ku); i < min(m, j + kl + 1); i++) {

a[(k + i) + j * lda] = matrix[i + j * ldm];
}

}

• Using matrices stored with row major layout,

for (i = 0; i < n; i++) {
k = kl – i;
for (j = max(0, i – kl); j < min(n, i + ku + 1); j++) {

a[(k + j) + i * lda] = matrix[j + i * ldm];
}

}

Triangular Band Matrix

A triangular band matrix A of n rows and n columns with k sub/super-diagonals and leading dimension lda is repre-
sented as a one dimensional array a of size at least lda * n.

Before entry in any BLAS function using a triangular band matrix,

• If upper_lower = uplo::upper, the leading (k + 1) by n part of the array a must contain the upper triangular
band part of the matrix A. When using column major layout, this matrix must be supplied column-by-column
(respectively row-by-row) with the main diagonal of the matrix in row (k) (respectively column 0) of the array,
the first super-diagonal starting at position 1 (respectively 0) in row (k - 1) (respectively column 1), and so on.
Elements in the array a that do not correspond to elements in the triangular band matrix (such as the top left k
by k triangle) are not referenced.

Visually, the matrix

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴11 𝐴12 𝐴13 ... 𝐴1,𝑘+1 * *
* 𝐴22 𝐴23 𝐴24 ... 𝐴2,𝑘+2 * *
... * 𝐴33 𝐴34 𝐴35 ... 𝐴3,𝑘+3 * *
...

... *
. *

...
...

...
...

. * ...
...

...
...

...
...

. .
...

...
...

...
...

...
. *

...
...

...
...

...
...

. 𝐴𝑛−𝑘,𝑛

...
...

...
...

...
...

...
.

...
...

...
...

...
...

...
...

...
. 𝐴𝑛−2,𝑛

...
...

...
...

...
...

...
...

...
. 𝐴𝑛−1,𝑛

* * * * 𝐴𝑛,𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
is stored as an array

• For column major layout,

11.2. oneMKL Domains 1055

oneAPI Specification, Release 1.1-rev-1

𝑎=[*, ..., *⏟ ⏞
ku

, 𝐴11, *, ..., *

⏟ ⏞
lda

, *, ..., *⏟ ⏞
ku-1

, 𝐴𝑚𝑎𝑥(1,2−𝑘),2, ..., 𝐴2,2, *, ...*

⏟ ⏞
lda

, ..., *, ..., *⏟ ⏞
max(0,k-n+1)

, 𝐴𝑚𝑎𝑥(1,𝑛−𝑘),𝑛, ..., 𝐴𝑛,𝑛, *, ...*

⏟ ⏞
lda⏟ ⏞

lda x n

]

• For row major layout,

𝑎=[𝐴11, 𝐴21, ..., 𝐴𝑚𝑖𝑛(𝑘+1,𝑛),1, *, ..., *⏟ ⏞
lda

, 𝐴2,2, ..., 𝐴𝑚𝑖𝑛(𝑘+2,𝑛),2, *, ..., *⏟ ⏞
lda

, ..., 𝐴𝑛,𝑛, *, ...*⏟ ⏞
lda⏟ ⏞

lda x n

]

The following program segment transfers a band matrix from conventional full matrix storage (variable matrix, with
leading dimension ldm) to band storage (variable a, with leading dimension lda):

• Using matrices stored with column major layout,

for (j = 0; j < n; j++) {
m = k – j;
for (i = max(0, j – k); i <= j; i++) {

a[(m + i) + j * lda] = matrix[i + j * ldm];
}

}

• Using matrices stored with column major layout,

for (i = 0; i < n; i++) {
m = –i;
for (j = i; j < min(n, i + k + 1); j++) {

a[(m + j) + i * lda] = matrix[j + i * ldm];
}

}

• If upper_lower = uplo::lower, the leading (k + 1) by n part of the array a must contain the upper triangular
band part of the matrix A. This matrix must be supplied column-by-column with the main diagonal of the matrix
in row 0 of the array, the first sub-diagonal starting at position 0 in row 1, and so on. Elements in the array a that
do not correspond to elements in the triangular band matrix (such as the bottom right k by k triangle) are not
referenced.

That is, the matrix

𝐴 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝐴11 * *
𝐴21 𝐴22 * *
𝐴31 𝐴32 𝐴33 * *
... 𝐴42 𝐴43

.
...

𝐴𝑘+1,1

... 𝐴53

.
...

* 𝐴𝑘+2,2

...
.

...
... * 𝐴𝑘+3,3

.
...

...
... *

.
...

...
...

... *
.

...
...

...
...

... *
.

...
...

...
...

...
...

. *
* * * * 𝐴𝑛,𝑛−𝑘 ... 𝐴𝑛,𝑛−2 𝐴𝑛,𝑛−1 𝐴𝑛,𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
11.2. oneMKL Domains 1056

oneAPI Specification, Release 1.1-rev-1

is stored as the array

• For column major layout,

𝑎=[𝐴11, 𝐴21, ..., 𝐴𝑚𝑖𝑛(𝑘+1,𝑛),1, *, ..., *⏟ ⏞
lda

, 𝐴2,2, ..., 𝐴𝑚𝑖𝑛(𝑘+2,𝑛),2, *, ..., *⏟ ⏞
lda

, ..., 𝐴𝑛,𝑛, *, ...*⏟ ⏞
lda⏟ ⏞

lda x n

]

• For row major layout,

𝑎=[*, ..., *⏟ ⏞
k

, 𝐴11, *, ..., *

⏟ ⏞
lda

, *, ..., *⏟ ⏞
k-1

, 𝐴𝑚𝑎𝑥(1,2−𝑘),2, ..., 𝐴2,2, *, ...*

⏟ ⏞
lda

, ..., *, ..., *⏟ ⏞
max(0,k-n+1)

, 𝐴𝑚𝑎𝑥(1,𝑛−𝑘),𝑛, ..., 𝐴𝑛,𝑛, *, ...*

⏟ ⏞
lda⏟ ⏞

lda x n

]

The following program segment transfers a band matrix from conventional full matrix storage (variable matrix, with
leading dimension ldm) to band storage (variable a, with leading dimension lda):

• Using matrices stored with column major layout,

for (j = 0; j < n; j++) {
m = –j;
for (i = j; i < min(n, j + k + 1); i++) {

a[(m + i) + j * lda] = matrix[i + j * ldm];
}

}

• Using matrices stored with row major layout,

for (i = 0; i < n; i++) {
m = k – i;
for (j = max(0, i – k); j <= i; j++) {

a[(m + j) + i * lda] = matrix[j + i * ldm];
}

}

Packed Triangular Matrix

A triangular matrix A of n rows and n columns is represented in packed format as a one dimensional array a of size at
least (n*(n + 1))/2. All elements in the upper or lower part of the matrix A are stored contiguously in the array a.

Before entry in any BLAS function using a triangular packed matrix,

• If upper_lower = uplo::upper, if column (respectively row) major layout is used, the first (n*(n + 1))/2
elements in the array a must contain the upper triangular part of the matrix A packed sequentially, column by
column (respectively row by row) so that a[0] contains A11, a[1] and a[2] contain A12 and A22 (respectively A13)
respectively, and so on. Hence, the matrix

𝐴 =

⎡⎢⎢⎢⎢⎢⎣
𝐴11 𝐴12 𝐴13 . . . 𝐴1𝑛

* 𝐴22 𝐴23 . . . 𝐴2𝑛

* * 𝐴33 . . . 𝐴3𝑛

...
...

...
. . .

...
* * * . . . 𝐴𝑛𝑛

⎤⎥⎥⎥⎥⎥⎦
is stored as the array

11.2. oneMKL Domains 1057

oneAPI Specification, Release 1.1-rev-1

– For column major layout,

𝑎=[𝐴11,𝐴12,𝐴22,𝐴13,𝐴23,𝐴33,...,𝐴(𝑛−1),𝑛,𝐴𝑛𝑛]

– For row major layout,

𝑎=[𝐴11,𝐴12,𝐴13,...,𝐴1𝑛,𝐴22,𝐴23,...,𝐴2𝑛,...,𝐴(𝑛−1),(𝑛−1),𝐴(𝑛−1),𝑛,𝐴𝑛𝑛]

• If upper_lower = uplo::lower, if column (respectively row) major layout is used, the first (n*(n + 1))/2
elements in the array a must contain the lower triangular part of the matrix A packed sequentially, column by
column (row by row) so that a[0] contains A11, a[1] and a[2] contain A21 and A31 (respectively A22) respectively,
and so on. The matrix

𝐴 =

⎡⎢⎢⎢⎢⎢⎣
𝐴11 * * . . . *
𝐴21 𝐴22 * . . . *
𝐴31 𝐴32 𝐴33 . . . *

...
...

...
. . .

...
𝐴𝑛1 𝐴𝑛2 𝐴𝑛3 . . . 𝐴𝑛𝑛

⎤⎥⎥⎥⎥⎥⎦
is stored as the array

– For column major layout,

𝑎=[𝐴11,𝐴21,𝐴31,...,𝐴𝑛1,𝐴22,𝐴32,...,𝐴𝑛2,...,𝐴(𝑛−1),(𝑛−1),𝐴𝑛,(𝑛−1),𝐴𝑛𝑛]

– For row major layout,

𝑎=[𝐴11,𝐴21,𝐴22,𝐴31,𝐴32,𝐴33,...,𝐴𝑛,(𝑛−1),𝐴𝑛𝑛]

Vector

A vector X of n elements with increment incx is represented as a one dimensional array x of size at least (1 + (n - 1)
* abs(incx)).

Visually, the vector

𝑋 = (𝑋1, 𝑋2, 𝑋3, ..., 𝑋𝑛)

is stored in memory as an array

𝑥=[𝑋1, *, ..., *⏟ ⏞
incx

, 𝑋2, *, ..., *⏟ ⏞
incx

, ..., 𝑋𝑛−1, *, ..., *⏟ ⏞
incx

, 𝑋𝑛

⏟ ⏞
1 + (n-1) x incx

] 𝑖𝑓 𝑖𝑛𝑐𝑥 > 0

𝑥=[𝑋𝑛, *, ..., *⏟ ⏞
|incx|

, 𝑋𝑛−1, *, ..., *⏟ ⏞
|incx|

, ..., 𝑋2, *, ..., *⏟ ⏞
|incx|

, 𝑋1

⏟ ⏞
1 + (1-n) x incx

] 𝑖𝑓 𝑖𝑛𝑐𝑥 < 0

Parent topic: Dense Linear Algebra

11.2. oneMKL Domains 1058

oneAPI Specification, Release 1.1-rev-1

BLAS Routines

oneMKL provides DPC++ interfaces to the Basic Linear Algebra Subprograms (BLAS) routines (Level1, Level2,
Level3), as well as several BLAS-like extension routines.

BLAS Level 1 Routines

BLAS Level 1 includes routines which perform vector-vector operations as described in the following table.

Routines Description
asum Sum of vector magnitudes
axpy Scalar-vector product
copy Copy vector
dot Dot product
sdsdot Dot product with double precision
dotc Dot product conjugated
dotu Dot product unconjugated
nrm2 Vector 2-norm (Euclidean norm)
rot Plane rotation of points
rotg Generate Givens rotation of points
rotm Modified Givens plane rotation of points
rotmg Generate modified Givens plane rotation of points
scal Vector-scalar product
swap Vector-vector swap
iamax Index of the maximum absolute value element of a vector
iamin Index of the minimum absolute value element of a vector

asum

Computes the sum of magnitudes of the vector elements.

Description

The asum routine computes the sum of the magnitudes of elements of a real vector, or the sum of magnitudes of the
real and imaginary parts of elements of a complex vector:

𝑟𝑒𝑠𝑢𝑙𝑡 =

𝑛∑︁
𝑖=1

(|𝑅𝑒(𝑥𝑖)|+ |𝐼𝑚(𝑥𝑖)|)

where x is a vector with n elements.

asum supports the following precisions for data:

T T_res
float float
double double
std::complex<float> float
std::complex<double> double

11.2. oneMKL Domains 1059

oneAPI Specification, Release 1.1-rev-1

asum (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void asum(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T_res,1> &result)

}

namespace oneapi::mkl::blas::row_major {
void asum(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T_res,1> &result)

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

Output Parameters

result Buffer where the scalar result is stored (the sum of magnitudes of the real and imaginary parts of all elements
of the vector).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1060

oneAPI Specification, Release 1.1-rev-1

asum (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event asum(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
T_res *result,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event asum(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
T_res *result,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x.

x Pointer to input vector x. The array holding the vector x must be of size at least (1 + (n - 1)*abs(incx)). See Matrix
Storage for more details.

incx Stride of vector x.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

result Pointer to the output matrix where the scalar result is stored (the sum of magnitudes of the real and imaginary
parts of all elements of the vector).

Return Values

Output event to wait on to ensure computation is complete.

11.2. oneMKL Domains 1061

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

axpy

Computes a vector-scalar product and adds the result to a vector.

Description

The axpy routines compute a scalar-vector product and add the result to a vector:

𝑦 ← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 + 𝑦

where:

x and y are vectors of n elements,

alpha is a scalar.

axpy supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

axpy (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void axpy(sycl::queue &queue,

std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

11.2. oneMKL Domains 1062

oneAPI Specification, Release 1.1-rev-1

namespace oneapi::mkl::blas::row_major {
void axpy(sycl::queue &queue,

std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x.

alpha Specifies the scalar alpha.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n – 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

y Buffer holding input vector y. The buffer must be of size at least (1 + (n – 1)*abs(incy)). See Matrix Storage for
more details.

incy Stride of vector y.

Output Parameters

y Buffer holding the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1063

oneAPI Specification, Release 1.1-rev-1

axpy (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event axpy(sycl::queue &queue,

std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event axpy(sycl::queue &queue,

std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x.

alpha Specifies the scalar alpha.

x Pointer to the input vector x. The array holding the vector x must be of size at least (1 + (n – 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

y Pointer to the input vector y. The array holding the vector y must be of size at least (1 + (n – 1)*abs(incy)). See
Matrix Storage for more details.

incy Stride of vector y.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

11.2. oneMKL Domains 1064

oneAPI Specification, Release 1.1-rev-1

Output Parameters

y Pointer to the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

copy

Copies a vector to another vector.

Description

The copy routines copy one vector to another:

𝑦 ← 𝑥

where x and y are vectors of n elements.

copy supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

11.2. oneMKL Domains 1065

oneAPI Specification, Release 1.1-rev-1

copy (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void copy(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void copy(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n – 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

incy Stride of vector y.

Output Parameters

y Buffer holding the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1066

oneAPI Specification, Release 1.1-rev-1

copy (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event copy(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event copy(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x.

x Pointer to the input vector x. The array holding the vector x must be of size at least (1 + (n – 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

incy Stride of vector y.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y Pointer to the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

11.2. oneMKL Domains 1067

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

dot

Computes the dot product of two real vectors.

Description

The dot routines perform a dot product between two vectors:

𝑟𝑒𝑠𝑢𝑙𝑡 =

𝑛∑︁
𝑖=1

𝑋𝑖𝑌𝑖

dot supports the following precisions for data.

T T_res
float float
double double
float double

Note

For the mixed precision version (inputs are float while result is double), the dot product is computed with double
precision.

dot (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void dot(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T_res,1> &result)

}

11.2. oneMKL Domains 1068

oneAPI Specification, Release 1.1-rev-1

namespace oneapi::mkl::blas::row_major {
void dot(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T_res,1> &result)

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vectors x and y.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n – 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

y Buffer holding input vector y. The buffer must be of size at least (1 + (n – 1)*abs(incy)). See Matrix Storage for
more details.

incy Stride of vector y.

Output Parameters

result Buffer where the result (a scalar) will be stored.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

dot (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event dot(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,

(continues on next page)

11.2. oneMKL Domains 1069

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const T *y,
std::int64_t incy,
T_res *result,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event dot(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T_res *result,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vectors x and y.

x Pointer to the input vector x. The array holding the vector x must be of size at least (1 + (n – 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

y Pointer to the input vector y. The array holding the vector y must be of size at least (1 + (n – 1)*abs(incy)). See
Matrix Storage for more details.

incy Stride of vector y.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

result Pointer to where the result (a scalar) will be stored.

Return Values

Output event to wait on to ensure computation is complete.

11.2. oneMKL Domains 1070

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

sdsdot

Computes a vector-vector dot product with double precision.

Description

The sdsdot routines perform a dot product between two vectors with double precision:

𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑠𝑏 +

𝑛∑︁
𝑖=1

𝑋𝑖𝑌𝑖

sdsdot (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void sdsdot(sycl::queue &queue,

std::int64_t n,
float sb,
sycl::buffer<float,1> &x,
std::int64_t incx,
sycl::buffer<float,1> &y,
std::int64_t incy,
sycl::buffer<float,1> &result)

}

namespace oneapi::mkl::blas::row_major {
void sdsdot(sycl::queue &queue,

std::int64_t n,
float sb,
sycl::buffer<float,1> &x,
std::int64_t incx,
sycl::buffer<float,1> &y,
std::int64_t incy,
sycl::buffer<float,1> &result)

}

11.2. oneMKL Domains 1071

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vectors x and y.

sb Single precision scalar to be added to the dot product.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

y Buffer holding input vector y. The buffer must be of size at least (1 + (n - 1)*abs(incxy)). See Matrix Storage for
more details.

incy Stride of vector y.

Output Parameters

result Buffer where the result (a scalar) will be stored. If n < 0 the result is sb.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

sdsdot (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event sdsdot(sycl::queue &queue,

std::int64_t n,
float sb,
const float *x,
std::int64_t incx,
const float *y,
std::int64_t incy,
float *result,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1072

oneAPI Specification, Release 1.1-rev-1

namespace oneapi::mkl::blas::row_major {
sycl::event sdsdot(sycl::queue &queue,

std::int64_t n,
float sb,
const float *x,
std::int64_t incx,
const float *y,
std::int64_t incy,
float *result,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vectors x and y.

sb Single precision scalar to be added to the dot product.

x Pointer to the input vector x. The array must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for more
details.

incx Stride of vector x.

y Pointer to the input vector y. The array must be of size at least (1 + (n - 1)*abs(incxy)). See Matrix Storage for
more details.

incy Stride of vector y.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

result Pointer to where the result (a scalar) will be stored. If n < 0 the result is sb.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

11.2. oneMKL Domains 1073

oneAPI Specification, Release 1.1-rev-1

dotc

Computes the dot product of two complex vectors, conjugating the first vector.

Description

The dotc routines perform a dot product between two complex vectors, conjugating the first of them:

𝑟𝑒𝑠𝑢𝑙𝑡 =

𝑛∑︁
𝑖=1

𝑋𝑖𝑌𝑖

dotc supports the following precisions for data.

T
std::complex<float>
std::complex<double>

dotc (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void dotc(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &result)

}

namespace oneapi::mkl::blas::row_major {
void dotc(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &result)

}

11.2. oneMKL Domains 1074

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

n The number of elements in vectors x and y.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx The stride of vector x.

y Buffer holding input vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage for
more details..

incy The stride of vector y.

Output Parameters

result The buffer where the result (a scalar) is stored.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

dotc (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void dotc(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *result,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
void dotc(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,

(continues on next page)

11.2. oneMKL Domains 1075

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const T *y,
std::int64_t incy,
T *result,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

n The number of elements in vectors x and y.

x Pointer to input vector x. The array holding the input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx The stride of vector x.

y Pointer to input vector y. The array holding the input vector y must be of size at least (1 + (n - 1)*abs(incy)). See
Matrix Storage for more details..

incy The stride of vector y.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

result The pointer to where the result (a scalar) is stored.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

11.2. oneMKL Domains 1076

oneAPI Specification, Release 1.1-rev-1

dotu

Computes the dot product of two complex vectors.

Description

The dotu routines perform a dot product between two complex vectors:

𝑟𝑒𝑠𝑢𝑙𝑡 =

𝑛∑︁
𝑖=1

𝑋𝑖𝑌𝑖

dotu supports the following precisions.

T
std::complex<float>
std::complex<double>

dotu (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void dotu(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &result)

}

namespace oneapi::mkl::blas::row_major {
void dotu(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &result)

}

11.2. oneMKL Domains 1077

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vectors x and y.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

y Buffer holding input vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage for
more details.

incy Stride of vector y.

Output Parameters

result Buffer where the result (a scalar) is stored.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

dotu (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event dotu(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *result,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event dotu(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,

(continues on next page)

11.2. oneMKL Domains 1078

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const T *y,
std::int64_t incy,
T *result,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vectors x and y.

x Pointer to the input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

y Pointer to input vector y. The array holding input vector y must be of size at least (1 + (n - 1)*abs(incy)). See
Matrix Storage for more details.

incy Stride of vector y.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

result Pointer to where the result (a scalar) is stored.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

11.2. oneMKL Domains 1079

oneAPI Specification, Release 1.1-rev-1

nrm2

Computes the Euclidean norm of a vector.

Description

The nrm2 routines computes Euclidean norm of a vector

𝑟𝑒𝑠𝑢𝑙𝑡 = ‖𝑥‖

where:

x is a vector of n elements.

nrm2 supports the following precisions.

T T_res
float float
double double
std::complex<float> float
std::complex<double> double

nrm2 (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void nrm2(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T_res,1> &result)

}

namespace oneapi::mkl::blas::row_major {
void nrm2(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T_res,1> &result)

}

11.2. oneMKL Domains 1080

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

Output Parameters

result Buffer where the Euclidean norm of the vector x will be stored.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

nrm2 (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event nrm2(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
T_res *result,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event nrm2(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
T_res *result,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1081

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

result Pointer to where the Euclidean norm of the vector x will be stored.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

rot

Performs rotation of points in the plane.

Description

Given two vectors x and y of n elements, the rot routines compute four scalar-vector products and update the input
vectors with the sum of two of these scalar-vector products as follow:[︂

𝑥
𝑦

]︂
←
[︂

𝑐 * 𝑥 + 𝑠 * 𝑦
−𝑠 * 𝑥 + 𝑐 * 𝑦

]︂
rot supports the following precisions.

11.2. oneMKL Domains 1082

oneAPI Specification, Release 1.1-rev-1

T T_scalar
float float
double double
std::complex<float> float
std::complex<double> double

rot (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void rot(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
T_scalar c,
T_scalar s)

}

namespace oneapi::mkl::blas::row_major {
void rot(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
T_scalar c,
T_scalar s)

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

y Buffer holding input vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage for
more details.

incy Stride of vector y.

c Scaling factor.

s Scaling factor.

11.2. oneMKL Domains 1083

oneAPI Specification, Release 1.1-rev-1

Output Parameters

x Buffer holding updated buffer x.

y Buffer holding updated buffer y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

rot (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event rot(sycl::queue &queue,

std::int64_t n,
T *x,
std::int64_t incx,
T *y,
std::int64_t incy,
T_scalar c,
T_scalar s,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event rot(sycl::queue &queue,

std::int64_t n,
T *x,
std::int64_t incx,
T *y,
std::int64_t incy,
T_scalar c,
T_scalar s,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1084

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

y Pointer to input vector y. The array holding input vector y must be of size at least (1 + (n - 1)*abs(incy)). See
Matrix Storage for more details.

incy Stride of vector y.

c Scaling factor.

s Scaling factor.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

x Pointer to the updated matrix x.

y Pointer to the updated matrix y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

11.2. oneMKL Domains 1085

oneAPI Specification, Release 1.1-rev-1

rotg

Computes the parameters for a Givens rotation.

Description

Given the Cartesian coordinates (a, b) of a point, the rotg routines return the parameters c, s, r, and z associated
with the Givens rotation. The parameters c and s define a unitary matrix such that:[︂

𝑐 𝑠
−𝑠 𝑐

]︂
.

[︂
𝑎
𝑏

]︂
=

[︂
𝑟
0

]︂
The parameter z is defined such that if |a| > |b|, z is s; otherwise if c is not 0 z is 1/c; otherwise z is 1.

rotg supports the following precisions.

T T_res
float float
double double
std::complex<float> float
std::complex<double> double

rotg (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void rotg(sycl::queue &queue,

sycl::buffer<T,1> &a,
sycl::buffer<T,1> &b,
sycl::buffer<T_real,1> &c,
sycl::buffer<T,1> &s)

}

namespace oneapi::mkl::blas::row_major {
void rotg(sycl::queue &queue,

sycl::buffer<T,1> &a,
sycl::buffer<T,1> &b,
sycl::buffer<T_real,1> &c,
sycl::buffer<T,1> &s)

}

11.2. oneMKL Domains 1086

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed

a Buffer holding the x-coordinate of the point.

b Buffer holding the y-coordinate of the point.

Output Parameters

a Buffer holding the parameter r associated with the Givens rotation.

b Buffer holding the parameter z associated with the Givens rotation.

c Buffer holding the parameter c associated with the Givens rotation.

s Buffer holding the parameter s associated with the Givens rotation.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

rotg (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event rotg(sycl::queue &queue,

T *a,
T *b,
T_real *c,
T *s,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event rotg(sycl::queue &queue,

T *a,
T *b,
T_real *c,
T *s,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1087

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed

a Pointer to the x-coordinate of the point.

b Pointer to the y-coordinate of the point.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a Pointer to the parameter r associated with the Givens rotation.

b Pointer to the parameter z associated with the Givens rotation.

c Pointer to the parameter c associated with the Givens rotation.

s Pointer to the parameter s associated with the Givens rotation.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

rotm

Performs modified Givens rotation of points in the plane.

Description

Given two vectors x and y, each vector element of these vectors is replaced as follows:[︂
𝑥𝑖

𝑦𝑖

]︂
= 𝐻

[︂
𝑥𝑖

𝑦𝑖

]︂
for i from 1 to n, where H is a modified Givens transformation matrix.

rotm supports the following precisions.

11.2. oneMKL Domains 1088

oneAPI Specification, Release 1.1-rev-1

T
float
double

rotm (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void rotm(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> ¶m)

}

namespace oneapi::mkl::blas::row_major {
void rotm(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> ¶m)

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

y Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage for
more details.

incy Stride of vector y.

param Buffer holding an array of size 5.

The elements of the param array are:

param[0] contains a switch, flag. The other array elements param[1-4] contain the components of the mod-
ified Givens transformation matrix H: h11, h21, h12, and h22, respectively.

Depending on the values of flag, the components of H are set as follows:

flag = -1.0:

11.2. oneMKL Domains 1089

oneAPI Specification, Release 1.1-rev-1

𝐻 =

[︂
ℎ11 ℎ12

ℎ21 ℎ22

]︂

flag = 0.0:

𝐻 =

[︂
1.0 ℎ12

ℎ21 1.0

]︂

flag = 1.0:

𝐻 =

[︂
ℎ11 1.0
−1.0 ℎ22

]︂

flag = -2.0:

𝐻 =

[︂
1.0 0.0
0.0 1.0

]︂
In the last three cases, the matrix entries of 1.0, -1.0, and 0.0 are assumed based on the value of flag and are
not required to be set in the param vector.

Output Parameters

x Buffer holding updated buffer x.

y Buffer holding updated buffer y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

rotm (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event rotm(sycl::queue &queue,

std::int64_t n,
T *x,
std::int64_t incx,
T *y,
std::int64_t incy,
T *param,

(continues on next page)

11.2. oneMKL Domains 1090

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const std::vector<sycl::event> &dependencies = {})
}

namespace oneapi::mkl::blas::row_major {
sycl::event rotm(sycl::queue &queue,

std::int64_t n,
T *x,
std::int64_t incx,
T *y,
std::int64_t incy,
T *param,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x.

x Pointer to the input vector x. The array holding the vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

yparam Pointer to the input vector y. The array holding the vector y must be of size at least (1 + (n - 1)*abs(incy)).
See Matrix Storage for more details.

incy Stride of vector y.

param Buffer holding an array of size 5.

The elements of the param array are:

param[0] contains a switch, flag. The other array elements param[1-4] contain the components of the mod-
ified Givens transformation matrix H: h11, h21, h12, and h22, respectively.

Depending on the values of flag, the components of H are set as follows:

flag = -1.0:

𝐻 =

[︂
ℎ11 ℎ12

ℎ21 ℎ22

]︂

flag = 0.0:

𝐻 =

[︂
1.0 ℎ12

ℎ21 1.0

]︂

flag = 1.0:

𝐻 =

[︂
ℎ11 1.0
−1.0 ℎ22

]︂

11.2. oneMKL Domains 1091

oneAPI Specification, Release 1.1-rev-1

flag = -2.0:

𝐻 =

[︂
1.0 0.0
0.0 1.0

]︂
In the last three cases, the matrix entries of 1.0, -1.0, and 0.0 are assumed based on the value of flag and are
not required to be set in the param vector.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

x Pointer to the updated array x.

y Pointer to the updated array y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

rotmg

Computes the parameters for a modified Givens rotation.

Description

Given Cartesian coordinates (x1, y1) of an input vector, the rotmg routines compute the components of a modified
Givens transformation matrix H that zeros the y-component of the resulting vector:[︂

𝑥1
0

]︂
= 𝐻

[︂
𝑥1
√
𝑑1

𝑦1
√
𝑑2

]︂
rotmg supports the following precisions.

T
float
double

11.2. oneMKL Domains 1092

oneAPI Specification, Release 1.1-rev-1

rotmg (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void rotmg(sycl::queue &queue,

sycl::buffer<T,1> &d1,
sycl::buffer<T,1> &d2,
sycl::buffer<T,1> &x1,
sycl::buffer<T,1> &y1,
sycl::buffer<T,1> ¶m)

}

namespace oneapi::mkl::blas::row_major {
void rotmg(sycl::queue &queue,

sycl::buffer<T,1> &d1,
sycl::buffer<T,1> &d2,
sycl::buffer<T,1> &x1,
sycl::buffer<T,1> &y1,
sycl::buffer<T,1> ¶m)

}

Input Parameters

queue The queue where the routine should be executed.

d1 Buffer holding the scaling factor for the x-coordinate of the input vector.

d2 Buffer holding the scaling factor for the y-coordinate of the input vector.

x1 Buffer holding the x-coordinate of the input vector.

y1 Scalar specifying the y-coordinate of the input vector.

Output Parameters

d1 Buffer holding the first diagonal element of the updated matrix.

d2 Buffer holding the second diagonal element of the updated matrix.

x1 Buffer holding the x-coordinate of the rotated vector before scaling

param Buffer holding an array of size 5.

The elements of the param array are:

param[0] contains a switch, flag. The other array elements param[1-4] contain the components of the mod-
ified Givens transformation matrix H: h11, h21, h12, and h22, respectively.

Depending on the values of flag, the components of H are set as follows:

flag = -1.0:

11.2. oneMKL Domains 1093

oneAPI Specification, Release 1.1-rev-1

𝐻 =

[︂
ℎ11 ℎ12

ℎ21 ℎ22

]︂

flag = 0.0:

𝐻 =

[︂
1.0 ℎ12

ℎ21 1.0

]︂

flag = 1.0:

𝐻 =

[︂
ℎ11 1.0
−1.0 ℎ22

]︂

flag = -2.0:

𝐻 =

[︂
1.0 0.0
0.0 1.0

]︂
In the last three cases, the matrix entries of 1.0, -1.0, and 0.0 are assumed based on the value of flag and are
not required to be set in the param vector.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

rotmg (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event rotmg(sycl::queue &queue,

T *d1,
T *d2,
T *x1,
T *y1,
T *param,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event rotmg(sycl::queue &queue,

T *d1,
T *d2,

(continues on next page)

11.2. oneMKL Domains 1094

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

T *x1,
T *y1,
T *param,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

d1 Pointer to the scaling factor for the x-coordinate of the input vector.

d2 Pointer to the scaling factor for the y-coordinate of the input vector.

x1 Pointer to the x-coordinate of the input vector.

y1 Scalar specifying the y-coordinate of the input vector.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

d1 Pointer to the first diagonal element of the updated matrix.

d2 Pointer to the second diagonal element of the updated matrix.

x1 Pointer to the x-coordinate of the rotated vector before scaling

param Buffer holding an array of size 5.

The elements of the param array are:

param[0] contains a switch, flag. The other array elements param[1-4] contain the components of the mod-
ified Givens transformation matrix H: h11, h21, h12, and h22, respectively.

Depending on the values of flag, the components of H are set as follows:

flag = -1.0:

𝐻 =

[︂
ℎ11 ℎ12

ℎ21 ℎ22

]︂

flag = 0.0:

𝐻 =

[︂
1.0 ℎ12

ℎ21 1.0

]︂

flag = 1.0:

𝐻 =

[︂
ℎ11 1.0
−1.0 ℎ22

]︂

flag = -2.0:

11.2. oneMKL Domains 1095

oneAPI Specification, Release 1.1-rev-1

𝐻 =

[︂
1.0 0.0
0.0 1.0

]︂
In the last three cases, the matrix entries of 1.0, -1.0, and 0.0 are assumed based on the value of flag and are
not required to be set in the param vector.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

scal

Computes the product of a vector by a scalar.

Description

The scal routines computes a scalar-vector product:

𝑥← 𝑎𝑙𝑝ℎ𝑎 * 𝑥

where:

x is a vector of n elements,

alpha is a scalar.

scal supports the following precisions.

T T_scalar
float float
double double
std::complex<float> std::complex<float>
std::complex<double> std::complex<double>
std::complex<float> float
std::complex<double> double

11.2. oneMKL Domains 1096

oneAPI Specification, Release 1.1-rev-1

scal (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void scal(sycl::queue &queue,

std::int64_t n,
T_scalar alpha,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

namespace oneapi::mkl::blas::row_major {
void scal(sycl::queue &queue,

std::int64_t n,
T_scalar alpha,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x.

alpha Specifies the scalar alpha.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

Output Parameters

x Buffer holding updated buffer x.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1097

oneAPI Specification, Release 1.1-rev-1

scal (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event scal(sycl::queue &queue,

std::int64_t n,
T_scalar alpha,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event scal(sycl::queue &queue,

std::int64_t n,
T_scalar alpha,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x.

alpha Specifies the scalar alpha.

x Pointer to the input vector x. The array must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for more
details.

incx Stride of vector x.

Output Parameters

x Pointer to the updated array x.

Return Values

Output event to wait on to ensure computation is complete.

11.2. oneMKL Domains 1098

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

swap

Swaps a vector with another vector.

Description

Given two vectors of n elements, x and y, the swap routines return vectors y and x swapped, each replacing the other.[︂
𝑦
𝑥

]︂
←
[︂

𝑥
𝑦

]︂
swap supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

swap (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void swap(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void swap(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,

(continues on next page)

11.2. oneMKL Domains 1099

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

y Buffer holding input vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage for
more details.

incy Stride of vector y.

Output Parameters

x Buffer holding updated buffer x, that is, the input vector y.

y Buffer holding updated buffer y, that is, the input vector x.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

swap (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event swap(sycl::queue &queue,

std::int64_t n,
T *x,
std::int64_t incx,
T *y,
std::int64_t incy,

(continues on next page)

11.2. oneMKL Domains 1100

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const std::vector<sycl::event> &dependencies = {})
}

namespace oneapi::mkl::blas::row_major {
sycl::event swap(sycl::queue &queue,

std::int64_t n,
T *x,
std::int64_t incx,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x.

x Pointer to the input vector x. The array must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for more
details.

incx Stride of vector x.

y Pointer to the input vector y. The array must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage for more
details.

incy Stride of vector y.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

x Pointer to the updated array x, that is, the input vector y.

y Pointer to the updated array y, that is, the input vector x.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1101

oneAPI Specification, Release 1.1-rev-1

Parent topic: BLAS Level 1 Routines

iamax

Finds the index of the element with the largest absolute value in a vector.

Description

The iamax routines return an index i such that x[i] has the maximum absolute value of all elements in vector x (real
variants), or such that (|Re(x[i])| + |Im(x[i])|) is maximal (complex variants).

If either n or incx are not positive, the routine returns 0.

If more than one vector element is found with the same largest absolute value, the index of the first one encountered is
returned.

If the vector contains NaN values, then the routine returns the index of the first NaN.

iamax supports the following precisions.

T
float
double
std::complex<float>
std:complex<double>

Note

The index is zero-based.

iamax (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void iamax(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,
1> &x,
std::int64_t incx,
sycl::buffer<std::int64_t,
1> &result)

}

namespace oneapi::mkl::blas::row_major {
void iamax(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,
1> &x,
std::int64_t incx,

(continues on next page)

11.2. oneMKL Domains 1102

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

sycl::buffer<std::int64_t,
1> &result)

}

Input Parameters

queue The queue where the routine should be executed.

n The number of elements in vector x.

x The buffer that holds the input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix
Storage for more details.

incx The stride of vector x.

Output Parameters

result The buffer where the zero-based index i of the maximal element is stored.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

iamax (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event iamax(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
T_res *result,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event iamax(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,

(continues on next page)

11.2. oneMKL Domains 1103

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

T_res *result,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

n The number of elements in vector x.

x The pointer to the input vector x. The array holding the input vector xmust be of size at least (1 + (n - 1)*abs(incx)).
See Matrix Storage for more details.

incx The stride of vector x.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

result The pointer to where the zero-based index i of the maximal element is stored.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

iamin

Finds the index of the element with the smallest absolute value.

11.2. oneMKL Domains 1104

oneAPI Specification, Release 1.1-rev-1

Description

The iamin routines return an index i such that x[i] has the minimum absolute value of all elements in vector x (real
variants), or such that (|Re(x[i])| + |Im(x[i])|) is minimal (complex variants).

If either n or incx are not positive, the routine returns 0.

If more than one vector element is found with the same smallest absolute value, the index of the first one encountered
is returned.

If the vector contains NaN values, then the routine returns the index of the first NaN.

iamin supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Note

The index is zero-based.

iamin (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void iamin(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<std::int64_t,1> &result)

}

namespace oneapi::mkl::blas::row_major {
void iamin(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<std::int64_t,1> &result)

}

11.2. oneMKL Domains 1105

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

Output Parameters

result Buffer where the zero-based index i of the minimum element will be stored.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

iamin (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event iamin(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
T_res *result,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event iamin(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
T_res *result,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1106

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x.

x The pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

Output Parameters

result Pointer to where the zero-based index i of the minimum element will be stored.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 1 Routines

Parent topic: BLAS Routines

BLAS Level 2 Routines

BLAS Level 2 includes routines which perform matrix-vector operations as described in the following table.

11.2. oneMKL Domains 1107

oneAPI Specification, Release 1.1-rev-1

Routines Description
gbmv Matrix-vector product using a general band matrix
gemv Matrix-vector product using a general matrix
ger Rank-1 update of a general matrix
gerc Rank-1 update of a conjugated general matrix
geru Rank-1 update of a general matrix, unconjugated
hbmv Matrix-vector product using a Hermitian band matrix
hemv Matrix-vector product using a Hermitian matrix
her Rank-1 update of a Hermitian matrix
her2 Rank-2 update of a Hermitian matrix
hpmv Matrix-vector product using a Hermitian packed matrix
hpr Rank-1 update of a Hermitian packed matrix
hpr2 Rank-2 update of a Hermitian packed matrix
sbmv Matrix-vector product using symmetric band matrix
spmv Matrix-vector product using a symmetric packed matrix
spr Rank-1 update of a symmetric packed matrix
spr2 Rank-2 update of a symmetric packed matrix
symv Matrix-vector product using a symmetric matrix
syr Rank-1 update of a symmetric matrix
syr2 Rank-2 update of a symmetric matrix
tbmv Matrix-vector product using a triangular band matrix
tbsv Solution of a linear system of equations with a triangular band matrix
tpmv Matrix-vector product using a triangular packed matrix
tpsv Solution of a linear system of equations with a triangular packed matrix
trmv Matrix-vector product using a triangular matrix
trsv Solution of a linear system of equations with a triangular matrix

gbmv

Computes a matrix-vector product with a general band matrix.

Description

The gbmv routines compute a scalar-matrix-vector product and add the result to a scalar-vector product, with a general
band matrix. The operation is defined as

𝑦 ← 𝑎𝑙𝑝ℎ𝑎 * 𝑜𝑝(𝐴) * 𝑥 + 𝑏𝑒𝑡𝑎 * 𝑦

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

alpha and beta are scalars,

A is an m-by-n matrix with kl sub-diagonals and ku super-diagonals,

x and y are vectors.

gbmv supports the following precisions.

11.2. oneMKL Domains 1108

oneAPI Specification, Release 1.1-rev-1

T
float
double
std::complex<float>
std::complex<double>

gbmv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void gbmv(sycl::queue &queue,

onemkl::transpose trans,
std::int64_t m,
std::int64_t n,
std::int64_t kl,
std::int64_t ku,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void gbmv(sycl::queue &queue,

onemkl::transpose trans,
std::int64_t m,
std::int64_t n,
std::int64_t kl,
std::int64_t ku,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

11.2. oneMKL Domains 1109

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

m Number of rows of A. Must be at least zero.

n Number of columns of A. Must be at least zero.

kl Number of sub-diagonals of the matrix A. Must be at least zero.

ku Number of super-diagonals of the matrix A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

a Buffer holding input matrix A. Must have size at least lda*n if column major layout is used or at least lda*m if row
major layout is used. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be at least (kl + ku + 1), and positive.

x Buffer holding input vector x. The length len of vector x is n if A is not transposed, and m if A is transposed. The
buffer must be of size at least (1 + (len - 1)*abs(incx)). See Matrix Storage for more details.

incx Stride of vector x.

beta Scaling factor for vector y.

y Buffer holding input/output vector y. The length len of vector y is m, if A is not transposed, and n if A is transposed.
The buffer must be of size at least (1 + (len - 1)*abs(incy)) where len is this length. See Matrix Storage for
more details.

incy Stride of vector y.

Output Parameters

y Buffer holding the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1110

oneAPI Specification, Release 1.1-rev-1

gbmv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gbmv(sycl::queue &queue,

onemkl::transpose trans,
std::int64_t m,
std::int64_t n,
std::int64_t kl,
std::int64_t ku,
T alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
T beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event gbmv(sycl::queue &queue,

onemkl::transpose trans,
std::int64_t m,
std::int64_t n,
std::int64_t kl,
std::int64_t ku,
T alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
T beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

m Number of rows of A. Must be at least zero.

n Number of columns of A. Must be at least zero.

kl Number of sub-diagonals of the matrix A. Must be at least zero.

ku Number of super-diagonals of the matrix A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

11.2. oneMKL Domains 1111

oneAPI Specification, Release 1.1-rev-1

a Pointer to input matrix A. The array holding input matrix A must have size at least lda*n if column major layout is
used or at least lda*m if row major layout is used. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be at least (kl + ku + 1), and positive.

x Pointer to input vector x. The length len of vector x is n if A is not transposed, and m if A is transposed. The array
holding input vector x must be of size at least (1 + (len - 1)*abs(incx)). See Matrix Storage for more details.

incx Stride of vector x.

beta Scaling factor for vector y.

y Pointer to input/output vector y. The length len of vector y is m, if A is not transposed, and n if A is transposed. The
array holding input/output vector y must be of size at least (1 + (len - 1)*abs(incy)) where len is this length.
See Matrix Storage for more details.

incy Stride of vector y.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y Pointer to the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

gemv

Computes a matrix-vector product using a general matrix.

11.2. oneMKL Domains 1112

oneAPI Specification, Release 1.1-rev-1

Description

The gemv routines compute a scalar-matrix-vector product and add the result to a scalar-vector product, with a general
matrix. The operation is defined as:

𝑦 ← 𝑎𝑙𝑝ℎ𝑎 * 𝑜𝑝(𝐴) * 𝑥 + 𝑏𝑒𝑡𝑎 * 𝑦

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

alpha and beta are scalars,

A is an m-by-n matrix, and x, y are vectors.

gemv supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

gemv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void gemv(sycl::queue &queue,

onemkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void gemv(sycl::queue &queue,

onemkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,

(continues on next page)

11.2. oneMKL Domains 1113

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

sycl::buffer<T,1> &y,
std::int64_t incy)

}

Input Parameters

queue The queue where the routine should be executed.

trans Specifies op(A), the transposition operation applied to A.

m Specifies the number of rows of the matrix A. The value of m must be at least zero.

n Specifies the number of columns of the matrix A. The value of n must be at least zero.

alpha Scaling factor for the matrix-vector product.

a The buffer holding the input matrix A. Must have a size of at least lda*n if column major layout is used or at least
lda*m if row major layout is used. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be positive and at least m if column major layout is used or at least n if row
major layout is used.

x Buffer holding input vector x. The length len of vector x is n if A is not transposed, and m if A is transposed. The
buffer must be of size at least (1 + (len - 1)*abs(incx)). See Matrix Storage for more details.

incx The stride of vector x.

beta The scaling factor for vector y.

y Buffer holding input/output vector y. The length len of vector y is m, if A is not transposed, and n if A is transposed.
The buffer must be of size at least (1 + (len - 1)*abs(incy)) where len is this length. See Matrix Storage for
more details.

incy The stride of vector y.

Output Parameters

y The buffer holding updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1114

oneAPI Specification, Release 1.1-rev-1

gemv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gemv(sycl::queue &queue,

onemkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
T beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event gemv(sycl::queue &queue,

onemkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
T beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

m Specifies the number of rows of the matrix A. The value of m must be at least zero.

n Specifies the number of columns of the matrix A. The value of n must be at least zero.

alpha Scaling factor for the matrix-vector product.

a Pointer to the input matrix A. Must have a size of at least lda*n if column major layout is used or at least lda*m if
row major layout is used. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be positive and at least m if column major layout is used or at least n if row
major layout is used.

11.2. oneMKL Domains 1115

oneAPI Specification, Release 1.1-rev-1

x Pointer to the input vector x. The length len of vector x is n if A is not transposed, and m if A is transposed. The
array holding vector x must be of size at least (1 + (len - 1)*abs(incx)). See Matrix Storage for more details.

incx The stride of vector x.

beta The scaling factor for vector y.

y Pointer to input/output vector y. The length len of vector y is m, if A is not transposed, and n if A is transposed. The
array holding input/output vector y must be of size at least (1 + (len - 1)*abs(incy)) where len is this length.
See Matrix Storage for more details.

incy The stride of vector y.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y The pointer to updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

ger

Computes a rank-1 update of a general matrix.

Description

The ger routines compute a scalar-vector-vector product and add the result to a general matrix. The operation is defined
as:

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑦𝑇 + 𝐴

where:

alpha is scalar,

A is an m-by-n matrix,

11.2. oneMKL Domains 1116

oneAPI Specification, Release 1.1-rev-1

x is a vector of length m,

y is a vector of length n.

ger supports the following precisions.

T
float
double

ger (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void ger(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

namespace oneapi::mkl::blas::row_major {
void ger(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

Input Parameters

queue The queue where the routine should be executed.

m Number of rows of A. Must be at least zero.

n Number of columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Buffer holding input vector x. The buffer must be of size at least (1 + (m - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

11.2. oneMKL Domains 1117

oneAPI Specification, Release 1.1-rev-1

y Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage
for more details.

incy Stride of vector y.

a Buffer holding input matrix A. Must have size at least lda*n if column major layout is used or at least lda*m if row
major layout is used. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be positive and at least m if column major layout is used or at least n if row
major layout is used.

Output Parameters

a Buffer holding the updated matrix A.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

ger (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event ger(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event ger(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
T alpha,
const T *x,

(continues on next page)

11.2. oneMKL Domains 1118

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

m Number of rows of A. Must be at least zero.

n Number of columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (m - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

y Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy Stride of vector y.

a Pointer to input matrix A. Must have size at least lda*n if column major layout is used or at least lda*m if row major
layout is used. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be positive and at least m if column major layout is used or at least n if row
major layout is used.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a Pointer to the updated matrix A.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

11.2. oneMKL Domains 1119

oneAPI Specification, Release 1.1-rev-1

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

gerc

Computes a rank-1 update (conjugated) of a general complex matrix.

Description

The gerc routines compute a scalar-vector-vector product and add the result to a general matrix. The operation is
defined as:

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑦𝐻 + 𝐴

where:

alpha is a scalar,

A is an m-by-n matrix,

x is a vector of length m,

y is vector of length n.

gerc supports the following precisions.

T
std::complex<float>
std::complex<double>

gerc (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void gerc(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

namespace oneapi::mkl::blas::row_major {
void gerc(sycl::queue &queue,

std::int64_t m,
std::int64_t n,

(continues on next page)

11.2. oneMKL Domains 1120

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

Input Parameters

queue The queue where the routine should be executed.

m Number of rows of A. Must be at least zero.

n Number of columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Buffer holding input vector x. The buffer must be of size at least (1 + (m - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

y Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage
for more details.

incy Stride of vector y.

a Buffer holding input matrix A. Must have size at least lda*n if column major layout is used or at least lda*m if row
major layout is used. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be positive and at least m if column major layout is used or at least n if row
major layout is used.

Output Parameters

a Buffer holding the updated matrix A.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1121

oneAPI Specification, Release 1.1-rev-1

gerc (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gerc(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event gerc(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

m Number of rows of A. Must be at least zero.

n Number of columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Pointer to the input vector x. The array holding input vector x must be of size at least (1 + (m - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

y Pointer to the input/output vector y. The array holding the input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy Stride of vector y.

a Pointer to input matrix A. The array holding input matrix Amust have size at least lda*n if column major layout is
used or at least lda*m if row major layout is used. See Matrix Storage for more details.

11.2. oneMKL Domains 1122

oneAPI Specification, Release 1.1-rev-1

lda Leading dimension of matrix A. Must be positive and at least m if column major layout is used or at least n if row
major layout is used.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a Pointer to the updated matrix A.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

geru

Computes a rank-1 update (unconjugated) of a general complex matrix.

Description

The geru routines routines compute a scalar-vector-vector product and add the result to a general matrix. The operation
is defined as

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑦𝑇 + 𝐴

where:

alpha is a scalar,

A is an m-by-n matrix,

x is a vector of length m,

y is a vector of length n.

geru supports the following precisions.

T
std::complex<float>
std::complex<double>

11.2. oneMKL Domains 1123

oneAPI Specification, Release 1.1-rev-1

geru (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void geru(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

namespace oneapi::mkl::blas::row_major {
void geru(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

Input Parameters

queue The queue where the routine should be executed.

m Number of rows of A. Must be at least zero.

n Number of columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Buffer holding input vector x. The buffer must be of size at least (1 + (m - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

y Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage
for more details.

incy Stride of vector y.

a Buffer holding input matrix A. Must have size at least lda*n if column major layout is used or at least lda*m if row
major layout is used. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be positive and at least m if column major layout is used or at least n if row
major layout is used.

11.2. oneMKL Domains 1124

oneAPI Specification, Release 1.1-rev-1

Output Parameters

a Buffer holding the updated matrix A.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

geru (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event geru(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event geru(sycl::queue &queue,

std::int64_t m,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1125

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

m Number of rows of A. Must be at least zero.

n Number of columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Pointer to the input vector x. The array holding input vector x must be of size at least (1 + (m - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

y Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy Stride of vector y.

a Pointer to input matrix A. The array holding input matrix A must have size at least lda*n if column major layout is
used or at least lda*m if row major layout is used. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be positive and at least m if column major layout is used or at least n if row
major layout is used.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a Pointer to the updated matrix A.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

11.2. oneMKL Domains 1126

oneAPI Specification, Release 1.1-rev-1

hbmv

Computes a matrix-vector product using a Hermitian band matrix.

Description

The hbmv routines compute a scalar-matrix-vector product and add the result to a scalar-vector product, with a Hermitian
band matrix. The operation is defined as

𝑦 ← 𝑎𝑙𝑝ℎ𝑎 *𝐴 * 𝑥 + 𝑏𝑒𝑡𝑎 * 𝑦

where:

alpha and beta are scalars,

A is an n-by-n Hermitian band matrix, with k super-diagonals,

x and y are vectors of length n.

hbmv supports the following precisions.

T
std::complex<float>
std::complex<double>

hbmv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void hbmv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void hbmv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,

(continues on next page)

11.2. oneMKL Domains 1127

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

k Number of super-diagonals of the matrix A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

a Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be at least (k + 1), and positive.

x Buffer holding input vector x. The buffer must be of size at least (1 + (m - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

beta Scaling factor for vector y.

y Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage
for more details.

incy Stride of vector y.

Output Parameters

y Buffer holding the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1128

oneAPI Specification, Release 1.1-rev-1

hbmv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event hbmv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
T alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
T beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event hbmv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
T alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
T beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

k Number of super-diagonals of the matrix A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

a Pointer to the input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage
for more details.

lda Leading dimension of matrix A. Must be at least (k + 1), and positive.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (m - 1)*abs(incx)). See
Matrix Storage for more details.

11.2. oneMKL Domains 1129

oneAPI Specification, Release 1.1-rev-1

incx Stride of vector x.

beta Scaling factor for vector y.

y Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy Stride of vector y.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y Pointer to the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

hemv

Computes a matrix-vector product using a Hermitian matrix.

Description

The hemv routines compute a scalar-matrix-vector product and add the result to a scalar-vector product, with a Hermitian
matrix. The operation is defined as

𝑦 ← 𝑎𝑙𝑝ℎ𝑎 *𝐴 * 𝑥 + 𝑏𝑒𝑡𝑎 * 𝑦

where:

alpha and beta are scalars,

A is an n-by-n Hermitian matrix,

x and y are vectors of length n.

hemv supports the following precisions.

11.2. oneMKL Domains 1130

oneAPI Specification, Release 1.1-rev-1

T
std::complex<float>
std::complex<double>

hemv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void hemv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void hemv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

a Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be at least m, and positive.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

11.2. oneMKL Domains 1131

oneAPI Specification, Release 1.1-rev-1

beta Scaling factor for vector y.

y Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage
for more details.

incy Stride of vector y.

Output Parameters

y Buffer holding the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

hemv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event hemv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
T beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event hemv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,

(continues on next page)

11.2. oneMKL Domains 1132

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

T beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

a Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage for
more details.

lda Leading dimension of matrix A. Must be at least m, and positive.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

beta Scaling factor for vector y.

y Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy Stride of vector y.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y Pointer to the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1133

oneAPI Specification, Release 1.1-rev-1

Parent topic: BLAS Level 2 Routines

her

Computes a rank-1 update of a Hermitian matrix.

Description

The her routines compute a scalar-vector-vector product and add the result to a Hermitian matrix. The operation is
defined as:

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑥𝐻 + 𝐴

where:

alpha is scalar,

A is an n-by-n Hermitian matrix,

x is a vector of length n.

her supports the following precisions.

T
std::complex<float>
std::complex<double>

her (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void her(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

namespace oneapi::mkl::blas::row_major {
void her(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

11.2. oneMKL Domains 1134

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

a Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be at least n, and positive.

Output Parameters

a Buffer holding the updated upper triangular part of the Hermitian matrix A if upper_lower = upper or the updated
lower triangular part of the Hermitian matrix A if upper_lower=lower.

The imaginary parts of the diagonal elements are set to zero.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

her (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event her(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1135

oneAPI Specification, Release 1.1-rev-1

namespace oneapi::mkl::blas::row_major {
sycl::event her(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

a Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage for
more details.

lda Leading dimension of matrix A. Must be at least n, and positive.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a Pointer to the updated upper triangular part of the Hermitian matrix A if upper_lower=upper or the updated lower
triangular part of the Hermitian matrix A if upper_lower=lower.

The imaginary parts of the diagonal elements are set to zero.

Return Values

Output event to wait on to ensure computation is complete.

11.2. oneMKL Domains 1136

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

her2

Computes a rank-2 update of a Hermitian matrix.

Description

The her2 routines compute two scalar-vector-vector products and add them to a Hermitian matrix. The operation is
defined as:

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑦𝐻 + 𝑐𝑜𝑛𝑗𝑔(𝑎𝑙𝑝ℎ𝑎) * 𝑦 * 𝑥𝐻 + 𝐴

where:

alpha is a scalar,

A is an n-by-n Hermitian matrix,

x and y are vectors or length n.

her2 supports the following precisions.

T
std::complex<float>
std::complex<double>

her2 (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void her2(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,

(continues on next page)

11.2. oneMKL Domains 1137

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

sycl::buffer<T,1> &a,
std::int64_t lda)

}

namespace oneapi::mkl::blas::row_major {
void her2(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

y Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage
for more details.

incy Stride of vector y.

a Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be at least n, and positive.

Output Parameters

a Buffer holding the updated upper triangular part of the Hermitian matrix A if upper_lower=upper, or the updated
lower triangular part of the Hermitian matrix A if upper_lower=lower.

The imaginary parts of the diagonal elements are set to zero.

11.2. oneMKL Domains 1138

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

her2 (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event her2(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event her2(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1139

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

y Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy Stride of vector y.

a Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage for
more details.

lda Leading dimension of matrix A. Must be at least n, and positive.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a Pointer to the updated upper triangular part of the Hermitian matrix A if upper_lower=upper, or the updated lower
triangular part of the Hermitian matrix A if upper_lower=lower.

The imaginary parts of the diagonal elements are set to zero.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

11.2. oneMKL Domains 1140

oneAPI Specification, Release 1.1-rev-1

hpmv

Computes a matrix-vector product using a Hermitian packed matrix.

Description

The hpmv routines compute a scalar-matrix-vector product and add the result to a scalar-vector product, with a Hermitian
packed matrix. The operation is defined as

𝑦 ← 𝑎𝑙𝑝ℎ𝑎 *𝐴 * 𝑥 + 𝑏𝑒𝑡𝑎 * 𝑦

where:

alpha and beta are scalars,

A is an n-by-n Hermitian matrix supplied in packed form,

x and y are vectors of length n.

hpmv supports the following precisions.

T
std::complex<float>
std::complex<double>

hpmv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void hpmv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void hpmv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,

(continues on next page)

11.2. oneMKL Domains 1141

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int64_t incy)
}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

a Buffer holding input matrix A. Must have size at least (n*(n+1))/2. See Matrix Storage for more details.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

beta Scaling factor for vector y.

y Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage
for more details.

incy Stride of vector y.

Output Parameters

y Buffer holding the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1142

oneAPI Specification, Release 1.1-rev-1

hpmv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event hpmv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *a,
const T *x,
std::int64_t incx,
T beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event hpmv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *a,
const T *x,
std::int64_t incx,
T beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

a Pointer to input matrix A. The array holding input matrix A must have size at least (n*(n+1))/2. See Matrix Storage
for more details.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

beta Scaling factor for vector y.

y Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

11.2. oneMKL Domains 1143

oneAPI Specification, Release 1.1-rev-1

incy Stride of vector y.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y Pointer to the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

hpr

Computes a rank-1 update of a Hermitian packed matrix.

Description

The hpr routines compute a scalar-vector-vector product and add the result to a Hermitian packed matrix. The operation
is defined as

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑥𝐻 + 𝐴

where:

alpha is scalar,

A is an n-by-n Hermitian matrix, supplied in packed form,

x is a vector of length n.

hpr supports the following precisions.

T
std::complex<float>
std::complex<double>

11.2. oneMKL Domains 1144

oneAPI Specification, Release 1.1-rev-1

hpr (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void hpr(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &a)

}

namespace oneapi::mkl::blas::row_major {
void hpr(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &a)

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

a Buffer holding input matrix A. Must have size at least (n*(n-1))/2. See Matrix Storage for more details.

The imaginary part of the diagonal elements need not be set and are assumed to be zero.

Output Parameters

a Buffer holding the updated upper triangular part of the Hermitian matrix A if upper_lower=upper, or the updated
lower triangular part of the Hermitian matrix A if upper_lower=lower.

The imaginary parts of the diagonal elements are set to zero.

11.2. oneMKL Domains 1145

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

hpr (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event hpr(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
T *a,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event hpr(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
T *a,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

11.2. oneMKL Domains 1146

oneAPI Specification, Release 1.1-rev-1

a Pointer to input matrix A. The array holding input matrix A must have size at least (n*(n-1))/2. See Matrix Storage
for more details.

The imaginary part of the diagonal elements need not be set and are assumed to be zero.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a Pointer to the updated upper triangular part of the Hermitian matrix A if upper_lower=upper, or the updated lower
triangular part of the Hermitian matrix A if upper_lower=lower.

The imaginary parts of the diagonal elements are set to zero.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

hpr2

Performs a rank-2 update of a Hermitian packed matrix.

Description

The hpr2 routines compute two scalar-vector-vector products and add them to a Hermitian packed matrix. The opera-
tion is defined as

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑦𝐻 + 𝑐𝑜𝑛𝑗𝑔(𝑎𝑙𝑝ℎ𝑎) * 𝑦 * 𝑥𝐻 + 𝐴

where:

alpha is a scalar,

A is an n-by-n Hermitian matrix, supplied in packed form,

x and y are vectors of length n.

hpr2 supports the following precisions.

11.2. oneMKL Domains 1147

oneAPI Specification, Release 1.1-rev-1

T
std::complex<float>
std::complex<double>

hpr2 (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void hpr2(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a)

}

namespace oneapi::mkl::blas::row_major {
void hpr2(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a)

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

y Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage
for more details.

incy Stride of vector y.

a Buffer holding input matrix A. Must have size at least (n*(n-1))/2. See Matrix Storage for more details.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

11.2. oneMKL Domains 1148

oneAPI Specification, Release 1.1-rev-1

Output Parameters

a Buffer holding the updated upper triangular part of the Hermitian matrix A if upper_lower=upper, or the updated
lower triangular part of the Hermitian matrix A if upper_lower=lower.

The imaginary parts of the diagonal elements are set to zero.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

hpr2 (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event hpr2(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event hpr2(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1149

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

y Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy Stride of vector y.

a Pointer to input matrix A. The array holding input matrix A must have size at least (n*(n-1))/2. See Matrix Storage
for more details.

The imaginary parts of the diagonal elements need not be set and are assumed to be zero.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a Pointer to the updated upper triangular part of the Hermitian matrix A if upper_lower=upper, or the updated lower
triangular part of the Hermitian matrix A if upper_lower=lower.

The imaginary parts of the diagonal elements are set to zero.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

11.2. oneMKL Domains 1150

oneAPI Specification, Release 1.1-rev-1

sbmv

Computes a matrix-vector product with a symmetric band matrix.

Description

The sbmv routines compute a scalar-matrix-vector product and add the result to a scalar-vector product, with a sym-
metric band matrix. The operation is defined as:

𝑦 ← 𝑎𝑙𝑝ℎ𝑎 *𝐴 * 𝑥 + 𝑏𝑒𝑡𝑎 * 𝑦

where:

alpha and beta are scalars,

A is an n-by-n symmetric matrix with k super-diagonals,

x and y are vectors of length n.

sbmv supports the following precisions.

T
float
double

sbmv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void sbmv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void sbmv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,

(continues on next page)

11.2. oneMKL Domains 1151

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

k Number of super-diagonals of the matrix A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

a Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be at least (k + 1), and positive.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

beta Scaling factor for vector y.

y Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage
for more details.

incy Stride of vector y.

Output Parameters

y Buffer holding the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1152

oneAPI Specification, Release 1.1-rev-1

sbmv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event sbmv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
T alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
T beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event sbmv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
std::int64_t k,
T alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
T beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

k Number of super-diagonals of the matrix A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

a Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage for
more details.

lda Leading dimension of matrix A. Must be at least (k + 1), and positive.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

11.2. oneMKL Domains 1153

oneAPI Specification, Release 1.1-rev-1

incx Stride of vector x.

beta Scaling factor for vector y.

y Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy Stride of vector y.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y Pointer to the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

spmv

Computes a matrix-vector product with a symmetric packed matrix.

Description

The spmv routines compute a scalar-matrix-vector product and add the result to a scalar-vector product, with a sym-
metric packed matrix. The operation is defined as:

𝑦 ← 𝑎𝑙𝑝ℎ𝑎 *𝐴 * 𝑥 + 𝑏𝑒𝑡𝑎 * 𝑦

where:

alpha and beta are scalars,

A is an n-by-n symmetric matrix, supplied in packed form,

x and y are vectors of length n.

spmv supports the following precisions.

11.2. oneMKL Domains 1154

oneAPI Specification, Release 1.1-rev-1

T
float
double

spmv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void spmv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void spmv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

a Buffer holding input matrix A. Must have size at least (n*(n+1))/2. See Matrix Storage for more details.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

beta Scaling factor for vector y.

11.2. oneMKL Domains 1155

oneAPI Specification, Release 1.1-rev-1

y Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage
for more details.

incy Stride of vector y.

Output Parameters

y Buffer holding the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

spmv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event spmv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *a,
const T *x,
std::int64_t incx,
T beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event spmv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *a,
const T *x,
std::int64_t incx,
T beta,
T *y,
std::int64_t incy,

(continues on next page)

11.2. oneMKL Domains 1156

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const std::vector<sycl::event> &dependencies = {})
}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

a Pointer to input matrix A. The array holding input matrix A must have size at least (n*(n+1))/2. See Matrix Storage
for more details.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

beta Scaling factor for vector y.

y Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy Stride of vector y.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y Pointer to the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

11.2. oneMKL Domains 1157

oneAPI Specification, Release 1.1-rev-1

spr

Performs a rank-1 update of a symmetric packed matrix.

Description

The spr routines compute a scalar-vector-vector product and add the result to a symmetric packed matrix. The operation
is defined as:

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑥𝑇 + 𝐴

where:

alpha is scalar,

A is an n-by-n symmetric matrix, supplied in packed form,

x is a vector of length n.

spr supports the following precisions.

T
float
double

spr (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void spr(sycl::queue &queue,

onemkl::uplo upper_lower,
std::std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &a)

}

namespace oneapi::mkl::blas::row_major {
void spr(sycl::queue &queue,

onemkl::uplo upper_lower,
std::std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &a)

}

11.2. oneMKL Domains 1158

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

a Buffer holding input matrix A. Must have size at least (n*(n + 1))/2. See Matrix Storage for more details.

Output Parameters

a Buffer holding the updated upper triangular part of the symmetric matrix A if upper_lower=upper, or the updated
lower triangular part of the symmetric matrix A if upper_lower=lower.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

spr (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event spr(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
T *a,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event spr(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,

(continues on next page)

11.2. oneMKL Domains 1159

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

T alpha,
const T *x,
std::int64_t incx,
T *a,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

a Pointer to input matrix A. The array holding input matrix A must have size at least (n*(n + 1))/2. See Matrix Storage
for more details.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a Pointer to the updated upper triangular part of the symmetric matrix A if upper_lower=upper, or the updated lower
triangular part of the symmetric matrix A if upper_lower=lower.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

11.2. oneMKL Domains 1160

oneAPI Specification, Release 1.1-rev-1

spr2

Computes a rank-2 update of a symmetric packed matrix.

Description

The spr2 routines compute two scalar-vector-vector products and add them to a symmetric packed matrix. The oper-
ation is defined as:

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑦𝑇 + 𝑎𝑙𝑝ℎ𝑎 * 𝑦 * 𝑥𝑇 + 𝐴

where:

alpha is scalar,

A is an n-by-n symmetric matrix, supplied in packed form,

x and y are vectors of length n.

spr supports the following precisions.

T
float
double

spr2 (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void spr2(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a)

}

namespace oneapi::mkl::blas::row_major {
void spr2(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a)

}

11.2. oneMKL Domains 1161

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

y Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage
for more details.

incy Stride of vector y.

a Buffer holding input matrix A. Must have size at least (n*(n-1))/2. See Matrix Storage for more details.

Output Parameters

a Buffer holding the updated upper triangular part of the symmetric matrix A if upper_lower=upper or the updated
lower triangular part of the symmetric matrix A if upper_lower=lower.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

spr2 (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event spr2(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a)

}

11.2. oneMKL Domains 1162

oneAPI Specification, Release 1.1-rev-1

namespace oneapi::mkl::blas::row_major {
sycl::event spr2(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a)

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

y Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy Stride of vector y.

a Pointer to input matrix A. The array holding input matrix A must have size at least (n*(n-1))/2. See Matrix Storage
for more details.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a Pointer to the updated upper triangular part of the symmetric matrix A if upper_lower=upper or the updated lower
triangular part of the symmetric matrix A if upper_lower=lower.

Return Values

Output event to wait on to ensure computation is complete.

11.2. oneMKL Domains 1163

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

symv

Computes a matrix-vector product for a symmetric matrix.

Description

The symv routines routines compute a scalar-matrix-vector product and add the result to a scalar-vector product, with
a symmetric matrix. The operation is defined as:

𝑦 ← 𝑎𝑙𝑝ℎ𝑎 *𝐴 * 𝑥 + 𝑏𝑒𝑡𝑎 * 𝑦

where:

alpha and beta are scalars,

A is an n-by-n symmetric matrix,

x and y are vectors of length n.

symv supports the following precisions.

T
float
double

symv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void symv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,

(continues on next page)

11.2. oneMKL Domains 1164

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

namespace oneapi::mkl::blas::row_major {
void symv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy)

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

a Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be at least m, and positive.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

y Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage
for more details.

incy Stride of vector y.

Output Parameters

y Buffer holding the updated vector y.

11.2. oneMKL Domains 1165

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

symv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event symv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
T beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event symv(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *a,
std::int64_t lda,
const T *x,
std::int64_t incx,
T beta,
T *y,
std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1166

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

a Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage for
more details.

lda Leading dimension of matrix A. Must be at least m, and positive.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

y Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy Stride of vector y.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y Pointer to the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

11.2. oneMKL Domains 1167

oneAPI Specification, Release 1.1-rev-1

syr

Computes a rank-1 update of a symmetric matrix.

Description

The syr routines compute a scalar-vector-vector product add them and add the result to a matrix, with a symmetric
matrix. The operation is defined as:

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑥𝑇 + 𝐴

where:

alpha is scalar,

A is an n-by-n symmetric matrix,

x is a vector of length n.

syr supports the following precisions.

T
float
double

syr (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void syr(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

namespace oneapi::mkl::blas::row_major {
void syr(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

11.2. oneMKL Domains 1168

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

a Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be at least n, and positive.

Output Parameters

a Buffer holding the updated upper triangular part of the symmetric matrix A if upper_lower=upper or the updated
lower triangular part of the symmetric matrix A if upper_lower=lower.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

syr (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event syr(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1169

oneAPI Specification, Release 1.1-rev-1

namespace oneapi::mkl::blas::row_major {
sycl::event syr(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

a Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage for
more details.

lda Leading dimension of matrix A. Must be at least n, and positive.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a Pointer to the updated upper triangular part of the symmetric matrix A if upper_lower=upper or the updated lower
triangular part of the symmetric matrix A if upper_lower=lower.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1170

oneAPI Specification, Release 1.1-rev-1

Parent topic: BLAS Level 2 Routines

syr2

Computes a rank-2 update of a symmetric matrix.

Description

The syr2 routines compute two scalar-vector-vector product add them and add the result to a matrix, with a symmetric
matrix. The operation is defined as:

𝐴← 𝑎𝑙𝑝ℎ𝑎 * 𝑥 * 𝑦𝑇 + 𝑎𝑙𝑝ℎ𝑎 * 𝑦 * 𝑥𝑇 + 𝐴

where:

alpha is a scalar,

A is an n-by-n symmetric matrix,

x and y are vectors of length n.

syr2 supports the following precisions.

T
float
double

syr2 (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void syr2(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,
sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

namespace oneapi::mkl::blas::row_major {
void syr2(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &x,
std::int64_t incx,

(continues on next page)

11.2. oneMKL Domains 1171

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

sycl::buffer<T,1> &y,
std::int64_t incy,
sycl::buffer<T,1> &a,
std::int64_t lda)

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

y Buffer holding input/output vector y. The buffer must be of size at least (1 + (n - 1)*abs(incy)). See Matrix Storage
for more details.

incy Stride of vector y.

a Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be at least n, and positive.

Output Parameters

a Buffer holding the updated upper triangular part of the symmetric matrix A if upper_lower=upper, or the updated
lower triangular part of the symmetric matrix A if upper_lower=lower.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1172

oneAPI Specification, Release 1.1-rev-1

syr2 (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event syr2(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event syr2(sycl::queue &queue,

onemkl::uplo upper_lower,
std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
const T *y,
std::int64_t incy,
T *a,
std::int64_t lda,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

n Number of columns of A. Must be at least zero.

alpha Scaling factor for the matrix-vector product.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

y Pointer to input/output vector y. The array holding input/output vector y must be of size at least (1 + (n -
1)*abs(incy)). See Matrix Storage for more details.

incy Stride of vector y.

a Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage for
more details.

lda Leading dimension of matrix A. Must be at least n, and positive.

11.2. oneMKL Domains 1173

oneAPI Specification, Release 1.1-rev-1

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

a Pointer to the updated upper triangular part of the symmetric matrix A if upper_lower=upper, or the updated lower
triangular part of the symmetric matrix A if upper_lower=lower.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

tbmv

Computes a matrix-vector product using a triangular band matrix.

Description

The tbmv routines compute a matrix-vector product with a triangular band matrix. The operation is defined as:

𝑥← 𝑜𝑝(𝐴) * 𝑥

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

A is an n-by-n unit or non-unit, upper or lower triangular band matrix, with (k + 1) diagonals,

x is a vector of length n.

tbmv supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

11.2. oneMKL Domains 1174

oneAPI Specification, Release 1.1-rev-1

tbmv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void tbmv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

namespace oneapi::mkl::blas::row_major {
void tbmv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n Numbers of rows and columns of A. Must be at least zero.

k Number of sub/super-diagonals of the matrix A. Must be at least zero.

a Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be at least (k + 1), and positive.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

11.2. oneMKL Domains 1175

oneAPI Specification, Release 1.1-rev-1

Output Parameters

x Buffer holding the updated vector x.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

tbmv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event tbmv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
const T *a,
std::int64_t lda,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event tbmv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
const T *a,
std::int64_t lda,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1176

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n Numbers of rows and columns of A. Must be at least zero.

k Number of sub/super-diagonals of the matrix A. Must be at least zero.

a Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage for
more details.

lda Leading dimension of matrix A. Must be at least (k + 1), and positive.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

x Pointer to the updated vector x.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

11.2. oneMKL Domains 1177

oneAPI Specification, Release 1.1-rev-1

tbsv

Solves a system of linear equations whose coefficients are in a triangular band matrix.

Description

The tbsv routines solve a system of linear equations whose coefficients are in a triangular band matrix. The operation
is defined as:

𝑜𝑝(𝐴) * 𝑥 = 𝑏

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

A is an n-by-n unit or non-unit, upper or lower triangular band matrix, with (k + 1) diagonals,

b and x are vectors of length n.

tbsv supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

tbsv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void tbsv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

namespace oneapi::mkl::blas::row_major {
void tbsv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
sycl::buffer<T,1> &a,

(continues on next page)

11.2. oneMKL Domains 1178

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

k Number of sub/super-diagonals of the matrix A. Must be at least zero.

a Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be at least (k + 1), and positive.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

Output Parameters

x Buffer holding the solution vector x.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1179

oneAPI Specification, Release 1.1-rev-1

tbsv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event tbsv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
const T *a,
std::int64_t lda,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event tbsv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
const T *a,
std::int64_t lda,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n Number of rows and columns of A. Must be at least zero.

k Number of sub/super-diagonals of the matrix A. Must be at least zero.

a Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage for
more details.

lda Leading dimension of matrix A. Must be at least (k + 1), and positive.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

11.2. oneMKL Domains 1180

oneAPI Specification, Release 1.1-rev-1

Output Parameters

x Pointer to the solution vector x.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

tpmv

Computes a matrix-vector product using a triangular packed matrix.

Description

The tpmv routines compute a matrix-vector product with a triangular packed matrix. The operation is defined as:

𝑥← 𝑜𝑝(𝐴) * 𝑥

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

A is an n-by-n unit or non-unit, upper or lower triangular band matrix, supplied in packed form,

x is a vector of length n.

tpmv supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

11.2. oneMKL Domains 1181

oneAPI Specification, Release 1.1-rev-1

tpmv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void tpmv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
sycl::buffer<T,1> &a,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

namespace oneapi::mkl::blas::row_major {
void tpmv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
sycl::buffer<T,1> &a,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n Numbers of rows and columns of A. Must be at least zero.

a Buffer holding input matrix A. Must have size at least (n*(n+1))/2. See Matrix Storage for more details.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

11.2. oneMKL Domains 1182

oneAPI Specification, Release 1.1-rev-1

Output Parameters

x Buffer holding the updated vector x.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

tpmv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event tpmv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
const T *a,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event tpmv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
const T *a,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1183

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n Numbers of rows and columns of A. Must be at least zero.

a Pointer to input matrix A. The array holding input matrix A must have size at least (n*(n+1))/2. See Matrix Storage
for more details.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

x Pointer to the updated vector x.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

tpsv

Solves a system of linear equations whose coefficients are in a triangular packed matrix.

11.2. oneMKL Domains 1184

oneAPI Specification, Release 1.1-rev-1

Description

The tpsv routines solve a system of linear equations whose coefficients are in a triangular packed matrix. The operation
is defined as:

𝑜𝑝(𝐴) * 𝑥 = 𝑏

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

A is an n-by-n unit or non-unit, upper or lower triangular band matrix, supplied in packed form,

b and x are vectors of length n.

tpsv supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

tpsv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void tpsv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
sycl::buffer<T,1> &a,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

namespace oneapi::mkl::blas::row_major {
void tpsv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
sycl::buffer<T,1> &a,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

11.2. oneMKL Domains 1185

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n Numbers of rows and columns of A. Must be at least zero.

a Buffer holding input matrix A. Must have size at least (n*(n+1))/2. See Matrix Storage for more details.

x Buffer holding the n-element right-hand side vector b. The buffer must be of size at least (1 + (n - 1)*abs(incx)).
See Matrix Storage for more details.

incx Stride of vector x.

Output Parameters

x Buffer holding the solution vector x.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

tpsv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event tpsv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
const T *a,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1186

oneAPI Specification, Release 1.1-rev-1

namespace oneapi::mkl::blas::row_major {
sycl::event tpsv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
const T *a,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n Numbers of rows and columns of A. Must be at least zero.

a Pointer to input matrix A. The array holding input matrix A must have size at least (n*(n+1))/2. See Matrix Storage
for more details.

x Pointer to the n-element right-hand side vector b. The array holding the n-element right-hand side vector b must be
of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for more details.

incx Stride of vector x.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

x Pointer to the solution vector x.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1187

oneAPI Specification, Release 1.1-rev-1

Parent topic: BLAS Level 2 Routines

trmv

Computes a matrix-vector product using a triangular matrix.

Description

The trmv routines compute a matrix-vector product with a triangular matrix. The operation is defined as:

𝑥← 𝑜𝑝(𝐴) * 𝑥

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

A is an n-by-n unit or non-unit, upper or lower triangular band matrix,

x is a vector of length n.

trmv supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

trmv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void trmv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

namespace oneapi::mkl::blas::row_major {
void trmv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
sycl::buffer<T,1> &a,

(continues on next page)

11.2. oneMKL Domains 1188

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n Numbers of rows and columns of A. Must be at least zero.

a Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be at least n, and positive.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride of vector x.

Output Parameters

x Buffer holding the updated vector x.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

trmv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event trmv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,

(continues on next page)

11.2. oneMKL Domains 1189

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int64_t n,
const T *a,
std::int64_t lda,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event trmv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
const T *a,
std::int64_t lda,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n Numbers of rows and columns of A. Must be at least zero.

a Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage for
more details.

lda Leading dimension of matrix A. Must be at least n, and positive.

x Pointer to input vector x. The array holding input vector x must be of size at least (1 + (n - 1)*abs(incx)). See
Matrix Storage for more details.

incx Stride of vector x.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

x Pointer to the updated vector x.

11.2. oneMKL Domains 1190

oneAPI Specification, Release 1.1-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

trsv

Solves a system of linear equations whose coefficients are in a triangular matrix.

Description

The trsv routines compute a matrix-vector product with a triangular band matrix. The operation is defined as:

𝑜𝑝(𝐴) * 𝑥 = 𝑏

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

A is an n-by-n unit or non-unit, upper or lower triangular matrix,

b and x are vectors of length n.

trsv supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

11.2. oneMKL Domains 1191

oneAPI Specification, Release 1.1-rev-1

trsv (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void trsv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

namespace oneapi::mkl::blas::row_major {
void trsv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &x,
std::int64_t incx)

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n Numbers of rows and columns of A. Must be at least zero.

a Buffer holding input matrix A. Must have size at least lda*n. See Matrix Storage for more details.

lda Leading dimension of matrix A. Must be at least n, and positive.

x Buffer holding the n-element right-hand side vector b. The buffer must be of size at least (1 + (n - 1)*abs(incx)).
See Matrix Storage for more details.

incx Stride of vector x.

11.2. oneMKL Domains 1192

oneAPI Specification, Release 1.1-rev-1

Output Parameters

x Buffer holding the solution vector x.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

trsv (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event trsv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
const T *a,
std::int64_t lda,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event trsv(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_nonunit,
std::int64_t n,
std::int64_t k,
const T *a,
std::int64_t lda,
T *x,
std::int64_t incx,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1193

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_nonunit Specifies whether the matrix A is unit triangular or not. See oneMKL defined datatypes for more details.

n Numbers of rows and columns of A. Must be at least zero.

a Pointer to input matrix A. The array holding input matrix A must have size at least lda*n. See Matrix Storage for
more details.

lda Leading dimension of matrix A. Must be at least n, and positive.

x Pointer to the n-element right-hand side vector b. The array holding the n-element right-hand side vector b must be
of size at least (1 + (n - 1)*abs(incx)). See Matrix Storage for more details.

incx Stride of vector x.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

x Pointer to the solution vector x.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 2 Routines

Parent topic: BLAS Routines

11.2. oneMKL Domains 1194

oneAPI Specification, Release 1.1-rev-1

BLAS Level 3 Routines

BLAS Level 3 includes routines which perform matrix-matrix operations as described in the following table.

Rou-
tines

Description

gemm Computes a matrix-matrix product with general matrices.
hemm Computes a matrix-matrix product where one input matrix is Hermitian and one is general.
herk Performs a Hermitian rank-k update.
her2k Performs a Hermitian rank-2k update.
symm Computes a matrix-matrix product where one input matrix is symmetric and one matrix is general.
syrk Performs a symmetric rank-k update.
syr2k Performs a symmetric rank-2k update.
trmm Computes a matrix-matrix product where one input matrix is triangular and one input matrix is general.
trsm Solves a triangular matrix equation (forward or backward solve).

gemm

Computes a matrix-matrix product with general matrices.

Description

The gemm routines compute a scalar-matrix-matrix product and add the result to a scalar-matrix product, with general
matrices. The operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 * 𝑜𝑝(𝐴) * 𝑜𝑝(𝐵) + 𝑏𝑒𝑡𝑎 * 𝐶

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha and beta are scalars,

A, B and C are matrices,

op(A) is an m-by-k matrix,

op(B) is a k-by-n matrix,

C is an m-by-n matrix.

gemm supports the following precisions.

Ts Ta Tb Tc
float half half float
half half half half
float bfloat16 bfloat16 float
float float float float
double double double double
std::complex<float> std::complex<float> std::complex<float> std::complex<float>
std::complex<double>std::complex<double>std::complex<double>std::complex<double>

11.2. oneMKL Domains 1195

oneAPI Specification, Release 1.1-rev-1

gemm (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void gemm(sycl::queue &queue,

onemkl::transpose transa,
onemkl::transpose transb,
std::int64_t m,
std::int64_t n,
std::int64_t k,
Ts alpha,
sycl::buffer<Ta,1> &a,
std::int64_t lda,
sycl::buffer<Tb,1> &b,
std::int64_t ldb,
Ts beta,
sycl::buffer<Tc,1> &c,
std::int64_t ldc)

}

namespace oneapi::mkl::blas::row_major {
void gemm(sycl::queue &queue,

onemkl::transpose transa,
onemkl::transpose transb,
std::int64_t m,
std::int64_t n,
std::int64_t k,
Ts alpha,
sycl::buffer<Ta,1> &a,
std::int64_t lda,
sycl::buffer<Tb,1> &b,
std::int64_t ldb,
Ts beta,
sycl::buffer<Tc,1> &c,
std::int64_t ldc)

}

Input Parameters

queue The queue where the routine should be executed.

transa Specifies the form of op(A), the transposition operation applied to A.

transb Specifies the form of op(B), the transposition operation applied to B.

m Specifies the number of rows of the matrix op(A) and of the matrix C. The value of m must be at least zero.

n Specifies the number of columns of the matrix op(B) and the number of columns of the matrix C. The value of n
must be at least zero.

k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). The value of k
must be at least zero.

alpha Scaling factor for the matrix-matrix product.

11.2. oneMKL Domains 1196

oneAPI Specification, Release 1.1-rev-1

a The buffer holding the input matrix A.

A not transposed A transposed
Column
major

A is an m-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-m matrix so the array a must have
size at least lda*m

Row ma-
jor

A is an m-by-k matrix so the array a must have
size at least lda*m.

A is an k-by-m matrix so the array a must have
size at least lda*k

See Matrix Storage for more details.

lda The leading dimension of A. It must be positive.

A not transposed A transposed
Column major lda must be at least m. lda must be at least k.
Row major lda must be at least k. lda must be at least m.

b The buffer holding the input matrix B.

B not transposed B transposed
Column
major

B is an k-by-n matrix so the array b must have
size at least ldb*n.

B is an n-by-k matrix so the array b must have
size at least ldb*k

Row ma-
jor

B is an k-by-n matrix so the array b must have
size at least ldb*k.

B is an n-by-k matrix so the array b must have
size at least ldb*n

See Matrix Storage for more details.

ldb The leading dimension of B. It must be positive.

B not transposed B transposed
Column major ldb must be at least k. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least k.

beta Scaling factor for matrix C.

c The buffer holding the input/output matrix C. It must have a size of at least ldc*n if column major layout is used
to store matrices or at least ldc*m if row major layout is used to store matrices . See Matrix Storage for more
details.

ldc The leading dimension of C. It must be positive and at least m if column major layout is used to store matrices or
at least n if column major layout is used to store matrices.

Output Parameters

c The buffer, which is overwritten by alpha*op(A)*op(B) + beta*C.

11.2. oneMKL Domains 1197

oneAPI Specification, Release 1.1-rev-1

Notes

If beta = 0, matrix C does not need to be initialized before calling gemm.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

gemm (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gemm(sycl::queue &queue,

onemkl::transpose transa,
onemkl::transpose transb,
std::int64_t m,
std::int64_t n,
std::int64_t k,
Ts alpha,
const Ta *a,
std::int64_t lda,
const Tb *b,
std::int64_t ldb,
Ts beta,
Tc *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event gemm(sycl::queue &queue,

onemkl::transpose transa,
onemkl::transpose transb,
std::int64_t m,
std::int64_t n,
std::int64_t k,
Ts alpha,
const Ta *a,
std::int64_t lda,
const Tb *b,
std::int64_t ldb,

(continues on next page)

11.2. oneMKL Domains 1198

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

Ts beta,
Tc *c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

transa Specifies the form of op(A), the transposition operation applied to A.

transb Specifies the form of op(B), the transposition operation applied to B.

m Specifies the number of rows of the matrix op(A) and of the matrix C. The value of m must be at least zero.

n Specifies the number of columns of the matrix op(B) and the number of columns of the matrix C. The value of n
must be at least zero.

k Specifies the number of columns of the matrix op(A) and the number of rows of the matrix op(B). The value of k
must be at least zero.

alpha Scaling factor for the matrix-matrix product.

a Pointer to input matrix A.

A not transposed A transposed
Column
major

A is an m-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-m matrix so the array a must have
size at least lda*m

Row ma-
jor

A is an m-by-k matrix so the array a must have
size at least lda*m.

A is an k-by-m matrix so the array a must have
size at least lda*k

See Matrix Storage for more details.

lda The leading dimension of A. It must be positive.

A not transposed A transposed
Column major lda must be at least m. lda must be at least k.
Row major lda must be at least k. lda must be at least m.

b Pointer to input matrix B.

B not transposed B transposed
Column
major

B is an k-by-n matrix so the array b must have
size at least ldb*n.

B is an n-by-k matrix so the array b must have
size at least ldb*k

Row ma-
jor

B is an k-by-n matrix so the array b must have
size at least ldb*k.

B is an n-by-k matrix so the array b must have
size at least ldb*n

See Matrix Storage for more details.

ldb The leading dimension of B. It must be positive.

11.2. oneMKL Domains 1199

oneAPI Specification, Release 1.1-rev-1

B not transposed B transposed
Column major ldb must be at least k. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least k.

beta Scaling factor for matrix C.

c The pointer to input/output matrix C. It must have a size of at least ldc*n if column major layout is used to store
matrices or at least ldc*m if row major layout is used to store matrices . See Matrix Storage for more details.

ldc The leading dimension of C. It must be positive and at least m if column major layout is used to store matrices or
at least n if column major layout is used to store matrices.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c Pointer to the output matrix, overwritten by alpha*op(A)*op(B) + beta*C.

Notes

If beta = 0, matrix C does not need to be initialized before calling gemm.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 3 Routines

hemm

Computes a matrix-matrix product where one input matrix is Hermitian and one is general.

11.2. oneMKL Domains 1200

oneAPI Specification, Release 1.1-rev-1

Description

The hemm routines compute a scalar-matrix-matrix product and add the result to a scalar-matrix product, where one
of the matrices in the multiplication is Hermitian. The argument left_right determines if the Hermitian matrix,
A, is on the left of the multiplication (left_right = side::left) or on the right (left_right = side::right).
Depending on left_right, the operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 *𝐴 *𝐵 + 𝑏𝑒𝑡𝑎 * 𝐶

or

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 *𝐵 *𝐴 + 𝑏𝑒𝑡𝑎 * 𝐶

where:

alpha and beta are scalars,

A is a Hermitian matrix, either m-by-m or n-by-n matrices,

B and C are m-by-n matrices.

hemm supports the following precisions:

T
std::complex<float>
std::complex<double>

hemm (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void hemm(sycl::queue &queue,

onemkl::side left_right,
onemkl::uplo upper_lower,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

namespace oneapi::mkl::blas::row_major {
void hemm(sycl::queue &queue,

onemkl::side left_right,
onemkl::uplo upper_lower,
std::int64_t m,
std::int64_t n,

(continues on next page)

11.2. oneMKL Domains 1201

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

Input Parameters

queue The queue where the routine should be executed.

left_right Specifies whether A is on the left side of the multiplication (side::left) or on the right side
(side::right). See oneMKL defined datatypes for more details.

uplo Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for more details.

m Specifies the number of rows of the matrix B and C.

The value of m must be at least zero.

n Specifies the number of columns of the matrix B and C.

The value of n must be at least zero.

alpha Scaling factor for the matrix-matrix product.

a Buffer holding input matrix A. Must have size at least lda*m if A is on the left of the multiplication, or lda*n if A is
on the right. See Matrix Storage for more details.

lda Leading dimension of A. Must be at least m if A is on the left of the multiplication, or at least n if A is on the right.
Must be positive.

b Buffer holding input matrix B. Must have size at least ldb*n if column major layout is used to store matrices or at
least ldb*m if row major layout is used to store matrices. See Matrix Storage for more details.

ldb Leading dimension of B. It must be positive and at least m if column major layout is used to store matrices or at
least n if column major layout is used to store matrices.

beta Scaling factor for matrix C.

c The buffer holding the input/output matrix C. It must have a size of at least ldc*n if column major layout is used
to store matrices or at least ldc*m if row major layout is used to store matrices . See Matrix Storage for more
details.

ldc The leading dimension of C. It must be positive and at least m if column major layout is used to store matrices or
at least n if column major layout is used to store matrices.

11.2. oneMKL Domains 1202

oneAPI Specification, Release 1.1-rev-1

Output Parameters

c Output buffer, overwritten by alpha*A*B + beta*C (left_right = side::left) or alpha*B*A + beta*C
(left_right = side::right).

Notes

If beta = 0, matrix C does not need to be initialized before calling hemm.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

hemm (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event hemm(sycl::queue &queue,

onemkl::side left_right,
onemkl::uplo upper_lower,
std::int64_t m,
std::int64_t n,
T alpha,
const T* a,
std::int64_t lda,
const T* b,
std::int64_t ldb,
T beta,
T* c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event hemm(sycl::queue &queue,

onemkl::side left_right,
onemkl::uplo upper_lower,
std::int64_t m,
std::int64_t n,
T alpha,
const T* a,

(continues on next page)

11.2. oneMKL Domains 1203

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int64_t lda,
const T* b,
std::int64_t ldb,
T beta,
T* c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

left_right Specifies whether A is on the left side of the multiplication (side::left) or on the right side
(side::right). See oneMKL defined datatypes for more details.

uplo Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for more details.

m Specifies the number of rows of the matrix B and C.

The value of m must be at least zero.

n Specifies the number of columns of the matrix B and C.

The value of n must be at least zero.

alpha Scaling factor for the matrix-matrix product.

a Pointer to input matrix A. Must have size at least lda*m if A is on the left of the multiplication, or lda*n if A is on
the right. See Matrix Storage for more details.

lda Leading dimension of A. Must be at least m if A is on the left of the multiplication, or at least n if A is on the right.
Must be positive.

b Pointer to input matrix B. Must have size at least ldb*n if column major layout is used to store matrices or at least
ldb*m if row major layout is used to store matrices. See Matrix Storage for more details.

ldb Leading dimension of B. It must be positive and at least m if column major layout is used to store matrices or at
least n if column major layout is used to store matrices.

beta Scaling factor for matrix C.

c The pointer to input/output matrix C. It must have a size of at least ldc*n if column major layout is used to store
matrices or at least ldc*m if row major layout is used to store matrices . See Matrix Storage for more details.

ldc The leading dimension of C. It must be positive and at least m if column major layout is used to store matrices or
at least n if column major layout is used to store matrices.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

11.2. oneMKL Domains 1204

oneAPI Specification, Release 1.1-rev-1

Output Parameters

c Pointer to the output matrix, overwritten by alpha*A*B + beta*C (left_right = side::left) or alpha*B*A +
beta*C (left_right = side::right).

Notes

If beta = 0, matrix C does not need to be initialized before calling hemm.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 3 Routines

herk

Performs a Hermitian rank-k update.

Description

The herk routines compute a rank-k update of a Hermitian matrix C by a general matrix A. The operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 * 𝑜𝑝(𝐴) * 𝑜𝑝(𝐴)𝐻 + 𝑏𝑒𝑡𝑎 * 𝐶

where:

op(X) is one of op(X) = X or op(X) = XH,

alpha and beta are real scalars,

C is a Hermitian matrix and A is a general matrix.

Here op(A) is n x k, and C is n x n.

herk supports the following precisions:

T T_real
std::complex<float> float
std::complex<double> double

11.2. oneMKL Domains 1205

oneAPI Specification, Release 1.1-rev-1

herk (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void herk(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T_real alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
T_real beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

namespace oneapi::mkl::blas::row_major {
void herk(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T_real alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
T_real beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for
more details.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details. Sup-
ported operations are transpose::nontrans and transpose::conjtrans.

n The number of rows and columns in C.The value of n must be at least zero.

k Number of columns in op(A).

The value of k must be at least zero.

alpha Real scaling factor for the rank-k update.

a Buffer holding input matrix A.

11.2. oneMKL Domains 1206

oneAPI Specification, Release 1.1-rev-1

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k.

See Matrix Storage for more details.

lda The leading dimension of A. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

lda must be at least n. lda must be at least k.

Row major lda must be at least k. lda must be at least n.

beta Real scaling factor for matrix C.

c Buffer holding input/output matrix C. Must have size at least ldc*n. See Matrix Storage for more details.

ldc Leading dimension of C. Must be positive and at least n.

Output Parameters

c The output buffer, overwritten by alpha*op(A)*op(A)T + beta*C. The imaginary parts of the diagonal elements are
set to zero.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

herk (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event herk(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,

(continues on next page)

11.2. oneMKL Domains 1207

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

T_real alpha,
const T* a,
std::int64_t lda,
T_real beta,
T* c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event herk(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T_real alpha,
const T* a,
std::int64_t lda,
T_real beta,
T* c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for
more details.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details. Sup-
ported operations are transpose::nontrans and transpose::conjtrans.

n The number of rows and columns in C.The value of n must be at least zero.

k Number of columns in op(A).

The value of k must be at least zero.

alpha Real scaling factor for the rank-k update.

a Pointer to input matrix A.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k.

See Matrix Storage for more details.

lda The leading dimension of A. It must be positive.

11.2. oneMKL Domains 1208

oneAPI Specification, Release 1.1-rev-1

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

lda must be at least n. lda must be at least k.

Row major lda must be at least k. lda must be at least n.

beta Real scaling factor for matrix C.

c Pointer to input/output matrix C. Must have size at least ldc*n. See Matrix Storage for more details.

ldc Leading dimension of C. Must be positive and at least n.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c Pointer to the output matrix, overwritten by alpha*op(A)*op(A)T + beta*C. The imaginary parts of the diagonal
elements are set to zero.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 3 Routines

her2k

Performs a Hermitian rank-2k update.

11.2. oneMKL Domains 1209

oneAPI Specification, Release 1.1-rev-1

Description

The her2k routines perform a rank-2k update of an n x n Hermitian matrix C by general matrices A and B.

If trans = transpose::nontrans, the operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 *𝐴 *𝐵𝐻 + 𝑐𝑜𝑛𝑗𝑔(𝑎𝑙𝑝ℎ𝑎) *𝐵 *𝐴𝐻 + 𝑏𝑒𝑡𝑎 * 𝐶

where A is n x k and B is k x n.

If trans = transpose::conjtrans, the operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 *𝐵 *𝐴𝐻 + 𝑐𝑜𝑛𝑗𝑔(𝑎𝑙𝑝ℎ𝑎) *𝐴 *𝐵𝐻 + 𝑏𝑒𝑡𝑎 * 𝐶

where A is k x n and B is n x k.

In both cases:

alpha is a complex scalar and beta is a real scalar.

C is a Hermitian matrix and A , B are general matrices.

The inner dimension of both matrix multiplications is k.

her2k supports the following precisions:

T T_real
std::complex<float> float
std::complex<double> double

her2k (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void her2k(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T_real beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

namespace oneapi::mkl::blas::row_major {
void her2k(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,

(continues on next page)

11.2. oneMKL Domains 1210

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T_real beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for
more details.

trans Specifies the operation to apply, as described above. Supported operations are transpose::nontrans and
transpose::conjtrans.

n The number of rows and columns in C. The value of n must be at least zero.

k The inner dimension of matrix multiplications. The value of k must be at least equal to zero.

alpha Complex scaling factor for the rank-2k update.

a Buffer holding input matrix A.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k.

See Matrix Storage for more details.

lda The leading dimension of A. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

lda must be at least n. lda must be at least k.

Row major lda must be at least k. lda must be at least n.

b Buffer holding input matrix B.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

B is an k-by-n matrix so the array b must have
size at least ldb*n.

B is an n-by-k matrix so the array b must have
size at least ldb*k

Row ma-
jor

B is an k-by-n matrix so the array b must have
size at least ldb*k.

B is an n-by-k matrix so the array b must have
size at least ldb*n.

11.2. oneMKL Domains 1211

oneAPI Specification, Release 1.1-rev-1

See Matrix Storage for more details.

ldb The leading dimension of B. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

ldb must be at least k. ldb must be at least n.

Row major ldb must be at least n. ldb must be at least k.

beta Real scaling factor for matrix C.

c Buffer holding input/output matrix C. Must have size at least ldc*n. See Matrix Storage for more details.

ldc Leading dimension of C. Must be positive and at least n.

Output Parameters

c Output buffer, overwritten by the updated C matrix.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

her2k (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event her2k(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
const T* a,
std::int64_t lda,
const T* b,
std::int64_t ldb,
T_real beta,
T* c,
std::int64_t ldc,

(continues on next page)

11.2. oneMKL Domains 1212

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const std::vector<sycl::event> &dependencies = {})
}

namespace oneapi::mkl::blas::row_major {
sycl::event her2k(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
const T* a,
std::int64_t lda,
const T* b,
std::int64_t ldb,
T_real beta,
T* c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for
more details.

trans Specifies the operation to apply, as described above. Supported operations are transpose::nontrans and
transpose::conjtrans.

n The number of rows and columns in C. The value of n must be at least zero.

k The inner dimension of matrix multiplications. The value of k must be at least equal to zero.

alpha Complex scaling factor for the rank-2k update.

a Pointer to input matrix A.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k.

See Matrix Storage for more details.

lda The leading dimension of A. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

lda must be at least n. lda must be at least k.

Row major lda must be at least k. lda must be at least n.

11.2. oneMKL Domains 1213

oneAPI Specification, Release 1.1-rev-1

b Pointer to input matrix B.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

B is an k-by-n matrix so the array b must have
size at least ldb*n.

B is an n-by-k matrix so the array b must have
size at least ldb*k

Row ma-
jor

B is an k-by-n matrix so the array b must have
size at least ldb*k.

B is an n-by-k matrix so the array b must have
size at least ldb*n.

See Matrix Storage for more details.

ldb The leading dimension of B. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

ldb must be at least k. ldb must be at least n.

Row major ldb must be at least n. ldb must be at least k.

beta Real scaling factor for matrix C.

c Pointer to input/output matrix C. Must have size at least ldc*n. See Matrix Storage for more details.

ldc Leading dimension of C. Must be positive and at least n.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c Pointer to the output matrix, overwritten by the updated C matrix.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 3 Routines

11.2. oneMKL Domains 1214

oneAPI Specification, Release 1.1-rev-1

symm

Computes a matrix-matrix product where one input matrix is symmetric and one matrix is general.

Description

The symm routines compute a scalar-matrix-matrix product and add the result to a scalar-matrix product, where one
of the matrices in the multiplication is symmetric. The argument left_right determines if the symmetric matrix,
A, is on the left of the multiplication (left_right = side::left) or on the right (left_right = side::right).
Depending on left_right, the operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 *𝐴 *𝐵 + 𝑏𝑒𝑡𝑎 * 𝐶

or

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 *𝐵 *𝐴 + 𝑏𝑒𝑡𝑎 * 𝐶

where:

alpha and beta are scalars,

A is a symmetric matrix, either m-by-m or n-by-n,

B and C are m-by-n matrices.

symm supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

symm (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void symm(sycl::queue &queue,

onemkl::side left_right,
onemkl::uplo upper_lower,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

11.2. oneMKL Domains 1215

oneAPI Specification, Release 1.1-rev-1

namespace oneapi::mkl::blas::row_major {
void symm(sycl::queue &queue,

onemkl::side left_right,
onemkl::uplo upper_lower,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

Input Parameters

queue The queue where the routine should be executed.

left_right Specifies whether A is on the left side of the multiplication (side::left) or on the right side
(side::right). See oneMKL defined datatypes for more details.

upper_lower Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for
more details.

m Number of rows of B and C. The value of m must be at least zero.

n Number of columns of B and C. The value of n must be at least zero.

alpha Scaling factor for the matrix-matrix product.

a Buffer holding input matrix A. Must have size at least lda*m if A is on the left of the multiplication, or lda*n if A is
on the right. See Matrix Storage for more details.

lda Leading dimension of A. Must be at least m if A is on the left of the multiplication, or at least n if A is on the right.
Must be positive.

b Buffer holding input matrix B. Must have size at least ldb*n if column major layout is used to store matrices or at
least ldb*m if row major layout is used to store matrices. See Matrix Storage for more details.

ldb Leading dimension of B. It must be positive and at least m if column major layout is used to store matrices or at
least n if column major layout is used to store matrices.

beta Scaling factor for matrix C.

c The buffer holding the input/output matrix C. It must have a size of at least ldc*n if column major layout is used
to store matrices or at least ldc*m if row major layout is used to store matrices. See Matrix Storage for more
details.

ldc The leading dimension of C. It must be positive and at least m if column major layout is used to store matrices or
at least n if column major layout is used to store matrices.

11.2. oneMKL Domains 1216

oneAPI Specification, Release 1.1-rev-1

Output Parameters

c Output buffer, overwritten by alpha*A*B + beta*C (left_right = side::left) or alpha*B*A + beta*C
(left_right = side::right).

Notes

If beta = 0, matrix C does not need to be initialized before calling symm.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

symm (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event symm(sycl::queue &queue,

onemkl::side left_right,
onemkl::uplo upper_lower,
std::int64_t m,
std::int64_t n,
T alpha,
const T* a,
std::int64_t lda,
const T* b,
std::int64_t ldb,
T beta,
T* c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event symm(sycl::queue &queue,

onemkl::side left_right,
onemkl::uplo upper_lower,
std::int64_t m,
std::int64_t n,
T alpha,
const T* a,

(continues on next page)

11.2. oneMKL Domains 1217

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int64_t lda,
const T* b,
std::int64_t ldb,
T beta,
T* c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

left_right Specifies whether A is on the left side of the multiplication (side::left) or on the right side
(side::right). See oneMKL defined datatypes for more details.

upper_lower Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for
more details.

m Number of rows of B and C. The value of m must be at least zero.

n Number of columns of B and C. The value of n must be at least zero.

alpha Scaling factor for the matrix-matrix product.

a Pointer to input matrix A. Must have size at least lda*m if A is on the left of the multiplication, or lda*n if A is on
the right. See Matrix Storage for more details.

lda Leading dimension of A. Must be at least m if A is on the left of the multiplication, or at least n if A is on the right.
Must be positive.

b Pointer to input matrix B. Must have size at least ldb*n if column major layout is used to store matrices or at least
ldb*m if row major layout is used to store matrices. See Matrix Storage for more details.

ldb Leading dimension of B. It must be positive and at least m if column major layout is used to store matrices or at
least n if column major layout is used to store matrices.

beta Scaling factor for matrix C.

c The pointer to input/output matrix C. It must have a size of at least ldc*n if column major layout is used to store
matrices or at least ldc*m if row major layout is used to store matrices . See Matrix Storage for more details.

ldc The leading dimension of C. It must be positive and at least m if column major layout is used to store matrices or
at least n if column major layout is used to store matrices.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c Pointer to the output matrix, overwritten by alpha*A*B + beta*C (left_right = side::left) or alpha*B*A +
beta*C (left_right = side::right).

11.2. oneMKL Domains 1218

oneAPI Specification, Release 1.1-rev-1

Notes

If beta = 0, matrix C does not need to be initialized before calling symm.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 3 Routines

syrk

Performs a symmetric rank-k update.

Description

The syrk routines perform a rank-k update of a symmetric matrix C by a general matrix A. The operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 * 𝑜𝑝(𝐴) * 𝑜𝑝(𝐴)𝑇 + 𝑏𝑒𝑡𝑎 * 𝐶

where:

op(X) is one of op(X) = X or op(X) = XT ,

alpha and beta are scalars,

C is a symmetric matrix and Ais a general matrix.

Here op(A) is n-by-k, and C is n-by-n.

syrk supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

11.2. oneMKL Domains 1219

oneAPI Specification, Release 1.1-rev-1

syrk (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void syrk(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

namespace oneapi::mkl::blas::row_major {
void syrk(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for
more details.

trans Specifies op(A), the transposition operation applied to A (See oneMKL defined datatypes for more details). Con-
jugation is never performed, even if trans = transpose::conjtrans.

n Number of rows and columns in C. The value of n must be at least zero.

k Number of columns in op(A).The value of k must be at least zero.

alpha Scaling factor for the rank-k update.

a Buffer holding input matrix A.

11.2. oneMKL Domains 1220

oneAPI Specification, Release 1.1-rev-1

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k.

See Matrix Storage for more details.

lda The leading dimension of A. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

lda must be at least n. lda must be at least k.

Row major lda must be at least k. lda must be at least n.

beta Scaling factor for matrix C.

c Buffer holding input/output matrix C. Must have size at least ldc*n. See Matrix Storage for more details.

ldc Leading dimension of C. Must be positive and at least n.

Output Parameters

c Output buffer, overwritten by alpha*op(A)*op(A)T + beta*C.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

syrk (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event syrk(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,

(continues on next page)

11.2. oneMKL Domains 1221

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const T* a,
std::int64_t lda,
T beta,
T* c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event syrk(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
const T* a,
std::int64_t lda,
T beta,
T* c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for
more details.

trans Specifies op(A), the transposition operation applied to A (See oneMKL defined datatypes for more details). Con-
jugation is never performed, even if trans = transpose::conjtrans.

n Number of rows and columns in C. The value of n must be at least zero.

k Number of columns in op(A). The value of k must be at least zero.

alpha Scaling factor for the rank-k update.

a Pointer to input matrix A.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k.

See Matrix Storage for more details.

lda The leading dimension of A. It must be positive.

11.2. oneMKL Domains 1222

oneAPI Specification, Release 1.1-rev-1

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

lda must be at least n. lda must be at least k.

Row major lda must be at least k. lda must be at least n.

beta Scaling factor for matrix C.

c Pointer to input/output matrix C. Must have size at least ldc*n. See Matrix Storage for more details.

ldc Leading dimension of C. Must be positive and at least n.

Output Parameters

c Pointer to the output matrix, overwritten by alpha*op(A)*op(A)T + beta*C.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 3 Routines

syr2k

Performs a symmetric rank-2k update.

Description

The syr2k routines perform a rank-2k update of an n x n symmetric matrix C by general matrices A and B.

If trans = transpose::nontrans, the operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 * (𝐴 *𝐵𝑇 + 𝐵 *𝐴𝑇) + 𝑏𝑒𝑡𝑎 * 𝐶

where A is n x k and B is k x n.

If trans = transpose::trans, the operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 * (𝐴𝑇 *𝐵 + 𝐵𝑇 *𝐴) + 𝑏𝑒𝑡𝑎 * 𝐶

11.2. oneMKL Domains 1223

oneAPI Specification, Release 1.1-rev-1

where A is k x n and B is n x k.

In both cases:

alpha and beta are scalars,

C is a symmetric matrix and A,B are general matrices,

The inner dimension of both matrix multiplications is k.

syr2k supports the following precisions:

T
float
double
std::complex<float>
std::complex<double>

syr2k (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void syr2k(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

namespace oneapi::mkl::blas::row_major {
void syr2k(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

11.2. oneMKL Domains 1224

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for
more details.

trans Specifies the operation to apply, as described above. Conjugation is never performed, even if trans =
transpose::conjtrans.

n Number of rows and columns in C.The value of n must be at least zero.

k Inner dimension of matrix multiplications.The value of k must be at least zero.

alpha Scaling factor for the rank-2k update.

a Buffer holding input matrix A.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k.

See Matrix Storage for more details.

lda The leading dimension of A. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

lda must be at least n. lda must be at least k.

Row major lda must be at least k. lda must be at least n.

b Buffer holding input matrix B.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

B is an k-by-n matrix so the array b must have
size at least ldb*n.

B is an n-by-k matrix so the array b must have
size at least ldb*k

Row ma-
jor

B is an k-by-n matrix so the array b must have
size at least ldb*k.

B is an n-by-k matrix so the array b must have
size at least ldb*n.

See Matrix Storage for more details.

ldb The leading dimension of B. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

ldb must be at least k. ldb must be at least n.

Row major ldb must be at least n. ldb must be at least k.

beta Scaling factor for matrix C.

11.2. oneMKL Domains 1225

oneAPI Specification, Release 1.1-rev-1

c Buffer holding input/output matrix C. Must have size at least ldc*n. See Matrix Storage for more details

ldc Leading dimension of C. Must be positive and at least n.

Output Parameters

c Output buffer, overwritten by the updated C matrix.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

syr2k (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event syr2k(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
const T* a,
std::int64_t lda,
const T* b,
std::int64_t ldb,
T beta,
T* c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event syr2k(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
const T* a,
std::int64_t lda,

(continues on next page)

11.2. oneMKL Domains 1226

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const T* b,
std::int64_t ldb,
T beta,
T* c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether A’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for
more details.

trans Specifies the operation to apply, as described above. Conjugation is never performed, even if trans =
transpose::conjtrans.

n Number of rows and columns in C. The value of n must be at least zero.

k Inner dimension of matrix multiplications.The value of k must be at least zero.

alpha Scaling factor for the rank-2k update.

a Pointer to input matrix A.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k.

See Matrix Storage for more details.

lda The leading dimension of A. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

lda must be at least n. lda must be at least k.

Row major lda must be at least k. lda must be at least n.

b Pointer to input matrix B.

trans = transpose::nontrans trans = transpose::trans or
transpose::conjtrans

Column
major

B is an k-by-n matrix so the array b must have
size at least ldb*n.

B is an n-by-k matrix so the array b must have
size at least ldb*k

Row ma-
jor

B is an k-by-n matrix so the array b must have
size at least ldb*k.

B is an n-by-k matrix so the array b must have
size at least ldb*n.

See Matrix Storage for more details.

11.2. oneMKL Domains 1227

oneAPI Specification, Release 1.1-rev-1

ldb The leading dimension of B. It must be positive.

trans =
transpose::nontrans

trans = transpose::trans or
transpose::conjtrans

Column ma-
jor

ldb must be at least k. ldb must be at least n.

Row major ldb must be at least n. ldb must be at least k.

beta Scaling factor for matrix C.

c Pointer to input/output matrix C. Must have size at least ldc*n. See Matrix Storage for more details

ldc Leading dimension of C. Must be positive and at least n.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c Pointer to the output matrix, overwritten by the updated C matrix.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 3 Routines

trmm

Computes a matrix-matrix product where one input matrix is triangular and one input matrix is general.

11.2. oneMKL Domains 1228

oneAPI Specification, Release 1.1-rev-1

Description

The trmm routines compute a scalar-matrix-matrix product where one of the matrices in the multiplication is triangular.
The argument left_right determines if the triangular matrix, A, is on the left of the multiplication (left_right =
side::left) or on the right (left_right = side::right). Depending on left_right. The operation is defined
as:

𝐵 ← 𝑎𝑙𝑝ℎ𝑎 * 𝑜𝑝(𝐴) *𝐵

or

𝐵 ← 𝑎𝑙𝑝ℎ𝑎 *𝐵 * 𝑜𝑝(𝐴)

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

alpha is a scalar,

A is a triangular matrix, and B is a general matrix.

Here B is m x n and A is either m x m or n x n, depending on left_right.

trmm supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

trmm (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void trmm(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose transa,
onemkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb)

}

namespace oneapi::mkl::blas::row_major {
void trmm(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose transa,
onemkl::diag unit_diag,

(continues on next page)

11.2. oneMKL Domains 1229

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb)

}

Input Parameters

queue The queue where the routine should be executed.

left_right Specifies whether A is on the left side of the multiplication (side::left) or on the right side
(side::right). See oneMKL defined datatypes for more details.

uplo Specifies whether the matrix A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_diag Specifies whether A is assumed to be unit triangular (all diagonal elements are 1). See oneMKL defined
datatypes for more details.

m Specifies the number of rows of B. The value of m must be at least zero.

n Specifies the number of columns of B. The value of n must be at least zero.

alpha Scaling factor for the matrix-matrix product.

a Buffer holding input matrix A. Must have size at least lda*m if left_right = side::left, or lda*n if
left_right = side::right. See Matrix Storage for more details.

lda Leading dimension of A. Must be at least m if left_right = side::left, and at least n if left_right =
side::right. Must be positive.

b Buffer holding input/output matrix B. Must have size at least ldb*n if column major layout is used to store matrices
or at least ldb*m if row major layout is used to store matrices. See Matrix Storage for more details.

ldb Leading dimension of B. It must be positive and at least m if column major layout is used to store matrices or at
least n if row major layout is used to store matrices.

Output Parameters

b Output buffer, overwritten by alpha*op(A)*B or alpha*B*op(A).

Notes

If alpha = 0, matrix B is set to zero, and A and B do not need to be initialized at entry.

11.2. oneMKL Domains 1230

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

trmm (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event trmm(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose transa,
onemkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
const T* a,
std::int64_t lda,
T* b,
std::int64_t ldb,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event trmm(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose transa,
onemkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
const T* a,
std::int64_t lda,
T* b,
std::int64_t ldb,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1231

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

left_right Specifies whether A is on the left side of the multiplication (side::left) or on the right side
(side::right). See oneMKL defined datatypes for more details.

uplo Specifies whether the matrix A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_diag Specifies whether A is assumed to be unit triangular (all diagonal elements are 1). See oneMKL defined
datatypes for more details.

m Specifies the number of rows of B. The value of m must be at least zero.

n Specifies the number of columns of B. The value of n must be at least zero.

alpha Scaling factor for the matrix-matrix product.

a Pointer to input matrix A. Must have size at least lda*m if left_right = side::left, or lda*n if left_right
= side::right. See Matrix Storage for more details.

lda Leading dimension of A. Must be at least m if left_right = side::left, and at least n if left_right =
side::right. Must be positive.

b Pointer to input/output matrix B. Must have size at least ldb*n if column major layout is used to store matrices or at
least ldb*m if row major layout is used to store matrices. See Matrix Storage for more details.

ldb Leading dimension of B. It must be positive and at least m if column major layout is used to store matrices or at
least n if row major layout is used to store matrices.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

b Pointer to the output matrix, overwritten by alpha*op(A)*B or alpha*B*op(A).

Notes

If alpha = 0, matrix B is set to zero, and A and B do not need to be initialized at entry.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1232

oneAPI Specification, Release 1.1-rev-1

Parent topic: BLAS Level 3 Routines

trsm

Solves a triangular matrix equation (forward or backward solve).

Description

The trsm routines solve one of the following matrix equations:

𝑜𝑝(𝐴) *𝑋 = 𝑎𝑙𝑝ℎ𝑎 *𝐵

or

𝑋 * 𝑜𝑝(𝐴) = 𝑎𝑙𝑝ℎ𝑎 *𝐵

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

alpha is a scalar,

A is a triangular matrix, and

B and X are m x n general matrices.

A is either m x m or n x n, depending on whether it multiplies X on the left or right. On return, the matrix B is overwritten
by the solution matrix X.

trsm supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

trsm (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void trsm(sycl::queue &queue,

onemkl::side left_right,
onemkl::uplo upper_lower,
onemkl::transpose transa,
onemkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,

(continues on next page)

11.2. oneMKL Domains 1233

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int64_t ldb)
}

namespace oneapi::mkl::blas::row_major {
void trsm(sycl::queue &queue,

onemkl::side left_right,
onemkl::uplo upper_lower,
onemkl::transpose transa,
onemkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb)

}

Input Parameters

queue The queue where the routine should be executed.

left_right Specifies whether A multiplies X on the left (side::left) or on the right (side::right). See oneMKL
defined datatypes for more details.

uplo Specifies whether the matrix A is upper or lower triangular. See oneMKL defined datatypes for more details.

trans Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_diag Specifies whether A is assumed to be unit triangular (all diagonal elements are 1). See oneMKL defined
datatypes for more details.

m Specifies the number of rows of B. The value of m must be at least zero.

n Specifies the number of columns of B. The value of n must be at least zero.

alpha Scaling factor for the solution.

a Buffer holding input matrix A. Must have size at least lda*m if left_right = side::left, or lda*n if
left_right = side::right. See Matrix Storage for more details.

lda Leading dimension of A. Must be at least m if left_right = side::left, and at least n if left_right =
side::right. Must be positive.

b Buffer holding input/output matrix B. Must have size at least ldb*n if column major layout is used to store matrices
or at least ldb*m if row major layout is used to store matrices. See Matrix Storage for more details.

ldb Leading dimension of B. It must be positive and at least m if column major layout is used to store matrices or at
least n if row major layout is used to store matrices.

11.2. oneMKL Domains 1234

oneAPI Specification, Release 1.1-rev-1

Output Parameters

b Output buffer. Overwritten by the solution matrix X.

Notes

If alpha = 0, matrix B is set to zero, and A and B do not need to be initialized at entry.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

trsm (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event trsm(sycl::queue &queue,

onemkl::side left_right,
onemkl::uplo upper_lower,
onemkl::transpose transa,
onemkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
const T* a,
std::int64_t lda,
T* b,
std::int64_t ldb,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event trsm(sycl::queue &queue,

onemkl::side left_right,
onemkl::uplo upper_lower,
onemkl::transpose transa,
onemkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
const T* a,

(continues on next page)

11.2. oneMKL Domains 1235

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int64_t lda,
T* b,
std::int64_t ldb,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

left_right Specifies whether A multiplies X on the left (side::left) or on the right (side::right). See oneMKL
defined datatypes for more details.

uplo Specifies whether the matrix A is upper or lower triangular. See oneMKL defined datatypes for more details.

transa Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

unit_diag Specifies whether A is assumed to be unit triangular (all diagonal elements are 1). See oneMKL defined
datatypes for more details.

m Specifies the number of rows of B. The value of m must be at least zero.

n Specifies the number of columns of B. The value of n must be at least zero.

alpha Scaling factor for the solution.

a Pointer to input matrix A. Must have size at least lda*m if left_right = side::left, or lda*n if left_right
= side::right. See Matrix Storage for more details.

lda Leading dimension of A. Must be at least m if left_right = side::left, and at least n if left_right =
side::right. Must be positive.

b Pointer to input/output matrix B. Must have size at least ldb*n if column major layout is used to store matrices or at
least ldb*m if row major layout is used to store matrices. See Matrix Storage for more details.

ldb Leading dimension of B. It must be positive and at least m if column major layout is used to store matrices or at
least n if row major layout is used to store matrices.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

b Pointer to the output matrix. Overwritten by the solution matrix X.

Notes

If alpha = 0, matrix B is set to zero, and A and B do not need to be initialized at entry.

11.2. oneMKL Domains 1236

oneAPI Specification, Release 1.1-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS Level 3 Routines

Parent topic: BLAS Routines

BLAS-like Extensions

oneAPI Math Kernel Library DPC++ provides additional routines to extend the functionality of the BLAS routines.
These include routines to compute many independent vector-vector and matrix-matrix operations.

The following table lists the BLAS-like extensions with their descriptions.

Routines Description
axpy_batch Computes groups of vector-scalar products added to a vector.
gemm_batch Computes groups of matrix-matrix products with general matrices.
trsm_batch Solves a triangular matrix equation for a group of matrices.
gemmt Computes a matrix-matrix product with general matrices, but updates only the upper or lower triangular

part of the result matrix.
gemm_bias Computes a matrix-matrix product using general integer matrices with bias

axpy_batch

Computes a group of axpy operations.

Description

The axpy_batch routines are batched versions of axpy, performing multiple axpy operations in a single call. Each
axpy operation adds a scalar-vector product to a vector.

axpy_batch supports the following precisions for data.

T
float
double
std::complex<float>
std::complex<double>

11.2. oneMKL Domains 1237

oneAPI Specification, Release 1.1-rev-1

axpy_batch (Buffer Version)

Description

The buffer version of axpy_batch supports only the strided API.

The strided API operation is defined as:

for i = 0 ... batch_size – 1
X and Y are vectors at offset i * stridex, i * stridey in x and y
Y := alpha * X + Y

end for

where:

alpha is scalar,

X and Y are vectors.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
void axpy_batch(sycl::queue &queue,

std::int64_t n,
T alpha,
sycl::buffer<T,
1> &x,
std::int64_t incx,
std::int64_t stridex,
sycl::buffer<T,
1> &y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size)

}

namespace oneapi::mkl::blas::row_major {
void axpy_batch(sycl::queue &queue,

std::int64_t n,
T alpha,
sycl::buffer<T,
1> &x,
std::int64_t incx,
std::int64_t stridex,
sycl::buffer<T,
1> &y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size)

}

11.2. oneMKL Domains 1238

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in X and Y.

alpha Specifies the scalar alpha.

x Buffer holding input vectors X with size stridex * batch_size.

incx Stride of vector X.

stridex Stride between different X vectors.

y Buffer holding input/output vectors Y with size stridey * batch_size.

incy Stride of vector Y.

stridey Stride between different Y vectors.

batch_size Specifies the number of axpy operations to perform.

Output Parameters

y Output buffer, overwritten by batch_size axpy operations of the form alpha * X + Y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

axpy_batch (USM Version)

Description

The USM version of axpy_batch supports the group API and strided API.

The group API operation is defined as

idx = 0
for i = 0 ... group_count – 1

for j = 0 ... group_size – 1
X and Y are vectors in x[idx] and y[idx]
Y := alpha[i] * X + Y
idx := idx + 1

end for
end for

The strided API operation is defined as

11.2. oneMKL Domains 1239

oneAPI Specification, Release 1.1-rev-1

for i = 0 ... batch_size – 1
X and Y are vectors at offset i * stridex, i * stridey in x and y
Y := alpha * X + Y

end for

where:

alpha is scalar,

X and Y are vectors.

For group API, x and y arrays contain the pointers for all the input vectors. The total number of vectors in x and y are
given by:

𝑡𝑜𝑡𝑎𝑙_𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 =

𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑢𝑛𝑡−1∑︁
𝑖=0

𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒[𝑖]

For strided API, x and y arrays contain all the input vectors. The total number of vectors in x and y are given by the
batch_size parameter.

Group API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event axpy_batch(sycl::queue &queue,

std::int64_t *n,
T *alpha,
const T **x,
std::int64_t *incx,
T **y,
std::int64_t *incy,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event axpy_batch(sycl::queue &queue,

std::int64_t *n,
T *alpha,
const T **x,
std::int64_t *incx,
T **y,
std::int64_t *incy,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1240

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

n Array of group_count integers. n[i] specifies the number of elements in vectors X and Y for every vector in group
i.

alpha Array of group_count scalar elements. alpha[i] specifies the scaling factor for vector X in group i.

x Array of pointers to input vectors X with size total_batch_count. The size of array allocated for the X vector of
the group i must be at least (1 + (n[i] – 1)*abs(incx[i])). See Matrix Storage for more details.

incx Array of group_count integers. incx[i] specifies the stride of vector X in group i.

y Array of pointers to input/output vectors Y with size total_batch_count. The size of array allocated for the Y
vector of the group i must be at least (1 + (n[i] – 1)*abs(incy[i])). See Matrix Storage for more details.

incy Array of group_count integers. incy[i] specifies the stride of vector Y in group i.

group_count Number of groups. Must be at least 0.

group_size Array of group_count integers. group_size[i] specifies the number of axpy operations in group i.
Each element in group_size must be at least 0.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y Array of pointers holding the Y vectors, overwritten by total_batch_count axpy operations of the form alpha *
X + Y.

Return Values

Output event to wait on to ensure computation is complete.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event axpy_batch(sycl::queue &queue,

std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
std::int64_t stridex,
T *y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1241

oneAPI Specification, Release 1.1-rev-1

namespace oneapi::mkl::blas::row_major {
sycl::event axpy_batch(sycl::queue &queue,

std::int64_t n,
T alpha,
const T *x,
std::int64_t incx,
std::int64_t stridex,
T *y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in X and Y.

alpha Specifies the scalar alpha.

x Pointer to input vectors X with size stridex * batch_size.

incx Stride of vector X.

stridex Stride between different X vectors.

y Pointer to input/output vectors Y with size stridey * batch_size.

incy Stride of vector Y.

stridey Stride between different Y vectors.

batch_size Specifies the number of axpy operations to perform.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y Output vectors, overwritten by batch_size axpy operations of the form alpha * X + Y.

Return Values

Output event to wait on to ensure computation is complete.

11.2. oneMKL Domains 1242

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic:BLAS-like Extensions

axpby

Computes a vector-scalar product added to a scaled-vector.

Description

The axpby routines compute two scalar-vector product and add them:

𝑦 ← 𝑏𝑒𝑡𝑎 * 𝑦 + 𝑎𝑙𝑝ℎ𝑎 * 𝑥

where x and y are vectors of n elements and alpha and beta are scalars.

axpby supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

axpby (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void axpby(sycl::queue &queue,

std::int64_t n,
T alpha,
sycl::buffer<T,1> &x, std::int64_t incx,
T beta,
sycl::buffer<T,1> &y, std::int64_t incy)

}

11.2. oneMKL Domains 1243

oneAPI Specification, Release 1.1-rev-1

namespace oneapi::mkl::blas::row_major {
void axpby(sycl::queue &queue,

std::int64_t n,
T alpha,
sycl::buffer<T,1> &x, std::int64_t incx,
T beta,
sycl::buffer<T,1> &y, std::int64_t incy)

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x and y.

alpha Specifies the scalar alpha.

x Buffer holding input vector x. The buffer must be of size at least (1 + (n – 1)*abs(incx)). See Matrix Storage for
more details.

incx Stride between two consecutive elements of the x vector.

beta Specifies the scalar beta.

y Buffer holding input vector y. The buffer must be of size at least (1 + (n – 1)*abs(incy)). See Matrix Storage for
more details.

incy Stride between two consecutive elements of the y vector.

Output Parameters

y Buffer holding the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1244

oneAPI Specification, Release 1.1-rev-1

axpby (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event axpby(sycl::queue &queue,

std::int64_t n,
T alpha,
const T *x, std::int64_t incx,
const T beta,
T *y, std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event axpby(sycl::queue &queue,

std::int64_t n,
T alpha,
const T *x, std::int64_t incx,
const T beta,
T *y, std::int64_t incy,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in vector x and y.

alpha Specifies the scalar alpha.

beta Specifies the scalar beta.

x Pointer to the input vector x. The allocated memory must be of size at least (1 + (n – 1)*abs(incx)). See Matrix
Storage for more details.

incx Stride between consecutive elements of the x vector.

y Pointer to the input vector y. The allocated memory must be of size at least (1 + (n – 1)*abs(incy)). See Matrix
Storage for more details.

incy Stride between consecutive elements of the y vector.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

11.2. oneMKL Domains 1245

oneAPI Specification, Release 1.1-rev-1

Output Parameters

y Array holding the updated vector y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

copy_batch

Computes a group of copy operations.

Description

The copy_batch routines are batched versions of copy, performing multiple copy operations in a single call. Each
copy operation copies one vector to another.

copy_batch supports the following precisions for data.

T
float
double
std::complex<float>
std::complex<double>

copy_batch (Buffer Version)

Description

The buffer version of copy_batch supports only the strided API.

The strided API operation is defined as:

11.2. oneMKL Domains 1246

oneAPI Specification, Release 1.1-rev-1

for i = 0 ... batch_size – 1
X and Y are vectors at offset i * stridex, i * stridey in x and y
Y := X

end for

where:

X and Y are vectors.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
void copy_batch(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,
1> &x,
std::int64_t incx,
std::int64_t stridex,
sycl::buffer<T,
1> &y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size)

}

namespace oneapi::mkl::blas::row_major {
void copy_batch(sycl::queue &queue,

std::int64_t n,
sycl::buffer<T,
1> &x,
std::int64_t incx,
std::int64_t stridex,
sycl::buffer<T,
1> &y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size)

}

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in X and Y.

x Buffer holding input vectors X with size stridex * batch_size.

incx Stride of vector X.

stridex Stride between different X vectors.

y Buffer holding input/output vectors Y with size stridey * batch_size.

11.2. oneMKL Domains 1247

oneAPI Specification, Release 1.1-rev-1

incy Stride of vector Y.

stridey Stride between different Y vectors.

batch_size Specifies the number of copy operations to perform.

Output Parameters

y Output buffer, overwritten by batch_size copy operations.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

copy_batch (USM Version)

Description

The USM version of copy_batch supports the group API and strided API.

The group API operation is defined as

idx = 0
for i = 0 ... group_count – 1

for j = 0 ... group_size – 1
X and Y are vectors in x[idx] and y[idx]
Y := X
idx := idx + 1

end for
end for

The strided API operation is defined as

for i = 0 ... batch_size – 1
X and Y are vectors at offset i * stridex, i * stridey in x and y
Y := X

end for

where:

X and Y are vectors.

11.2. oneMKL Domains 1248

oneAPI Specification, Release 1.1-rev-1

For group API, x and y arrays contain the pointers for all the input vectors. The total number of vectors in x and y are
given by:

𝑡𝑜𝑡𝑎𝑙_𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 =

𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑢𝑛𝑡−1∑︁
𝑖=0

𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒[𝑖]

For strided API, x and y arrays contain all the input vectors. The total number of vectors in x and y are given by the
batch_size parameter.

Group API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event copy_batch(sycl::queue &queue,

std::int64_t *n,
const T **x,
std::int64_t *incx,
T **y,
std::int64_t *incy,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event copy_batch(sycl::queue &queue,

std::int64_t *n,
const T **x,
std::int64_t *incx,
T **y,
std::int64_t *incy,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

n Array of group_count integers. n[i] specifies the number of elements in vectors X and Y for every vector in group
i.

x Array of pointers to input vectors X with size total_batch_count. The size of array allocated for the X vector of
the group i must be at least (1 + (n[i] – 1)*abs(incx[i])). See Matrix Storage for more details.

incx Array of group_count integers. incx[i] specifies the stride of vector X in group i.

y Array of pointers to input/output vectors Y with size total_batch_count. The size of array allocated for the Y
vector of the group i must be at least (1 + (n[i] – 1)*abs(incy[i])). See Matrix Storage for more details.

incy Array of group_count integers. incy[i] specifies the stride of vector Y in group i.

group_count Number of groups. Must be at least 0.

11.2. oneMKL Domains 1249

oneAPI Specification, Release 1.1-rev-1

group_size Array of group_count integers. group_size[i] specifies the number of copy operations in group i.
Each element in group_size must be at least 0.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y Array of pointers holding the Y vectors, overwritten by total_batch_count copy operations.

Return Values

Output event to wait on to ensure computation is complete.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event copy_batch(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
std::int64_t stridex,
T *y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event copy_batch(sycl::queue &queue,

std::int64_t n,
const T *x,
std::int64_t incx,
std::int64_t stridex,
T *y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1250

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

n Number of elements in X and Y.

x Pointer to input vectors X with size stridex * batch_size.

incx Stride of vector X.

stridex Stride between different X vectors.

y Pointer to input/output vectors Y with size stridey * batch_size.

incy Stride of vector Y.

stridey Stride between different Y vectors.

batch_size Specifies the number of copy operations to perform.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y Output vectors, overwritten by batch_size copy operations

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic:BLAS-like Extensions

dgmm_batch

Computes a group of dgmm operations.

11.2. oneMKL Domains 1251

oneAPI Specification, Release 1.1-rev-1

Description

The dgmm_batch routines perform multiple diagonal matrix-matrix product operations in a single call.

dgmm_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

dgmm_batch (Buffer Version)

Description

The buffer version of dgmm_batch supports only the strided API.

The strided API operation is defined as:

for i = 0 ... batch_size – 1
A and C are matrices at offset i * stridea in a, i * stridec in c.
X is a vector at offset i * stridex in x
C := diag(X) * A or C = A * diag(X)

end for

where:

A is a matrix,

X is a diagonal matrix stored as a vector

The a and x buffers contain all the input matrices. The stride between matrices is given by the stride parameter. The
total number of matrices in a and x buffers is given by the batch_size parameter.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
void dgmm_batch(sycl::queue &queue,

onemkl::mkl::side left_right,
std::int64_t m,
std::int64_t n,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T,1> &x,
std::int64_t incx,
std::int64_t stridex,
sycl::buffer<T,1> &c,
std::int64_t ldc,
std::int64_t stridec,

(continues on next page)

11.2. oneMKL Domains 1252

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int64_t batch_size)
}

namespace oneapi::mkl::blas::row_major {
void dgmm_batch(sycl::queue &queue,

onemkl::mkl::side left_right,
std::int64_t m,
std::int64_t n,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T,1> &x,
std::int64_t incx,
std::int64_t stridex,
sycl::buffer<T,1> &c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size)

}

Input Parameters

queue The queue where the routine should be executed.

left_right Specifies the position of the diagonal matrix in the product. See oneMKL defined datatypes for more details.

m Number of rows of matrices A and C. Must be at least zero.

n Number of columns of matrices A and C. Must be at least zero.

a

Buffer holding the input matrices A with size stridea * batch_size. Must be of at least lda * j +
stridea * (batch_size - 1) where j is n if column major layout is used or m if major layout is used.

lda The leading dimension of the matrices A. It must be positive and at least m if column major layout is used or at
least n if row major layout is used.

stridea Stride between different A matrices.

x Buffer holding the input matrices X with size stridex * batch_size. Must be of size at least (1 + (len -
1)*abs(incx)) + stridex * (batch_size - 1) where len is n if the diagonal matrix is on the right of the
product or m otherwise.

incx Stride between two consecutive elements of the x vectors.

stridex Stride between different X vectors, must be at least 0.

c Buffer holding input/output matrices C with size stridec * batch_size.

ldc The leading dimension of the matrices C. It must be positive and at least m if column major layout is used to store
matrices or at least n if column major layout is used to store matrices.

stridec Stride between different C matrices. Must be at least ldc * n if column major layout is used or ldc * m if row
major layout is used.

batch_size Specifies the number of diagonal matrix-matrix product operations to perform.

11.2. oneMKL Domains 1253

oneAPI Specification, Release 1.1-rev-1

Output Parameters

c Output overwritten by batch_size diagonal matrix-matrix product operations.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

dgmm_batch (USM Version)

Description

The USM version of dgmm_batch supports the group API and strided API.

The group API operation is defined as:

idx = 0
for i = 0 ... group_count – 1

for j = 0 ... group_size – 1
a and c are matrices of size mxn at position idx in a_array and c_array
x is a vector of size m or n depending on left_right, at position idx in x_array
if (left_right == oneapi::mkl::side::left)

c := diag(x) * a
else

c := a * diag(x)
idx := idx + 1

end for
end for

The strided API operation is defined as

for i = 0 ... batch_size – 1
A and C are matrices at offset i * stridea in a, i * stridec in c.
X is a vector at offset i * stridex in x
C := diag(X) * A or C = A * diag(X)

end for

where:

A is a matrix,

X is a diagonal matrix stored as a vector

The a and x buffers contain all the input matrices. The stride between matrices is given by the stride parameter. The
total number of matrices in a and x buffers is given by the batch_size parameter.

11.2. oneMKL Domains 1254

oneAPI Specification, Release 1.1-rev-1

For group API, a and x arrays contain the pointers for all the input matrices. The total number of matrices in a and x
are given by:

𝑡𝑜𝑡𝑎𝑙_𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 =

𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑢𝑛𝑡−1∑︁
𝑖=0

𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒[𝑖]

For strided API, a and x arrays contain all the input matrices. The total number of matrices in a and x are given by the
batch_size parameter.

Group API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event dgmm_batch(sycl::queue &queue,

onemkl::mkl::side *left_right,
std::int64_t *m,
std::int64_t *n,
const T **a,
std::int64_t *lda,
const T **x,
std::int64_t *incx,
T **c,
std::int64_t *ldc,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event dgmm_batch(sycl::queue &queue,

onemkl::mkl::side *left_right,
std::int64_t *m,
std::int64_t *n,
const T **a,
std::int64_t *lda,
const T **x,
std::int64_t *incx,
T **c,
std::int64_t *ldc,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1255

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

left_right Specifies the position of the diagonal matrix in the product. See oneMKL defined datatypes for more details.

m Array of group_count integers. m[i] specifies the number of rows of A for every matrix in group i. All entries
must be at least zero.

n Array of group_count integers. n[i] specifies the number of columns of A for every matrix in group i. All entries
must be at least zero.

a Array of pointers to input matrices A with size total_batch_count. Must be of size at least lda[i] * n[i] if
column major layout is used or at least lda[i] * m[i] if row major layout is used. See Matrix Storage for more
details.

lda Array of group_count integers. lda[i] specifies the leading dimension of A for every matrix in group i. All
entries must be positive and at least m[i] if column major layout is used or at least n[i] if row major layout is
used.

x Array of pointers to input vectors X with size total_batch_count. Must be of size at least (1 + len[i] –
1)*abs(incx[i])) where len[i] is n[i] if the diagonal matrix is on the right of the product or m[i] other-
wise. See Matrix Storage for more details.

incx Array of group_count integers. incx[i] specifies the stride of x for every vector in group i. All entries must
be positive.

c Array of pointers to input/output matrices C with size total_batch_count. Must be of size at least ldc[i] * n[i]
if column major layout is used or at least ldc[i] * m[i] if row major layout is used. See Matrix Storage for
more details.

ldc Array of group_count integers. ldc[i] specifies the leading dimension of C for every matrix in group i. All
entries must be positive and ldc[i] must be at least m[i] if column major layout is used to store matrices or at
least n[i] if row major layout is used to store matrices.

group_count Specifies the number of groups. Must be at least 0.

group_size Array of group_count integers. group_size[i] specifies the number of diagonal matrix-matrix product
operations in group i. All entries must be at least 0.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c Output overwritten by batch_size diagonal matrix-matrix product operations.

Return Values

Output event to wait on to ensure computation is complete.

Strided API

11.2. oneMKL Domains 1256

oneAPI Specification, Release 1.1-rev-1

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event dgmm_batch(sycl::queue &queue,

onemkl::mkl::side left_right,
std::int64_t m,
std::int64_t n,
const T *a,
std::int64_t lda,
std::int64_t stridea,
const T *b,
std::int64_t incx,
std::int64_t stridex,
T *c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event dgmm_batch(sycl::queue &queue,

onemkl::mkl::side left_right,
std::int64_t m,
std::int64_t n,
const T *a,
std::int64_t lda,
std::int64_t stridea,
const T *b,
std::int64_t incx,
std::int64_t stridex,
T *c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

left_right Specifies the position of the diagonal matrix in the product. See oneMKL defined datatypes for more details.

m Number of rows of A. Must be at least zero.

n Number of columns of A. Must be at least zero.

a Pointer to input matrices A with size stridea * batch_size. Must be of size at least lda * k + stridea *
(batch_size - 1) where k is n if column major layout is used or m if row major layout is used.

lda The leading dimension of the matrices A. It must be positive and at least m. Must be positive and at least m if
column major layout is used or at least n if row major layout is used.

stridea Stride between different A matrices.

11.2. oneMKL Domains 1257

oneAPI Specification, Release 1.1-rev-1

x Pointer to input matrices X with size stridex * batch_size. Must be of size at least (1 + (len - 1)*abs(incx)) +
stridex * (batch_size - 1) where len is n if the diagonal matrix is on the right of the product or m otherwise.

incx Stride between two consecutive elements of the x vector.

stridex Stride between different X vectors, must be at least 0.

c Pointer to input/output matrices C with size stridec * batch_size.

ldc The leading dimension of the matrices C. It must be positive and at least ldc * m if column major layout is used to
store matrices or at least ldc * n if column major layout is used to store matrices.

stridec Stride between different C matrices. Must be at least ldc * n if column major layout is used or ldc * m if row
major layout is used.

batch_size Specifies the number of diagonal matrix-matrix product operations to perform.

Output Parameters

c Output overwritten by batch_size diagonal matrix-matrix product operations.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

gemm_batch

Computes a group of gemm operations.

Description

The gemm_batch routines are batched versions of gemm, performing multiple gemm operations in a single call. Each
gemm operation perform a matrix-matrix product with general matrices.

gemm_batch supports the following precisions.

11.2. oneMKL Domains 1258

oneAPI Specification, Release 1.1-rev-1

T
half
float
double
std::complex<float>
std::complex<double>

gemm_batch (Buffer Version)

Description

The buffer version of gemm_batch supports only the strided API.

The strided API operation is defined as:

for i = 0 ... batch_size – 1
A, B and C are matrices at offset i * stridea, i * strideb, i * stridec in a, b and␣

→˓c.
C := alpha * op(A) * op(B) + beta * C

end for

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha and beta are scalars,

A, B, and C are matrices,

op(A) is m x k, op(B) is k x n, and C is m x n.

The a, b and c buffers contain all the input matrices. The stride between matrices is given by the stride parameter. The
total number of matrices in a, b and c buffers is given by the batch_size parameter.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
void gemm_batch(sycl::queue &queue,

onemkl::transpose transa,
onemkl::transpose transb,
std::int64_t m,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T,1> &b,
std::int64_t ldb,
std::int64_t strideb,
T beta,
sycl::buffer<T,1> &c,

(continues on next page)

11.2. oneMKL Domains 1259

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size)

}

namespace oneapi::mkl::blas::row_major {
void gemm_batch(sycl::queue &queue,

onemkl::transpose transa,
onemkl::transpose transb,
std::int64_t m,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T,1> &b,
std::int64_t ldb,
std::int64_t strideb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size)

}

Input Parameters

queue The queue where the routine should be executed.

transa Specifies op(A) the transposition operation applied to the matrices A. See oneMKL defined datatypes for more
details.

transb Specifies op(B) the transposition operation applied to the matrices B. See oneMKL defined datatypes for more
details.

m Number of rows of op(A) and C. Must be at least zero.

n Number of columns of op(B) and C. Must be at least zero.

k Number of columns of op(A) and rows of op(B). Must be at least zero.

alpha Scaling factor for the matrix-matrix products.

a Buffer holding the input matrices A with size stridea * batch_size.

lda The leading dimension of the matrices A. It must be positive.

A not transposed A transposed
Column major lda must be at least m. lda must be at least k.
Row major lda must be at least k. lda must be at least m.

stridea Stride between different A matrices.

b Buffer holding the input matrices B with size strideb * batch_size.

11.2. oneMKL Domains 1260

oneAPI Specification, Release 1.1-rev-1

ldb The leading dimension of the matrices``B``. It must be positive.

B not transposed B transposed
Column major ldb must be at least k. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least k.

strideb Stride between different B matrices.

beta Scaling factor for the matrices C.

c Buffer holding input/output matrices C with size stridec * batch_size.

ldc The leading dimension of the matrices C. It must be positive and at least m if column major layout is used to store
matrices or at least n if column major layout is used to store matrices.

stridec Stride between different C matrices. Must be at least ldc * n.

batch_size Specifies the number of matrix multiply operations to perform.

Output Parameters

c Output buffer, overwritten by batch_size matrix multiply operations of the form alpha * op(A)*op(B) + beta * C.

Notes

If beta = 0, matrix C does not need to be initialized before calling gemm_batch.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

gemm_batch (USM Version)

Description

The USM version of gemm_batch supports the group API and the strided API. The group API supports pointer and
span inputs.

The group API operation is defined as:

idx = 0
for i = 0 ... group_count – 1

for j = 0 ... group_size – 1
A, B, and C are matrices in a[idx], b[idx] and c[idx]

(continues on next page)

11.2. oneMKL Domains 1261

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

C := alpha[i] * op(A) * op(B) + beta[i] * C
idx = idx + 1

end for
end for

The advantage of using span instead of pointer is that the sizes of the array can vary and the size of the span can be
queried at runtime. For each GEMM parameter, except the output matrices, the span can be of size 1, the number of
groups or the total batch size. For the output matrices, to ensure all computation are independent, the size of the span
must be the total batch size.

Depending on the size of the spans, each parameter for the GEMM computation is used as follows:

• If the span has size 1, the parameter is reused for all GEMM computation.

• If the span has size group_count, the parameter is reused for all GEMM within a group, but each group will have
a different value for this parameter. This is like the gemm_batch group API with pointers.

• If the span has size equal to the total batch size, each GEMM computation will use a different value for this
parameter.

The strided API operation is defined as

for i = 0 ... batch_size – 1
A, B and C are matrices at offset i * stridea, i * strideb, i * stridec in a, b and␣

→˓c.
C := alpha * op(A) * op(B) + beta * C

end for

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha and beta are scalars,

A, B, and C are matrices,

op(A) is m x k, op(B) is k x n, and C is m x n.

For group API, a, b and c arrays contain the pointers for all the input matrices. The total number of matrices in a, b
and c are given by:

𝑡𝑜𝑡𝑎𝑙_𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 =

𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑢𝑛𝑡−1∑︁
𝑖=0

𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒[𝑖]

For strided API, a, b, c arrays contain all the input matrices. The total number of matrices in a, b and c are given by
the batch_size parameter.

Group API

11.2. oneMKL Domains 1262

oneAPI Specification, Release 1.1-rev-1

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gemm_batch(sycl::queue &queue,

onemkl::transpose *transa,
onemkl::transpose *transb,
std::int64_t *m,
std::int64_t *n,
std::int64_t *k,
T *alpha,
const T **a,
std::int64_t *lda,
const T **b,
std::int64_t *ldb,
T *beta,
T **c,
std::int64_t *ldc,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

sycl::event gemm_batch(sycl::queue &queue,
const sycl::span<onemkl::transpose> &transa,
const sycl::span<onemkl::transpose> &transb,
const sycl::span<std::int64_t> &m,
const sycl::span<std::int64_t> &n,
const sycl::span<std::int64_t> &k,
const sycl::span<std::int64_t> &alpha,
const sycl::span<const T*> &a,
const sycl::span<std::int64_t> &lda,
const sycl::span<const T*> &b,
const sycl::span<std::int64_t> &ldb,
const sycl::span<T> &beta,
sycl::span<T*> &c,
const sycl::span<std::int64_t> &ldc,
size_t group_count,
const sycl::span<size_t> &group_sizes,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event gemm_batch(sycl::queue &queue,

onemkl::transpose *transa,
onemkl::transpose *transb,
std::int64_t *m,
std::int64_t *n,
std::int64_t *k,
T *alpha,
const T **a,
std::int64_t *lda,
const T **b,
std::int64_t *ldb,
T *beta,

(continues on next page)

11.2. oneMKL Domains 1263

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

T **c,
std::int64_t *ldc,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

sycl::event gemm_batch(sycl::queue &queue,
const sycl::span<onemkl::transpose> &transa,
const sycl::span<onemkl::transpose> &transb,
const sycl::span<std::int64_t> &m,
const sycl::span<std::int64_t> &n,
const sycl::span<std::int64_t> &k,
const sycl::span<std::int64_t> &alpha,
const sycl::span<const T*> &a,
const sycl::span<std::int64_t> &lda,
const sycl::span<const T*> &b,
const sycl::span<std::int64_t> &ldb,
const sycl::span<T> &beta,
sycl::span<T*> &c,
const sycl::span<std::int64_t> &ldc,
size_t group_count,
const sycl::span<size_t> &group_sizes,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

transa Array or span of group_count onemkl::transpose values. transa[i] specifies the form of op(A) used in
the matrix multiplication in group i. See oneMKL defined datatypes for more details.

transb Array or span of group_count onemkl::transpose values. transb[i] specifies the form of op(B) used in
the matrix multiplication in group i. See oneMKL defined datatypes for more details.

m Array or span of group_count integers. m[i] specifies the number of rows of op(A) and C for every matrix in
group i. All entries must be at least zero.

n Array or span of group_count integers. n[i] specifies the number of columns of op(B) and C for every matrix in
group i. All entries must be at least zero.

k Array or span of group_count integers. k[i] specifies the number of columns of op(A) and rows of op(B) for every
matrix in group i. All entries must be at least zero.

alpha Array or span of group_count scalar elements. alpha[i] specifies the scaling factor for every matrix-matrix
product in group i.

a Array of pointers or span of input matrices A with size total_batch_count.

See Matrix Storage for more details.

lda Array or span of group_count integers. lda[i] specifies the leading dimension of A for every matrix in group
i. All entries must be positive.

11.2. oneMKL Domains 1264

oneAPI Specification, Release 1.1-rev-1

A not transposed A transposed
Column major lda[i] must be at least m[i]. lda[i] must be at least k[i].
Row major lda[i] must be at least k[i]. lda[i] must be at least m[i].

b Array of pointers or span of input matrices B with size total_batch_count.

See Matrix Storage for more details.

ldb Array or span of group_count integers. ldb[i] specifies the leading dimension of B for every matrix in group
i. All entries must be positive.

B not transposed B transposed
Column major ldb[i] must be at least k[i]. ldb[i] must be at least n[i].
Row major ldb[i] must be at least n[i]. ldb[i] must be at least k[i].

beta Array or span of group_count scalar elements. beta[i] specifies the scaling factor for matrix C for every
matrix in group i.

c Array of pointers or span of input/output matrices C with size total_batch_count.

See Matrix Storage for more details.

ldc Array or span of group_count integers. ldc[i] specifies the leading dimension of C for every matrix in group
i. All entries must be positive and ldc[i] must be at least m[i] if column major layout is used to store matrices
or at least n[i] if row major layout is used to store matrices.

group_count Specifies the number of groups. Must be at least 0.

group_size Array or span of group_count integers. group_size[i] specifies the number of matrix multiply prod-
ucts in group i. All entries must be at least 0.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c Overwritten by the m[i]-by-n[i] matrix calculated by (alpha[i] * op(A)*op(B) + beta[i] * C) for group i.

Notes

If beta = 0, matrix C does not need to be initialized before calling gemm_batch.

Return Values

Output event to wait on to ensure computation is complete.

11.2. oneMKL Domains 1265

oneAPI Specification, Release 1.1-rev-1

Output Parameters

c Overwritten by the m[i]-by-n[i] matrix calculated by (alpha[i] * op(A)*op(B) + beta[i] * C) for group i.

Notes

If beta = 0, matrix C does not need to be initialized before calling gemm_batch.

Return Values

Output event to wait on to ensure computation is complete.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gemm_batch(sycl::queue &queue,

onemkl::transpose transa,
onemkl::transpose transb,
std::int64_t m,
std::int64_t n,
std::int64_t k,
T alpha,
const T *a,
std::int64_t lda,
std::int64_t stridea,
const T *b,
std::int64_t ldb,
std::int64_t strideb,
T beta,
T *c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event gemm_batch(sycl::queue &queue,

onemkl::transpose transa,
onemkl::transpose transb,
std::int64_t m,
std::int64_t n,
std::int64_t k,
T alpha,
const T *a,
std::int64_t lda,
std::int64_t stridea,
const T *b,
std::int64_t ldb,

(continues on next page)

11.2. oneMKL Domains 1266

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int64_t strideb,
T beta,
T *c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

transa Specifies op(A) the transposition operation applied to the matrices A. See oneMKL defined datatypes for more
details.

transb Specifies op(B) the transposition operation applied to the matrices B. See oneMKL defined datatypes for more
details.

m Number of rows of op(A) and C. Must be at least zero.

n Number of columns of op(B) and C. Must be at least zero.

k Number of columns of op(A) and rows of op(B). Must be at least zero.

alpha Scaling factor for the matrix-matrix products.

a Pointer to input matrices A with size stridea * batch_size.

lda The leading dimension of the matrices A. It must be positive.

A not transposed A transposed
Column major lda must be at least m. lda must be at least k.
Row major lda must be at least k. lda must be at least m.

stridea Stride between different A matrices.

b Pointer to input matrices B with size strideb * batch_size.

ldb The leading dimension of the matrices``B``. It must be positive.

B not transposed B transposed
Column major ldb must be at least k. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least k.

strideb Stride between different B matrices.

beta Scaling factor for the matrices C.

c Pointer to input/output matrices C with size stridec * batch_size.

ldc The leading dimension of the matrices C. It must be positive and at least m if column major layout is used to store
matrices or at least n if column major layout is used to store matrices.

stridec Stride between different C matrices.

batch_size Specifies the number of matrix multiply operations to perform.

11.2. oneMKL Domains 1267

oneAPI Specification, Release 1.1-rev-1

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c Output matrices, overwritten by batch_size matrix multiply operations of the form alpha * op(A)*op(B) + beta
* C.

Notes

If beta = 0, matrix C does not need to be initialized before calling gemm_batch.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

gemv_batch

Computes a group of gemv operations.

Description

The gemv_batch routines are batched versions of gemv, performing multiple gemv operations in a single call. Each
gemv operations perform a scalar-matrix-vector product and add the result to a scalar-vector product.

gemv_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

11.2. oneMKL Domains 1268

oneAPI Specification, Release 1.1-rev-1

gemv_batch (Buffer Version)

Description

The buffer version of gemv_batch supports only the strided API.

The strided API operation is defined as:

for i = 0 ... batch_size – 1
A is a matrix at offset i * stridea in a.
X and Y are matrices at offset i * stridex, i * stridey, in x and y.
Y := alpha * op(A) * X + beta * Y

end for

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

alpha and beta are scalars,

A is a matrix and X and Y are vectors,

The x and y buffers contain all the input matrices. The stride between vectors is given by the stride parameter. The
total number of vectors in x and y buffers is given by the batch_size parameter.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
void gemv_batch(sycl::queue &queue,

onemkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T,1> &x,
std::int64_t incx,
std::int64_t stridex,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size)

}

namespace oneapi::mkl::blas::row_major {
void gemv_batch(sycl::queue &queue,

onemkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,

(continues on next page)

11.2. oneMKL Domains 1269

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T,1> &x,
std::int64_t incx,
std::int64_t stridex,
T beta,
sycl::buffer<T,1> &y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size)

}

Input Parameters

queue The queue where the routine should be executed.

trans Specifies op(A) the transposition operation applied to the matrices A. See oneMKL defined datatypes for more
details.

m Number of rows of op(A). Must be at least zero.

n Number of columns of op(A). Must be at least zero.

alpha Scaling factor for the matrix-vector products.

a Buffer holding the input matrices A with size stridea * batch_size.

lda The leading dimension of the matrices A. It must be positive and at least m if column major layout is used or at
least n if row major layout is used.

stridea Stride between different A matrices.

x Buffer holding the input vectors X with size stridex * batch_size.

incx The stride of the vector X. It must be positive.

stridex Stride between different consecutive X vectors, must be at least 0.

beta Scaling factor for the vector Y.

y Buffer holding input/output vectors Y with size stridey * batch_size.

incy Stride between two consecutive elements of the y vectors.

stridey Stride between two consecutive Y vectors. Must be at least (1 + (len-1)*abs(incy)) where len is m if the matrix
A is non transpose or n otherwise.

batch_size Specifies the number of matrix-vector operations to perform.

11.2. oneMKL Domains 1270

oneAPI Specification, Release 1.1-rev-1

Output Parameters

y Output overwritten by batch_size matrix-vector product operations of the form alpha * op(A) * X + beta * Y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

gemv_batch (USM Version)

Description

The USM version of gemv_batch supports the group API and strided API.

The group API operation is defined as:

idx = 0
for i = 0 ... group_count – 1

for j = 0 ... group_size – 1
A is an m x n matrix in a[idx]
X and Y are vectors in x[idx] and y[idx]
Y := alpha[i] * op(A) * X + beta[i] * Y
idx = idx + 1

end for
end for

The strided API operation is defined as

for i = 0 ... batch_size – 1
A is a matrix at offset i * stridea in a.
X and Y are vectors at offset i * stridex, i * stridey in x and y.
Y := alpha * op(A) * X + beta * Y

end for

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

alpha and beta are scalars,

A is a matrix and X and Y are vectors,

For group API, x and y arrays contain the pointers for all the input vectors. A array contains the pointers to all input
matrices. The total number of vectors in x and y and matrices in A are given by:

𝑡𝑜𝑡𝑎𝑙_𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 =

𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑢𝑛𝑡−1∑︁
𝑖=0

𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒[𝑖]

11.2. oneMKL Domains 1271

oneAPI Specification, Release 1.1-rev-1

For strided API, x and y arrays contain all the input vectors. A array contains the pointers to all input matrices. The
total number of vectors in x and y and matrices in A are given by the batch_size parameter.

Group API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gemv_batch(sycl::queue &queue,

onemkl::transpose *trans,
std::int64_t *m,
std::int64_t *n,
T *alpha,
const T **a,
std::int64_t *lda,
const T **x,
std::int64_t *incx,
T *beta,
T **y,
std::int64_t *incy,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event gemv_batch(sycl::queue &queue,

onemkl::transpose *trans,
std::int64_t *m,
std::int64_t *n,
T *alpha,
const T **a,
std::int64_t *lda,
const T **x,
std::int64_t *incx,
T *beta,
T **y,
std::int64_t *incy,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1272

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

trans Array of group_count onemkl::transpose values. trans[i] specifies the form of op(A) used in the matrix-
vector product in group i. See oneMKL defined datatypes for more details.

m Array of group_count integers. m[i] specifies the number of rows of op(A) for every matrix in group i. All
entries must be at least zero.

n Array of group_count integers. n[i] specifies the number of columns of op(A) for every matrix in group i. All
entries must be at least zero.

alpha Array of group_count scalar elements. alpha[i] specifies the scaling factor for every matrix-vector product
in group i.

a Array of pointers to input matrices A with size total_batch_count.

See Matrix Storage for more details.

lda Array of group_count integers. lda[i] specifies the leading dimension of A for every matrix in group i. All
entries must be positive and at least m if column major layout is used or at least n if row major layout is used.

x Array of pointers to input vectors X with size total_batch_count.

See Matrix Storage for more details.

incx Array of group_count integers. incx[i] specifies the stride of X for every vector in group i. All entries must
be positive.

beta Array of group_count scalar elements. beta[i] specifies the scaling factor for vector Y for every vector in
group i.

y Array of pointers to input/output vectors Y with size total_batch_count.

See Matrix Storage for more details.

incy Array of group_count integers. incy[i] specifies the leading dimension of Y for every vector in group i. All
entries must be positive and incy[i] must be at least m[i] if column major layout is used or at least n[i] if
row major layout is used.

group_count Specifies the number of groups. Must be at least 0.

group_size Array of group_count integers. group_size[i] specifies the number of matrix-vector products in
group i. All entries must be at least 0.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

y Overwritten by vector calculated by (alpha[i] * op(A) * X + beta[i] * Y) for group i.

11.2. oneMKL Domains 1273

oneAPI Specification, Release 1.1-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gemv_batch(sycl::queue &queue,

onemkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
const T *a,
std::int64_t lda,
std::int64_t stridea,
const T *x,
std::int64_t incx,
std::int64_t stridex,
T beta,
T *y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event gemv_batch(sycl::queue &queue,

onemkl::transpose trans,
std::int64_t m,
std::int64_t n,
T alpha,
const T *a,
std::int64_t lda,
std::int64_t stridea,
const T *x,
std::int64_t incx,
std::int64_t stridex,
T beta,
T *y,
std::int64_t incy,
std::int64_t stridey,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1274

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

trans Specifies op(A) the transposition operation applied to the matrices A. See oneMKL defined datatypes for more
details.

m Number of rows of op(A). Must be at least zero.

n Number of columns of op(A). Must be at least zero.

alpha Scaling factor for the matrix-vector products.

a Pointer to the input matrices A with size stridea * batch_size.

lda The leading dimension of the matrices A. It must be positive and at least m if column major layout is used or at
least n if row major layout is used.

stridea Stride between different A matrices.

x Pointer to the input vectors X with size stridex * batch_size.

incx Stride of the vector X. It must be positive.

stridex Stride between different consecutive X vectors, must be at least 0.

beta Scaling factor for the vector Y.

y Pointer to the input/output vectors Y with size stridey * batch_size.

incy Stride between two consecutive elements of the y vectors.

stridey Stride between two consecutive Y vectors. Must be at least (1 + (len-1)*abs(incy)) where len is m if the matrix
A is non transpose or n otherwise.

batch_size Specifies the number of matrix-vector operations to perform.

Output Parameters

y Output overwritten by batch_size matrix-vector product operations of the form alpha * op(A) * X + beta * Y.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

11.2. oneMKL Domains 1275

oneAPI Specification, Release 1.1-rev-1

syrk_batch

Computes a group of syrk operations.

Description

The syrk_batch routines are batched versions of syrk, performing multiple syrk operations in a single call. Each
syrk operation perform a rank-k update with general matrices.

syrk_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

syrk_batch (Buffer Version)

Description

The buffer version of syrk_batch supports only the strided API.

The strided API operation is defined as:

for i = 0 ... batch_size – 1
A and C are matrices at offset i * stridea, i * stridec in a and c.
C := alpha * op(A) * op(A)^T + beta * C

end for

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha and beta are scalars,

A and C are matrices,

op(A) is n x k and C is n x n.

The a and c buffers contain all the input matrices. The stride between matrices is given by the stride parameter. The
total number of matrices in a and c buffers is given by the batch_size parameter.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
void syrk_batch(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,

(continues on next page)

11.2. oneMKL Domains 1276

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size)

}

namespace oneapi::mkl::blas::row_major {
void syrk_batch(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc,
std::int64_t stridec,
std::int64_t batch_size)

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether data in C is stored in its upper or lower triangle. For more details, see oneMKL defined
datatypes.

trans Specifies op(A) the transposition operation applied to the matrix A. Conjugation is never performed, even if trans
= transpose::conjtrans. See oneMKL defined datatypes for more details.

n Number of rows and columns of C. Must be at least zero.

k Number of columns of op(A). Must be at least zero.

alpha Scaling factor for the rank-k update.

a Buffer holding the input matrices A with size stridea * batch_size.

lda The leading dimension of the matrices A. It must be positive.

A not transposed A transposed
Column major lda must be at least n. lda must be at least k.
Row major lda must be at least k. lda must be at least n.

stridea Stride between different A matrices.

beta Scaling factor for the matrices C.

11.2. oneMKL Domains 1277

oneAPI Specification, Release 1.1-rev-1

c Buffer holding input/output matrices C with size stridec * batch_size.

ldc The leading dimension of the matrices C. It must be positive and at least n.

stridec Stride between different C matrices. Must be at least ldc * n.

batch_size Specifies the number of rank-k update operations to perform.

Output Parameters

c Output buffer, overwritten by batch_size rank-k update operations of the form alpha * op(A)*op(A)^T + beta *
C.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

syrk_batch (USM Version)

Description

The USM version of syrk_batch supports the group API and strided API.

The group API operation is defined as:

idx = 0
for i = 0 ... group_count – 1

for j = 0 ... group_size – 1
A, B, and C are matrices in a[idx] and c[idx]
C := alpha[i] * op(A) * op(A)^T + beta[i] * C
idx = idx + 1

end for
end for

The strided API operation is defined as

for i = 0 ... batch_size – 1
A, B and C are matrices at offset i * stridea, i * stridec in a and c.
C := alpha * op(A) * op(A)^T + beta * C

end for

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha and beta are scalars,

11.2. oneMKL Domains 1278

oneAPI Specification, Release 1.1-rev-1

A and C are matrices,

op(A) is n x k and C is n x n.

For group API, a and c arrays contain the pointers for all the input matrices. The total number of matrices in a and c
are given by:

𝑡𝑜𝑡𝑎𝑙_𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 =

𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑢𝑛𝑡−1∑︁
𝑖=0

𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒[𝑖]

For strided API, a and c arrays contain all the input matrices. The total number of matrices in a and c are given by the
batch_size parameter.

Group API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event syrk_batch(sycl::queue &queue,

uplo *upper_lower,
transpose *trans,
std::int64_t *n,
std::int64_t *k,
T *alpha,
const T **a,
std::int64_t *lda,
T *beta,
T **c,
std::int64_t *ldc,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event syrk_batch(sycl::queue &queue,

uplo *upper_lower,
transpose *trans,
std::int64_t *n,
std::int64_t *k,
T *alpha,
const T **a,
std::int64_t *lda,
T *beta,
T **c,
std::int64_t *ldc,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1279

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Array of group_count onemkl::upper_lower values. upper_lower[i] specifies whether data in
C for every matrix in group i is in upper or lower triangle.

trans Array of group_count onemkl::transpose values. trans[i] specifies the form of op(A) used in the rank-k
update in group i. See oneMKL defined datatypes for more details.

n Array of group_count integers. n[i] specifies the number of rows and columns of C for every matrix in group i.
All entries must be at least zero.

k Array of group_count integers. k[i] specifies the number of columns of op(A) for every matrix in group i. All
entries must be at least zero.

alpha Array of group_count scalar elements. alpha[i] specifies the scaling factor for every rank-k update in group
i.

a Array of pointers to input matrices A with size total_batch_count.

See Matrix Storage for more details.

lda Array of group_count integers. lda[i] specifies the leading dimension of A for every matrix in group i. All
entries must be positive.

A not transposed A transposed
Column major lda[i] must be at least n[i]. lda[i] must be at least k[i].
Row major lda[i] must be at least k[i]. lda[i] must be at least n[i].

beta Array of group_count scalar elements. beta[i] specifies the scaling factor for matrix C for every matrix in
group i.

c Array of pointers to input/output matrices C with size total_batch_count.

See Matrix Storage for more details.

ldc Array of group_count integers. ldc[i] specifies the leading dimension of C for every matrix in group i. All
entries must be positive and ldc[i] must be at least n[i].

group_count Specifies the number of groups. Must be at least 0.

group_size Array of group_count integers. group_size[i] specifies the number of rank-k update products in
group i. All entries must be at least 0.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c Overwritten by the n[i]-by-n[i] matrix calculated by (alpha[i] * op(A)*op(A)^T + beta[i] * C) for group i.

11.2. oneMKL Domains 1280

oneAPI Specification, Release 1.1-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event syrk_batch(sycl::queue &queue,

uplo upper_lower,
transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
const T *a,
std::int64_t lda,
std::int64_t stride_a,
T beta,
T *c,
std::int64_t ldc,
std::int64_t stride_c,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event syrk_batch(sycl::queue &queue,

uplo upper_lower,
transpose trans,
std::int64_t n,
std::int64_t k,
T alpha,
const T *a,
std::int64_t lda,
std::int64_t stride_a,
T beta,
T *c,
std::int64_t ldc,
std::int64_t stride_c,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1281

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether data in C is stored in its upper or lower triangle. For more details, see oneMKL defined
datatypes.

trans Specifies op(A) the transposition operation applied to the matrices A. Conjugation is never performed, even if
trans = transpose::conjtrans. See oneMKL defined datatypes for more details.

n Number of rows and columns of C. Must be at least zero.

k Number of columns of op(A). Must be at least zero.

alpha Scaling factor for the rank-k updates.

a Pointer to input matrices A with size stridea * batch_size.

lda The leading dimension of the matrices A. It must be positive.

A not transposed A transposed
Column major lda must be at least n. lda must be at least k.
Row major lda must be at least k. lda must be at least n.

stridea Stride between different A matrices.

beta Scaling factor for the matrices C.

c Pointer to input/output matrices C with size stridec * batch_size.

ldc The leading dimension of the matrices C. It must be positive and at least n.

stridec Stride between different C matrices.

batch_size Specifies the number of rank-k update operations to perform.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c Output matrices, overwritten by batch_size rank-k update operations of the form alpha * op(A)*op(A)^T + beta
* C.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

11.2. oneMKL Domains 1282

oneAPI Specification, Release 1.1-rev-1

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

trsm_batch

Computes a group of trsm operations.

Description

The trsm_batch routines are batched versions of trsm, performing multiple trsm operations in a single call. Each
trsm solves an equation of the form op(A) * X = alpha * B or X * op(A) = alpha * B.

trsm_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

trsm_batch (Buffer Version)

Description

The buffer version of trsm_batch supports only the strided API.

The strided API operation is defined as:

for i = 0 ... batch_size – 1
A and B are matrices at offset i * stridea and i * strideb in a and b.
if (left_right == onemkl::side::left) then

compute X such that op(A) * X = alpha * B
else

compute X such that X * op(A) = alpha * B
end if
B := X

end for

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

alpha is a scalar,

A is a triangular matrix,

B and X are m x n general matrices,

A is either m x m or n x n,depending on whether it multiplies X on the left or right. On return, the matrix B is overwritten
by the solution matrix X.

The a and b buffers contain all the input matrices. The stride between matrices is given by the stride parameter. The
total number of matrices in a and b buffers are given by the batch_size parameter.

Strided API

11.2. oneMKL Domains 1283

oneAPI Specification, Release 1.1-rev-1

Syntax

namespace oneapi::mkl::blas::column_major {
void trsm_batch(sycl::queue &queue,

onemkl::side left_right,
onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T,1> &b,
std::int64_t ldb,
std::int64_t strideb,
std::int64_t batch_size)

}

namespace oneapi::mkl::blas::row_major {
void trsm_batch(sycl::queue &queue,

onemkl::side left_right,
onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
std::int64_t stridea,
sycl::buffer<T,1> &b,
std::int64_t ldb,
std::int64_t strideb,
std::int64_t batch_size)

}

Input Parameters

queue The queue where the routine should be executed.

left_right Specifies whether the matrices A multiply X on the left (side::left) or on the right (side::right). See
oneMKL defined datatypes for more details.

upper_lower Specifies whether the matrices A are upper or lower triangular. See oneMKL defined datatypes for more
details.

trans Specifies op(A), the transposition operation applied to the matrices A. See oneMKL defined datatypes for more
details.

unit_diag Specifies whether the matrices A are assumed to be unit triangular (all diagonal elements are 1). See oneMKL
defined datatypes for more details.

m Number of rows of the B matrices. Must be at least zero.

11.2. oneMKL Domains 1284

oneAPI Specification, Release 1.1-rev-1

n Number of columns of the B matrices. Must be at least zero.

alpha Scaling factor for the solutions.

a Buffer holding the input matrices A with size stridea * batch_size.

lda Leading dimension of the matrices A. Must be at least m if left_right = side::left, and at least n if
left_right = side::right. Must be positive.

stridea Stride between different A matrices.

b Buffer holding the input matrices B with size strideb * batch_size.

ldb Leading dimension of the matrices B. It must be positive and at least m if column major layout is used to store
matrices or at least n if row major layout is used to store matrices.

strideb Stride between different B matrices.

batch_size Specifies the number of triangular linear systems to solve.

Output Parameters

b Output buffer, overwritten by batch_size solution matrices X.

Notes

If alpha = 0, matrix B is set to zero and the matrices A and B do not need to be initialized before calling trsm_batch.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

trsm_batch (USM Version)

Description

The USM version of trsm_batch supports the group API and strided API.

The group API operation is defined as:

idx = 0
for i = 0 ... group_count – 1

for j = 0 ... group_size – 1
A and B are matrices in a[idx] and b[idx]
if (left_right == onemkl::side::left) then

compute X such that op(A) * X = alpha[i] * B
(continues on next page)

11.2. oneMKL Domains 1285

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

else
compute X such that X * op(A) = alpha[i] * B

end if
B := X
idx = idx + 1

end for
end for

The strided API operation is defined as:

for i = 0 ... batch_size – 1
A and B are matrices at offset i * stridea and i * strideb in a and b.
if (left_right == onemkl::side::left) then

compute X such that op(A) * X = alpha * B
else

compute X such that X * op(A) = alpha * B
end if
B := X

end for

where:

op(A) is one of op(A) = A, or op(A) = AT, or op(A) = AH,

alpha is a scalar,

A is a triangular matrix,

B and X are m x n general matrices,

A is either m x m or n x n,depending on whether it multiplies X on the left or right. On return, the matrix B is overwritten
by the solution matrix X.

For group API, a and b arrays contain the pointers for all the input matrices. The total number of matrices in a and b
are given by:

𝑡𝑜𝑡𝑎𝑙_𝑏𝑎𝑡𝑐ℎ_𝑐𝑜𝑢𝑛𝑡 =

𝑔𝑟𝑜𝑢𝑝_𝑐𝑜𝑢𝑛𝑡−1∑︁
𝑖=0

𝑔𝑟𝑜𝑢𝑝_𝑠𝑖𝑧𝑒[𝑖]

For strided API, a and b arrays contain all the input matrices. The total number of matrices in a and b are given by the
batch_size parameter.

Group API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event trsm_batch(sycl::queue &queue,

onemkl::side *left_right,
onemkl::uplo *upper_lower,
onemkl::transpose *trans,
onemkl::diag *unit_diag,
std::int64_t *m,
std::int64_t *n,

(continues on next page)

11.2. oneMKL Domains 1286

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

T *alpha,
const T **a,
std::int64_t *lda,
T **b,
std::int64_t *ldb,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event trsm_batch(sycl::queue &queue,

onemkl::side *left_right,
onemkl::uplo *upper_lower,
onemkl::transpose *trans,
onemkl::diag *unit_diag,
std::int64_t *m,
std::int64_t *n,
T *alpha,
const T **a,
std::int64_t *lda,
T **b,
std::int64_t *ldb,
std::int64_t group_count,
std::int64_t *group_size,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

left_right Array of group_count onemkl::side values. left_right[i] specifies whether A multiplies X on the
left (side::left) or on the right (side::right) for every trsm operation in group i. See oneMKL defined
datatypes for more details.

upper_lower Array of group_count onemkl::uplo values. upper_lower[i] specifies whether A is upper or lower
triangular for every matrix in group i. See oneMKL defined datatypes for more details.

trans Array of group_count onemkl::transpose values. trans[i] specifies the form of op(A) used for every
trsm operation in group i. See oneMKL defined datatypes for more details.

unit_diag Array of group_count onemkl::diag values. unit_diag[i] specifies whether A is assumed to be unit
triangular (all diagonal elements are 1) for every matrix in group i. See oneMKL defined datatypes for more
details.

m Array of group_count integers. m[i] specifies the number of rows of B for every matrix in group i. All entries
must be at least zero.

n Array of group_count integers. n[i] specifies the number of columns of B for every matrix in group i. All entries
must be at least zero.

alpha Array of group_count scalar elements. alpha[i] specifies the scaling factor in group i.

a Array of pointers to input matrices A with size total_batch_count. See Matrix Storage for more details.

11.2. oneMKL Domains 1287

oneAPI Specification, Release 1.1-rev-1

lda Array of group_count integers. lda[i] specifies the leading dimension of A for every matrix in group i. All
entries must be at least m if left_right is side::left, and at least n if left_right is side::right. All
entries must be positive.

b Array of pointers to input matrices B with size total_batch_count. See Matrix Storage for more details.

ldb Array of group_count integers. ldb[i] specifies the leading dimension of B for every matrix in group i. All
entries must be positive and at least m and positive if column major layout is used to store matrices or at least n
if row major layout is used to store matrices.

group_count Specifies the number of groups. Must be at least 0.

group_size Array of group_count integers. group_size[i] specifies the number of trsm operations in group i.
All entries must be at least 0.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

b Output buffer, overwritten by the total_batch_count solution matrices X.

Notes

If alpha = 0, matrix B is set to zero and the matrices A and B do not need to be initialized before calling trsm_batch.

Return Values

Output event to wait on to ensure computation is complete.

Strided API

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event trsm_batch(sycl::queue &queue,

onemkl::side left_right,
onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
const T *a,
std::int64_t lda,
std::int64_t stridea,
T *b,
std::int64_t ldb,
std::int64_t strideb,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1288

oneAPI Specification, Release 1.1-rev-1

namespace oneapi::mkl::blas::row_major {
sycl::event trsm_batch(sycl::queue &queue,

onemkl::side left_right,
onemkl::uplo upper_lower,
onemkl::transpose trans,
onemkl::diag unit_diag,
std::int64_t m,
std::int64_t n,
T alpha,
const T *a,
std::int64_t lda,
std::int64_t stridea,
T *b,
std::int64_t ldb,
std::int64_t strideb,
std::int64_t batch_size,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

left_right Specifies whether the matrices A multiply X on the left (side::left) or on the right (side::right). See
oneMKL defined datatypes for more details.

upper_lower Specifies whether the matrices A are upper or lower triangular. See oneMKL defined datatypes for more
details.

trans Specifies op(A), the transposition operation applied to the matrices A. See oneMKL defined datatypes for more
details.

unit_diag Specifies whether the matrices A are assumed to be unit triangular (all diagonal elements are 1). See oneMKL
defined datatypes for more details.

m Number of rows of the B matrices. Must be at least zero.

n Number of columns of the B matrices. Must be at least zero.

alpha Scaling factor for the solutions.

a Pointer to input matrices A with size stridea * batch_size.

lda Leading dimension of the matrices A. Must be at least m if left_right = side::left, and at least n if
left_right = side::right. Must be positive.

stridea Stride between different A matrices.

b Pointer to input matrices B with size strideb * batch_size.

ldb Leading dimension of the matrices B. It must be positive and at least m if column major layout is used to store
matrices or at least n if row major layout is used to store matrices.

strideb Stride between different B matrices.

batch_size Specifies the number of triangular linear systems to solve.

11.2. oneMKL Domains 1289

oneAPI Specification, Release 1.1-rev-1

Output Parameters

b Output matrices, overwritten by batch_size solution matrices X.

Notes

If alpha = 0, matrix B is set to zero and the matrices A and B do not need to be initialized before calling trsm_batch.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

gemmt

Computes a matrix-matrix product with general matrices, but updates only the upper or lower triangular part of the
result matrix.

Description

The gemmt routines compute a scalar-matrix-matrix product and add the result to the upper or lower part of a scalar-
matrix product, with general matrices. The operation is defined as:

𝐶 ← 𝑎𝑙𝑝ℎ𝑎 * 𝑜𝑝(𝐴) * 𝑜𝑝(𝐵) + 𝑏𝑒𝑡𝑎 * 𝐶

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha and beta are scalars

A, B, and C are matrices

op(A) is n x k, op(B) is k x n, and C is n x n.

gemmt supports the following precisions.

11.2. oneMKL Domains 1290

oneAPI Specification, Release 1.1-rev-1

T
float
double
std::complex<float>
std::complex<double>

gemmt (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void gemmt(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose transa,
onemkl::transpose transb,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

namespace oneapi::mkl::blas::row_major {
void gemmt(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose transa,
onemkl::transpose transb,
std::int64_t n,
std::int64_t k,
T alpha,
sycl::buffer<T,1> &a,
std::int64_t lda,
sycl::buffer<T,1> &b,
std::int64_t ldb,
T beta,
sycl::buffer<T,1> &c,
std::int64_t ldc)

}

11.2. oneMKL Domains 1291

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether C’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for
more details.

transa Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

transb Specifies op(B), the transposition operation applied to B. See oneMKL defined datatypes for more details.

n Number of rows of op(A), columns of op(B), and columns and rows ofC. Must be at least zero.

k Number of columns of op(A) and rows of op(B). Must be at least zero.

alpha Scaling factor for the matrix-matrix product.

a Buffer holding the input matrix A.

A not transposed A transposed
Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k.

See Matrix Storage for more details.

lda The leading dimension of A. It must be positive.

A not transposed A transposed
Column major lda must be at least n. lda must be at least k.
Row major lda must be at least k. lda must be at least n.

b Buffer holding the input matrix B.

B not transposed B transposed
Column
major

B is an k-by-n matrix so the array b must have
size at least ldb*n.

B is an n-by-k matrix so the array b must have
size at least ldb*k

Row ma-
jor

B is an k-by-n matrix so the array b must have
size at least ldb*k.

B is an n-by-k matrix so the array b must have
size at least ldb*n.

See Matrix Storage for more details.

ldb The leading dimension of B. It must be positive.

B not transposed B transposed
Column major ldb must be at least k. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least k.

beta Scaling factor for matrix C.

c Buffer holding the input/output matrix C. Must have size at least ldc * n. See Matrix Storage for more details.

ldc Leading dimension of C. Must be positive and at least m.

11.2. oneMKL Domains 1292

oneAPI Specification, Release 1.1-rev-1

Output Parameters

c Output buffer, overwritten by the upper or lower triangular part of alpha * op(A)*op(B) + beta * C.

Notes

If beta = 0, matrix C does not need to be initialized before calling gemmt.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

gemmt (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gemmt(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose transa,
onemkl::transpose transb,
std::int64_t n,
std::int64_t k,
T alpha,
const T* a,
std::int64_t lda,
const T* b,
std::int64_t ldb,
T beta,
T* c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event gemmt(sycl::queue &queue,

onemkl::uplo upper_lower,
onemkl::transpose transa,
onemkl::transpose transb,
std::int64_t n,
std::int64_t k,
T alpha,

(continues on next page)

11.2. oneMKL Domains 1293

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const T* a,
std::int64_t lda,
const T* b,
std::int64_t ldb,
T beta,
T* c,
std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {})

}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Specifies whether C’s data is stored in its upper or lower triangle. See oneMKL defined datatypes for
more details.

transa Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

transb Specifies op(B), the transposition operation applied to B. See oneMKL defined datatypes for more details.

n Number of columns of op(A), columns of op(B), and columns ofC. Must be at least zero.

k Number of columns of op(A) and rows of op(B). Must be at least zero.

alpha Scaling factor for the matrix-matrix product.

a Pointer to input matrix A.

A not transposed A transposed
Column
major

A is an n-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-n matrix so the array a must have
size at least lda*n

Row ma-
jor

A is an n-by-k matrix so the array a must have
size at least lda*n.

A is an k-by-n matrix so the array a must have
size at least lda*k

See Matrix Storage for more details.

lda The leading dimension of A. It must be positive.

A not transposed A transposed
Column major lda must be at least n. lda must be at least k.
Row major lda must be at least k. lda must be at least n.

b Pointer to input matrix B.

B not transposed B transposed
Column
major

B is an k-by-n matrix so the array b must have
size at least ldb*n.

B is an n-by-k matrix so the array b must have
size at least ldb*k

Row ma-
jor

B is an k-by-n matrix so the array b must have
size at least ldb*k.

B is an n-by-k matrix so the array b must have
size at least ldb*n

See Matrix Storage for more details.

11.2. oneMKL Domains 1294

oneAPI Specification, Release 1.1-rev-1

ldb The leading dimension of B. It must be positive.

B not transposed B transposed
Column major ldb must be at least k. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least k.

beta Scaling factor for matrix C.

c Pointer to input/output matrix C. Must have size at least ldc * n. See Matrix Storage for more details.

ldc Leading dimension of C. Must be positive and at least m.

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c Pointer to the output matrix, overwritten by the upper or lower triangular part of alpha * op(A)*op(B) + beta * C.

Notes

If beta = 0, matrix C does not need to be initialized before calling gemmt.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

gemm_bias

Computes a matrix-matrix product using general integer matrices with bias.

11.2. oneMKL Domains 1295

oneAPI Specification, Release 1.1-rev-1

Description

The gemm_bias routines compute a scalar-matrix-matrix product and add the result to a scalar-matrix product, using
general integer matrices with biases/offsets. The operation is defined as:

𝐶←𝑎𝑙𝑝ℎ𝑎*(𝑜𝑝(𝐴)−𝐴_𝑜𝑓𝑓𝑠𝑒𝑡)*(𝑜𝑝(𝐵)−𝐵_𝑜𝑓𝑓𝑠𝑒𝑡)+𝑏𝑒𝑡𝑎*𝐶+𝐶_𝑜𝑓𝑓𝑠𝑒𝑡

where:

op(X) is one of op(X) = X, or op(X) = XT, or op(X) = XH,

alpha and beta are scalars,

A_offset is an m-by-k matrix with every element equal to the value ao,

B_offset is a k-by-n matrix with every element equal to the value bo,

C_offset is an m-by-n matrix defined by the co buffer as described below,

A, B, and C are matrices,

op(A) is m x k, op(B) is k x n, and C is m x n.

gemm_bias supports the following precisions.

Ts Ta Tb Tc
float std::uint8_t std::uint8_t std::int32_t
float std::int8_t std::uint8_t std::int32_t
float std::uint8_t std::int8_t std::int32_t
float std::int8_t std::int8_t std::int32_t

gemm_bias (Buffer Version)

Syntax

namespace oneapi::mkl::blas::column_major {
void gemm_bias(sycl::queue &queue,

onemkl::transpose transa,
onemkl::transpose transb,
onemkl::offset offset_type,
std::int64_t m,
std::int64_t n,
std::int64_t k,
Ts alpha,
sycl::buffer<Ta,1> &a,
std::int64_t lda,
Ta ao,
sycl::buffer<Tb,1> &b,
std::int64_t ldb,
Tb bo,
Ts beta,
sycl::buffer<Tc,1> &c,
std::int64_t ldc,
sycl::buffer<Tc,1> &co)

}

11.2. oneMKL Domains 1296

oneAPI Specification, Release 1.1-rev-1

namespace oneapi::mkl::blas::row_major {
void gemm_bias(sycl::queue &queue,

onemkl::transpose transa,
onemkl::transpose transb,
onemkl::offset offset_type,
std::int64_t m,
std::int64_t n,
std::int64_t k,
Ts alpha,
sycl::buffer<Ta,1> &a,
std::int64_t lda,
Ta ao,
sycl::buffer<Tb,1> &b,
std::int64_t ldb,
Tb bo,
Ts beta,
sycl::buffer<Tc,1> &c,
std::int64_t ldc,
sycl::buffer<Tc,1> &co)

}

Input Parameters

queue The queue where the routine should be executed.

transa Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

transb Specifies op(B), the transposition operation applied to B. See oneMKL defined datatypes for more details.

offset_type Specifies the form of C_offset used in the matrix multiplication. See oneMKL defined datatypes for
more details.

m Number of rows of op(A) and C. Must be at least zero.

n Number of columns of op(B) and C. Must be at least zero.

k Number of columns of op(A) and rows of op(B). Must be at least zero.

alpha Scaling factor for the matrix-matrix product.

a The buffer holding the input matrix A.

A not transposed A transposed
Column
major

A is an m-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-m matrix so the array a must have
size at least lda*m

Row ma-
jor

A is an m-by-k matrix so the array a must have
size at least lda*m.

A is an k-by-m matrix so the array a must have
size at least lda*k

See Matrix Storage for more details.

lda The leading dimension of A. It must be positive.

A not transposed A transposed
Column major lda must be at least m. lda must be at least k.
Row major lda must be at least k. lda must be at least m.

11.2. oneMKL Domains 1297

oneAPI Specification, Release 1.1-rev-1

ao Specifies the scalar offset value for matrix A.

b Buffer holding the input matrix B.

B not transposed B transposed
Column
major

B is an k-by-n matrix so the array b must have
size at least ldb*n.

B is an n-by-k matrix so the array b must have
size at least ldb*k

Row ma-
jor

B is an k-by-n matrix so the array b must have
size at least ldb*k.

B is an n-by-k matrix so the array b must have
size at least ldb*n

See Matrix Storage for more details.

ldb The leading dimension of B. It must be positive.

B not transposed B transposed
Column major ldb must be at least k. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least k.

bo Specifies the scalar offset value for matrix B.

beta Scaling factor for matrix C.

c Buffer holding the input/output matrix C. It must have a size of at least ldc*n if column major layout is used to store
matrices or at least ldc*m if row major layout is used to store matrices . See Matrix Storage for more details.

ldc The leading dimension of C. It must be positive and at least m if column major layout is used to store matrices or
at least n if column major layout is used to store matrices.

co Buffer holding the offset values for matrix C.

If offset_type = offset::fix, the co array must have size at least 1.

If offset_type = offset::col, the co array must have size at least max(1,m).

If offset_type = offset::row, the co array must have size at least max(1,n).

Output Parameters

c Output buffer, overwritten by alpha * (op(A) - A_offset)*(op(B) - B_offset) + beta * C + C_offset.

Notes

If beta = 0, matrix C does not need to be initialized before calling gemm_bias.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1298

oneAPI Specification, Release 1.1-rev-1

gemm_bias (USM Version)

Syntax

namespace oneapi::mkl::blas::column_major {
sycl::event gemm_bias(sycl::queue &queue,

onemkl::transpose transa,
onemkl::transpose transb,
onemkl::offset offset_type,
std::int64_t m,
std::int64_t n,
std::int64_t k,
Ts alpha,
const Ta *a,
std::int64_t lda,
Ta ao,
const Tb *b,
std::int64_t ldb,
Tb bo,
Ts beta,
Tc *c,
std::int64_t ldc,
const Tc *co,
const std::vector<sycl::event> &dependencies = {})

}

namespace oneapi::mkl::blas::row_major {
sycl::event gemm_bias(sycl::queue &queue,

onemkl::transpose transa,
onemkl::transpose transb,
onemkl::offset offset_type,
std::int64_t m,
std::int64_t n,
std::int64_t k,
Ts alpha,
const Ta *a,
std::int64_t lda,
Ta ao,
const Tb *b,
std::int64_t ldb,
Tb bo,
Ts beta,
Tc *c,
std::int64_t ldc,
const Tc *co,
const std::vector<sycl::event> &dependencies = {})

}

11.2. oneMKL Domains 1299

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

transa Specifies op(A), the transposition operation applied to A. See oneMKL defined datatypes for more details.

transb Specifies op(B), the transposition operation applied to B. See oneMKL defined datatypes for more details.

offset_type Specifies the form of C_offset used in the matrix multiplication. See oneMKL defined datatypes for
more details.

m Number of rows of op(A) and C. Must be at least zero.

n Number of columns of op(B) and C. Must be at least zero.

k Number of columns of op(A) and rows of op(B). Must be at least zero.

alpha Scaling factor for the matrix-matrix product.

a Pointer to input matrix A.

A not transposed A transposed
Column
major

A is an m-by-k matrix so the array a must have
size at least lda*k.

A is an k-by-m matrix so the array a must have
size at least lda*m

Row ma-
jor

A is an m-by-k matrix so the array a must have
size at least lda*m.

A is an k-by-m matrix so the array a must have
size at least lda*k

See Matrix Storage for more details.

lda The leading dimension of A. It must be positive.

A not transposed A transposed
Column major lda must be at least m. lda must be at least k.
Row major lda must be at least k. lda must be at least m.

ao Specifies the scalar offset value for matrix A.

b Pointer to input matrix B.

B not transposed B transposed
Column
major

B is an k-by-n matrix so the array b must have
size at least ldb*n.

B is an n-by-k matrix so the array b must have
size at least ldb*k

Row ma-
jor

B is an k-by-n matrix so the array b must have
size at least ldb*k.

B is an n-by-k matrix so the array b must have
size at least ldb*n

See Matrix Storage for more details.

ldb The leading dimension of B. It must be positive.

B not transposed B transposed
Column major ldb must be at least k. ldb must be at least n.
Row major ldb must be at least n. ldb must be at least k.

bo Specifies the scalar offset value for matrix B.

beta Scaling factor for matrix C.

11.2. oneMKL Domains 1300

oneAPI Specification, Release 1.1-rev-1

c Pointer to input/output matrix C. It must have a size of at least ldc*n if column major layout is used to store matrices
or at least ldc*m if row major layout is used to store matrices . See Matrix Storage for more details.

ldc The leading dimension of C. It must be positive and at least m if column major layout is used to store matrices or
at least n if column major layout is used to store matrices.

co Pointer to offset values for matrix C.

If offset_type = offset::fix, the co array must have size at least 1.

If offset_type = offset::col, the co array must have size at least max(1,m).

If offset_type = offset::row, the co array must have size at least max(1,n).

dependencies List of events to wait for before starting computation, if any. If omitted, defaults to no dependencies.

Output Parameters

c Pointer to the output matrix, overwritten by alpha * (op(A) - A_offset)*(op(B) - B_offset) + beta * C +
C_offset.

Notes

If beta = 0, matrix C does not need to be initialized before calling gemm_bias.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::invalid_argument

oneapi::mkl::unsupported_device

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

Parent topic: BLAS-like Extensions

Parent topic: BLAS Routines

Parent topic: Dense Linear Algebra

11.2. oneMKL Domains 1301

oneAPI Specification, Release 1.1-rev-1

LAPACK Routines

oneMKL provides a DPC++ interface to select routines from the Linear Algebra PACKage (LAPACK), as well as
several LAPACK-like extension routines.

LAPACK Linear Equation Routines

LAPACK Linear Equation routines are used for factoring a matrix, solving a system of linear equations, solving linear
least squares problems, and inverting a matrix. The following table lists the LAPACK Linear Equation routine groups.

Rou-
tines

Scratchpad
Size Routines

Description

geqrf geqrf_scratchpad_sizeComputes the QR factorization of a general m-by-n matrix.
gerqf gerqf_scratchpad_sizeComputes the RQ factorization of a general m-by-n matrix.
getrf getrf_scratchpad_sizeComputes the LU factorization of a general m-by-n matrix.
getri getri_scratchpad_sizeComputes the inverse of an LU-factored general matrix.
getrs getrs_scratchpad_sizeSolves a system of linear equations with an LU-factored square coefficient matrix, with

multiple right-hand sides.
hetrf hetrf_scratchpad_sizeComputes the Bunch-Kaufman factorization of a complex Hermitian matrix.
orgqr orgqr_scratchpad_sizeGenerates the real orthogonal matrix 𝑄 of the QR factorization formed by geqrf.
or-
mqr

or-
mqr_scratchpad_size

Multiplies a real matrix by the orthogonal matrix 𝑄 of the QR factorization formed by
geqrf.

ormrq ormrq_scratchpad_sizeMultiplies a real matrix by the orthogonal matrix 𝑄 of the RQ factorization formed by
gerqf.

potrf potrf_scratchpad_sizeComputes the Cholesky factorization of a symmetric (Hermitian) positive-definite ma-
trix.

potri potri_scratchpad_sizeComputes the inverse of a Cholesky-factored symmetric (Hermitian) positive-definite
matrix.

potrs potrs_scratchpad_sizeSolves a system of linear equations with a Cholesky-factored symmetric (Hermitian)
positive-definite coefficient matrix, with multiple right-hand sides.

sytrf sytrf_scratchpad_sizeComputes the Bunch-Kaufman factorization of a symmetric matrix.
trtrs trtrs_scratchpad_sizeSolves a system of linear equations with a triangular coefficient matrix, with multiple

right-hand sides.
ungqr ungqr_scratchpad_sizeGenerates the complex unitary matrix 𝑄 of the QR factorization formed by geqrf.
un-
mqr

un-
mqr_scratchpad_size

Multiplies a complex matrix by the unitary matrix 𝑄 of the QR factorization formed by
geqrf.

un-
mrq

un-
mrq_scratchpad_size

Multiplies a complex matrix by the unitary matrix 𝑄 of the RQ factorization formed by
gerqf.

11.2. oneMKL Domains 1302

oneAPI Specification, Release 1.1-rev-1

geqrf

Computes the QR factorization of a general 𝑚× 𝑛 matrix.

Description

geqrf supports the following precisions:

T
float
double
std::complex<float>
std::complex<double>

The routine forms the QR factorization of a general 𝑚× 𝑛 matrix 𝐴. No pivoting is performed.

The routine does not form the matrix 𝑄 explicitly. Instead, 𝑄 is represented as a product of min(𝑚,𝑛) elementary
reflectors. Routines are provided to work with 𝑄 in this representation.

geqrf (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void geqrf(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, cl::sycl::buffer<T,

→˓1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &scratchpad,
→˓ std::int64_t scratchpad_size)
}

Input Parameters

queue The queue where the routine should be executed.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n The number of columns in 𝐴 (0 ≤ 𝑛).

a Buffer holding input matrix 𝐴. Must have size at least lda · 𝑛.

lda The leading dimension of 𝐴; at least max(1,𝑚).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by geqrf_scratchpad_size function.

11.2. oneMKL Domains 1303

oneAPI Specification, Release 1.1-rev-1

Output Parameters

a Output buffer, overwritten by the factorization data as follows:

The elements on and above the diagonal of the array contain the min(𝑚,𝑛)×𝑛 upper trapezoidal matrix 𝑅 (𝑅 is
upper triangular if 𝑚 ≥ 𝑛); the elements below the diagonal, with the array tau, represent the orthogonal matrix
𝑄 as a product of min(𝑚,𝑛) elementary reflectors.

tau Output buffer, size at least max(1,min(𝑚,𝑛)). Contains scalars that define elementary reflectors for the matrix
𝑄 in its decomposition in a product of elementary reflectors.

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

geqrf (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event geqrf(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, T *a,␣

→˓std::int64_t lda, T *tau, T *scratchpad, std::int64_t scratchpad_size, const␣
→˓std::vector<cl::sycl::event> &events = {})
}

11.2. oneMKL Domains 1304

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n The number of columns in 𝐴 (0 ≤ 𝑛).

a Pointer to memory holding input matrix 𝐴. Must have size at least lda · 𝑛.

lda The leading dimension of 𝐴; at least max(1,𝑚).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by geqrf_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a Overwritten by the factorization data as follows:

The elements on and above the diagonal of the array contain the min(𝑚,𝑛)×𝑛 upper trapezoidal matrix 𝑅 (𝑅 is
upper triangular if 𝑚 ≥ 𝑛); the elements below the diagonal, with the array tau, represent the orthogonal matrix
𝑄 as a product of min(𝑚,𝑛) elementary reflectors.

tau Array, size at least max(1,min(𝑚,𝑛)). Contains scalars that define elementary reflectors for the matrix 𝑄 in its
decomposition in a product of elementary reflectors.

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

11.2. oneMKL Domains 1305

oneAPI Specification, Release 1.1-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

geqrf_scratchpad_size

Computes size of scratchpad memory required for geqrf function.

Description

geqrf_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to geqrf function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t geqrf_scratchpad_size(cl::sycl::queue &queue, std::int64_t m, std::int64_

→˓t n, std::int64_t lda)
}

Input Parameters

queue Device queue where calculations by geqrf function will be performed.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

lda The leading dimension of a.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

11.2. oneMKL Domains 1306

oneAPI Specification, Release 1.1-rev-1

Return Value

The number of elements of type T the scratchpad memory to be passed to geqrf function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

gerqf

Computes the RQ factorization of a general 𝑚× 𝑛 matrix.

Description

gerqf supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine forms the RQ factorization of a general 𝑚× 𝑛 matrix 𝐴. No pivoting is performed. The routine does not
form the matrix 𝑄 explicitly. Instead, 𝑄 is represented as a product of min(𝑚,𝑛) elementary reflectors. Routines are
provided to work with 𝑄 in this representation

gerqf (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void gerqf(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, cl::sycl::buffer<T>␣

→˓&a, std::int64_t lda, cl::sycl::buffer<T> &tau, cl::sycl::buffer<T> &scratchpad,␣
→˓std::int64_t scratchpad_size)
}

Input Parameters

queue Device queue where calculations will be performed.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

a Buffer holding input matrix 𝐴. The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a, at least max(1,𝑚).

scratchpad Buffer holding scratchpad memory to be used by the routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by the gerqf_scratchpad_size function.

11.2. oneMKL Domains 1307

oneAPI Specification, Release 1.1-rev-1

Output Parameters

a Output buffer, overwritten by the factorization data as follows:

If 𝑚 ≤ 𝑛, the upper triangle of the subarray a(1:m, n-m+1:n) contains the 𝑚×𝑚 upper triangular matrix 𝑅;
if 𝑚 ≥ 𝑛, the elements on and above the (𝑚− 𝑛)-th subdiagonal contain the 𝑚× 𝑛 upper trapezoidal matrix 𝑅

In both cases, the remaining elements, with the array tau, represent the orthogonal/unitary matrix 𝑄 as a product
of min(𝑚,𝑛) elementary reflectors.

tau Array, size at least min(𝑚,𝑛).

Contains scalars that define elementary reflectors for the matrix𝑄 in its decomposition in a product of elementary
reflectors.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = -i, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

gerqf (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event gerqf(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, T *a,␣

→˓std::int64_t lda, T *tau, T *scratchpad, std::int64_t scratchpad_size, const␣
→˓std::vector<cl::sycl::event> &events = {})
}

11.2. oneMKL Domains 1308

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue Device queue where calculations will be performed.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

a Buffer holding input matrix 𝐴. The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a, at least max(1,𝑚).

scratchpad Buffer holding scratchpad memory to be used by the routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by the gerqf_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a Output buffer, overwritten by the factorization data as follows:

If 𝑚 ≤ 𝑛, the upper triangle of the subarray a(1:m, n-m+1:n) contains the 𝑚×𝑚 upper triangular matrix 𝑅;
if 𝑚 ≥ 𝑛, the elements on and above the (𝑚− 𝑛)-th subdiagonal contain the 𝑚× 𝑛 upper trapezoidal matrix 𝑅

In both cases, the remaining elements, with the array tau, represent the orthogonal/unitary matrix 𝑄 as a product
of min(𝑚,𝑛) elementary reflectors.

tau Array, size at least min(𝑚,𝑛).

Contains scalars that define elementary reflectors for the matrix𝑄 in its decomposition in a product of elementary
reflectors.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = -i, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

11.2. oneMKL Domains 1309

oneAPI Specification, Release 1.1-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

gerqf_scratchpad_size

Computes size of scratchpad memory required for gerqf function.

Description

gerqf_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to gerqf function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

gerqf_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t gerqf_scratchpad_size(cl::sycl::queue &queue, std::int64_t m, std::int64_

→˓t n, std::int64_t lda)
}

Input Parameters

queue Device queue where calculations by the gerqf (buffer or USM version) function will be performed.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

lda The leading dimension of a; at least max(1,𝑚).

11.2. oneMKL Domains 1310

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to gerqf function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

getrf

Computes the LU factorization of a general 𝑚× 𝑛 matrix.

Description

getrf supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine computes the LU factorization of a general 𝑚× 𝑛 matrix 𝐴 as 𝐴 = 𝑃𝐿𝑈 ,

where 𝑃 is a permutation matrix, 𝐿 is lower triangular with unit diagonal elements (lower trapezoidal if 𝑚 > 𝑛) and
𝑈 is upper triangular (upper trapezoidal if 𝑚 < 𝑛). The routine uses partial pivoting, with row interchanges.

getrf (BUFFER Version)

Syntax

namespace oneapi::mkl::lapack {
void getrf(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, cl::sycl::buffer<T,

→˓1> &a, std::int64_t lda, cl::sycl::buffer<std::int64_t,1> &ipiv, cl::sycl::buffer<T,1>␣
→˓&scratchpad, std::int64_t scratchpad_size)
}

11.2. oneMKL Domains 1311

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n The number of columns in 𝐴 (0 ≤ 𝑛).

a Buffer holding input matrix 𝐴. The buffer a contains the matrix 𝐴. The second dimension of a must be at least
max(1, 𝑛).

lda The leading dimension of a.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by getrf_scratchpad_size function.

Output Parameters

a Overwritten by 𝐿 and 𝑈 . The unit diagonal elements of 𝐿 are not stored.

ipiv Array, size at least max(1,min(𝑚,𝑛)). Contains the pivot indices; for 1 ≤ 𝑖 ≤ min(𝑚,𝑛), row 𝑖 was inter-
changed with row ipiv(𝑖).

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, 𝑢𝑖𝑖 is 0. The factorization has been completed, but 𝑈 is exactly singular. Division by 0 will
occur if you use the factor 𝑈 for solving a system of linear equations.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

11.2. oneMKL Domains 1312

oneAPI Specification, Release 1.1-rev-1

getrf (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event getrf(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, T *a,␣

→˓std::int64_t lda, std::int64_t *ipiv, T *scratchpad, std::int64_t scratchpad_size,␣
→˓const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue The queue where the routine should be executed.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n The number of columns in 𝐴 (0 ≤ 𝑛).

a Pointer to array holding input matrix 𝐴. The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by getrf_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a Overwritten by 𝐿 and 𝑈 . The unit diagonal elements of 𝐿 are not stored.

ipiv Array, size at least max(1,min(𝑚,𝑛)). Contains the pivot indices; for 1 ≤ 𝑖 ≤ min(𝑚,𝑛), row 𝑖 was inter-
changed with row ipiv(𝑖).

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

11.2. oneMKL Domains 1313

oneAPI Specification, Release 1.1-rev-1

If info = 𝑖, 𝑢𝑖𝑖 is 0. The factorization has been completed, but 𝑈 is exactly singular. Division by 0 will
occur if you use the factor 𝑈 for solving a system of linear equations.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

getrf_scratchpad_size

Computes size of scratchpad memory required for getrf function.

Description

getrf_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to getrf function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

getrf_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t getrf_scratchpad_size(cl::sycl::queue &queue, std::int64_t m, std::int64_

→˓t n, std::int64_t lda)
}

Input Parameters

queue Device queue where calculations by getrf function will be performed.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n The number of columns in 𝐴 (0 ≤ 𝑛).

lda The leading dimension of a (𝑛 ≤ lda).

11.2. oneMKL Domains 1314

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to getrf function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

getri

Computes the inverse of an LU-factored general matrix determined by getrf .

Description

getri supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine computes the inverse 𝐴−1 of a general matrix 𝐴. Before calling this routine, call getrf to factorize 𝐴.

getri (BUFFER Version)

Syntax

namespace oneapi::mkl::lapack {
void getri(cl::sycl::queue &queue, std::int64_t n, cl::sycl::buffer<T,1> &a,␣

→˓std::int64_t lda, cl::sycl::buffer<std::int64_t,1> &ipiv, cl::sycl::buffer<T,1> &
→˓scratchpad, std::int64_t scratchpad_size)
}

11.2. oneMKL Domains 1315

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

n The order of the matrix 𝐴 (0 ≤ 𝑛).

a The buffer a as returned by getrf . Must be of size at least lda ·max(1, 𝑛).

lda The leading dimension of a (𝑛 ≤ lda).

ipiv The buffer as returned by getrf . The dimension of ipiv must be at least max(1, 𝑛).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by getri_scratchpad_size function.

Output Parameters

a Overwritten by the 𝑛× 𝑛 matrix 𝐴.

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

getri (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event getri(cl::sycl::queue &queue, std::int64_t n, T *a, std::int64_t lda,␣

→˓std::int64_t *ipiv, T *scratchpad, std::int64_t scratchpad_size, const std::vector
→˓<cl::sycl::event> &events = {})
}

11.2. oneMKL Domains 1316

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

n The order of the matrix 𝐴 (0 ≤ 𝑛).

a The array as returned by getrf . Must be of size at least lda ·max(1, 𝑛).

lda The leading dimension of a (𝑛 ≤ lda).

ipiv The array as returned by getrf . The dimension of ipiv must be at least max(1, 𝑛).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by getri_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a Overwritten by the 𝑛× 𝑛 matrix 𝐴.

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

getri_scratchpad_size

Computes size of scratchpad memory required for getri function.

11.2. oneMKL Domains 1317

oneAPI Specification, Release 1.1-rev-1

Description

getri_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to getri function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

getri_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t getri_scratchpad_size(cl::sycl::queue &queue, std::int64_t n, std::int64_

→˓t lda)
}

Input Parameters

queue Device queue where calculations by getri function will be performed.

n The order of the matrix 𝐴 (0 ≤ 𝑛).

lda The leading dimension of a (𝑛 ≤ lda).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

11.2. oneMKL Domains 1318

oneAPI Specification, Release 1.1-rev-1

Return Value

The number of elements of type T the scratchpad memory to be passed to getri function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

getrs

Solves a system of linear equations with an LU-factored square coefficient matrix, with multiple right-hand sides.

Description

getrs supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine solves for 𝑋 the following systems of linear equations:

𝐴𝑋 = 𝐵 if trans=oneapi::mkl::transpose::nontrans
𝐴𝑇𝑋 = 𝐵 if trans=oneapi::mkl::transpose::trans
𝐴𝐻𝑋 = 𝐵 if trans=oneapi::mkl::transpose::conjtrans

Before calling this routine, you must call getrf to compute the LU factorization of 𝐴.

getrs (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void getrs(cl::sycl::queue &queue, oneapi::mkl::transpose trans, std::int64_t n,␣

→˓std::int64_t nrhs, cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer
→˓<std::int64_t,1> &ipiv, cl::sycl::buffer<T,1> &b, std::int64_t ldb, cl::sycl::buffer<T,
→˓1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue The queue where the routine should be executed.

trans Indicates the form of the equations:

If trans=oneapi::mkl::transpose::nontrans, then 𝐴𝑋 = 𝐵 is solved for 𝑋 .

If trans=oneapi::mkl::transpose::trans, then 𝐴𝑇𝑋 = 𝐵 is solved for 𝑋 .

If trans=oneapi::mkl::transpose::conjtrans, then 𝐴𝐻𝑋 = 𝐵 is solved for 𝑋 .

n The order of the matrix 𝐴 and the number of rows in matrix 𝐵(0 ≤ 𝑛).

11.2. oneMKL Domains 1319

oneAPI Specification, Release 1.1-rev-1

nrhs The number of right-hand sides (0 ≤ nrhs).

a Buffer containing the factorization of the matrix 𝐴, as returned by getrf . The second dimension of a must be at least
max(1, 𝑛).

lda The leading dimension of a.

ipiv Array, size at least max(1, 𝑛). The ipiv array, as returned by getrf .

b The array b contains the matrix 𝐵 whose columns are the right-hand sides for the systems of equations. The second
dimension of b must be at least max(1, nrhs).

ldb The leading dimension of b.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by getrs_scratchpad_size function.

Output Parameters

b The buffer b is overwritten by the solution matrix 𝑋 .

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the 𝑖-th parameter had an illegal value.

If info=i, the 𝑖-th diagonal element of 𝑈 is zero, and the solve could not be completed.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

11.2. oneMKL Domains 1320

oneAPI Specification, Release 1.1-rev-1

getrs (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event getrs(cl::sycl::queue &queue, oneapi::mkl::transpose trans, std::int64_

→˓t n, std::int64_t nrhs, T *a, std::int64_t lda, std::int64_t *ipiv, T *b, std::int64_t␣
→˓ldb, T *scratchpad, std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &
→˓events = {})
}

Input Parameters

queue The queue where the routine should be executed.

trans Indicates the form of the equations:

If trans=oneapi::mkl::transpose::nontrans, then 𝐴𝑋 = 𝐵 is solved for 𝑋 .

If trans=oneapi::mkl::transpose::trans, then 𝐴𝑇𝑋 = 𝐵 is solved for 𝑋 .

If trans=oneapi::mkl::transpose::conjtrans, then 𝐴𝐻𝑋 = 𝐵 is solved for 𝑋 .

n The order of the matrix 𝐴 and the number of rows in matrix 𝐵(0 ≤ 𝑛).

nrhs The number of right-hand sides (0 ≤ nrhs).

a Pointer to array containing the factorization of the matrix 𝐴, as returned by getrf . The second dimension of a must
be at least max(1, 𝑛).

lda The leading dimension of a.

ipiv Array, size at least max(1, 𝑛). The ipiv array, as returned by getrf .

b The array b contains the matrix 𝐵 whose columns are the right-hand sides for the systems of equations. The second
dimension of b must be at least max(1, nrhs).

ldb The leading dimension of b.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by getrs_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

b The array b is overwritten by the solution matrix 𝑋 .

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

11.2. oneMKL Domains 1321

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the 𝑖-th parameter had an illegal value.

If info=i, the 𝑖-th diagonal element of 𝑈 is zero, and the solve could not be completed.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

getrs_scratchpad_size

Computes size of scratchpad memory required for getrs function.

Description

getrs_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to getrs function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

11.2. oneMKL Domains 1322

oneAPI Specification, Release 1.1-rev-1

getrs_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t getrs_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::transpose␣

→˓trans, std::int64_t n, std::int64_t nrhs, std::int64_t lda, std::int64_t ldb)
}

Input Parameters

queue Device queue where calculations by getrs function will be performed.

trans Indicates the form of the equations:

If trans=oneapi::mkl::transpose::nontrans, then 𝐴𝑋 = 𝐵 is solved for 𝑋 .

If trans=oneapi::mkl::transpose::trans, then 𝐴𝑇𝑋 = 𝐵 is solved for 𝑋 .

If trans=oneapi::mkl::transpose::conjtrans, then 𝐴𝐻𝑋 = 𝐵 is solved for 𝑋 .

n The order of the matrix 𝐴 (0 ≤ 𝑛) and the number of rows in matrix 𝐵(0 ≤ 𝑛).

nrhs The number of right-hand sides (0 ≤ nrhs).

lda The leading dimension of a.

ldb The leading dimension of b.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to getrs function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

hetrf

Computes the Bunch-Kaufman factorization of a complex Hermitian matrix.

11.2. oneMKL Domains 1323

oneAPI Specification, Release 1.1-rev-1

Description

hetrf supports the following precisions.

T
std::complex<float>
std::complex<double>

The routine computes the factorization of a complex Hermitian matrix 𝐴 using the Bunch-Kaufman diagonal pivoting
method. The form of the factorization is:

• if upper_lower=uplo::upper, 𝐴 = 𝑈𝐷𝑈𝐻

• if upper_lower=uplo::lower, 𝐴 = 𝐿𝐷𝐿𝐻

where 𝐴 is the input matrix, 𝑈 and 𝐿 are products of permutation and triangular matrices with unit diagonal (upper
triangular for 𝑈 and lower triangular for 𝐿), and 𝐷 is a Hermitian block-diagonal matrix with 1× 1 and 2× 2 diagonal
blocks. 𝑈 and 𝐿 have 2× 2 unit diagonal blocks corresponding to the 2× 2 blocks of 𝐷.

hetrf (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void hetrf(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<int_64,1> &ipiv,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Indicates whether the upper or lower triangular part of 𝐴 is stored and how 𝐴 is factored:

If upper_lower=uplo::upper, the buffer a stores the upper triangular part of the matrix 𝐴, and 𝐴
is factored as 𝑈𝐷𝑈𝐻 .

If upper_lower=uplo::lower, the buffer a stores the lower triangular part of the matrix 𝐴, and 𝐴
is factored as 𝐿𝐷𝐿𝐻 .

n The order of matrix 𝐴 (0 ≤ 𝑛).

a The buffer a, size max(1, lda · 𝑛). The buffer a contains either the upper or the lower triangular part of the matrix
𝐴 (see upper_lower). The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a.

scratchpad Buffer holding scratchpad memory to be used by the routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by hetrf_scratchpad_size function.

11.2. oneMKL Domains 1324

oneAPI Specification, Release 1.1-rev-1

Output Parameters

a The upper or lower triangular part of a is overwritten by details of the block-diagonal matrix 𝐷 and the multipliers
used to obtain the factor 𝑈 (or 𝐿).

ipiv Buffer, size at least max(1, 𝑛). Contains details of the interchanges and the block structure of 𝐷. If ipiv(𝑖) = 𝑘 >
0, then 𝑑𝑖𝑖 is a 1× 1 block, and the 𝑖-th row and column of 𝐴 was interchanged with the 𝑘-th row and column.

If upper_lower=oneapi::mkl::uplo::upper and ipiv(𝑖) = ipiv(𝑖− 1) = −𝑚 < 0, then 𝐷 has
a 2× 2 block in rows/columns 𝑖 and 𝑖-1, and (𝑖− 1)-th row and column of 𝐴 was interchanged with
the 𝑚-th row and column.

If upper_lower=oneapi::mkl::uplo::lower and ipiv(𝑖) = ipiv(𝑖 + 1) = −𝑚 < 0, then 𝐷 has
a 2× 2 block in rows/columns 𝑖 and 𝑖+ 1, and (𝑖+ 1)-th row and column of 𝐴 was interchanged with
the 𝑚-th row and column.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = -i, the 𝑖-th parameter had an illegal value.

If info = 𝑖, 𝑑𝑖𝑖 is 0. The factorization has been completed, but 𝐷 is exactly singular. Division by 0 will
occur if you use 𝐷 for solving a system of linear equations.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

hetrf (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event hetrf(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, T *a, std::int64_t lda, int_64 *ipiv, T *scratchpad, std::int64_t␣
→˓scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

11.2. oneMKL Domains 1325

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Indicates whether the upper or lower triangular part of 𝐴 is stored and how 𝐴 is factored:

If upper_lower=uplo::upper, the array a stores the upper triangular part of the matrix 𝐴, and 𝐴
is factored as 𝑈𝐷𝑈𝐻 .

If upper_lower=uplo::lower, the array a stores the lower triangular part of the matrix 𝐴, and 𝐴
is factored as 𝐿𝐷𝐿𝐻 .

n The order of matrix 𝐴 (0 ≤ 𝑛).

a The pointer to 𝐴, size max(1, lda · 𝑛), containing either the upper or the lower triangular part of the matrix 𝐴 (see
upper_lower). The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a.

scratchpad Pointer to scratchpad memory to be used by the routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by hetrf_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a The upper or lower triangular part of a is overwritten by details of the block-diagonal matrix 𝐷 and the multipliers
used to obtain the factor 𝑈 (or 𝐿).

ipiv Pointer to array of size at least max(1, 𝑛). Contains details of the interchanges and the block structure of 𝐷. If
ipiv(𝑖) = 𝑘 > 0, then 𝑑𝑖𝑖 is a 1× 1 block, and the 𝑖-th row and column of 𝐴 was interchanged with the 𝑘-th row
and column.

If upper_lower=oneapi::mkl::uplo::upper and ipiv(𝑖) = ipiv(𝑖− 1) = −𝑚 < 0, then 𝐷 has
a 2× 2 block in rows/columns 𝑖 and 𝑖− 1, and (𝑖− 1)-th row and column of 𝐴 was interchanged with
the 𝑚-th row and column.

If upper_lower=oneapi::mkl::uplo::lower and ipiv(𝑖) = ipiv(𝑖 + 1) = −𝑚 < 0, then 𝐷 has
a 2× 2 block in rows/columns 𝑖 and 𝑖+ 1, and (𝑖+ 1)-th row and column of 𝐴 was interchanged with
the 𝑚-th row and column.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

11.2. oneMKL Domains 1326

oneAPI Specification, Release 1.1-rev-1

If info = -i, the 𝑖-th parameter had an illegal value.

If info = 𝑖, 𝑑𝑖𝑖 is 0. The factorization has been completed, but 𝐷 is exactly singular. Division by 0 will
occur if you use 𝐷 for solving a system of linear equations.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

hetrf_scratchpad_size

Computes size of scratchpad memory required for hetrf function.

Description

hetrf_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to hetrf function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

hetrf_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t hetrf_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, std::int64_t lda)
}

Input Parameters

queue Device queue where calculations by hetrf function will be performed.

upper_lower Indicates whether the upper or lower triangular part of 𝐴 is stored and how 𝐴 is factored:

If upper_lower=uplo::upper, the buffer a stores the upper triangular part of the matrix 𝐴, and 𝐴 is factored
as 𝑈𝐷𝑈𝐻 .

If upper_lower=uplo::lower, the buffer a stores the lower triangular part of the matrix 𝐴, and 𝐴 is factored
as 𝐿𝐷𝐿𝐻

n The order of the matrix 𝐴 (0 ≤ 𝑛).

11.2. oneMKL Domains 1327

oneAPI Specification, Release 1.1-rev-1

lda The leading dimension of a.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to hetrf function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

orgqr

Generates the real orthogonal matrix 𝑄 of the QR factorization formed by geqrf .

Description

orgqr supports the following precisions.

T
float
double

The routine generates the whole or part of 𝑚×𝑚 orthogonal matrix 𝑄 of the QR factorization formed by the routine
geqrf .

Usually 𝑄 is determined from the QR factorization of an m by p matrix 𝐴 with 𝑚 ≥ 𝑝. To compute the whole matrix
𝑄, use:

oneapi::mkl::lapack::orgqr(queue, m, m, p, a, lda, tau, scratchpad, scratchpad_size)

To compute the leading 𝑝 columns of 𝑄 (which form an orthonormal basis in the space spanned by the columns of 𝐴):

oneapi::mkl::lapack::orgqr(queue, m, p, p, a, lda, tau, scratchpad, scratchpad_size)

To compute the matrix 𝑄𝑘 of the QR factorization of leading 𝑘 columns of the matrix 𝐴:

oneapi::mkl::lapack::orgqr(queue, m, m, k, a, lda, tau, scratchpad, scratchpad_size)

To compute the leading 𝑘 columns of 𝑄𝑘 (which form an orthonormal basis in the space spanned by leading 𝑘 columns
of the matrix 𝐴):

oneapi::mkl::lapack::orgqr(queue, m, k, k, a, lda, tau, scratchpad, scratchpad_size)

11.2. oneMKL Domains 1328

oneAPI Specification, Release 1.1-rev-1

orgqr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void orgqr(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, std::int64_t k,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &tau,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue The queue where the routine should be executed.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

k The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

a The buffer a as returned by geqrf .

lda The leading dimension of a (lda ≤ 𝑚).

tau The buffer tau as returned by geqrf .

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by orgqr_scratchpad_size function.

Output Parameters

a Overwritten by 𝑛 leading columns of the 𝑚×𝑚 orthogonal matrix 𝑄.

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

11.2. oneMKL Domains 1329

oneAPI Specification, Release 1.1-rev-1

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

orgqr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event orgqr(cl::sycl::queue &queue, std::int64_t m, std::int64_t n,␣

→˓std::int64_t k, T *a, std::int64_t lda, T *tau, T *scratchpad, std::int64_t scratchpad_
→˓size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue The queue where the routine should be executed.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

k The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

a The pointer to a as returned by geqrf .

lda The leading dimension of a (lda ≤ 𝑚).

tau The pointer to tau as returned by geqrf .

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by orgqr_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a Overwritten by 𝑛 leading columns of the 𝑚×𝑚 orthogonal matrix 𝑄.

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

11.2. oneMKL Domains 1330

oneAPI Specification, Release 1.1-rev-1

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

orgqr_scratchpad_size

Computes size of scratchpad memory required for orgqr function.

Description

orgqr_scratchpad_size supports the following precisions.

T
float
double

Computes the number of elements of type T the scratchpad memory to be passed to orgqr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

orgqr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t orgqr_scratchpad_size(cl::sycl::queue &queue, std::int64_t m, std::int64_

→˓t n, std::int64_t k, std::int64_t lda)
}

Input Parameters

queue Device queue where calculations by orgqr function will be performed.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐴 (0 ≤ 𝑛 ≤ 𝑚).

k The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

lda The leading dimension of a.

11.2. oneMKL Domains 1331

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to orgqr function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

ormqr

Multiplies a real matrix by the orthogonal matrix 𝑄 of the QR factorization formed by geqrf .

Description

ormqr supports the following precisions.

T
float
double

The routine multiplies a rectangular real 𝑚×𝑛 matrix 𝐶 by 𝑄 or 𝑄𝑇 , where 𝑄 is the complex unitary matrix defined as
a product of 𝑘 elementary reflectors 𝐻(𝑖) of order 𝑛: 𝑄 = 𝐻(1)𝑇𝐻(2)𝑇 ...𝐻(𝑘)𝑇 as returned by the RQ factorization
routine gerqf .

Depending on the parameters side and trans, the routine can form one of the matrix products 𝑄𝐶, 𝑄𝑇𝐶, 𝐶𝑄, or
𝐶𝑄𝑇 (overwriting the result over 𝐶).

ormqr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void ormqr(cl::sycl::queue &queue, oneapi::mkl::side side, oneapi::mkl::transpose␣

→˓trans, std::int64_t m, std::int64_t n, std::int64_t k, cl::sycl::buffer<T,1> &a,␣
→˓std::int64_t lda, cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &c, std::int64_t␣
→˓ldc, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

11.2. oneMKL Domains 1332

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

side If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left.

If side = oneapi::mkl::side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

trans If trans = oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = oneapi::mkl::transpose::trans, the routine multiplies 𝐶 by 𝑄𝑇 .

m The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐶 (0 ≤ 𝑛).

k The number of elementary reflectors whose product defines the matrix 𝑄

If side = oneapi::mkl::side::left, 0 ≤ 𝑘 ≤ 𝑚

If side = oneapi::mkl::side::right, 0 ≤ 𝑘 ≤ 𝑛

a The buffer a as returned by geqrf . The second dimension of a must be at least max(1, 𝑘).

lda The leading dimension of a.

tau The buffer tau as returned by geqrf .

c The buffer c contains the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc The leading dimension of c.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by the ormqr_scratchpad_size function.

Output Parameters

c Overwritten by the product 𝑄𝐶, 𝑄𝑇𝐶, 𝐶𝑄, or 𝐶𝑄𝑇 (as specified by side and trans).

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

11.2. oneMKL Domains 1333

oneAPI Specification, Release 1.1-rev-1

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

ormqr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event ormqr(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k, T *a,␣
→˓std::int64_t lda, T *tau, T *c, std::int64_t ldc, T *scratchpad, std::int64_t␣
→˓scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue The queue where the routine should be executed.

side If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left.

If side = oneapi::mkl::side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

trans If trans = oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = oneapi::mkl::transpose::trans, the routine multiplies 𝐶 by 𝑄𝑇 .

m The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐶 (0 ≤ 𝑛).

k The number of elementary reflectors whose product defines the matrix 𝑄

If side = oneapi::mkl::side::left, 0 ≤ 𝑘 ≤ 𝑚

If side = oneapi::mkl::side::right, 0 ≤ 𝑘 ≤ 𝑛

a The pointer to a as returned by geqrf . The second dimension of a must be at least max(1, 𝑘).

lda The leading dimension of a.

tau The pointer to tau as returned by geqrf .

c The pointer c points to the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc The leading dimension of c.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by the ormqr_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

11.2. oneMKL Domains 1334

oneAPI Specification, Release 1.1-rev-1

Output Parameters

c Overwritten by the product 𝑄𝐶, 𝑄𝑇𝐶, 𝐶𝑄, or 𝐶𝑄𝑇 (as specified by side and trans).

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

ormqr_scratchpad_size

Computes size of scratchpad memory required for ormqr function.

Description

ormqr_scratchpad_size supports the following precisions.

T
float
double

Computes the number of elements of type T the scratchpad memory to be passed to ormqr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

11.2. oneMKL Domains 1335

oneAPI Specification, Release 1.1-rev-1

ormqr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t ormqr_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k,␣
→˓std::int64_t lda, std::int64_t ldc, std::int64_t &scratchpad_size)
}

Input Parameters

queue Device queue where calculations by ormqr function will be performed.

side If side=oneapi::mkl::side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left.

If side=oneapi::mkl::side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

trans If trans=oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans=oneapi::mkl::transpose::trans, the routine multiplies 𝐶 by 𝑄𝑇 .

m The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐶 (0 ≤ 𝑛 ≤ 𝑚).

k The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

lda The leading dimension of a.

ldc The leading dimension of c.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to ormqr function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

ormrq

Multiplies a real matrix by the orthogonal matrix 𝑄 of the RQ factorization formed by gerqf .

11.2. oneMKL Domains 1336

oneAPI Specification, Release 1.1-rev-1

Description

ormrq supports the following precisions.

T
float
double

The routine multiplies a rectangular real 𝑚×𝑛 matrix 𝐶 by 𝑄 or 𝑄𝑇 , where 𝑄 is the complex unitary matrix defined as
a product of 𝑘 elementary reflectors 𝐻(𝑖) of order 𝑛: 𝑄 = 𝐻(1)𝑇𝐻(2)𝑇 ...𝐻(𝑘)𝑇 as returned by the RQ factorization
routine gerqf .

Depending on the parameters side and trans, the routine can form one of the matrix products 𝑄𝐶, 𝑄𝑇𝐶, 𝐶𝑄, or
𝐶𝑄𝑇 (overwriting the result over 𝐶).

ormrq (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void ormrq(cl::sycl::queue &queue, oneapi::mkl::side side, oneapi::mkl::transpose␣

→˓trans, std::int64_t m, std::int64_t n, std::int64_t k, cl::sycl::buffer<T,1> &a,␣
→˓std::int64_t lda, cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &c, std::int64_t␣
→˓ldc, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue The queue where the routine should be executed.

side If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left.

If side = oneapi::mkl::side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

trans If trans = oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = oneapi::mkl::transpose::trans, the routine multiplies 𝐶 by 𝑄𝑇 .

m The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐶 (0 ≤ 𝑛).

k The number of elementary reflectors whose product defines the matrix 𝑄

If side = oneapi::mkl::side::left, 0 ≤ 𝑘 ≤ 𝑚

If side = oneapi::mkl::side::right, 0 ≤ 𝑘 ≤ 𝑛

a The buffer a as returned by gerqf . The second dimension of a must be at least max(1, 𝑘).

lda The leading dimension of a.

tau The buffer tau as returned by gerqf .

c The buffer c contains the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc The leading dimension of c.

11.2. oneMKL Domains 1337

oneAPI Specification, Release 1.1-rev-1

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by the ormrq_scratchpad_size function.

Output Parameters

c Overwritten by the product 𝑄𝐶, 𝑄𝑇𝐶, 𝐶𝑄, or 𝐶𝑄𝑇 (as specified by side and trans).

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

ormrq (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event ormrq(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k, T *a,␣
→˓std::int64_t lda, T *tau, T *c, std::int64_t ldc, T *scratchpad, std::int64_t␣
→˓scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

11.2. oneMKL Domains 1338

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

side If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left.

If side = oneapi::mkl::side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

trans If trans = oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = oneapi::mkl::transpose::trans, the routine multiplies 𝐶 by 𝑄𝑇 .

m The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐶 (0 ≤ 𝑛).

k The number of elementary reflectors whose product defines the matrix 𝑄

If side = oneapi::mkl::side::left, 0 ≤ 𝑘 ≤ 𝑚

If side = oneapi::mkl::side::right, 0 ≤ 𝑘 ≤ 𝑛

a The pointer to a as returned by gerqf . The second dimension of a must be at least max(1, 𝑘).

lda The leading dimension of a.

tau The pointer to tau as returned by gerqf .

c The pointer c points to the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc The leading dimension of c.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by the ormrq_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

c Overwritten by the product 𝑄𝐶, 𝑄𝑇𝐶, 𝐶𝑄, or 𝐶𝑄𝑇 (as specified by side and trans).

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

11.2. oneMKL Domains 1339

oneAPI Specification, Release 1.1-rev-1

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

ormrq_scratchpad_size

Computes size of scratchpad memory required for ormrq function.

Description

ormrq_scratchpad_size supports the following precisions.

T
float
double

Computes the number of elements of type T the scratchpad memory to be passed to ormrq function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

ormrq_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t ormrq_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k,␣
→˓std::int64_t lda, std::int64_t ldc);
}

Input Parameters

queue Device queue where calculations by the ormrq function will be performed.

side If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left.

If side = oneapi::mkl::side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

trans If trans=oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans=oneapi::mkl::transpose::trans, the routine multiplies 𝐶 by 𝑄𝑇 .

m The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐶 (0 ≤ 𝑛 ≤ 𝑚).

k The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

11.2. oneMKL Domains 1340

oneAPI Specification, Release 1.1-rev-1

lda The leading dimension of a.

ldc The leading dimension of c.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to ormrq function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

potrf

Computes the Cholesky factorization of a symmetric (Hermitian) positive-definite matrix.

Description

potrf supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine forms the Cholesky factorization of a symmetric positive-definite or, for complex data, Hermitian positive-
definite matrix 𝐴:

𝐴 = 𝑈𝑇𝑈 for real data, 𝐴 = 𝑈𝐻𝑈 for complex
data

if upper_lower=oneapi::mkl::uplo::upper

𝐴 = 𝐿𝐿𝑇 for real data, 𝐴 = 𝐿𝐿𝐻 for complex data if upper_lower=oneapi::mkl::uplo::lower

where 𝐿 is a lower triangular matrix and 𝑈 is upper triangular.

11.2. oneMKL Domains 1341

oneAPI Specification, Release 1.1-rev-1

potrf (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void potrf(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &scratchpad,␣
→˓std::int64_t scratchpad_size)
}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Indicates whether the upper or lower triangular part of 𝐴 is stored and how 𝐴 is factored:

If upper_lower=oneapi::mkl::uplo::upper, the array a stores the upper triangular part of the matrix 𝐴, and
the strictly lower triangular part of the matrix is not referenced.

If upper_lower=oneapi::mkl::uplo::lower, the array a stores the lower triangular part of the matrix 𝐴, and
the strictly upper triangular part of the matrix is not referenced.

n Specifies the order of the matrix 𝐴 (0 ≤ 𝑛).

a Buffer holding input matrix 𝐴. The buffer a contains either the upper or the lower triangular part of the matrix 𝐴
(see upper_lower). The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by potrf_scratchpad_size function.

Output Parameters

a The buffer a is overwritten by the Cholesky factor 𝑈 or 𝐿, as specified by upper_lower.

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

11.2. oneMKL Domains 1342

oneAPI Specification, Release 1.1-rev-1

If info = 𝑖, and detail() returns 0, then the leading minor of order 𝑖 (and therefore the matrix 𝐴 itself) is
not positive-definite, and the factorization could not be completed. This may indicate an error in forming
the matrix 𝐴.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

potrf (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event potrf(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, T *a, std::int64_t lda, T *scratchpad, std::int64_t scratchpad_size,␣
→˓const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Indicates whether the upper or lower triangular part of 𝐴 is stored and how 𝐴 is factored:

If upper_lower=oneapi::mkl::uplo::upper, the array a stores the upper triangular part of the matrix 𝐴, and
the strictly lower triangular part of the matrix is not referenced.

If upper_lower=oneapi::mkl::uplo::lower, the array a stores the lower triangular part of the matrix 𝐴, and
the strictly upper triangular part of the matrix is not referenced.

n Specifies the order of the matrix 𝐴 (0 ≤ 𝑛).

a Pointer to input matrix 𝐴. The array a contains either the upper or the lower triangular part of the matrix 𝐴 (see
upper_lower). The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by potrf_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a The memory pointer to by pointer a is overwritten by the Cholesky factor 𝑈 or 𝐿, as specified by upper_lower.

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

11.2. oneMKL Domains 1343

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, and detail() returns 0, then the leading minor of order 𝑖 (and therefore the matrix 𝐴 itself) is
not positive-definite, and the factorization could not be completed. This may indicate an error in forming
the matrix 𝐴.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

potrf_scratchpad_size

Computes size of scratchpad memory required for potrf function.

Description

potrf_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to potrf function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

11.2. oneMKL Domains 1344

oneAPI Specification, Release 1.1-rev-1

potrf_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t potrf_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, std::int64_t lda)
}

Input Parameters

queue Device queue where calculations by potrf function will be performed.

upper_lower Indicates whether the upper or lower triangular part of 𝐴 is stored and how 𝐴 is factored:

If upper_lower = oneapi::mkl::uplo::upper, the array a stores the upper triangular part of the matrix 𝐴,
and the strictly lower triangular part of the matrix is not referenced.

If upper_lower = oneapi::mkl::uplo::lower, the array a stores the lower triangular part of the matrix 𝐴,
and the strictly upper triangular part of the matrix is not referenced.

n Specifies the order of the matrix 𝐴 (0 ≤ 𝑛).

lda The leading dimension of a.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to potrf function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

potri

Computes the inverse of a symmetric (Hermitian) positive-definite matrix using the Cholesky factorization.

11.2. oneMKL Domains 1345

oneAPI Specification, Release 1.1-rev-1

Description

potri supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine computes the inverse 𝐴−1 of a symmetric positive definite or, for complex flavors, Hermitian positive-
definite matrix 𝐴. Before calling this routine, call potrf to factorize 𝐴.

potri (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void potri(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &scratchpad,␣
→˓std::int64_t scratchpad_size)
}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Indicates how the input matrix 𝐴 has been factored:

If upper_lower = oneapi::mkl::uplo::upper, the upper triangle of 𝐴 is stored.

If upper_lower = oneapi::mkl::uplo::lower, the lower triangle of 𝐴 is stored.

n Specifies the order of the matrix 𝐴 (0 ≤ 𝑛).

a Contains the factorization of the matrix 𝐴, as returned by potrf . The second dimension of a must be at least
max(1, 𝑛).

lda The leading dimension of a.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by potri_scratchpad_size function.

Output Parameters

a Overwritten by the upper or lower triangle of the inverse of 𝐴. Specified by upper_lower.

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

11.2. oneMKL Domains 1346

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, the 𝑖-th diagonal element of the Cholesky factor (and therefore the factor itself) is zero, and
the inversion could not be completed.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

potri (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event potri(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, T *a, std::int64_t lda, T *scratchpad, std::int64_t scratchpad_size,␣
→˓const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Indicates how the input matrix 𝐴 has been factored:

If upper_lower = oneapi::mkl::uplo::upper, the upper triangle of 𝐴 is stored.

If upper_lower = oneapi::mkl::uplo::lower, the lower triangle of 𝐴 is stored.

n Specifies the order of the matrix 𝐴 (0 ≤ 𝑛).

a Contains the factorization of the matrix 𝐴, as returned by potrf . The second dimension of a must be at least
max(1, 𝑛).

lda The leading dimension of a.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by potri_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

11.2. oneMKL Domains 1347

oneAPI Specification, Release 1.1-rev-1

Output Parameters

a Overwritten by the upper or lower triangle of the inverse of 𝐴. Specified by upper_lower.

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, the 𝑖-th diagonal element of the Cholesky factor (and therefore the factor itself) is zero, and
the inversion could not be completed.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

potri_scratchpad_size

Computes size of scratchpad memory required for potri function.

Description

potri_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to potri function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

11.2. oneMKL Domains 1348

oneAPI Specification, Release 1.1-rev-1

potri_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t potri_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, std::int64_t lda)
}

Input Parameters

queue Device queue where calculations by potri function will be performed.

upper_lower Indicates how the input matrix 𝐴 has been factored:

If upper_lower = oneapi::mkl::uplo::upper, the upper triangle of 𝐴 is stored.

If upper_lower = oneapi::mkl::uplo::lower, the lower triangle of 𝐴 is stored.

n Specifies the order of the matrix 𝐴 (0 ≤ 𝑛).

lda The leading dimension of a.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to potri function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

potrs

Solves a system of linear equations with a Cholesky-factored symmetric (Hermitian) positive-definite coefficient matrix.

11.2. oneMKL Domains 1349

oneAPI Specification, Release 1.1-rev-1

Description

potrs supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine solves for 𝑋 the system of linear equations 𝐴𝑋 = 𝐵 with a symmetric positive-definite or, for complex
data, Hermitian positive-definite matrix 𝐴, given the Cholesky factorization of 𝐴:

𝐴 = 𝑈𝑇𝑈 for real data, 𝐴 = 𝑈𝐻𝑈 for complex data if upper_lower=oneapi::mkl::uplo::upper
𝐴 = 𝐿𝐿𝑇 for real data, 𝐴 = 𝐿𝐿𝐻 for complex data if upper_lower=oneapi::mkl::uplo::lower

where 𝐿 is a lower triangular matrix and 𝑈 is upper triangular. The system is solved with multiple right-hand sides
stored in the columns of the matrix 𝐵.

Before calling this routine, you must call potrf to compute the Cholesky factorization of 𝐴.

potrs (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void potrs(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n,␣

→˓std::int64_t nrhs, cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &
→˓b, std::int64_t ldb, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Indicates how the input matrix has been factored:

If upper_lower = oneapi::mkl::uplo::upper, the upper triangle 𝑈 of 𝐴 is stored, where 𝐴 = 𝑈𝑇 for real
data, 𝐴 = 𝑈𝐻𝑈 for complex data.

If upper_lower = oneapi::mkl::uplo::lower, the lower triangle 𝐿 of 𝐴 is stored, where 𝐴 = 𝐿𝐿𝑇 for
real data, 𝐴 = 𝐿𝐿𝐻 for complex data.

n The order of matrix 𝐴 (0 ≤ 𝑛).

nrhs The number of right-hand sides (0 ≤ nrhs).

a Buffer containing the factorization of the matrix A, as returned by potrf . The second dimension of a must be at least
max(1, 𝑛).

lda The leading dimension of a.

b The array b contains the matrix 𝐵 whose columns are the right-hand sides for the systems of equations. The second
dimension of b must be at least max(1, nrhs).

11.2. oneMKL Domains 1350

oneAPI Specification, Release 1.1-rev-1

ldb The leading dimension of b.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by potrs_scratchpad_size function.

Output Parameters

b Overwritten by the solution matrix 𝑋 .

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, the 𝑖-th diagonal element of the Cholesky factor is zero, and the solve could not be completed.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

potrs (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event potrs(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, std::int64_t nrhs, T *a, std::int64_t lda, T *b, std::int64_t ldb, T␣
→˓*scratchpad, std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events␣
→˓= {})
}

11.2. oneMKL Domains 1351

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Indicates how the input matrix has been factored:

If upper_lower = oneapi::mkl::uplo::upper, the upper triangle 𝑈 of 𝐴 is stored, where 𝐴 = 𝑈𝑇𝑈 for
real data, 𝐴 = 𝑈𝐻𝑈 for complex data.

If upper_lower = oneapi::mkl::uplo::lower, the lower triangle 𝐿 of 𝐴 is stored, where 𝐴 = 𝐿𝐿𝑇 for
real data, 𝐴 = 𝐿𝐿𝐻 for complex data.

n The order of matrix 𝐴 (0 ≤ 𝑛).

nrhs The number of right-hand sides (0 ≤ nrhs).

a Pointer to array containing the factorization of the matrix 𝐴, as returned by potrf . The second dimension of a must
be at least max(1, 𝑛).

lda The leading dimension of a.

b The array b contains the matrix 𝐵 whose columns are the right-hand sides for the systems of equations. The second
dimension of b must be at least max(1, nrhs).

ldb The leading dimension of b.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by potrs_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

b Overwritten by the solution matrix 𝑋 .

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, the 𝑖-th diagonal element of the Cholesky factor is zero, and the solve could not be completed.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

11.2. oneMKL Domains 1352

oneAPI Specification, Release 1.1-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

potrs_scratchpad_size

Computes size of scratchpad memory required for potrs function.

Description

potrs_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to potrs function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

potrs_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t potrs_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, std::int64_t nrhs, std::int64_t lda, std::int64_t ldb)
}

Input Parameters

queue Device queue where calculations by potrs function will be performed.

upper_lower Indicates how the input matrix has been factored:

If upper_lower = oneapi::mkl::uplo::upper, the upper triangle 𝑈 of 𝐴 is stored, where 𝐴 = 𝑈𝑇𝑈 for
real data, 𝐴 = 𝑈𝐻𝑈 for complex data.

If upper_lower = oneapi::mkl::uplo::lower, the lower triangle 𝐿 of 𝐴 is stored, where 𝐴 = 𝐿𝐿𝑇 for
real data, 𝐴 = 𝐿𝐿𝐻 for complex data.

n The order of matrix 𝐴 (0 ≤ 𝑛).

nrhs The number of right-hand sides (0 ≤ 𝑛𝑟ℎ𝑠).

lda The leading dimension of a.

ldb The leading dimension of b.

11.2. oneMKL Domains 1353

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to potrs function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

sytrf

Computes the Bunch-Kaufman factorization of a symmetric matrix.

Description

sytrf supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine computes the factorization of a real/complex symmetric matrix 𝐴 using the Bunch-Kaufman diagonal
pivoting method. The form of the factorization is:

• if upper_lower=uplo::upper, 𝐴 = 𝑈𝐷𝑈𝑇

• if upper_lower=uplo::lower, 𝐴 = 𝐿𝐷𝐿𝑇

where 𝐴 is the input matrix, 𝑈 and 𝐿 are products of permutation and triangular matrices with unit diagonal (upper
triangular for 𝑈 and lower triangular for 𝐿), and 𝐷 is a symmetric block-diagonal matrix with 1×1 and 2×2 diagonal
blocks. 𝑈 and 𝐿 have 2× 2 unit diagonal blocks corresponding to the 2× 2 blocks of 𝐷.

sytrf (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void sytrf(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<int_64,1> &ipiv,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

11.2. oneMKL Domains 1354

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Indicates whether the upper or lower triangular part of 𝐴 is stored and how 𝐴 is factored:

If upper_lower=uplo::upper, the buffer a stores the upper triangular part of the matrix 𝐴, and 𝐴
is factored as 𝑈𝐷𝑈𝑇 .

If upper_lower=uplo::lower, the buffer a stores the lower triangular part of the matrix 𝐴, and 𝐴
is factored as 𝐿𝐷𝐿𝑇 .

n The order of matrix 𝐴 (0 ≤ 𝑛).

a The buffer a, size max(1, 𝑙𝑑𝑎 · 𝑛). The buffer a contains either the upper or the lower triangular part of the matrix
𝐴 (see upper_lower). The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by sytrf_scratchpad_size function.

Output Parameters

a The upper or lower triangular part of a is overwritten by details of the block-diagonal matrix 𝐷 and the multipliers
used to obtain the factor 𝑈 (or 𝐿).

ipiv Buffer, size at least max(1, 𝑛). Contains details of the interchanges and the block structure of 𝐷. If ipiv(𝑖) = 𝑘 >
0, then 𝑑𝑖𝑖 is a 1× 1 block, and the 𝑖-th row and column of 𝐴 was interchanged with the 𝑘-th row and column.

If upper_lower=oneapi::mkl::uplo::upper and ipiv(𝑖) = ipiv(𝑖− 1) = −𝑚 < 0, then 𝐷 has
a 2× 2 block in rows/columns 𝑖 and 𝑖-1, and (𝑖− 1)-th row and column of 𝐴 was interchanged with
the 𝑚-th row and column.

If upper_lower=oneapi::mkl::uplo::lower and ipiv(𝑖) = ipiv(𝑖 + 1) = −𝑚 < 0, then 𝐷 has
a 2× 2 block in rows/columns 𝑖 and 𝑖+ 1, and (𝑖+ 1)-th row and column of 𝐴 was interchanged with
the 𝑚-th row and column.

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

11.2. oneMKL Domains 1355

oneAPI Specification, Release 1.1-rev-1

If info = 𝑖, 𝑑𝑖𝑖 is 0. The factorization has been completed, but 𝐷 is exactly singular. Division by 0 will
occur if you use 𝐷 for solving a system of linear equations.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

sytrf (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event sytrf(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, T *a, std::int64_t lda, int_64 *ipiv, T *scratchpad, std::int64_t␣
→˓scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Indicates whether the upper or lower triangular part of 𝐴 is stored and how 𝐴 is factored:

If upper_lower=uplo::upper, the array a stores the upper triangular part of the matrix 𝐴, and 𝐴
is factored as 𝑈𝐷𝑈𝑇 .

If upper_lower=uplo::lower, the array a stores the lower triangular part of the matrix 𝐴, and 𝐴
is factored as 𝐿𝐷𝐿𝑇 .

n The order of matrix 𝐴 (0 ≤ 𝑛).

a The pointer to 𝐴, size max(1, lda · 𝑛), containing either the upper or the lower triangular part of the matrix 𝐴 (see
upper_lower). The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by sytrf_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a The upper or lower triangular part of a is overwritten by details of the block-diagonal matrix 𝐷 and the multipliers
used to obtain the factor 𝑈 (or 𝐿).

ipiv Pointer to array of size at least max(1, 𝑛). Contains details of the interchanges and the block structure of 𝐷. If
ipiv(𝑖) = 𝑘 > 0, then 𝑑𝑖𝑖 is a 1× 1 block, and the 𝑖-th row and column of 𝐴 was interchanged with the 𝑘-th row
and column.

If upper_lower=oneapi::mkl::uplo::upper and ipiv(𝑖) = ipiv(𝑖− 1) = −𝑚 < 0, then 𝐷 has
a 2× 2 block in rows/columns 𝑖 and 𝑖− 1, and (𝑖− 1)-th row and column of 𝐴 was interchanged with
the 𝑚-th row and column.

If upper_lower=oneapi::mkl::uplo::lower and ipiv(𝑖) = ipiv(𝑖 + 1) = −𝑚 < 0, then 𝐷 has
a 2× 2 block in rows/columns 𝑖 and 𝑖+ 1, and (𝑖+ 1)-th row and column of 𝐴 was interchanged with
the 𝑚-th row and column.

11.2. oneMKL Domains 1356

oneAPI Specification, Release 1.1-rev-1

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, 𝑑𝑖𝑖 is 0. The factorization has been completed, but 𝐷 is exactly singular. Division by 0 will
occur if you use 𝐷 for solving a system of linear equations.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

sytrf_scratchpad_size

Computes size of scratchpad memory required for sytrf function.

Description

sytrf_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to sytrf function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

11.2. oneMKL Domains 1357

oneAPI Specification, Release 1.1-rev-1

sytrf_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t sytrf_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, std::int64_t lda)
}

Input Parameters

queue Device queue where calculations by sytrf function will be performed.

upper_lower Indicates whether the upper or lower triangular part of 𝐴 is stored and how 𝐴 is factored:

If upper_lower=uplo::upper, the buffer a stores the upper triangular part of the matrix 𝐴, and 𝐴 is factored
as 𝑈𝐷𝑈𝑇 .

If upper_lower=uplo::lower, the buffer a stores the lower triangular part of the matrix 𝐴, and 𝐴 is factored
as 𝐿𝐷𝐿𝑇

n The order of the matrix 𝐴 (0 ≤ 𝑛).

lda The leading dimension of a.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to sytrf function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

trtrs

Solves a system of linear equations with a triangular coefficient matrix, with multiple right-hand sides.

11.2. oneMKL Domains 1358

oneAPI Specification, Release 1.1-rev-1

Description

trtrs supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine solves for 𝑋 the following systems of linear equations with a triangular matrix 𝐴, with multiple right-hand
sides stored in 𝐵:

𝐴𝑋 = 𝐵 if transa =transpose::nontrans,
𝐴𝑇𝑋 = 𝐵 if transa =transpose::trans,
𝐴𝐻𝑋 = 𝐵 if transa =transpose::conjtrans (for complex matrices only).

trtrs (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void trtrs(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓oneapi::mkl::transpose transa, oneapi::mkl::diag unit_diag, std::int64_t n, std::int64_
→˓t nrhs, cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &b,␣
→˓std::int64_t ldb, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Indicates whether 𝐴 is upper or lower triangular:

If upper_lower = uplo::upper, then 𝐴 is upper triangular.

If upper_lower = uplo::lower, then 𝐴 is lower triangular.

transa If transa = transpose::nontrans, then 𝐴𝑋 = 𝐵 is solved for 𝑋 .

If transa = transpose::trans, then 𝐴𝑇𝑋 = 𝐵 is solved for 𝑋 .

If transa = transpose::conjtrans, then 𝐴𝐻𝑋 = 𝐵 is solved for 𝑋 .

unit_diag If unit_diag = diag::nonunit, then 𝐴 is not a unit triangular matrix.

If unit_diag = diag::unit, then 𝐴 is unit triangular: diagonal elements of 𝐴 are assumed to be 1 and not
referenced in the array a.

n The order of 𝐴; the number of rows in 𝐵; 𝑛 ≥ 0.

nrhs The number of right-hand sides; nrhs ≥ 0.

a Buffer containing the matrix 𝐴. The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a; lda ≥ max(1, 𝑛).

11.2. oneMKL Domains 1359

oneAPI Specification, Release 1.1-rev-1

b Buffer containing the matrix 𝐵 whose columns are the right-hand sides for the systems of equations. The second
dimension of b at least max(1, nrhs).

ldb The leading dimension of b; ldb ≥ max(1, 𝑛).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by trtrs_scratchpad_size function.

Output Parameters

b Overwritten by the solution matrix 𝑋 .

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

trtrs (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event trtrs(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓oneapi::mkl::transpose transa, oneapi::mkl::diag unit_diag, std::int64_t n, std::int64_
→˓t nrhs, T *a, std::int64_t lda, T *b, std::int64_t ldb, T *scratchpad, std::int64_t␣
→˓scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

11.2. oneMKL Domains 1360

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Indicates whether 𝐴 is upper or lower triangular:

If upper_lower = uplo::upper, then 𝐴 is upper triangular.

If upper_lower = uplo::lower, then 𝐴 is lower triangular.

transa If transa = transpose::nontrans, then 𝐴𝑋 = 𝐵 is solved for 𝑋 .

If transa = transpose::trans, then 𝐴𝑇𝑋 = 𝐵 is solved for 𝑋 .

If transa = transpose::conjtrans, then 𝐴𝐻𝑋 = 𝐵 is solved for 𝑋 .

unit_diag If unit_diag = diag::nonunit, then 𝐴 is not a unit triangular matrix.

If unit_diag = diag::unit, then 𝐴 is unit triangular: diagonal elements of 𝐴 are assumed to be 1 and not
referenced in the array a.

n The order of 𝐴; the number of rows in 𝐵; 𝑛 ≥ 0.

nrhs The number of right-hand sides; nrhs ≥ 0.

a Array containing the matrix 𝐴. The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a; lda ≥ max(1, 𝑛).

b Array containing the matrix 𝐵 whose columns are the right-hand sides for the systems of equations. The second
dimension of b at least max(1, nrhs).

ldb The leading dimension of b; ldb ≥ max(1, 𝑛).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by trtrs_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

b Overwritten by the solution matrix 𝑋 .

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

11.2. oneMKL Domains 1361

oneAPI Specification, Release 1.1-rev-1

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

trtrs_scratchpad_size

Computes size of scratchpad memory required for trtrs function.

Description

trtrs_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to trtrs function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

trtrs_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t trtrs_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, oneapi::mkl::transpose trans, oneapi::mkl::diag diag, std::int64_t n,␣
→˓std::int64_t nrhs, std::int64_t lda, std::int64_t ldb)
}

Input Parameters

queue Device queue where calculations by trtrs function will be performed.

upper_lower Indicates whether 𝐴 is upper or lower triangular:

If upper_lower = uplo::upper, then 𝐴 is upper triangular.

If upper_lower = uplo::lower, then 𝐴 is lower triangular.

11.2. oneMKL Domains 1362

oneAPI Specification, Release 1.1-rev-1

trans Indicates the form of the equations:

If trans=oneapi::mkl::transpose::nontrans, then 𝐴𝑋 = 𝐵 is solved for 𝑋 .

If trans=oneapi::mkl::transpose::trans, then 𝐴𝑇𝑋 = 𝐵 is solved for 𝑋 .

If trans=oneapi::mkl::transpose::conjtrans, then 𝐴𝐻𝑋 = 𝐵 is solved for 𝑋 .

diag If diag = oneapi::mkl::diag::nonunit, then 𝐴 is not a unit triangular matrix.

If unit_diag = diag::unit, then 𝐴 is unit triangular: diagonal elements of 𝐴 are assumed to be 1 and not
referenced in the array a.

n The order of 𝐴; the number of rows in 𝐵; 𝑛 ≥ 0.

nrhs The number of right-hand sides (0 ≤ nrhs).

lda The leading dimension of a; lda ≥ max(1, 𝑛).

ldb The leading dimension of b; ldb ≥ max(1, 𝑛).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to trtrs function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

ungqr

Generates the complex unitary matrix 𝑄 of the QR factorization formed by geqrf .

Description

ungqr supports the following precisions.

T
std::complex<float>
std::complex<double>

The routine generates the whole or part of 𝑚 × 𝑚 unitary matrix 𝑄 of the QR factorization formed by the routines
geqrf .

Usually 𝑄 is determined from the QR factorization of an 𝑚× 𝑝 matrix 𝐴 with 𝑚 ≥ 𝑝. To compute the whole matrix
𝑄, use:

11.2. oneMKL Domains 1363

oneAPI Specification, Release 1.1-rev-1

oneapi::mkl::lapack::ungqr(queue, m, m, p, a, lda, tau, scratchpad, scratchpad_size)

To compute the leading 𝑝 columns of 𝑄 (which form an orthonormal basis in the space spanned by the columns of 𝐴):

oneapi::mkl::lapack::ungqr(queue, m, p, p, a, lda, tau, scratchpad, scratchpad_size)

To compute the matrix 𝑄𝑘 of the QR factorization of the leading 𝑘 columns of the matrix 𝐴:

oneapi::mkl::lapack::ungqr(queue, m, m, k, a, lda, tau, scratchpad, scratchpad_size)

To compute the leading 𝑘 columns of 𝑄𝑘 (which form an orthonormal basis in the space spanned by the leading 𝑘
columns of the matrix 𝐴):

oneapi::mkl::lapack::ungqr(queue, m, k, k, a, lda, tau, scratchpad, scratchpad_size)

ungqr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void ungqr(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, std::int64_t k,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &tau,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue The queue where the routine should be executed.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

k The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

a The buffer a as returned by geqrf .

lda The leading dimension of a (lda ≤ 𝑚).

tau The buffer tau as returned by geqrf .

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by ungqr_scratchpad_size function.

Output Parameters

a Overwritten by 𝑛 leading columns of the 𝑚×𝑚 orthogonal matrix 𝑄.

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

11.2. oneMKL Domains 1364

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

ungqr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event ungqr(cl::sycl::queue &queue, std::int64_t m, std::int64_t n,␣

→˓std::int64_t k, T *a, std::int64_t lda, T *tau, T *scratchpad, std::int64_t scratchpad_
→˓size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue The queue where the routine should be executed.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

k The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

a The pointer to a as returned by geqrf .

lda The leading dimension of a (lda ≤ 𝑚).

tau The pointer to tau as returned by geqrf .

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by ungqr_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

11.2. oneMKL Domains 1365

oneAPI Specification, Release 1.1-rev-1

Output Parameters

a Overwritten by 𝑛 leading columns of the 𝑚×𝑚 orthogonal matrix 𝑄.

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

ungqr_scratchpad_size

Computes size of scratchpad memory required for ungqr function.

Description

ungqr_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to ungqr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

11.2. oneMKL Domains 1366

oneAPI Specification, Release 1.1-rev-1

ungqr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t ungqr_scratchpad_size(cl::sycl::queue &queue, std::int64_t m, std::int64_

→˓t n, std::int64_t k, std::int64_t lda)
}

Input Parameters

queue Device queue where calculations by ungqr function will be performed.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n The number of columns the matrix 𝐴 (0 ≤ 𝑛 ≤ 𝑚).

k The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

lda The leading dimension of a.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to ungqr function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

unmqr

Multiplies a complex matrix by the unitary matrix 𝑄 of the QR factorization formed by geqrf .

11.2. oneMKL Domains 1367

oneAPI Specification, Release 1.1-rev-1

Description

unmqr supports the following precisions.

T
std::complex<float>
std::complex<double>

The routine multiplies a rectangular complex 𝑚 × 𝑛 matrix 𝐶 by 𝑄 or 𝑄𝐻 , where 𝑄 is the complex unitary matrix
defined as a product of 𝑘 elementary reflectors 𝐻(𝑖) of order 𝑛: 𝑄 = 𝐻(1)𝐻𝐻(2)𝐻 ...𝐻(𝑘)𝐻 as returned by the RQ
factorization routine gerqf .

Depending on the parameters side and trans, the routine can form one of the matrix products 𝑄𝐶, 𝑄𝐻𝐶, 𝐶𝑄, or
𝐶𝑄𝐻 (overwriting the result over 𝐶).

unmqr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void unmqr(cl::sycl::queue &queue, oneapi::mkl::side side, oneapi::mkl::transpose␣

→˓trans, std::int64_t m, std::int64_t n, std::int64_t k, cl::sycl::buffer<T,1> &a,␣
→˓std::int64_t lda, cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &c, std::int64_t␣
→˓ldc, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue The queue where the routine should be executed.

side If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the left.

If side = oneapi::mkl::side::right, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the right.

trans If trans = oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = oneapi::mkl::transpose::conjtrans, the routine multiplies 𝐶 by 𝑄𝐻 .

m The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐶 (0 ≤ 𝑛).

k The number of elementary reflectors whose product defines the matrix 𝑄

If side = oneapi::mkl::side::left, 0 ≤ 𝑘 ≤ 𝑚

If side = oneapi::mkl::side::right, 0 ≤ 𝑘 ≤ 𝑛

a The buffer a as returned by geqrf . The second dimension of a must be at least max(1, 𝑘).

lda The leading dimension of a.

tau The buffer tau as returned by geqrf .

c The buffer c contains the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc The leading dimension of c.

11.2. oneMKL Domains 1368

oneAPI Specification, Release 1.1-rev-1

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by the unmqr_scratchpad_size function.

Output Parameters

c Overwritten by the product 𝑄𝐶, 𝑄𝐻𝐶, 𝐶𝑄, or 𝐶𝑄𝐻 (as specified by side and trans).

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

unmqr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event unmqr(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k, T *a,␣
→˓std::int64_t lda, T *tau, T *c, std::int64_t ldc, T *scratchpad, std::int64_t␣
→˓scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

11.2. oneMKL Domains 1369

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

side If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the left.

If side = oneapi::mkl::side::right, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the right.

trans If trans = oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = oneapi::mkl::transpose::conjtrans, the routine multiplies 𝐶 by 𝑄𝐻 .

m The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐶 (0 ≤ 𝑛).

k The number of elementary reflectors whose product defines the matrix 𝑄

If side = oneapi::mkl::side::left, 0 ≤ 𝑘 ≤ 𝑚

If side = oneapi::mkl::side::right, 0 ≤ 𝑘 ≤ 𝑛

a The pointer to a as returned by geqrf . The second dimension of a must be at least max(1, 𝑘).

lda The leading dimension of a.

tau The pointer to tau as returned by geqrf .

c The pointer c points to the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc The leading dimension of c.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by unmqr_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

c Overwritten by the product 𝑄𝐶, 𝑄𝐻𝐶, 𝐶𝑄, or 𝐶𝑄𝐻 (as specified by side and trans).

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

11.2. oneMKL Domains 1370

oneAPI Specification, Release 1.1-rev-1

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

unmqr_scratchpad_size

Computes size of scratchpad memory required for unmqr function.

Description

unmqr_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to unmqr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

unmqr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t unmqr_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k,␣
→˓std::int64_t lda, std::int64_t ldc, std::int64_t &scratchpad_size)
}

Input Parameters

queue Device queue where calculations by unmqr function will be performed.

side If side=oneapi::mkl::side::left, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the left.

If side=oneapi::mkl::side::right, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the right.

trans If trans=oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans=oneapi::mkl::transpose::conjtrans, the routine multiplies 𝐶 by 𝑄𝐻 .

m The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n The number of columns the matrix 𝐶 (0 ≤ 𝑛 ≤ 𝑚).

k The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

11.2. oneMKL Domains 1371

oneAPI Specification, Release 1.1-rev-1

lda The leading dimension of a.

ldc The leading dimension of c.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to unmqr function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

unmrq

Multiplies a complex matrix by the unitary matrix 𝑄 of the RQ factorization formed by gerqf .

Description

unmrq supports the following precisions.

T
std::complex<float>
std::complex<double>

The routine multiplies a rectangular complex 𝑚 × 𝑛 matrix 𝐶 by 𝑄 or 𝑄𝐻 , where 𝑄 is the complex unitary matrix
defined as a product of 𝑘 elementary reflectors 𝐻(𝑖) of order 𝑛: 𝑄 = 𝐻(1)𝐻𝐻(2)𝐻 ...𝐻(𝑘)𝐻 as returned by the RQ
factorization routine gerqf .

Depending on the parameters side and trans, the routine can form one of the matrix products 𝑄𝐶, 𝑄𝐻𝐶, 𝐶𝑄, or
𝐶𝑄𝐻 (overwriting the result over 𝐶).

unmrq (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void unmrq(cl::sycl::queue &queue, oneapi::mkl::side side, oneapi::mkl::transpose␣

→˓trans, std::int64_t m, std::int64_t n, std::int64_t k, cl::sycl::buffer<T,1> &a,␣
→˓std::int64_t lda, cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &c, std::int64_t␣
→˓ldc, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

11.2. oneMKL Domains 1372

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

side If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the left.

If side = oneapi::mkl::side::right, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the right.

trans If trans = oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = oneapi::mkl::transpose::conjtrans, the routine multiplies 𝐶 by 𝑄𝐻 .

m The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐶 (0 ≤ 𝑛).

k The number of elementary reflectors whose product defines the matrix 𝑄

If side = oneapi::mkl::side::left, 0 ≤ 𝑘 ≤ 𝑚

If side = oneapi::mkl::side::right, 0 ≤ 𝑘 ≤ 𝑛

a The buffer a as returned by gerqf . The second dimension of a must be at least max(1, 𝑘).

lda The leading dimension of a.

tau The buffer tau as returned by gerqf .

c The buffer c contains the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc The leading dimension of c.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by unmrq_scratchpad_size function.

Output Parameters

c Overwritten by the product 𝑄𝐶, 𝑄𝐻𝐶, 𝐶𝑄, or 𝐶𝑄𝐻 (as specified by side and trans).

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

11.2. oneMKL Domains 1373

oneAPI Specification, Release 1.1-rev-1

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

unmrq (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event unmrq(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k, T *a,␣
→˓std::int64_t lda, T *tau, T *c, std::int64_t ldc, T *scratchpad, std::int64_t␣
→˓scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue The queue where the routine should be executed.

side If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the left.

If side = oneapi::mkl::side::right, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the right.

trans If trans = oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = oneapi::mkl::transpose::conjtrans, the routine multiplies 𝐶 by 𝑄𝐻 .

m The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐶 (0 ≤ 𝑛).

k The number of elementary reflectors whose product defines the matrix 𝑄

If side = oneapi::mkl::side::left, 0 ≤ 𝑘 ≤ 𝑚

If side = oneapi::mkl::side::right, 0 ≤ 𝑘 ≤ 𝑛

a The pointer to a as returned by gerqf . The second dimension of a must be at least max(1, 𝑘).

lda The leading dimension of a.

tau The pointer to tau as returned by gerqf .

c The pointer c points to the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc The leading dimension of c.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by unmrq_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

11.2. oneMKL Domains 1374

oneAPI Specification, Release 1.1-rev-1

Output Parameters

c Overwritten by the product 𝑄𝐶, 𝑄𝐻𝐶, 𝐶𝑄, or 𝐶𝑄𝐻 (as specified by side and trans).

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Linear Equation Routines

unmrq_scratchpad_size

Computes size of scratchpad memory required for unmrq function.

Description

unmrq_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to unmrq function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

11.2. oneMKL Domains 1375

oneAPI Specification, Release 1.1-rev-1

unmrq_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t unmrq_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, std::int64_t k,␣
→˓std::int64_t lda, std::int64_t ldc)
}

Input Parameters

queue Device queue where calculations by the unmrq function will be performed.

side If side = oneapi::mkl::side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left. If side =
oneapi::mkl::side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

trans If trans=oneapi::mkl::transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans=oneapi::mkl::transpose::conjtrans, the routine multiplies 𝐶 by 𝑄𝐻 .

m The number of rows in the matrix 𝐶 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐶 (0 ≤ 𝑛 ≤ 𝑚).

k The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

lda The leading dimension of a.

ldc The leading dimension of c.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to unmrq function should be able to hold.

Parent topic: LAPACK Linear Equation Routines

LAPACK Singular Value and Eigenvalue Problem Routines

LAPACK Singular Value and Eigenvalue Problem routines are used for singular value and eigenvalue problems, and
for performing a number of related computational tasks. The following table lists the LAPACK Singular Value and
Eigenvalue Problem routine groups.

11.2. oneMKL Domains 1376

oneAPI Specification, Release 1.1-rev-1

Rou-
tines

Scratchpad
Size Routines

Description

ge-
brd

ge-
brd_scratchpad_size

Reduces a general matrix to bidiagonal form.

gesvd gesvd_scratchpad_sizeComputes the singular value decomposition of a general rectangular matrix.
heevd heevd_scratchpad_sizeComputes all eigenvalues and, optionally, all eigenvectors of a complex Hermitian ma-

trix using divide and conquer algorithm.
hegvd hegvd_scratchpad_sizeComputes all eigenvalues and, optionally, all eigenvectors of a complex generalized

Hermitian definite eigenproblem using divide and conquer algorithm.
hetrd hetrd_scratchpad_sizeReduces a complex Hermitian matrix to tridiagonal form.
orgbr orgbr_scratchpad_sizeGenerates the real orthogonal matrix 𝑄 or 𝑃𝑇 determined by gebrd.
orgtr orgtr_scratchpad_sizeGenerates the real orthogonal matrix 𝑄 determined by sytrd.
ormtr ormtr_scratchpad_sizeMultiplies a real matrix by the orthogonal matrix 𝑄 determined by sytrd.
syevd syevd_scratchpad_sizeComputes all eigenvalues and, optionally, all eigenvectors of a real symmetric matrix

using divide and conquer algorithm.
sygvd sygvd_scratchpad_sizeComputes all eigenvalues and, optionally, all eigenvectors of a real generalized sym-

metric definite eigenproblem using divide and conquer algorithm.
sytrd sytrd_scratchpad_sizeReduces a real symmetric matrix to tridiagonal form.
ungbr ungbr_scratchpad_sizeGenerates the complex unitary matrix 𝑄 or 𝑃𝑇 determined by gebrd.
ungtr ungtr_scratchpad_sizeGenerates the complex unitary matrix 𝑄 determined by hetrd.
un-
mtr

un-
mtr_scratchpad_size

Multiplies a complex matrix by the unitary matrix 𝑄 determined by hetrd.

gebrd

Reduces a general matrix to bidiagonal form.

Description

gebrd supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

The routine reduces a general 𝑚× 𝑛 matrix 𝐴 to a bidiagonal matrix 𝐵 by an orthogonal (unitary) transformation.

If 𝑚 ≥ 𝑛, the reduction is given by 𝐴 = 𝑄𝐵𝑃𝐻 =

(︂
𝐵1

0

)︂
𝑃𝐻 = 𝑄1𝐵1𝑃𝐻

where 𝐵1 is an 𝑛×𝑛 upper diagonal matrix, 𝑄 and 𝑃 are orthogonal or, for a complex 𝐴, unitary matrices; 𝑄1 consists
of the first 𝑛 columns of 𝑄.

If 𝑚 < 𝑛, the reduction is given by

𝐴 = 𝑄𝐵𝑃𝐻 = 𝑄

(︂
𝐵1

0

)︂
𝑃𝐻 = 𝑄1𝐵1𝑃

𝐻
1 ,

where 𝐵1 is an 𝑚 × 𝑚 lower diagonal matrix, 𝑄 and 𝑃 are orthogonal or, for a complex 𝐴, unitary matrices; 𝑃1

consists of the first 𝑚 columns of 𝑃 .

11.2. oneMKL Domains 1377

oneAPI Specification, Release 1.1-rev-1

The routine does not form the matrices 𝑄 and 𝑃 explicitly, but represents them as products of elementary reflectors.
Routines are provided to work with the matrices 𝑄 and 𝑃 in this representation:

If the matrix 𝐴 is real,

• to compute 𝑄 and 𝑃 explicitly, call orgbr.

If the matrix 𝐴 is complex,

• to compute 𝑄 and 𝑃 explicitly, call ungbr

gebrd (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void gebrd(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, cl::sycl::buffer<T,

→˓1> &a, std::int64_t lda, cl::sycl::buffer<realT,1> &d, cl::sycl::buffer<realT,1> &e,␣
→˓cl::sycl::buffer<T,1> &tauq, cl::sycl::buffer<T,1> &taup, cl::sycl::buffer<T,1> &
→˓scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue The queue where the routine should be executed.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

a The buffer 𝑎, size (lda,*). The buffer a contains the matrix 𝐴. The second dimension of a must be at least
max(1,𝑚).

lda The leading dimension of 𝑎.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by gebrd_scratchpad_size function.

Output Parameters

a If 𝑚 ≥ 𝑛, the diagonal and first super-diagonal of a are overwritten by the upper bidiagonal matrix 𝐵. The elements
below the diagonal, with the buffer tauq, represent the orthogonal matrix 𝑄 as a product of elementary reflectors,
and the elements above the first superdiagonal, with the buffer taup, represent the orthogonal matrix 𝑃 as a
product of elementary reflectors.

If𝑚 < 𝑛, the diagonal and first sub-diagonal of a are overwritten by the lower bidiagonal matrix𝐵. The elements
below the first subdiagonal, with the buffer tauq, represent the orthogonal matrix 𝑄 as a product of elementary
reflectors, and the elements above the diagonal, with the buffer taup, represent the orthogonal matrix 𝑃 as a
product of elementary reflectors.

d Buffer, size at least max(1,min(𝑚,𝑛)). Contains the diagonal elements of 𝐵.

e Buffer, size at least max(1,min(𝑚,𝑛)− 1). Contains the off-diagonal elements of 𝐵.

tauq Buffer, size at least max(1,min(𝑚,𝑛)). The scalar factors of the elementary reflectors which represent the
orthogonal or unitary matrix 𝑄.

11.2. oneMKL Domains 1378

oneAPI Specification, Release 1.1-rev-1

taup Buffer, size at least max(1,min(𝑚,𝑛)). The scalar factors of the elementary reflectors which represent the
orthogonal or unitary matrix 𝑃 .

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the i-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

gebrd (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event gebrd(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, T *a,␣

→˓std::int64_t lda, RealT *d, RealT *e, T *tauq, T *taup, T *scratchpad, std::int64_t␣
→˓scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue The queue where the routine should be executed.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

a Pointer to matrix 𝐴. The second dimension of a must be at least max(1,𝑚).

lda The leading dimension of a.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by gebrd_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

11.2. oneMKL Domains 1379

oneAPI Specification, Release 1.1-rev-1

Output Parameters

a If 𝑚 ≥ 𝑛, the diagonal and first super-diagonal of a are overwritten by the upper bidiagonal matrix 𝐵. The elements
below the diagonal, with the array tauq, represent the orthogonal matrix 𝑄 as a product of elementary reflectors,
and the elements above the first superdiagonal, with the array taup, represent the orthogonal matrix 𝑃 as a
product of elementary reflectors.

If𝑚 < 𝑛, the diagonal and first sub-diagonal of a are overwritten by the lower bidiagonal matrix𝐵. The elements
below the first subdiagonal, with the array tauq, represent the orthogonal matrix 𝑄 as a product of elementary
reflectors, and the elements above the diagonal, with the array taup, represent the orthogonal matrix 𝑃 as a
product of elementary reflectors.

d Pointer to memory of size at least max(1,min(𝑚,𝑛)). Contains the diagonal elements of 𝐵.

e Pointer to memory of size at least max(1,min(𝑚,𝑛)− 1). Contains the off-diagonal elements of 𝐵.

tauq Pointer to memory of size at least max(1,min(𝑚,𝑛)). The scalar factors of the elementary reflectors which
represent the orthogonal or unitary matrix 𝑄.

taup Pointer to memory of size at least max(1,min(𝑚,𝑛)). The scalar factors of the elementary reflectors which
represent the orthogonal or unitary matrix 𝑃 .

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the i-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

gebrd_scratchpad_size

Computes size of scratchpad memory required for gebrd function.

11.2. oneMKL Domains 1380

oneAPI Specification, Release 1.1-rev-1

Description

gebrd_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to gebrd function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t gebrd_scratchpad_size(cl::sycl::queue &queue, std::int64_t m, std::int64_

→˓t n, std::int64_t lda)
}

Input Parameters

queue Device queue where calculations by gebrd function will be performed.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

lda The leading dimension of a.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

11.2. oneMKL Domains 1381

oneAPI Specification, Release 1.1-rev-1

Return Value

The number of elements of type T the scratchpad memory to be passed to gebrd function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

gesvd

Computes the singular value decomposition of a general rectangular matrix.

Description

gesvd supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

gesvd (Buffer Version)

Description

The routine computes the singular value decomposition (SVD) of a real/complex𝑚×𝑛matrix𝐴, optionally computing
the left and/or right singular vectors. The SVD is written as

𝐴 = 𝑈Σ𝑉 𝑇 for real routines

𝐴 = 𝑈Σ𝑉 𝐻 for complex routines

where Σ is an 𝑚×𝑛 diagonal matrix, 𝑈 is an 𝑚×𝑚 orthogonal/unitary matrix, and 𝑉 is an 𝑛×𝑛 orthogonal/unitary
matrix. The diagonal elements of Σ are the singular values of 𝐴; they are real and non-negative, and are returned in
descending order. The first min(𝑚,𝑛) columns of 𝑈 and 𝑉 are the left and right singular vectors of 𝐴.

Syntax

namespace oneapi::mkl::lapack {
void gesvd(cl::sycl::queue &queue, oneapi::mkl::job jobu, oneapi::mkl::job jobvt,␣

→˓std::int64_t m, std::int64_t n, cl::sycl::buffer<T,1> &a, std::int64_t lda,␣
→˓cl::sycl::buffer<realT,1> &s, cl::sycl::buffer<T,1> &u, std::int64_t ldu,␣
→˓cl::sycl::buffer<T,1> &vt, std::int64_t ldvt, cl::sycl::buffer<T,1> &scratchpad,␣
→˓std::int64_t scratchpad_size)
}

11.2. oneMKL Domains 1382

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

jobu Must be job::allvec, job::somevec, job::overwritevec, or job::novec. Specifies options for comput-
ing all or part of the matrix 𝑈 .

If jobu = job::allvec, all 𝑚 columns of 𝑈 are returned in the buffer u;

if jobu = job::somevec, the first min(𝑚,𝑛) columns of 𝑈 (the left singular vectors) are returned in the buffer
u;

if jobu = job::overwritevec, the first min(𝑚,𝑛) columns of 𝑈 (the left singular vectors) are overwritten
on the buffer a;

if jobu = job::novec, no columns of 𝑈 (no left singular vectors) are computed.

jobvt Must be job::allvec, job::somevec, job::overwritevec, or job::novec. Specifies options for com-
puting all or part of the matrix 𝑉 𝑇 /𝑉 𝐻 .

If jobvt = job::allvec, all 𝑛 columns of 𝑉 𝑇 /𝑉 𝐻 are returned in the buffer vt;

if jobvt = job::somevec, the first min(𝑚,𝑛) columns of 𝑉 𝑇 /𝑉 𝐻 (the left singular vectors) are returned in
the buffer vt;

if jobvt = job::overwritevec, the first min(𝑚,𝑛) columns of 𝑉 𝑇 /𝑉 𝐻 (the left singular vectors) are over-
written on the buffer a;

if jobvt = job::novec, no columns of 𝑉 𝑇 /𝑉 𝐻 (no left singular vectors) are computed.

jobvt and jobu cannot both be job::overwritevec.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

a The buffer a, size (lda,*). The buffer a contains the matrix 𝐴. The second dimension of a must be at least
max(1,𝑚).

lda The leading dimension of a.

ldu The leading dimension of u.

ldvt The leading dimension of vt.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by gesvd_scratchpad_size function.

Output Parameters

a On exit,

If jobu = job::overwritevec, a is overwritten with the first min(𝑚,𝑛) columns of 𝑈 (the left singular
vectors stored columnwise);

If jobvt = job::overwritevec, a is overwritten with the first min(𝑚,𝑛) rows of 𝑉 𝑇 /𝑉 𝐻 (the right singular
vectors stored rowwise);

If jobu ̸= job::overwritevec and jobvt ̸= job::overwritevec, the contents of a are destroyed.

s Buffer containing the singular values, size at least max(1,min(𝑚,𝑛)). Contains the singular values of 𝐴 sorted so
that 𝑠(𝑖) ≥ 𝑠(𝑖 + 1).

u Buffer containing 𝑈 ; the second dimension of u must be at least max(1,𝑚) if jobu = job::allvec, and at least
max(1,min(𝑚,𝑛)) if jobu = job::somevec.

If jobu = job::allvec, u contains the 𝑚×𝑚 orthogonal/unitary matrix 𝑈 .

11.2. oneMKL Domains 1383

oneAPI Specification, Release 1.1-rev-1

If jobu = job::somevec, u contains the first min(𝑚,𝑛) columns of𝑈 (the left singular vectors stored column-
wise).

If jobu = job::novec or job::overwritevec, u is not referenced.

vt Buffer containing 𝑉 𝑇 ; the second dimension of vt must be at least max(1, 𝑛).

If jobvt = job::allvec, vt contains the 𝑛× 𝑛 orthogonal/unitary matrix 𝑉 𝑇 /𝑉 𝐻 .

If jobvt = job::somevec, vt contains the first min(𝑚,𝑛) rows of 𝑉 𝑇 /𝑉 𝐻 (the right singular vectors stored
row-wise).

If jobvt = job::novec or job::overwritevec, vt is not referenced.

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the 𝑖-th parameter had an illegal value.

If info=i, then if bdsqr did not converge, 𝑖 specifies how many superdiagonals of the intermediate
bidiagonal form 𝐵 did not converge to zero, and scratchpad(2:min(m,n)) contains the unconverged
superdiagonal elements of an upper bidiagonal matrix 𝐵 whose diagonal is in s (not necessarily sorted).
𝐵 satisfies 𝐴 = 𝑈𝐵𝑉 𝑇 , so it has the same singular values as 𝐴, and singular vectors related by 𝑈 and
𝑉 𝑇 .

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

gesvd (USM Version)

Description

The routine computes the singular value decomposition (SVD) of a real/complex𝑚×𝑛matrix𝐴, optionally computing
the left and/or right singular vectors. The SVD is written as

𝐴 = 𝑈Σ𝑉 𝑇 for real routines

𝐴 = 𝑈Σ𝑉 𝐻 for complex routines

where Σ is an 𝑚×𝑛 diagonal matrix, 𝑈 is an 𝑚×𝑚 orthogonal/unitary matrix, and 𝑉 is an 𝑛×𝑛 orthogonal/unitary
matrix. The diagonal elements of Σ are the singular values of 𝐴; they are real and non-negative, and are returned in
descending order. The first min(𝑚,𝑛) columns of 𝑈 and 𝑉 are the left and right singular vectors of 𝐴.

11.2. oneMKL Domains 1384

oneAPI Specification, Release 1.1-rev-1

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event gesvd(cl::sycl::queue &queue, oneapi::mkl::job jobu, oneapi::mkl::job␣

→˓jobvt, std::int64_t m, std::int64_t n, T *a, std::int64_t lda, RealT *s, T *u,␣
→˓std::int64_t ldu, T *vt, std::int64_t ldvt, T *scratchpad, std::int64_t scratchpad_
→˓size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue The queue where the routine should be executed.

jobu Must be job::allvec, job::somevec, job::overwritevec, or job::novec. Specifies options for comput-
ing all or part of the matrix 𝑈 .

If jobu = job::allvec, all 𝑚 columns of 𝑈 are returned in the array u;

if jobu = job::somevec, the first min(𝑚,𝑛) columns of 𝑈 (the left singular vectors) are returned in the array
u;

if jobu = job::overwritevec, the first min(𝑚,𝑛) columns of 𝑈 (the left singular vectors) are overwritten
on the array a;

if jobu = job::novec, no columns of 𝑈 (no left singular vectors) are computed.

jobvt Must be job::allvec, job::somevec, job::overwritevec, or job::novec. Specifies options for com-
puting all or part of the matrix 𝑉 𝑇 /𝑉 𝐻 .

If jobvt = job::allvec, all 𝑛 columns of 𝑉 𝑇 /𝑉 𝐻 are returned in the array vt;

if jobvt = job::somevec, the first min(𝑚,𝑛) columns of 𝑉 𝑇 /𝑉 𝐻 (the left singular vectors) are returned in
the array vt;

if jobvt = job::overwritevec, the first min(𝑚,𝑛) columns of 𝑉 𝑇 /𝑉 𝐻 (the left singular vectors) are over-
written on the array a;

if jobvt = job::novec, no columns of 𝑉 𝑇 /𝑉 𝐻 (no left singular vectors) are computed.

jobvt and jobu cannot both be job::overwritevec.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

a Pointer to array a, size (lda,*), containing the matrix 𝐴. The second dimension of a must be at least max(1,𝑚).

lda The leading dimension of a.

ldu The leading dimension of u.

ldvt The leading dimension of vt.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by gesvd_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

11.2. oneMKL Domains 1385

oneAPI Specification, Release 1.1-rev-1

Output Parameters

a On exit,

If jobu = job::overwritevec, a is overwritten with the first min(𝑚,𝑛) columns of 𝑈 (the left singular
vectors stored columnwise);

If jobvt = job::overwritevec, a is overwritten with the first min(𝑚,𝑛) rows of 𝑉 𝑇 /𝑉 𝐻 (the right singular
vectors stored rowwise);

If jobu ̸= job::overwritevec and jobvt ̸= job::overwritevec, the contents of a are destroyed.

s Array containing the singular values, size at least max(1,min(𝑚,𝑛)). Contains the singular values of 𝐴 sorted so
that 𝑠(𝑖) ≥ 𝑠(𝑖 + 1).

u Array containing 𝑈 ; the second dimension of u must be at least max(1,𝑚) if jobu = job::allvec, and at least
max(1,min(𝑚,𝑛)) if jobu = job::somevec.

If jobu = job::allvec, u contains the 𝑚×𝑚 orthogonal/unitary matrix 𝑈 .

If jobu = job::somevec, u contains the first min(𝑚,𝑛) columns of𝑈 (the left singular vectors stored column-
wise).

If jobu = job::novec or job::overwritevec, u is not referenced.

vt Array containing 𝑉 𝑇 ; the second dimension of vt must be at least max(1, 𝑛).

If jobvt = job::allvec, vt contains the 𝑛× 𝑛 orthogonal/unitary matrix 𝑉 𝑇 /𝑉 𝐻 .

If jobvt = job::somevec, vt contains the first min(𝑚,𝑛) rows of 𝑉 𝑇 /𝑉 𝐻 (the right singular vectors stored
row-wise).

If jobvt = job::novec or job::overwritevec, vt is not referenced.

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the 𝑖-th parameter had an illegal value.

If info=i, then if bdsqr did not converge, 𝑖 specifies how many superdiagonals of the intermediate
bidiagonal form 𝐵 did not converge to zero, and scratchpad(2:min(m,n)) contains the unconverged
superdiagonal elements of an upper bidiagonal matrix 𝐵 whose diagonal is in s (not necessarily sorted).
𝐵 satisfies 𝐴 = 𝑈𝐵𝑉 𝑇 , so it has the same singular values as 𝐴, and singular vectors related by 𝑈 and
𝑉 𝑇 .

11.2. oneMKL Domains 1386

oneAPI Specification, Release 1.1-rev-1

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

gesvd_scratchpad_size

Computes size of scratchpad memory required for gesvd function.

Description

gesvd_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to gesvd function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

gesvd_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t gesvd_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::job jobu,␣

→˓oneapi::mkl::job jobvt, std::int64_t m, std::int64_t n, std::int64_t lda, std::int64_t␣
→˓ldu, std::int64_t ldvt)
}

Input Parameters

queue Device queue where calculations by gesvd function will be performed.

jobu Must be job::allvec, job::somevec, job::overwritevec, or job::novec. Specifies options for comput-
ing all or part of the matrix 𝑈 .

If jobu = job::allvec, all 𝑚 columns of 𝑈 are returned in the buffer u;

if jobu = job::somevec, the first min(𝑚,𝑛) columns of 𝑈 (the left singular vectors) are returned in the buffer
v;

if jobu = job::overwritevec, the first min(𝑚,𝑛) columns of 𝑈 (the left singular vectors) are overwritten
on the buffer a;

11.2. oneMKL Domains 1387

oneAPI Specification, Release 1.1-rev-1

if jobu = job::novec, no columns of 𝑈 (no left singular vectors) are computed.

jobvt Must be job::allvec, job::somevec, job::overwritevec, or job::novec. Specifies options for com-
puting all or part of the matrix 𝑉 𝑇 /𝑉 𝐻 .

If jobvt = job::allvec, all 𝑛 columns of 𝑉 𝑇 /𝑉 𝐻 are returned in the buffer vt;

if jobvt = job::somevec, the first min(𝑚,𝑛) columns of 𝑉 𝑇 /𝑉 𝐻 (the left singular vectors) are returned in
the buffer vt;

if jobvt = job::overwritevec, the first min(𝑚,𝑛) columns of 𝑉 𝑇 /𝑉 𝐻 (the left singular vectors) are over-
written on the buffer a;

if jobvt = job::novec, no columns of 𝑉 𝑇 /𝑉 𝐻 (no left singular vectors) are computed.

m The number of rows in the matrix 𝐴 (0 ≤ 𝑚).

n The number of columns in the matrix 𝐴 (0 ≤ 𝑛).

lda The leading dimension of a.

ldu The leading dimension of u.

ldvt The leading dimension of vt.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to gesvd function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

heevd

Computes all eigenvalues and, optionally, all eigenvectors of a complex Hermitian matrix using divide and conquer
algorithm.

11.2. oneMKL Domains 1388

oneAPI Specification, Release 1.1-rev-1

Description

heevd supports the following precisions.

T
std::complex<float>
std::complex<double>

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a complex Hermitian matrix 𝐴. In
other words, it can compute the spectral factorization of 𝐴 as: 𝐴 = 𝑍Λ𝑍𝐻 .

Here Λ is a real diagonal matrix whose diagonal elements are the eigenvalues 𝜆𝑖, and 𝑍 is the (complex) unitary matrix
whose columns are the eigenvectors 𝑧𝑖. Thus,

𝐴𝑧𝑖 = 𝜆𝑖𝑧𝑖 for 𝑖 = 1, 2, ..., 𝑛.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and
eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the QL or QR
algorithm.

heevd (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void heevd(cl::sycl::queue &queue, oneapi::mkl::job jobz, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, butter<T,1> &a, std::int64_t lda, cl::sycl::buffer<realT,1> &w,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue The queue where the routine should be executed.

jobz Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower Must be uplo::upper or uplo::lower.

If upper_lower = job::upper, a stores the upper triangular part of 𝐴.

If upper_lower = job::lower, a stores the lower triangular part of 𝐴.

n The order of the matrix 𝐴 (0 ≤ 𝑛).

a The buffer a, size (lda,*). The buffer a contains the matrix 𝐴. The second dimension of a must be at least
max(1, 𝑛).

lda The leading dimension of a. Must be at least max(1, 𝑛).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by heevd_scratchpad_size function.

11.2. oneMKL Domains 1389

oneAPI Specification, Release 1.1-rev-1

Output Parameters

a If jobz = job::vec, then on exit this buffer is overwritten by the unitary matrix 𝑍 which contains the eigenvectors
of 𝐴.

w Buffer, size at least n. Contains the eigenvalues of the matrix 𝐴 in ascending order.

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the 𝑖-th parameter had an illegal value.

If info=i, and jobz = oneapi::mkl::job::novec, then the algorithm failed to converge; 𝑖 indicates
the number of off-diagonal elements of an intermediate tridiagonal form which did not converge to zero.

If info=i, and jobz = oneapi::mkl::job::vec, then the algorithm failed to compute an eigenvalue
while working on the submatrix lying in rows and columns info/(𝑛 + 1) through mod(info, 𝑛 + 1).

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

heevd (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event heevd(cl::sycl::queue &queue, oneapi::mkl::job jobz, oneapi::mkl::uplo␣

→˓upper_lower, std::int64_t n, butter<T,1> &a, std::int64_t lda, RealT *w, T *scratchpad,
→˓ std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

11.2. oneMKL Domains 1390

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

jobz Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower Must be uplo::upper or uplo::lower.

If upper_lower = job::upper, a stores the upper triangular part of 𝐴.

If upper_lower = job::lower, a stores the lower triangular part of 𝐴.

n The order of the matrix 𝐴 (0 ≤ 𝑛).

a Pointer to array containing 𝐴, size (lda,*).The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a. Must be at least max(1, 𝑛).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by heevd_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a If jobz = job::vec, then on exit this array is overwritten by the unitary matrix 𝑍 which contains the eigenvectors
of 𝐴.

w Pointer to array of size at least 𝑛. Contains the eigenvalues of the matrix 𝐴 in ascending order.

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info=-i, the 𝑖-th parameter had an illegal value.

If info=i, and jobz = oneapi::mkl::job::novec, then the algorithm failed to converge; 𝑖 indicates
the number of off-diagonal elements of an intermediate tridiagonal form which did not converge to zero.

If info=i, and jobz = oneapi::mkl::job::vec, then the algorithm failed to compute an eigenvalue
while working on the submatrix lying in rows and columns info/(𝑛 + 1) through mod(info, 𝑛 + 1).

11.2. oneMKL Domains 1391

oneAPI Specification, Release 1.1-rev-1

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

heevd_scratchpad_size

Computes size of scratchpad memory required for heevd function.

Description

heevd_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to heevd function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

heevd_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t heevd_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::job jobz,␣

→˓oneapi::mkl::uplo upper_lower, std::int64_t n, std::int64_t lda)
}

Input Parameters

queue Device queue where calculations by heevd function will be performed.

jobz Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower Must be uplo::upper or uplo::lower.

If upper_lower = job::upper, a stores the upper triangular part of 𝐴.

If upper_lower = job::lower, a stores the lower triangular part of 𝐴.

n The order of the matrix 𝐴 (0 ≤ 𝑛).

lda The leading dimension of a.

11.2. oneMKL Domains 1392

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to heevd function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

hegvd

Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem using a
divide and conquer method.

Description

hegvd supports the following precisions.

T
std::complex<float>
std::complex<double>

The routine computes all the eigenvalues, and optionally, the eigenvectors of a complex generalized Hermitian positive-
definite eigenproblem, of the form

𝐴𝑥 = 𝜆𝐵𝑥,𝐴𝐵𝑥 = 𝜆𝑥, or 𝐵𝐴𝑥 = 𝜆𝑥.

Here 𝐴 and 𝐵 are assumed to be Hermitian and 𝐵 is also positive definite.

It uses a divide and conquer algorithm.

hegvd (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void hegvd(cl::sycl::queue &queue, std::int64_t itype, oneapi::mkl::job jobz,␣

→˓oneapi::mkl::uplo upper_lower, std::int64_t n, cl::sycl::buffer<T,1> &a, std::int64_t␣
→˓lda, cl::sycl::buffer<T,1> &b, std::int64_t ldb, cl::sycl::buffer<realT,1> &w,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

11.2. oneMKL Domains 1393

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

itype Must be 1 or 2 or 3. Specifies the problem type to be solved:

if itype = 1, the problem type is 𝐴𝑥 = 𝜆𝐵𝑥;

if itype = 2, the problem type is 𝐴𝐵𝑥 = 𝜆𝑥;

if itype = 3, the problem type is 𝐵𝐴𝑥 = 𝜆𝑥.

jobz Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower Must be uplo::upper or uplo::lower.

If upper_lower = uplo::upper, a and b store the upper triangular part of 𝐴 and 𝐵.

If upper_lower = uplo::lower, a and b stores the lower triangular part of 𝐴 and 𝐵.

n The order of the matrices 𝐴 and 𝐵 (0 ≤ 𝑛).

a Buffer, size a(lda,*) contains the upper or lower triangle of the Hermitian matrix 𝐴, as specified by upper_lower.

The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a; at least max(1, 𝑛).

b Buffer, size b(ldb,*) contains the upper or lower triangle of the Hermitian matrix 𝐵, as specified by upper_lower.

The second dimension of b must be at least max(1, 𝑛).

ldb The leading dimension of b; at least max(1, 𝑛).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by hegvd_scratchpad_size function.

Output Parameters

a On exit, if jobz = job::vec, then if info = 0, a contains the matrix 𝑍 of eigenvectors. The eigenvectors are
normalized as follows:

if itype = 1 or itype = 2, 𝑍𝐻𝐵𝑍 = 𝐼;

if itype = 3, 𝑍𝐻𝐵−1𝑍 = 𝐼;

If jobz = job::novec, then on exit the upper triangle (if upper_lower = uplo::upper) or the lower tri-
angle (if upper_lower = uplo::lower) of 𝐴, including the diagonal, is destroyed.

b On exit, if info ≤ 𝑛, the part of b containing the matrix is overwritten by the triangular factor 𝑈 or 𝐿 from the
Cholesky factorization 𝐵 = 𝑈𝐻𝑈or 𝐵 = 𝐿𝐿𝐻 .

w Buffer, size at least 𝑛. If info = 0, contains the eigenvalues of the matrix 𝐴 in ascending order.

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

11.2. oneMKL Domains 1394

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

For info ≤ 𝑛:

If info = 𝑖, and jobz = oneapi::mkl::job::novec, then the algorithm failed to converge;
𝑖 indicates the number of off-diagonal elements of an intermediate tridiagonal form which did
not converge to zero;

If info = 𝑖, and jobz = oneapi::mkl::job::vec, then the algorithm failed to compute an
eigenvalue while working on the submatrix lying in rows and columns info/(𝑛 + 1) through
mod(info, 𝑛 + 1).

For info > 𝑛:

If info = 𝑛+𝑖, for 1 ≤ 𝑖 ≤ 𝑛, then the leading minor of order 𝑖 of𝐵 is not positive-definite. The
factorization of 𝐵 could not be completed and no eigenvalues or eigenvectors were computed.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

hegvd (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event hegvd(cl::sycl::queue &queue, std::int64_t itype, oneapi::mkl::job␣

→˓jobz, oneapi::mkl::uplo upper_lower, std::int64_t n, T *a, std::int64_t lda, T *b,␣
→˓std::int64_t ldb, RealT *w, T *scratchpad, std::int64_t scratchpad_size, const␣
→˓std::vector<cl::sycl::event> &events = {})
}

11.2. oneMKL Domains 1395

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

itype Must be 1 or 2 or 3. Specifies the problem type to be solved:

if itype = 1, the problem type is 𝐴𝑥 = 𝜆𝐵𝑥;

if itype = 2, the problem type is 𝐴𝐵𝑥 = 𝜆𝑥;

if itype = 3, the problem type is 𝐵𝐴𝑥 = 𝜆𝑥.

jobz Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower Must be uplo::upper or uplo::lower.

If upper_lower = uplo::upper, a and b store the upper triangular part of 𝐴 and 𝐵.

If upper_lower = uplo::lower, a and b stores the lower triangular part of 𝐴 and 𝐵.

n The order of the matrices 𝐴 and 𝐵 (0 ≤ 𝑛).

a Pointer to array of size a(lda,*) containing the upper or lower triangle of the Hermitian matrix 𝐴, as specified by
upper_lower. The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a; at least max(1, 𝑛).

b Pointer to array of size b(ldb,*) containing the upper or lower triangle of the Hermitian matrix 𝐵, as specified by
upper_lower. The second dimension of b must be at least max(1, 𝑛).

ldb The leading dimension of b; at least max(1, 𝑛).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by hegvd_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a On exit, if jobz = job::vec, then if info = 0, a contains the matrix 𝑍 of eigenvectors. The eigenvectors are
normalized as follows:

if itype = 1 or itype = 2, 𝑍𝐻𝐵𝑍 = 𝐼;

if itype = 3, 𝑍𝐻𝐵−1𝑍 = 𝐼;

If jobz = job::novec, then on exit the upper triangle (if upper_lower = uplo::upper) or the lower tri-
angle (if upper_lower = uplo::lower) of 𝐴, including the diagonal, is destroyed.

b On exit, if info ≤ 𝑛, the part of b containing the matrix is overwritten by the triangular factor 𝑈 or 𝐿 from the
Cholesky factorization 𝐵 = 𝑈𝐻𝑈or 𝐵 = 𝐿𝐿𝐻 .

w Pointer to array of size at least n. If info = 0, contains the eigenvalues of the matrix 𝐴 in ascending order.

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

11.2. oneMKL Domains 1396

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

For info ≤ 𝑛:

If info = 𝑖, and jobz = oneapi::mkl::job::novec, then the algorithm failed to converge;
𝑖 indicates the number of off-diagonal elements of an intermediate tridiagonal form which did
not converge to zero;

If info = 𝑖, and jobz = oneapi::mkl::job::vec, then the algorithm failed to compute an
eigenvalue while working on the submatrix lying in rows and columns info/(𝑛 + 1) through
mod(info, 𝑛 + 1).

For info > 𝑛:

If info = 𝑛+𝑖, for 1 ≤ 𝑖 ≤ 𝑛, then the leading minor of order 𝑖 of𝐵 is not positive-definite. The
factorization of 𝐵 could not be completed and no eigenvalues or eigenvectors were computed.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

hegvd_scratchpad_size

Computes size of scratchpad memory required for hegvd function.

11.2. oneMKL Domains 1397

oneAPI Specification, Release 1.1-rev-1

Description

hegvd_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to hegvd function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

hegvd_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t hegvd_scratchpad_size(cl::sycl::queue &queue, std::int64_t itype,␣

→˓oneapi::mkl::job jobz, oneapi::mkl::uplo upper_lower, std::int64_t n, std::int64_t lda,
→˓ std::int64_t ldb)
}

Input Parameters

queue Device queue where calculations by hegvd function will be performed.

itype Must be 1 or 2 or 3. Specifies the problem type to be solved:

if itype = 1, the problem type is 𝐴𝑥 = 𝜆𝐵𝑥;

if itype = 2, the problem type is 𝐴𝐵𝑥 = 𝜆𝑥;

if itype = 3, the problem type is 𝐵𝐴𝑥 = 𝜆𝑥.

jobz Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower Must be uplo::upper or uplo::lower.

If upper_lower = uplo::upper, a and b store the upper triangular part of 𝐴 and 𝐵.

If upper_lower = uplo::lower, a and b store the lower triangular part of 𝐴 and 𝐵.

n The order of the matrices 𝐴 and 𝐵 (0 ≤ 𝑛).

lda The leading dimension of a. Currently lda is not referenced in this function.

ldb The leading dimension of b. Currently ldb is not referenced in this function.

11.2. oneMKL Domains 1398

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to hegvd function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

hetrd

Reduces a complex Hermitian matrix to tridiagonal form.

Description

hetrd supports the following precisions.

Routine name T
chetrd std::complex<float>
zhetrd std::complex<double>

The routine reduces a complex Hermitian matrix 𝐴 to symmetric tridiagonal form 𝑇 by a unitary similarity transfor-
mation: 𝐴 = 𝑄𝑇𝑄𝐻 . The unitary matrix 𝑄 is not formed explicitly but is represented as a product of 𝑛−1 elementary
reflectors. Routines are provided to work with 𝑄 in this representation.

hetrd (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void hetrd(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<realT,1> &d,␣
→˓cl::sycl::buffer<realT,1> &e, cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &
→˓scratchpad, std::int64_t scratchpad_size)
}

11.2. oneMKL Domains 1399

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Must be uplo::upper or uplo::lower.

If upper_lower = uplo::upper, a stores the upper triangular part of 𝐴.

If upper_lower = uplo::lower, a stores the lower triangular part of 𝐴.

n The order of the matrices 𝐴 (0 ≤ 𝑛).

a Buffer, size (lda,*). The buffer a contains either the upper or lower triangle of the Hermitian matrix 𝐴, as specified
by upper_lower.

The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a; at least max(1, 𝑛)

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by hetrd_scratchpad_size function.

Output Parameters

a On exit,

if upper_lower = uplo::upper, the diagonal and first superdiagonal of 𝐴 are overwritten by the correspond-
ing elements of the tridiagonal matrix 𝑇 , and the elements above the first superdiagonal, with the buffer tau,
represent the orthogonal matrix 𝑄 as a product of elementary reflectors;

if upper_lower = uplo::lower, the diagonal and first subdiagonal of 𝐴 are overwritten by the corresponding
elements of the tridiagonal matrix 𝑇 , and the elements below the first subdiagonal, with the buffer tau, represent
the orthogonal matrix 𝑄 as a product of elementary reflectors.

d Buffer containing the diagonal elements of the matrix 𝑇 . The dimension of d must be at least max(1, 𝑛).

e Buffer containing the off diagonal elements of the matrix 𝑇 . The dimension of e must be at least max(1, 𝑛− 1).

tau Buffer, size at least max(1, 𝑛 − 1). Stores (𝑛 − 1) scalars that define elementary reflectors in decomposition of
the unitary matrix 𝑄 in a product of 𝑛− 1 elementary reflectors.

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

11.2. oneMKL Domains 1400

oneAPI Specification, Release 1.1-rev-1

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

hetrd (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event hetrd(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, T *a, std::int64_t lda, RealT *d, RealT *e, T *tau, T *scratchpad,␣
→˓std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Must be uplo::upper or uplo::lower.

If upper_lower = uplo::upper, a stores the upper triangular part of 𝐴.

If upper_lower = uplo::lower, a stores the lower triangular part of 𝐴.

n The order of the matrices 𝐴 (0 ≤ 𝑛).

a The pointer to matrix 𝐴, size (lda,*). Contains either the upper or lower triangle of the Hermitian matrix 𝐴, as
specified by upper_lower. The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a; at least max(1, 𝑛)

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by hetrd_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a On exit,

if upper_lower = uplo::upper, the diagonal and first superdiagonal of 𝐴 are overwritten by the correspond-
ing elements of the tridiagonal matrix 𝑇 , and the elements above the first superdiagonal, with the array tau,
represent the orthogonal matrix 𝑄 as a product of elementary reflectors;

if upper_lower = uplo::lower, the diagonal and first subdiagonal of 𝐴 are overwritten by the corresponding
elements of the tridiagonal matrix 𝑇 , and the elements below the first subdiagonal, with the array tau, represent
the orthogonal matrix 𝑄 as a product of elementary reflectors.

d Pointer to diagonal elements of the matrix 𝑇 . The dimension of d must be at least max(1, 𝑛).

e Pointer to off diagonal elements of the matrix 𝑇 . The dimension of e must be at least max(1, 𝑛− 1).

tau Pointer to array of size at least max(1, 𝑛− 1). Stores (𝑛− 1) scalars that define elementary reflectors in decom-
position of the unitary matrix 𝑄 in a product of 𝑛− 1 elementary reflectors.

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

11.2. oneMKL Domains 1401

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

hetrd_scratchpad_size

Computes size of scratchpad memory required for hetrd function.

Description

hetrd_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to hetrd function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

11.2. oneMKL Domains 1402

oneAPI Specification, Release 1.1-rev-1

hetrd_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t hetrd_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, std::int64_t lda)
}

Input Parameters

queue Device queue where calculations by hetrd function will be performed.

upper_lower Must be uplo::upper or uplo::lower.

If upper_lower = uplo::upper, a stores the upper triangular part of 𝐴 and 𝐵.

If upper_lower = uplo::lower, a stores the lower triangular part of 𝐴.

n The order of the matrices 𝐴 and 𝐵 (0 ≤ 𝑛).

lda The leading dimension of a. Currently, lda is not referenced in this function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to hetrd function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

orgbr

Generates the real orthogonal matrix 𝑄 or 𝑃𝑇 determined by gebrd.

orgbr supports the following precisions.

T
float
double

11.2. oneMKL Domains 1403

oneAPI Specification, Release 1.1-rev-1

Description

The routine generates the whole or part of the orthogonal matrices 𝑄 and 𝑃𝑇 formed by the routines gebrd. All valid
combinations of arguments are described in Input parameters. In most cases you need the following:

To compute the whole 𝑚×𝑚 matrix 𝑄:

orgbr(queue, generate::q, m, m, n, a, ...)

(note that the array a must have at least 𝑚 columns).

To form the 𝑛 leading columns of 𝑄 if 𝑚 > 𝑛:

orgbr(queue, generate::q, m, n, n, a, ...)

To compute the whole 𝑛× 𝑛 matrix 𝑃𝑇 :

orgbr(queue, generate::p, n, n, m, a, ...)

(note that the array a must have at least 𝑛 rows).

To form the 𝑚 leading rows of 𝑃𝑇 if 𝑚 < 𝑛:

orgbr(queue, generate::p, m, n, m, a, ...)

orgbr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void orgbr(cl::sycl::queue &queue, oneapi::mkl::generate gen, std::int64_t m,␣

→˓std::int64_t n, std::int64_t k, cl::sycl::buffer<T,1> &a, std::int64_t lda,␣
→˓cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_
→˓size)
}

Input Parameters

queue The queue where the routine should be executed.

gen Must be generate::q or generate::p.

If gen = generate::q, the routine generates the matrix 𝑄.

If gen = generate::p, the routine generates the matrix 𝑃𝑇 .

m The number of rows in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑚).

If gen = generate::q, 𝑚 ≤ 𝑛 ≤ min(𝑚, 𝑘).

If gen = generate::p, 𝑛 ≤ 𝑚 ≤ min(𝑛, 𝑘).

n The number of rows in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑛). See m for constraints.

k If gen = generate::q, the number of columns in the original 𝑚× 𝑘 matrix reduced by gebrd.

If gen = generate::p, the number of rows in the original 𝑘 × 𝑛 matrix reduced by gebrd.

11.2. oneMKL Domains 1404

oneAPI Specification, Release 1.1-rev-1

a The buffer a as returned by gebrd.

lda The leading dimension of a.

tau Buffer, size min(𝑚, 𝑘) if gen = generate::q, size min(𝑛, 𝑘) if gen = generate::p. Scalar factor of the
elementary reflectors, as returned by gebrd in the array tauq or taup.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by orgbr_scratchpad_size function.

Output Parameters

a Overwritten by n leading columns of the 𝑚×𝑚 orthogonal matrix 𝑄 or 𝑃𝑇 (or the leading rows or columns thereof)
as specified by gen, m, and n.

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

orgbr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event orgbr(cl::sycl::queue &queue, oneapi::mkl::generate gen, std::int64_t␣

→˓m, std::int64_t n, std::int64_t k, T *a, std::int64_t lda, T *tau, T *scratchpad,␣
→˓std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

11.2. oneMKL Domains 1405

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

gen Must be generate::q or generate::p.

If gen = generate::q, the routine generates the matrix 𝑄.

If gen = generate::p, the routine generates the matrix 𝑃𝑇 .

m The number of rows in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑚).

If gen = generate::q, 𝑚 ≤ 𝑛 ≤ min(𝑚, 𝑘).

If gen = generate::p, 𝑛 ≤ 𝑚 ≤ min(𝑛, 𝑘).

n The number of rows in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑛). See m for constraints.

k If gen = generate::q, the number of columns in the original 𝑚× 𝑘 matrix reduced by gebrd.

If gen = generate::p, the number of rows in the original 𝑘 × 𝑛 matrix reduced by gebrd.

a Pointer to array a as returned by gebrd.

lda The leading dimension of a.

tau Pointer to array of size min(𝑚, 𝑘) if gen = generate::q, size min(𝑛, 𝑘) if gen = generate::p. Scalar factor
of the elementary reflectors, as returned by gebrd in the array tauq or taup.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by orgbr_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a Overwritten by n leading columns of the 𝑚×𝑚 orthogonal matrix 𝑄 or 𝑃𝑇 (or the leading rows or columns thereof)
as specified by gen, m, and n.

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

11.2. oneMKL Domains 1406

oneAPI Specification, Release 1.1-rev-1

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

orgbr_scratchpad_size

Computes size of scratchpad memory required for orgbr function.

orgbr_scratchpad_size supports the following precisions.

T
float
double

Description

Computes the number of elements of type T the scratchpad memory to be passed to orgbr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

orgbr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t orgbr_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::generate gen,␣

→˓std::int64_t m, std::int64_t n, std::int64_t k, std::int64_t lda, std::int64_t &
→˓scratchpad_size)
}

Input Parameters

queue Device queue where calculations by orgbr function will be performed.

gen Must be generate::q or generate::p.

If gen = generate::q, the routine generates the matrix 𝑄.

If gen = generate::p, the routine generates the matrix 𝑃𝑇 .

m The number of rows in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑚).

If gen = generate::q, 𝑚 ≤ 𝑛 ≤ min(𝑚, 𝑘).

If gen = generate::p, 𝑛 ≤ 𝑚 ≤ min(𝑛, 𝑘).

n The number of rows in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑛). See m for constraints.

11.2. oneMKL Domains 1407

oneAPI Specification, Release 1.1-rev-1

k If gen = generate::q, the number of columns in the original 𝑚× 𝑘 matrix returned by gebrd.

If gen = generate::p, the number of rows in the original 𝑘 × 𝑛 matrix returned by gebrd.

lda The leading dimension of a.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to orgbr function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

orgtr

Generates the real orthogonal matrix 𝑄 determined by sytrd.

Description

orgtr supports the following precisions.

T
float
double

The routine explicitly generates the 𝑛×𝑛 orthogonal matrix 𝑄 formed by sytrd when reducing a real symmetric matrix
𝐴 to tridiagonal form: 𝐴 = 𝑄𝑇𝑄𝑇 . Use this routine after a call to sytrd.

orgtr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void orgtr(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &tau,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

11.2. oneMKL Domains 1408

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Must be uplo::upper or uplo::lower. Uses the same upper_lower as supplied to sytrd.

n The order of the matrix 𝑄 (0 ≤ 𝑛).

a The buffer a as returned by sytrd. The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a (𝑛 ≤ lda).

tau The buffer tau as returned by sytrd. The dimension of tau must be at least max(1, 𝑛− 1).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by orgtr_scratchpad_size function.

Output Parameters

a Overwritten by the orthogonal matrix 𝑄.

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

orgtr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event orgtr(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, T *a, std::int64_t lda, T *tau, T *scratchpad, std::int64_t scratchpad_
→˓size, const std::vector<cl::sycl::event> &events = {})
}

11.2. oneMKL Domains 1409

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Must be uplo::upper or uplo::lower. Uses the same upper_lower as supplied to sytrd.

n The order of the matrix 𝑄 (0 ≤ 𝑛).

a The pointer to a as returned by sytrd. The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a (𝑛 ≤ lda).

tau The pointer to tau as returned by sytrd. The dimension of tau must be at least max(1, 𝑛− 1).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by orgtr_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a Overwritten by the orthogonal matrix 𝑄.

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

11.2. oneMKL Domains 1410

oneAPI Specification, Release 1.1-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

orgtr_scratchpad_size

Computes size of scratchpad memory required for orgtr function.

Description

orgtr_scratchpad_size supports the following precisions.

T
float
double

Computes the number of elements of type T the scratchpad memory to be passed to orgtr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

orgtr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t orgtr_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, std::int64_t lda)
}

Input Parameters

queue Device queue where calculations by orgtr function will be performed.

upper_lower Must be uplo::upper or uplo::lower. Uses the same upper_lower as supplied to sytrd.

n The order of the matrix 𝑄 (0 ≤ 𝑛).

lda The leading dimension of a (𝑛 ≤ lda).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

11.2. oneMKL Domains 1411

oneAPI Specification, Release 1.1-rev-1

Return Value

The number of elements of type T the scratchpad memory to be passed to orgtr function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

ormtr

Multiplies a real matrix by the real orthogonal matrix 𝑄 determined by sytrd.

Description

ormtr supports the following precisions.

T
float
double

The routine multiplies a real matrix 𝐶 by 𝑄 or 𝑄𝑇 , where 𝑄 is the orthogonal matrix 𝑄 formed
by:ref:onemkl_lapack_sytrd when reducing a real symmetric matrix 𝐴 to tridiagonal form: 𝐴 = 𝑄𝑇𝑄𝑇 . Use this
routine after a call to sytrd.

Depending on the parameters side and trans, the routine can form one of the matrix products 𝑄𝐶, 𝑄𝑇𝐶, 𝐶𝑄, or 𝐶𝑄𝑇

(overwriting the result on 𝐶).

ormtr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void ormtr(cl::sycl::queue &queue, oneapi::mkl::side side, oneapi::mkl::uplo upper_

→˓lower, oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, cl::sycl::buffer
→˓<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &c,␣
→˓std::int64_t ldc, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

In the descriptions below, r denotes the order of 𝑄:

𝑟 = 𝑚 if side = side::left
𝑟 = 𝑛 if side = side::right

queue The queue where the routine should be executed.

side Must be either side::left or side::right.

If side = side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left.

If side = side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

upper_lower Must be either uplo::upper or uplo::lower. Uses the same upper_lower as supplied to sytrd.

11.2. oneMKL Domains 1412

oneAPI Specification, Release 1.1-rev-1

trans Must be either transpose::nontrans or transpose::trans.

If trans = transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = transpose::trans, the routine multiplies 𝐶 by 𝑄𝑇 .

m The number of rows in the matrix 𝐶 (𝑚 ≥ 0).

n The number of columns in the matrix 𝐶 (𝑛 ≥ 0).

a The buffer a as returned by sytrd.

lda The leading dimension of a (max(1, 𝑟) ≤ lda).

tau The buffer tau as returned bya sytrd. The dimension of tau must be at least max(1, 𝑟 − 1).

c The buffer c contains the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc The leading dimension of c (max(1, 𝑛) ≤ ldc).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by ormtr_scratchpad_size function.

Output Parameters

c Overwritten by the product 𝑄𝐶, 𝑄𝑇𝐶, 𝐶𝑄, or 𝐶𝑄𝑇 (as specified by side and trans).

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

11.2. oneMKL Domains 1413

oneAPI Specification, Release 1.1-rev-1

ormtr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event ormtr(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, std::int64_t m,␣
→˓std::int64_t n, T *a, std::int64_t lda, T *tau, T *c, std::int64_t ldc, T *scratchpad,␣
→˓std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

In the descriptions below, r denotes the order of 𝑄:

𝑟 = 𝑚 if side = side::left
𝑟 = 𝑛 if side = side::right

queue The queue where the routine should be executed.

side Must be either side::left or side::right.

If side = side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left.

If side = side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

upper_lower Must be either uplo::upper or uplo::lower. Uses the same upper_lower as supplied to sytrd.

trans Must be either transpose::nontrans or transpose::trans.

If trans = transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = transpose::trans, the routine multiplies 𝐶 by 𝑄𝑇 .

m The number of rows in the matrix 𝐶 (𝑚 ≥ 0).

n The number of columns in the matrix 𝐶 (𝑛 ≥ 0).

a The pointer to a as returned by sytrd.

lda The leading dimension of a (max(1, 𝑟) ≤ lda).

tau The buffer tau as returned by sytrd. The dimension of tau must be at least max(1, 𝑟 − 1).

c The pointer to memory containing the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc The leading dimension of c (max(1, 𝑛) ≤ ldc).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by ormtr_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

11.2. oneMKL Domains 1414

oneAPI Specification, Release 1.1-rev-1

Output Parameters

c Overwritten by the product 𝑄𝐶, 𝑄𝑇𝐶, 𝐶𝑄, or 𝐶𝑄𝑇 (as specified by side and trans).

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

ormtr_scratchpad_size

Computes size of scratchpad memory required for ormtr function.

Description

ormtr_scratchpad_size supports the following precisions.

T
float
double

Computes the number of elements of type T the scratchpad memory to be passed to ormtr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

11.2. oneMKL Domains 1415

oneAPI Specification, Release 1.1-rev-1

ormtr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t ormtr_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, std::int64_t m,␣
→˓std::int64_t n, std::int64_t lda, std::int64_t ldc)
}

Input Parameters

In the descriptions below, r denotes the order of 𝑄:

𝑟 = 𝑚 if side = side::left
𝑟 = 𝑛 if side = side::right

queue Device queue where calculations by ormtr function will be performed.

side Must be either side::left or side::right.

If side = side::left, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the left.

If side = side::right, 𝑄 or 𝑄𝑇 is applied to 𝐶 from the right.

upper_lower Must be either uplo::upper or uplo::lower. Uses the same upper_lower as supplied to sytrd.

trans Must be either transpose::nontrans or transpose::trans.

If trans = transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans = transpose::trans, the routine multiplies 𝐶 by 𝑄𝑇 .

m The number of rows in the matrix 𝐶 (𝑚 ≥ 0).

n The number of rows in the matrix 𝐶 (𝑛 ≥ 0).

lda The leading dimension of a (max(1, 𝑟) ≤ lda).

ldc The leading dimension of c (max(1, 𝑛) ≤ ldc).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

11.2. oneMKL Domains 1416

oneAPI Specification, Release 1.1-rev-1

Return Value

The number of elements of type T the scratchpad memory to be passed to ormtr function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

syevd

Computes all eigenvalues and, optionally, all eigenvectors of a real symmetric matrix using divide and conquer algo-
rithm.

Description

syevd supports the following precisions.

T
float
double

The routine computes all the eigenvalues, and optionally all the eigenvectors, of a real symmetric matrix 𝐴. In other
words, it can compute the spectral factorization of 𝐴 as: 𝐴 = 𝑍𝜆𝑍𝑇 .

Here Λ is a diagonal matrix whose diagonal elements are the eigenvalues 𝜆𝑖, and 𝑍 is the orthogonal matrix whose
columns are the eigenvectors 𝑧𝑖. Thus,

𝐴𝑧𝑖 = 𝜆𝑖𝑧𝑖 for 𝑖 = 1, 2, ..., 𝑛.

If the eigenvectors are requested, then this routine uses a divide and conquer algorithm to compute eigenvalues and
eigenvectors. However, if only eigenvalues are required, then it uses the Pal-Walker-Kahan variant of the QL or QR
algorithm.

syevd (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void syevd(cl::sycl::queue &queue, jobz jobz, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &w,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue The queue where the routine should be executed.

jobz Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower Must be uplo::upper or uplo::lower.

If upper_lower = job::upper, a stores the upper triangular part of 𝐴.

If upper_lower = job::lower, a stores the lower triangular part of 𝐴.

11.2. oneMKL Domains 1417

oneAPI Specification, Release 1.1-rev-1

n The order of the matrix 𝐴 (0 ≤ 𝑛).

a The buffer a, size (lda,*). The buffer a contains the matrix 𝐴. The second dimension of a must be at least
max(1, 𝑛).

lda The leading dimension of a. Must be at least max(1, 𝑛).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by syevd_scratchpad_size function.

Output Parameters

a If jobz = job::vec, then on exit this buffer is overwritten by the orthogonal matrix 𝑍 which contains the eigen-
vectors of 𝐴.

w Buffer, size at least 𝑛. Contains the eigenvalues of the matrix 𝐴 in ascending order.

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, and jobz = oneapi::mkl::job::novec, then the algorithm failed to converge; 𝑖 indicates
the number of off-diagonal elements of an intermediate tridiagonal form which did not converge to zero.

If info = 𝑖, and jobz = oneapi::mkl::job::vec, then the algorithm failed to compute an eigenvalue
while working on the submatrix lying in rows and columns info/(𝑛 + 1) through mod(info, 𝑛 + 1).

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

11.2. oneMKL Domains 1418

oneAPI Specification, Release 1.1-rev-1

syevd (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event syevd(cl::sycl::queue &queue, jobz jobz, oneapi::mkl::uplo upper_lower,

→˓ std::int64_t n, T *a, std::int64_t lda, T *w, T *scratchpad, std::int64_t scratchpad_
→˓size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue The queue where the routine should be executed.

jobz Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower Must be uplo::upper or uplo::lower.

If upper_lower = job::upper, a stores the upper triangular part of 𝐴.

If upper_lower = job::lower, a stores the lower triangular part of 𝐴.

n The order of the matrix 𝐴 (0 ≤ 𝑛).

a Pointer to array containing 𝐴, size (lda,*). The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a. Must be at least max(1, 𝑛).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by syevd_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a If jobz = job::vec, then on exit this array is overwritten by the orthogonal matrix 𝑍 which contains the eigen-
vectors of 𝐴.

w Pointer to array of size at least 𝑛. Contains the eigenvalues of the matrix 𝐴 in ascending order.

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

11.2. oneMKL Domains 1419

oneAPI Specification, Release 1.1-rev-1

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info = 𝑖, and jobz = oneapi::mkl::job::novec, then the algorithm failed to converge; 𝑖 indicates
the number of off-diagonal elements of an intermediate tridiagonal form which did not converge to zero.

If info = 𝑖, and jobz = oneapi::mkl::job::vec, then the algorithm failed to compute an eigenvalue
while working on the submatrix lying in rows and columns info/(𝑛 + 1) through mod(info, 𝑛 + 1).

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

syevd_scratchpad_size

Computes size of scratchpad memory required for syevd function.

Description

syevd_scratchpad_size supports the following precisions.

T
float
double

Computes the number of elements of type T the scratchpad memory to be passed to syevd function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

syevd_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t syevd_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::job jobz,␣

→˓oneapi::mkl::uplo upper_lower, std::int64_t n, std::int64_t lda)
}

11.2. oneMKL Domains 1420

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue Device queue where calculations by syevd function will be performed.

jobz Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower Must be uplo::upper or uplo::lower.

If upper_lower = job::upper, a stores the upper triangular part of 𝐴.

If upper_lower = job::lower, a stores the lower triangular part of 𝐴.

n The order of the matrix 𝐴 (0 ≤ 𝑛).

lda The leading dimension of a. Currently lda is not referenced in this function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to syevd function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

sygvd

Computes all eigenvalues and, optionally, eigenvectors of a real generalized symmetric definite eigenproblem using a
divide and conquer method.

Description

sygvd supports the following precisions.

T
float
double

The routine computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite
eigenproblem, of the form

𝐴𝑥 = 𝜆𝐵𝑥, 𝐴𝐵𝑥 = 𝜆𝑥, or 𝐵𝐴𝑥 = 𝜆𝑥 .

Here 𝐴 and 𝐵 are assumed to be symmetric and 𝐵 is also positive definite.

11.2. oneMKL Domains 1421

oneAPI Specification, Release 1.1-rev-1

It uses a divide and conquer algorithm.

sygvd (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void sygvd(cl::sycl::queue &queue, std::int64_t itype, oneapi::mkl::job jobz,␣

→˓oneapi::mkl::uplo upper_lower, std::int64_t n, cl::sycl::buffer<T,1> &a, std::int64_t␣
→˓lda, cl::sycl::buffer<T,1> &b, std::int64_t ldb, cl::sycl::buffer<T,1> &w,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue The queue where the routine should be executed.

itype Must be 1 or 2 or 3. Specifies the problem type to be solved:

if itype = 1, the problem type is 𝐴𝑥 = 𝜆𝐵𝑥;

if itype = 2, the problem type is 𝐴𝐵𝑥 = 𝜆𝑥;

if itype = 3, the problem type is 𝐵𝐴𝑥 = 𝜆𝑥.

jobz Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower Must be uplo::upper or uplo::lower.

If upper_lower = job::upper, a and b store the upper triangular part of 𝐴 and 𝐵.

If upper_lower = job::lower, a and b stores the lower triangular part of 𝐴 and 𝐵.

n The order of the matrices 𝐴 and 𝐵 (0 ≤ 𝑛).

a Buffer, size a(lda,*) contains the upper or lower triangle of the symmetric matrix𝐴, as specified by upper_lower.
The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a; at least max(1, 𝑛).

b Buffer, size b (ldb,*) contains the upper or lower triangle of the symmetric matrix𝐵, as specified by upper_lower.
The second dimension of b must be at least max(1, 𝑛).

ldb The leading dimension of b; at least max(1, 𝑛).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by sygvd_scratchpad_size function.

11.2. oneMKL Domains 1422

oneAPI Specification, Release 1.1-rev-1

Output Parameters

a On exit, if jobz = job::vec, then if info = 0, a contains the matrix 𝑍 of eigenvectors. The eigenvectors are
normalized as follows:

if itype = 1 or 2 , 𝑍𝑇𝐵𝑍 = 𝐼;

if itype = 3 , 𝑍𝑇𝐵−1𝑍 = 𝐼;

If jobz = job::novec, then on exit the upper triangle (if upper_lower = uplo::upper) or the lower tri-
angle (if upper_lower = uplo::lower) of 𝐴, including the diagonal, is destroyed.

b On exit, if info ≤ 𝑛, the part of b containing the matrix is overwritten by the triangular factor 𝑈 or 𝐿 from the
Cholesky factorization 𝐵 = 𝑈𝑇𝑈 or 𝐵 = 𝐿𝐿𝑇 .

w Buffer, size at least 𝑛. If info = 0, contains the eigenvalues of the matrix 𝐴 in ascending order.

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

For info ≤ 𝑛:

If info = 𝑖, and jobz = oneapi::mkl::job::novec, then the algorithm failed to converge;
𝑖 indicates the number of off-diagonal elements of an intermediate tridiagonal form which did
not converge to zero.

If info = 𝑖, and jobz = oneapi::mkl::job::vec, then the algorithm failed to compute an
eigenvalue while working on the submatrix lying in rows and columns info/(𝑛 + 1) through
mod(info, 𝑛 + 1).

For info > 𝑛:

If info = 𝑛+𝑖, for 1 ≤ 𝑖 ≤ 𝑛, then the leading minor of order 𝑖 of𝐵 is not positive-definite. The
factorization of 𝐵 could not be completed and no eigenvalues or eigenvectors were computed.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

11.2. oneMKL Domains 1423

oneAPI Specification, Release 1.1-rev-1

sygvd (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event sygvd(cl::sycl::queue &queue, std::int64_t itype, oneapi::mkl::job␣

→˓jobz, oneapi::mkl::uplo upper_lower, std::int64_t n, T *a, std::int64_t lda, T *b,␣
→˓std::int64_t ldb, T *w, T *scratchpad, std::int64_t scratchpad_size, const std::vector
→˓<cl::sycl::event> &events = {})
}

Input Parameters

queue The queue where the routine should be executed.

itype Must be 1 or 2 or 3. Specifies the problem type to be solved:

if itype = 1, the problem type is 𝐴𝑥 = 𝜆𝐵𝑥;

if itype = 2, the problem type is 𝐴𝐵𝑥 = 𝜆𝑥;

if itype = 3, the problem type is 𝐵𝐴𝑥 = 𝜆𝑥.

jobz Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower Must be uplo::upper or uplo::lower.

If upper_lower = job::upper, a and b store the upper triangular part of 𝐴 and 𝐵.

If upper_lower = job::lower, a and b stores the lower triangular part of 𝐴 and 𝐵.

n The order of the matrices 𝐴 and 𝐵 (0 ≤ 𝑛).

a Pointer to array of size a(lda,*) containing the upper or lower triangle of the symmetric matrix 𝐴, as specified by
upper_lower. The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a; at least max(1, 𝑛).

b Pointer to array of size b (ldb,*) contains the upper or lower triangle of the symmetric matrix 𝐵, as specified by
upper_lower. The second dimension of b must be at least max(1, 𝑛).

ldb The leading dimension of b; at least max(1, 𝑛).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by sygvd_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

11.2. oneMKL Domains 1424

oneAPI Specification, Release 1.1-rev-1

Output Parameters

a On exit, if jobz = job::vec, then if info = 0, 𝑎 contains the matrix 𝑍 of eigenvectors. The eigenvectors are
normalized as follows:

if itype = 1 or 2, 𝑍𝑇𝐵𝑍 = 𝐼;

if itype = 3, 𝑍𝑇𝐵−1𝑍 = 𝐼;

If jobz = job::novec, then on exit the upper triangle (if upper_lower = uplo::upper) or the lower tri-
angle (if upper_lower = uplo::lower) of 𝐴, including the diagonal, is destroyed.

b On exit, if info ≤ 𝑛, the part of b containing the matrix is overwritten by the triangular factor 𝑈 or 𝐿 from the
Cholesky factorization 𝐵 = 𝑈𝑇𝑈 or 𝐵 = 𝐿𝐿𝑇 .

w Pointer to array of size at least n. If info = 0, contains the eigenvalues of the matrix 𝐴 in ascending order.

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

For info ≤ 𝑛:

If info = 𝑖, and jobz = oneapi::mkl::job::novec, then the algorithm failed to converge;
𝑖 indicates the number of off-diagonal elements of an intermediate tridiagonal form which did
not converge to zero.

If info = 𝑖, and jobz = oneapi::mkl::job::vec, then the algorithm failed to compute an
eigenvalue while working on the submatrix lying in rows and columns info/(𝑛 + 1) through
mod(info, 𝑛 + 1).

For info > 𝑛:

If info = 𝑛+𝑖, for 1 ≤ 𝑖 ≤ 𝑛, then the leading minor of order 𝑖 of𝐵 is not positive-definite. The
factorization of 𝐵 could not be completed and no eigenvalues or eigenvectors were computed.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

11.2. oneMKL Domains 1425

oneAPI Specification, Release 1.1-rev-1

Return Values

Output event to wait on to ensure computation is complete

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

sygvd_scratchpad_size

Computes size of scratchpad memory required for sygvd function.

Description

sygvd_scratchpad_size` supports the following precisions.

T
float
double

Computes the number of elements of type T the scratchpad memory to be passed to sygvd function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

sygvd_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t sygvd_scratchpad_size(cl::sycl::queue &queue, std::int64_t itype,␣

→˓oneapi::mkl::job jobz, oneapi::mkl::uplo upper_lower, std::int64_t n, std::int64_t lda,
→˓ std::int64_t ldb)
}

Input Parameters

queue Device queue where calculations by sygvd function will be performed.

itype Must be 1 or 2 or 3. Specifies the problem type to be solved:

if itype = 1, the problem type is 𝐴𝑥 = 𝜆𝐵𝑥;

if itype = 2, the problem type is 𝐴𝐵𝑥 = 𝜆𝑥;

if itype = 3, the problem type is 𝐵𝐴𝑥 = 𝜆𝑥.

jobz Must be job::novec or job::vec.

If jobz = job::novec, then only eigenvalues are computed.

If jobz = job::vec, then eigenvalues and eigenvectors are computed.

upper_lower Must be uplo::upper or uplo::lower.

If upper_lower = job::upper, a and b store the upper triangular part of 𝐴 and 𝐵.

If upper_lower = job::lower, a and b stores the lower triangular part of 𝐴 and 𝐵.

11.2. oneMKL Domains 1426

oneAPI Specification, Release 1.1-rev-1

n The order of the matrices 𝐴 and 𝐵 (0 ≤ 𝑛).

lda The leading dimension of a.

ldb The leading dimension of b.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to sygvd function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

sytrd

Reduces a real symmetric matrix to tridiagonal form.

Description

sytrd supports the following precisions.

T
float
double

The routine reduces a real symmetric matrix 𝐴 to symmetric tridiagonal form 𝑇 by an orthogonal similarity trans-
formation: 𝐴 = 𝑄𝑇𝑄𝑇 . The orthogonal matrix 𝑄 is not formed explicitly but is represented as a product of 𝑛 − 1
elementary reflectors. Routines are provided for working with 𝑄 in this representation .

sytrd (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void sytrd(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &d, cl::sycl::buffer
→˓<T,1> &e, cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &scratchpad, std::int64_t␣
→˓scratchpad_size)
}

11.2. oneMKL Domains 1427

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

upper_lower Must be uplo::upper or uplo::lower.

If upper_lower = uplo::upper, a stores the upper triangular part of 𝐴.

If upper_lower = uplo::lower, a stores the lower triangular part of 𝐴.

n The order of the matrices 𝐴 (0 ≤ 𝑛).

a The buffer a, size (lda,*). Contains the upper or lower triangle of the symmetric matrix 𝐴, as specified by
upper_lower.

The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a; at least max(1, 𝑛).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by sytrd_scratchpad_size function.

Output Parameters

a On exit,

if upper_lower = uplo::upper, the diagonal and first superdiagonal of 𝐴 are overwritten by the correspond-
ing elements of the tridiagonal matrix 𝑇 , and the elements above the first superdiagonal, with the buffer tau,
represent the orthogonal matrix 𝑄 as a product of elementary reflectors;

if upper_lower = uplo::lower, the diagonal and first subdiagonal of 𝐴 are overwritten by the corresponding
elements of the tridiagonal matrix 𝑇 , and the elements below the first subdiagonal, with the buffer tau, represent
the orthogonal matrix 𝑄 as a product of elementary reflectors.

d Buffer containing the diagonal elements of the matrix 𝑇 . The dimension of d must be at least max(1, 𝑛).

e Buffer containing the off diagonal elements of the matrix 𝑇 . The dimension of e must be at least max(1, 𝑛− 1).

tau Buffer, size at least max(1, 𝑛). Stores (𝑛 − 1) scalars that define elementary reflectors in decomposition of the
unitary matrix 𝑄 in a product of 𝑛− 1 elementary reflectors. 𝜏(𝑛) is used as workspace.

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

11.2. oneMKL Domains 1428

oneAPI Specification, Release 1.1-rev-1

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

sytrd (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event sytrd(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, T *a, std::int64_t lda, T *d, T *e, T *tau, T *scratchpad, std::int64_
→˓t scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Must be uplo::upper or uplo::lower.

If upper_lower = uplo::upper, a stores the upper triangular part of 𝐴.

If upper_lower = uplo::lower, a stores the lower triangular part of 𝐴.

n The order of the matrices 𝐴 (0 ≤ 𝑛).

a The pointer to matrix 𝐴, size (lda,*). Contains the upper or lower triangle of the symmetric matrix 𝐴, as specified
by upper_lower. The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a; at least max(1, 𝑛).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by sytrd_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a On exit,

if upper_lower = uplo::upper, the diagonal and first superdiagonal of 𝐴 are overwritten by the correspond-
ing elements of the tridiagonal matrix 𝑇 , and the elements above the first superdiagonal, with the array tau,
represent the orthogonal matrix 𝑄 as a product of elementary reflectors;

if upper_lower = uplo::lower, the diagonal and first subdiagonal of 𝐴 are overwritten by the corresponding
elements of the tridiagonal matrix 𝑇 , and the elements below the first subdiagonal, with the array tau, represent
the orthogonal matrix 𝑄 as a product of elementary reflectors.

d Pointer to diagonal elements of the matrix 𝑇 . The dimension of d must be at least max(1, 𝑛).

e Pointer to off diagonal elements of the matrix 𝑇 . The dimension of e must be at least max(1, 𝑛− 1).

tau Pointer to array of size at least max(1, 𝑛). Stores (𝑛−1) scalars that define elementary reflectors in decomposition
of the unitary matrix 𝑄 in a product of 𝑛− 1 elementary reflectors. 𝜏(𝑛) is used as workspace.

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

11.2. oneMKL Domains 1429

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

sytrd_scratchpad_size

Computes size of scratchpad memory required for sytrd function.

Description

sytrd_scratchpad_size supports the following precisions.

T
float
double

Computes the number of elements of type T the scratchpad memory to be passed to sytrd function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

11.2. oneMKL Domains 1430

oneAPI Specification, Release 1.1-rev-1

sytrd_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t sytrd_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, std::int64_t lda)
}

Input Parameters

queue Device queue where calculations by sytrd function will be performed.

upper_lower Must be uplo::upper or uplo::lower.

If upper_lower = uplo::upper, a stores the upper triangular part of 𝐴.

If upper_lower = uplo::lower, a stores the lower triangular part of 𝐴.

n The order of the matrices 𝐴 (0 ≤ 𝑛).

lda The leading dimension of a.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to sytrd function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

ungbr

Generates the complex unitary matrix 𝑄 or 𝑃 𝑡 determined by gebrd.

11.2. oneMKL Domains 1431

oneAPI Specification, Release 1.1-rev-1

Description

ungbr supports the following precisions.

T
std::complex<float>
std::complex<double>

The routine generates the whole or part of the unitary matrices 𝑄 and 𝑃𝐻 formed by the routines gebrd. All valid
combinations of arguments are described in Input Parameters; in most cases you need the following:

To compute the whole 𝑚×𝑚 matrix 𝑄, use:

oneapi::mkl::lapack::ungbr(queue, generate::q, m, m, n, a, ...)

(note that the buffer a must have at least 𝑚 columns).

To form the 𝑛 leading columns of 𝑄 if 𝑚 > 𝑛, use:

oneapi::mkl::lapack::ungbr(queue, generate::q, m, n, n, a, ...)

To compute the whole 𝑛× 𝑛 matrix 𝑃𝑇 , use:

oneapi::mkl::lapack::ungbr(queue, generate::p, n, n, m, a, ...)

(note that the array a must have at least 𝑛 rows).

To form the 𝑚 leading rows of 𝑃𝑇 if 𝑚 < 𝑛, use:

oneapi::mkl::lapack::ungbr(queue, generate::p, m, n, m, a, ...)

ungbr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void ungbr(cl::sycl::queue &queue, oneapi::mkl::generate gen, std::int64_t m,␣

→˓std::int64_t n, std::int64_t k, cl::sycl::buffer<T,1> &a, std::int64_t lda,␣
→˓cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_
→˓size)
}

Input Parameters

queue The queue where the routine should be executed.

gen Must be generate::q or generate::p.

If gen = generate::q, the routine generates the matrix 𝑄.

If gen = generate::p, the routine generates the matrix 𝑃𝑇 .

m The number of rows in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑚).

If gen = generate::q, 𝑚 ≥ 𝑛 ≥ min(𝑚, 𝑘).

11.2. oneMKL Domains 1432

oneAPI Specification, Release 1.1-rev-1

If gen = generate::p, 𝑛 ≥ 𝑚 ≥ min(𝑛, 𝑘).

n The number of columns in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑛). See m for constraints.

k If gen = generate::q, the number of columns in the original 𝑚× 𝑘 matrix returned by gebrd.

If gen = generate::p, the number of rows in the original 𝑘 × 𝑛 matrix returned by gebrd.

a The buffer a as returned by gebrd.

lda The leading dimension of a.

tau For gen = generate::q, the array tauq as returned by gebrd. For gen = generate::p, the array taup as
returned by gebrd.

The dimension of tau must be at least max(1,min(𝑚, 𝑘)) for gen = generate::q, or max(1,min(𝑚, 𝑘)) for
gen = generate::p.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type 𝑇 . Size should not be less
than the value returned by ungbr_scratchpad_size function.

Output Parameters

a Overwritten by 𝑛 leading columns of the 𝑚×𝑚 unitary matrix 𝑄 or 𝑃𝑇 , (or the leading rows or columns thereof)
as specified by gen, m, and n.

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If 𝑖𝑛𝑓𝑜 = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

11.2. oneMKL Domains 1433

oneAPI Specification, Release 1.1-rev-1

ungbr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event ungbr(cl::sycl::queue &queue, oneapi::mkl::generate gen, std::int64_t␣

→˓m, std::int64_t n, std::int64_t k, T *a, std::int64_t lda, T *tau, T *scratchpad,␣
→˓std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue The queue where the routine should be executed.

gen Must be generate::q or generate::p.

If gen = generate::q, the routine generates the matrix 𝑄.

If gen = generate::p, the routine generates the matrix 𝑃𝑇 .

m The number of rows in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≥ 𝑚).

If gen = generate::q, 𝑚 ≥ 𝑛 ≥ min(𝑚, 𝑘).

If gen = generate::p, 𝑛 ≥ 𝑚 ≥ min(𝑛, 𝑘).

n The number of columns in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑛). See m for constraints.

k If gen = generate::q, the number of columns in the original 𝑚× 𝑘 matrix returned by gebrd.

If gen = generate::p, the number of rows in the original 𝑘 × 𝑛 matrix returned by gebrd.

a The pointer to a as returned by gebrd.

lda The leading dimension of a.

tau For gen = generate::q, the array tauq as returned by gebrd. For gen = generate::p, the array taup as
returned by gebrd.

The dimension of tau must be at least max(1,min(𝑚, 𝑘)) for gen = generate::q, or max(1,min(𝑚, 𝑘)) for
gen = generate::p.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type 𝑇 . Size should not be less
than the value returned by ungbr_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a Overwritten by 𝑛 leading columns of the 𝑚×𝑚 unitary matrix 𝑄 or 𝑃𝑇 , (or the leading rows or columns thereof)
as specified by gen, m, and n.

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

11.2. oneMKL Domains 1434

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If 𝑖𝑛𝑓𝑜 = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

ungbr_scratchpad_size

Computes size of scratchpad memory required for ungbr function.

Description

ungbr_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type 𝑇 the scratchpad memory to be passed to ungbr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

11.2. oneMKL Domains 1435

oneAPI Specification, Release 1.1-rev-1

ungbr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t ungbr_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::generate gen,␣

→˓std::int64_t m, std::int64_t n, std::int64_t k, std::int64_t lda, std::int64_t &
→˓scratchpad_size)
}

Input Parameters

queue Device queue where calculations by ungbr function will be performed.

gen Must be generate::q or generate::p.

If gen = generate::q, the routine generates the matrix 𝑄.

If gen = generate::p, the routine generates the matrix 𝑃𝑇 .

m The number of rows in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑚).

If gen = generate::q, 𝑚 ≥ 𝑛 ≥ min(𝑚, 𝑘).

If gen = generate::p, 𝑛 ≥ 𝑚 ≥ min(𝑛, 𝑘).

n The number of columns in the matrix 𝑄 or 𝑃𝑇 to be returned (0 ≤ 𝑛). See m for constraints.

k If gen = generate::q, the number of columns in the original 𝑚× 𝑘 matrix reduced by gebrd.

If gen = generate::p, the number of rows in the original 𝑘 × 𝑛 matrix reduced by gebrd.

lda The leading dimension of a.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

11.2. oneMKL Domains 1436

oneAPI Specification, Release 1.1-rev-1

Return Value

The number of elements of type T the scratchpad memory to be passed to ungbr function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

ungtr

Generates the complex unitary matrix 𝑄 determined by hetrd.

Description

ungtr supports the following precisions.

T
std::complex<float>
std::complex<double>

The routine explicitly generates the 𝑛×𝑛 unitary matrix𝑄 formed by hetrd when reducing a complex Hermitian matrix
𝐴 to tridiagonal form: 𝐴 = 𝑄𝑇𝑄𝐻 . Use this routine after a call to hetrd.

ungtr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void ungtr(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower, std::int64_t n,␣

→˓cl::sycl::buffer<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &tau,␣
→˓cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Must be uplo::upper or uplo::lower. Uses the same upper_lower as supplied to hetrd.

n The order of the matrix 𝑄 (0 ≤ 𝑛).

a The buffer a as returned by hetrd. The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a (𝑛 ≤ lda).

tau The buffer tau as returned by hetrd. The dimension of tau must be at least max(1, 𝑛− 1).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by ungtr_scratchpad_size function.

11.2. oneMKL Domains 1437

oneAPI Specification, Release 1.1-rev-1

Output Parameters

a Overwritten by the unitary matrix 𝑄.

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

ungtr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event ungtr(cl::sycl::queue &queue, oneapi::mkl::uplo upper_lower,␣

→˓std::int64_t n, T *a, std::int64_t lda, T *tau, T *scratchpad, std::int64_t scratchpad_
→˓size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue The queue where the routine should be executed.

upper_lower Must be uplo::upper or uplo::lower. Uses the same upper_lower as supplied to hetrd.

n The order of the matrix 𝑄 (0 ≤ 𝑛).

a The pointer to a as returned by hetrd. The second dimension of a must be at least max(1, 𝑛).

lda The leading dimension of a (𝑛 ≤ lda).

tau The pointer to tau as returned by hetrd. The dimension of tau must be at least max(1, 𝑛− 1).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by ungtr_scratchpad_size function.

11.2. oneMKL Domains 1438

oneAPI Specification, Release 1.1-rev-1

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a Overwritten by the unitary matrix 𝑄.

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

ungtr_scratchpad_size

Computes size of scratchpad memory required for ungtr function.

Description

ungtr_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to ungtr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

11.2. oneMKL Domains 1439

oneAPI Specification, Release 1.1-rev-1

ungtr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t ungtr_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::uplo upper_

→˓lower, std::int64_t n, std::int64_t lda)
}

Input Parameters

queue Device queue where calculations by ungtr function will be performed.

upper_lower Must be uplo::upper or uplo::lower. Uses the same upper_lower as supplied to hetrd.

n The order of the matrix 𝑄 (0 ≤ 𝑛).

lda The leading dimension of a (𝑛 ≤ 𝑙𝑑𝑎).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to ungtr function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

unmtr

Multiplies a complex matrix by the complex unitary matrix Q determined by hetrd.

Description

unmtr supports the following precisions.

T
std::complex<float>
std::complex<double>

11.2. oneMKL Domains 1440

oneAPI Specification, Release 1.1-rev-1

The routine multiplies a complex matrix 𝐶 by 𝑄 or 𝑄𝐻 , where 𝑄 is the unitary matrix 𝑄 formed by hetrd when
reducing a complex Hermitian matrix 𝐴 to tridiagonal form: 𝐴 = 𝑄𝑇𝑄𝐻 . Use this routine after a call to hetrd.

Depending on the parameters side and trans, the routine can form one of the matrix products 𝑄𝐶, 𝑄𝐻𝐶, 𝐶𝑄, or
𝐶𝑄𝐻 (overwriting the result on 𝐶).

unmtr (Buffer Version)

Syntax

namespace oneapi::mkl::lapack {
void unmtr(cl::sycl::queue &queue, oneapi::mkl::side side, oneapi::mkl::uplo upper_

→˓lower, oneapi::mkl::transpose trans, std::int64_t m, std::int64_t n, cl::sycl::buffer
→˓<T,1> &a, std::int64_t lda, cl::sycl::buffer<T,1> &tau, cl::sycl::buffer<T,1> &c,␣
→˓std::int64_t ldc, cl::sycl::buffer<T,1> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

In the descriptions below, r denotes the order of 𝑄:

𝑟=𝑚 if side = side::left
𝑟=𝑛 if side = side::right

queue The queue where the routine should be executed.

side Must be either side::left or side::right.

If side=side::left, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the left.

If side=side::right, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the right.

upper_lower Must be either uplo::upper or uplo::lower. Uses the same upper_lower as supplied to hetrd.

trans Must be either transpose::nontrans or transpose::conjtrans.

If trans=transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans=transpose::conjtrans, the routine multiplies 𝐶 by 𝑄𝐻 .

m The number of rows in the matrix 𝐶 (𝑚 ≥ 0).

n The number of columns the matrix 𝐶 (𝑛 ≥ 0).

k The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

a The buffer a as returned by hetrd.

lda The leading dimension of a (max(1, 𝑟) ≤ lda).

tau The buffer tau as returned by hetrd. The dimension of tau must be at least max(1, 𝑟 − 1).

c The buffer c contains the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc The leading dimension of c (max(1, 𝑛) ≤ ldc).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by unmtr_scratchpad_size function.

11.2. oneMKL Domains 1441

oneAPI Specification, Release 1.1-rev-1

Output Parameters

c Overwritten by the product 𝑄𝐶, 𝑄𝐻𝐶, 𝐶𝑄, or 𝐶𝑄𝐻 (as specified by side and trans).

scratchpad Buffer holding scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If 𝑖𝑛𝑓𝑜 = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

unmtr (USM Version)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event unmtr(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, std::int64_t m,␣
→˓std::int64_t n, T *a, std::int64_t lda, T *tau, T *c, std::int64_t ldc, T *scratchpad,␣
→˓std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

In the descriptions below, r denotes the order of 𝑄:

𝑟=𝑚 if side = side::left
𝑟=𝑛 if side = side::right

queue The queue where the routine should be executed.

side Must be either side::left or side::right.

If side=side::left, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the left.

If side=side::right, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the right.

11.2. oneMKL Domains 1442

oneAPI Specification, Release 1.1-rev-1

upper_lower Must be either uplo::upper or uplo::lower. Uses the same upper_lower as supplied to hetrd.

trans Must be either transpose::nontrans or transpose::conjtrans.

If trans=transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans=transpose::conjtrans, the routine multiplies 𝐶 by 𝑄𝐻 .

m The number of rows in the matrix 𝐶 (𝑚 ≥ 0).

n The number of columns the matrix 𝐶 (𝑛 ≥ 0).

k The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

a The pointer to a as returned by hetrd.

lda The leading dimension of a (max(1, 𝑟) ≤ lda).

tau The pointer to tau as returned by hetrd. The dimension of tau must be at least max(1, 𝑟 − 1).

c The array c contains the matrix 𝐶. The second dimension of c must be at least max(1, 𝑛).

ldc The leading dimension of c (max(1, 𝑛) ≤ ldc).

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by unmtr_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

c Overwritten by the product 𝑄𝐶, 𝑄𝐻𝐶, 𝐶𝑄, or 𝐶𝑄𝐻 (as specified by side and trans).

scratchpad Pointer to scratchpad memory to be used by routine for storing intermediate results.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::host_bad_alloc

oneapi::mkl::device_bad_alloc

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

oneapi::mkl::lapack::computation_error

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If 𝑖𝑛𝑓𝑜 = −𝑖, the 𝑖-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should not be less than value return by detail() method of exception
object.

11.2. oneMKL Domains 1443

oneAPI Specification, Release 1.1-rev-1

Return Values

Output event to wait on to ensure computation is complete.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

unmtr_scratchpad_size

Computes size of scratchpad memory required for unmtr function.

Description

unmtr_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Computes the number of elements of type T the scratchpad memory to be passed to unmtr function should be able to
hold. Calls to this routine must specify the template parameter explicitly.

unmtr_scratchpad_size

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t unmtr_scratchpad_size(cl::sycl::queue &queue, oneapi::mkl::side side,␣

→˓oneapi::mkl::uplo upper_lower, oneapi::mkl::transpose trans, std::int64_t m,␣
→˓std::int64_t n, std::int64_t lda, std::int64_t ldc)
}

Input Parameters

queue Device queue where calculations by unmtr function will be performed.

side Must be either side::left or side::right.

If side=side::left, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the left.

If side=side::right, 𝑄 or 𝑄𝐻 is applied to 𝐶 from the right.

upper_lower Must be either uplo::upper or uplo::lower. Uses the same upper_lower as supplied to hetrd.

trans Must be either transpose::nontrans or transpose::conjtrans.

If trans=transpose::nontrans, the routine multiplies 𝐶 by 𝑄.

If trans=transpose::conjtrans, the routine multiplies 𝐶 by 𝑄𝐻 .

m The number of rows in the matrix 𝐶 (𝑚 ≥ 0).

n The number of columns the matrix 𝐶 (𝑛 ≥ 0).

k The number of elementary reflectors whose product defines the matrix 𝑄 (0 ≤ 𝑘 ≤ 𝑛).

11.2. oneMKL Domains 1444

oneAPI Specification, Release 1.1-rev-1

lda The leading dimension of 𝑎 (max(1, 𝑟) ≤ lda).

ldc The leading dimension of 𝑐 (max(1, 𝑛) ≤ ldc).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Return Value

The number of elements of type T the scratchpad memory to be passed to unmtr function should be able to hold.

Parent topic: LAPACK Singular Value and Eigenvalue Problem Routines

LAPACK-like Extensions Routines

oneAPI Math Kernel Library DPC++ provides additional routines to extend the functionality of the LAPACK rou-
tines. These include routines to compute many independent factorizations, linear equation solutions, and similar. The
following table lists the LAPACK-like Extensions routine groups.

Rou-
tines

Scratchpad
Size Routines

Description

geqrf_batchgeqrf_batch_scratchpad_sizeComputes the QR factorizations of a batch of general matrices.
getrf_batchgetrf_batch_scratchpad_sizeComputes the LU factorizations of a batch of general matrices.
getri_batchgetri_batch_scratchpad_sizeComputes the inverses of a batch of LU-factored general matrices.
getrs_batchgetrs_batch_scratchpad_sizeSolves systems of linear equations with a batch of LU-factored square coefficient ma-

trices, with multiple right-hand sides.
orgqr_batchorgqr_batch_scratchpad_sizeGenerates the real orthogonal/complex unitary matrix 𝑄𝑖 of the QR factorization

formed by geqrf_batch.
potrf_batchpotrf_batch_scratchpad_sizeComputes the Cholesky factorization of a batch of symmetric (Hermitian) positive-

definite matrices.
potrs_batchpotrs_batch_scratchpad_sizeSolves systems of linear equations with a batch of Cholesky-factored symmetric (Her-

mitian) positive-definite coefficient matrices, with multiple right-hand sides.
ungqr_batchungqr_batch_scratchpad_sizeGenerates the complex unitary matrix 𝑄𝑖 with the QR factorization formed by

geqrf_batch.

11.2. oneMKL Domains 1445

oneAPI Specification, Release 1.1-rev-1

geqrf_batch

Computes the QR factorizations of a batch of general matrices.

Description

geqrf_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

geqrf_batch (Buffer Version)

Description

The buffer version of geqrf_batch supports only the strided API.

Strided API

Syntax

namespace oneapi::mkl::lapack {
void geqrf_batch(cl::sycl::queue &queue, std::int64_t m, std::int64_t n,␣

→˓cl::sycl::buffer<T> &a, std::int64_t lda, std::int64_t stride_a, cl::sycl::buffer<T> &
→˓tau, std::int64_t stride_tau, std::int64_t batch_size, cl::sycl::buffer<T> &scratchpad,
→˓ std::int64_t scratchpad_size)
}

Input Parameters

queue Device queue where calculations will be performed.

m Number of rows in matrices 𝐴𝑖 (0 ≤ 𝑚).

n Number of columns in matrices 𝐴𝑖 (0 ≤ 𝑛).

a Array holding input matrices 𝐴𝑖.

lda Leading dimension of matrices 𝐴𝑖.

stride_a Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

stride_tau Stride between the beginnings of arrays 𝜏𝑖 inside the array tau.

batch_size Number of problems in a batch.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as the number of floating point elements of type T. Size should not be
less than the value returned by the Strided API of the geqrf_batch_scratchpad_size function.

11.2. oneMKL Domains 1446

oneAPI Specification, Release 1.1-rev-1

Output Parameters

a Factorization data as follows: The elements on and above the diagonal of 𝐴𝑖 contain the min(𝑚,𝑛) × 𝑛 upper
trapezoidal matrices 𝑅𝑖 (𝑅𝑖 is upper triangular if 𝑚 ≥ 𝑛); the elements below the diagonal, with the array 𝜏𝑖,
contain the orthogonal matrix 𝑄𝑖 as a product of min(𝑚,𝑛) elementary reflectors.

tau Array to store batch of 𝜏𝑖, each of size min(𝑚,𝑛), containing scalars that define elementary reflectors for the
matrices 𝑄𝑖 in its decomposition in a product of elementary reflectors.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

geqrf_batch (USM Version)

Description

The USM version of geqrf_batch supports the group API and strided API.

Group API
The routine forms the 𝑄𝑖𝑅𝑖 factorizations of a general 𝑚× 𝑛 matrices 𝐴𝑖, 𝑖 ∈ {1...𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒}, where batch_size
is the sum of all parameter group sizes as provided with group_sizes array. No pivoting is performed during factor-
ization. The routine does not form the matrices 𝑄𝑖 explicitly. Instead, 𝑄𝑖 is represented as a product of min(𝑚,𝑛)
elementary reflectors. Routines are provided to work with 𝑄𝑖 in this representation. The total number of problems to
solve, batch_size, is a sum of sizes of all of the groups of parameters as provided by group_sizes array.

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event geqrf_batch(cl::sycl::queue &queue, std::int64_t *m, std::int64_t *n,␣

→˓T **a, std::int64_t *lda, T **tau, std::int64_t group_count, std::int64_t *group_sizes,
→˓ T *scratchpad, std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &
→˓events = {})
}

11.2. oneMKL Domains 1447

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue Device queue where calculations will be performed.

m Array of group_count 𝑚𝑔 parameters. Each 𝑚𝑔 specifies the number of rows in matrices 𝐴𝑖 from array a, be-
longing to group 𝑔.

n Array of group_count 𝑛𝑔 parameters. Each 𝑛𝑔 specifies the number of columns in matrices 𝐴𝑖 from array a,
belonging to group 𝑔.

a Array of batch_size pointers to input matrices 𝐴𝑖, each of size lda𝑔 · 𝑛𝑔 (𝑔 is an index of group to which 𝐴𝑖

belongs)

lda Array of group_count lda𝑔 parameters, each representing the leading dimensions of input matrices 𝐴𝑖 from array
a, belonging to group 𝑔.

group_count Specifies the number of groups of parameters. Must be at least 0.

group_sizes Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve
for each of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all
parameter group sizes.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as the number of floating point elements of type T. Size should not be
less than the value returned by the Group API of the geqrf_batch_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a Factorization data as follows: The elements on and above the diagonal of 𝐴𝑖 contain the min(𝑚𝑔, 𝑛𝑔) × 𝑛𝑔 upper
trapezoidal matrices 𝑅𝑖 (𝑅𝑖 is upper triangular if 𝑚𝑔 ≥ 𝑛𝑔); the elements below the diagonal, with the array 𝜏𝑖,
contain the orthogonal matrix 𝑄𝑖 as a product of min(𝑚𝑔, 𝑛𝑔) elementary reflectors. Here 𝑔 is the index of the
parameters group corresponding to the 𝑖-th decomposition.

tau Array of pointers to store arrays 𝜏𝑖, each of size min(𝑚𝑔, 𝑛𝑔), containing scalars that define elementary reflec-
tors for the matrices 𝑄𝑖 in its decomposition in a product of elementary reflectors. Here 𝑔 is the index of the
parameters group corresponding to the 𝑖-th decomposition.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

11.2. oneMKL Domains 1448

oneAPI Specification, Release 1.1-rev-1

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

Strided API
The routine forms the 𝑄𝑖𝑅𝑖 factorizations of general 𝑚 × 𝑛 matrices 𝐴𝑖. No pivoting is performed. The routine
does not form the matrices 𝑄𝑖 explicitly. Instead, 𝑄𝑖 is represented as a product of min(𝑚,𝑛) elementary reflectors.
Routines are provided to work with 𝑄𝑖 in this representation.

Syntax

namespace oneapi::mkl::lapack {
sycl::event geqrf_batch(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, T *a,␣

→˓std::int64_t lda, std::int64_t stride_a, T *tau, std::int64_t stride_tau, std::int64_t␣
→˓batch_size, T *scratchpad, std::int64_t scratchpad_size, const std::vector
→˓<cl::sycl::event> &events = {})
}

Input Parameters

queue Device queue where calculations will be performed.

m Number of rows in matrices 𝐴𝑖 (0 ≤ 𝑚).

n Number of columns in matrices 𝐴𝑖 (0 ≤ 𝑛).

a Array holding input matrices 𝐴𝑖.

lda Leading dimensions of 𝐴𝑖.

stride_a Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

stride_tau Stride between the beginnings of arrays 𝜏𝑖 inside the array tau.

batch_size Number of problems in a batch.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as the number of floating point elements of type T. Size should not be
less than the value returned by the Strided API of the geqrf_batch_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

11.2. oneMKL Domains 1449

oneAPI Specification, Release 1.1-rev-1

Output Parameters

a Factorization data as follows: The elements on and above the diagonal of 𝐴𝑖 contain the min(𝑚,𝑛) × 𝑛 upper
trapezoidal matrices 𝑅𝑖 (𝑅𝑖 is upper triangular if 𝑚 ≥ 𝑛); the elements below the diagonal, with the array 𝜏𝑖,
contain the orthogonal matrix 𝑄𝑖 as a product of min(𝑚,𝑛) elementary reflectors.

tau Array to store batch of 𝜏𝑖, each of size min(𝑚,𝑛), containing scalars that define elementary reflectors for the
matrices 𝑄𝑖 in its decomposition in a product of elementary reflectors.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

Parent topic: LAPACK-like Extensions Routines

geqrf_batch_scratchpad_size

Computes size of scratchpad memory required for the geqrf_batch function.

Description

geqrf_batch_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Group API
Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Group API
of the geqrf_batch function.

11.2. oneMKL Domains 1450

oneAPI Specification, Release 1.1-rev-1

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t geqrf_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t *m,␣

→˓std::int64_t *n, std::int64_t *lda, std::int64_t group_count, std::int64_t *group_
→˓sizes)
}

Input Parameters

queue Device queue where calculations will be performed.

m
Array of group_count𝑚𝑔 parameters.
Each of 𝑚𝑔 specifies the number of rows in the matrices 𝐴𝑖 belonging to group 𝑔.

n
Array of group_count 𝑛𝑔 parameters.
Each of 𝑛𝑔 specifies the number of columns in the matrices 𝐴𝑖 belonging to group 𝑔.

lda Array of group_count 𝑙𝑑𝑎𝑔 parameters, each representing the leading dimensions of input matrices belonging to
group 𝑔.

group_count Number of groups of parameters. Must be at least 0.

group_sizes Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve
for each of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all
parameter group sizes.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Group API of the
geqrf_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Strided API
Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API
of the geqrf_batch function.

11.2. oneMKL Domains 1451

oneAPI Specification, Release 1.1-rev-1

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t geqrf_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t m,␣

→˓std::int64_t n, std::int64_t lda, std::int64_t stride_a, std::int64_t stride_tau,␣
→˓std::int64_t batch_size)
};

Input Parameters

queue Device queue where calculations will be performed.

m Number of rows in the matrices 𝐴𝑖 (0 ≤ 𝑚).

n Number of columns in 𝐴𝑖 (0 ≤ 𝑛).

lda Leading dimension of 𝐴𝑖.

stride_a Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

stride_tau Stride between the beginnings of arrays 𝜏𝑖 inside the array tau.

batch_size Number of problems in a batch.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API of the
geqrf_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Parent topic: LAPACK-like Extensions Routines

getrf_batch

Computes the LU factorizations of a batch of general matrices.

11.2. oneMKL Domains 1452

oneAPI Specification, Release 1.1-rev-1

Description

getrf_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

getrf_batch (Buffer Version)

Description

The buffer version of getrf_batch supports only the strided API.

Strided API
The routine computes the LU factorizations of general 𝑚× 𝑛 matrices 𝐴𝑖 as 𝐴𝑖 = 𝑃𝑖𝐿𝑖𝑈𝑖, where 𝑃𝑖 is a permutation
matrix, 𝐿𝑖 is lower triangular with unit diagonal elements (lower trapezoidal if 𝑚 > 𝑛) and 𝑈𝑖 is upper triangular
(upper trapezoidal if 𝑚 < 𝑛). The routine uses partial pivoting, with row interchanges.

Syntax

namespace oneapi::mkl::lapack {
void getrf_batch(cl::sycl::queue &queue, std::int64_t m, std::int64_t n,␣

→˓cl::sycl::buffer<T> &a, std::int64_t lda, std::int64_t stride_a, cl::sycl::buffer
→˓<std::int64_t> &ipiv, std::int64_t stride_ipiv, std::int64_t batch_size,␣
→˓cl::sycl::buffer<T> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue Device queue where calculations will be performed.

m Number of rows in matrices 𝐴𝑖 (0 ≤ 𝑚).

n Number of columns in matrices 𝐴𝑖 (0 ≤ 𝑛).

a Array holding input matrices 𝐴𝑖.

lda Leading dimension of matrices 𝐴𝑖.

stride_a Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

stride_ipiv Stride between the beginnings of arrays 𝑖𝑝𝑖𝑣𝑖 inside the array ipiv.

batch_size Number of problems in a batch.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by the Strided API of the getrf_batch_scratchpad_size function.

11.2. oneMKL Domains 1453

oneAPI Specification, Release 1.1-rev-1

Output Parameters

a 𝐿𝑖 and 𝑈𝑖. The unit diagonal elements of 𝐿𝑖 are not stored.

ipiv Array containing batch of the pivot indices ipiv𝑖 each of size at least max(1,min(𝑚,𝑛)); for 1 ≤ 𝑘 ≤ min(𝑚,𝑛),
where row 𝑘 of 𝐴𝑖 was interchanged with row ipiv𝑖(𝑘).

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

If info is positive, then the factorization has been completed, but some of 𝑈𝑖 are exactly sin-
gular. Division by 0 will occur if you use the factor 𝑈𝑖 for solving a system of linear equations.

The indices of such matrices in the batch can be obtained with ids() method of the exception
object. The indices of first zero diagonal elements in these 𝑈𝑖 matrices can be obtained by
exceptions() method of exception object.

getrf_batch (USM Version)

Description

The USM version of getrf_batch supports the group API and strided API.

Group API
The routine computes the batch of LU factorizations of general 𝑚 × 𝑛 matrices 𝐴𝑖 (𝑖 ∈ {1...𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒}) as 𝐴𝑖 =
𝑃𝑖𝐿𝑖𝑈𝑖, where 𝑃𝑖 is a permutation matrix, 𝐿𝑖 is lower triangular with unit diagonal elements (lower trapezoidal if 𝑚 >
𝑛) and 𝑈𝑖 is upper triangular (upper trapezoidal if 𝑚 < 𝑛). The routine uses partial pivoting, with row interchanges.
Total number of problems to solve, batch_size, is a sum of sizes of all of the groups of parameters as provided by
group_sizes array.

11.2. oneMKL Domains 1454

oneAPI Specification, Release 1.1-rev-1

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event getrf_batch(cl::sycl::queue &queue, std::int64_t *m, std::int64_t *n,␣

→˓T **a, std::int64_t *lda, std::int64_t **ipiv, std::int64_t group_count, std::int64_t␣
→˓*group_sizes, T *scratchpad, std::int64_t scratchpad_size, const std::vector
→˓<cl::sycl::event> &events = {})
}

Input Parameters

queue Device queue where calculations will be performed.

m Array of group_count parameters 𝑚𝑔 specifying the number of rows in matrices 𝐴𝑖 (0 ≤ 𝑚𝑔) belonging to group
𝑔.

n Array of group_count parameters 𝑛𝑔 specifying the number of columns in matrices 𝐴𝑖 (0 ≤ 𝑛𝑔) belonging to
group 𝑔.

a Array holding batch_size pointers to input matrices 𝐴𝑖.

lda Array of group_count parameters 𝑙𝑑𝑎𝑔 specifying the leading dimensions of 𝐴𝑖 belonging to group 𝑔.

group_count Number of groups of parameters. Must be at least 0.

group_sizes Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve
for each of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all
parameter group sizes.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
then the value returned by the Group API of the getrf_batch_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a 𝐿𝑖 and 𝑈𝑖. The unit diagonal elements of 𝐿𝑖 are not stored.

ipiv Arrays of batch_size pointers to arrays containing pivot indices ipiv𝑖 each of size at least max(1,min(𝑚𝑔, 𝑛𝑔));
for 1 ≤ 𝑘 ≤ min(𝑚𝑔, 𝑛𝑔), where row 𝑘 of 𝐴𝑖 was interchanged with row ipiv𝑖(𝑘).

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

11.2. oneMKL Domains 1455

oneAPI Specification, Release 1.1-rev-1

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

If info is positive, then the factorization has been completed, but some of𝑈𝑖 are exactly singular. Division
by 0 will occur if you use the factor 𝑈𝑖 for solving a system of linear equations.

The indices of such matrices in the batch can be obtained with ids() method of the exception object. The
indices of first zero diagonal elements in these 𝑈𝑖 matrices can be obtained by exceptions() method of
exception object.

Strided API
The routine computes the LU factorizations of general 𝑚× 𝑛 matrices 𝐴𝑖 as 𝐴𝑖 = 𝑃𝑖𝐿𝑖𝑈𝑖, where 𝑃𝑖 is a permutation
matrix, 𝐿𝑖 is lower triangular with unit diagonal elements (lower trapezoidal if 𝑚 > 𝑛) and 𝑈𝑖 is upper triangular
(upper trapezoidal if 𝑚 < 𝑛). The routine uses partial pivoting, with row interchanges.

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event getrf_batch(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, T␣

→˓*a, std::int64_t lda, std::int64_t stride_a, std::int64_t *ipiv, std::int64_t stride_
→˓ipiv, std::int64_t batch_size, T *scratchpad, std::int64_t scratchpad_size, const␣
→˓std::vector<cl::sycl::event> &events = {})
};

Input Parameters

queue Device queue where calculations will be performed.

m Number of rows in matrices 𝐴𝑖 (0 ≤ 𝑚).

n Number of columns in matrices 𝐴𝑖 (0 ≤ 𝑛).

a Array holding input matrices 𝐴𝑖.

lda Leading dimension of matrices 𝐴𝑖.

stride_a Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

stride_ipiv Stride between the beginnings of arrays ipiv𝑖 inside the array ipiv.

batch_size Number of problems in a batch.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
then the value returned by the Strided API of the getrf_batch_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

11.2. oneMKL Domains 1456

oneAPI Specification, Release 1.1-rev-1

Output Parameters

a 𝐿𝑖 and 𝑈𝑖. The unit diagonal elements of 𝐿𝑖 are not stored.

ipiv Array containing batch of the pivot indices ipiv𝑖 each of size at least max(1,min(𝑚,𝑛)); for 1 ≤ 𝑘 ≤ min(𝑚,𝑛),
where row 𝑘 of 𝐴𝑖 was interchanged with row ipiv𝑖(𝑘).

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

If info is positive, then the factorization has been completed, but some of 𝑈𝑖 are exactly sin-
gular. Division by 0 will occur if you use the factor 𝑈𝑖 for solving a system of linear equations.

The indices of such matrices in the batch can be obtained with ids() method of the exception
object. The indices of first zero diagonal elements in these 𝑈𝑖 matrices can be obtained by
exceptions() method of exception object.

Parent topic: LAPACK-like Extensions Routines

getrf_batch_scratchpad_size

Computes size of scratchpad memory required for the getrf_batch function.

Description

getrf_batch_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

11.2. oneMKL Domains 1457

oneAPI Specification, Release 1.1-rev-1

Group API
Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Group API
of the getrf_batch function.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t getrf_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t *m,␣

→˓std::int64_t *n, std::int64_t *lda, std::int64_t group_count, std::int64_t *group_
→˓sizes)
}

Input Parameters

queue Device queue where calculations will be performed.

m Array of group_count parameters 𝑚𝑔 specifying the number of rows in the matrices belonging to group 𝑔.

n Array of group_count parameters 𝑛𝑔 specifying the number of columns in matrices belonging to group 𝑔.

lda Array of group_count parameters lda𝑔 specifying the leading dimensions of matrices belonging to group 𝑔.

group_count Number of groups of parameters. Must be at least 0.

group_sizes Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve
for each of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all
parameter group sizes.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Group API of the
getrf_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Strided API
Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API
of the getrf_batch function.

11.2. oneMKL Domains 1458

oneAPI Specification, Release 1.1-rev-1

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t getrf_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t m,␣

→˓std::int64_t n, std::int64_t lda, std::int64_t stride_a, std::int64_t stride_ipiv,␣
→˓std::int64_t batch_size)
};

Input Parameters

queue Device queue where calculations will be performed.

m Number of rows in the matrices 𝐴𝑖 (0 ≤ 𝑚).

n Number of columns in 𝐴𝑖 (0 ≤ 𝑛).

lda Leading dimension of 𝐴𝑖.

stride_a Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

stride_ipiv Stride between the beginnings of arrays ipiv𝑖 inside the array ipiv.

batch_size Number of problems in a batch.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API of the
getrf_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Parent topic: LAPACK-like Extensions Routines

getri_batch

Computes the inverses of a batch of LU-factored matrices determined by getrf_batch.

11.2. oneMKL Domains 1459

oneAPI Specification, Release 1.1-rev-1

Description

getri_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

getri_batch (Buffer Version)

Description

The buffer version of getri_batch supports only the strided API.

Strided API
The routine computes the inverses 𝐴−1𝑖 of general matrices 𝐴𝑖. Before calling this routine, call the Strided API of the
getrf_batch (Buffer Version) function to factorize 𝐴𝑖.

Syntax

namespace oneapi::mkl::lapack {
void getri_batch(cl::sycl::queue &queue, std::int64_t n, cl::sycl::buffer<T> &a,␣

→˓std::int64_t lda, std::int64_t stride_a, cl::sycl::buffer<std::int64_t> &ipiv,␣
→˓std::int64_t stride_ipiv, std::int64_t batch_size, cl::sycl::buffer<T> &scratchpad,␣
→˓std::int64_t scratchpad_size)
}

Input Parameters

queue Device queue where calculations will be performed.

n Order of the matrices 𝐴𝑖 (0 ≤ 𝑛).

a Result of the Strided API of the getrf_batch (Buffer Version) function.

lda Leading dimension of 𝐴𝑖 (𝑛 ≤ lda).

stride_a Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

ipiv Arrays returned by the Strided API of the getrf_batch (Buffer Version) function.

stride_ipiv Stride between the beginnings of arrays ipiv𝑖 inside the array ipiv.

batch_size Number of problems in a batch.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by the Strided API of the getri_batch_scratchpad_size function.

11.2. oneMKL Domains 1460

oneAPI Specification, Release 1.1-rev-1

Output Parameters

a Inverse 𝑛× 𝑛 matrices 𝐴−1𝑖 .

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

getri_batch (USM Version)

Description

The USM version of getri_batch supports the group API and strided API.

Group API
The routine computes the inverses 𝐴−1𝑖 of general matrices 𝐴𝑖, 𝑖 ∈ {1...𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒}. Before calling this routine,
call the Group API of the getrf_batch (USM Version) function to factorize 𝐴𝑖. Total number of problems to solve,
batch_size, is a sum of sizes of all of the groups of parameters as provided by group_sizes array.

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event getri_batch(cl::sycl::queue &queue, std::int64_t *n, T **a, std::int64_

→˓t *lda, std::int64_t **ipiv, std::int64_t group_count, std::int64_t *group_sizes, T␣
→˓*scratchpad, std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events␣
→˓= {})
}

11.2. oneMKL Domains 1461

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue Device queue where calculations will be performed.

n Array of group_count 𝑛𝑔 parameters specifying the order of the matrices 𝐴𝑖 (0 ≤ 𝑛𝑔) belonging to group 𝑔.

a Result of the Group API of the getrf_batch (USM Version) function.

lda Array of group_count lda𝑔 parameters specifying the leading dimensions of the matrices 𝐴𝑖 (𝑛𝑔 ≤ lda𝑔) be-
longing to group 𝑔.

ipiv Arrays returned by the Group API of the getrf_batch (USM Version) function.

group_count Number of groups of parameters. Must be at least 0.

group_sizes Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve
for each of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all
parameter group sizes.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by the Group API of the getri_batch_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a Inverse 𝑛𝑔 × 𝑛𝑔 matrices 𝐴−1𝑖 .

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

Strided API
The routine computes the inverses 𝐴−1𝑖 of general matrices 𝐴𝑖. Before calling this routine, call the Strided API of the
getrf_batch (USM Version) function to factorize 𝐴𝑖.

11.2. oneMKL Domains 1462

oneAPI Specification, Release 1.1-rev-1

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event getri_batch(cl::sycl::queue &queue, std::int64_t n, T *a, std::int64_t␣

→˓lda, std::int64_t stride_a, std::int64_t *ipiv, std::int64_t stride_ipiv, std::int64_t␣
→˓batch_size, T *scratchpad, std::int64_t scratchpad_size, const std::vector
→˓<cl::sycl::event> &events = {})
};

Input Parameters

queue Device queue where calculations will be performed.

n Order of the matrices 𝐴𝑖 (0 ≤ 𝑛).

a Result of the Strided API of the getrf_batch (USM Version) function.

lda Leading dimension of 𝐴𝑖 (𝑛 ≤ lda).

stride_a Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

ipiv Arrays returned by the Strided API of the getrf_batch (USM Version) function.

stride_ipiv Stride between the beginnings of arrays ipiv𝑖 inside the array ipiv.

batch_size Number of problems in a batch.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
than the value returned by the Strided API of the getri_batch_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a Inverse 𝑛× 𝑛 matrices 𝐴−1𝑖 .

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

11.2. oneMKL Domains 1463

oneAPI Specification, Release 1.1-rev-1

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

Parent topic: LAPACK-like Extensions Routines

getri_batch_scratchpad_size

Computed size of scratchpad memory required for the getri_batch function.

Description

getri_batch_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Group API
Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Group API
of the getri_batch function.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t getri_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t *n,␣

→˓std::int64_t *lda, std::int64_t group_count, std::int64_t *group_sizes)
}

Input Parameters

queue Device queue where calculations will be performed.

n Array of group_count 𝑛𝑔 parameters specifying the order of the matrices belonging to group 𝑔.

lda Array of group_count lda𝑔 parameters specifying the leading dimensions of the matrices belonging to group 𝑔.

group_count Number of groups of parameters. Must be at least 0.

group_sizes Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve
for each of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all
parameter group sizes.

11.2. oneMKL Domains 1464

oneAPI Specification, Release 1.1-rev-1

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Group API of the
getri_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Strided API
Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API
of the getri_batch function.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t getri_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t n,␣

→˓std::int64_t lda, std::int64_t stride_a, std::int64_t stride_ipiv, std::int64_t batch_
→˓size)
};

Input Parameters

queue Device queue where calculations will be performed.

n The order of the matrices 𝐴𝑖 (0 le n).

lda Leading dimension of 𝐴𝑖 (𝑛 ≤ lda).

stride_a Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

stride_ipiv Stride between the beginnings of arrays 𝑖𝑝𝑖𝑣𝑖 inside the array ipiv.

batch_size Specifies the number of problems in a batch.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API of the
getri_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

11.2. oneMKL Domains 1465

oneAPI Specification, Release 1.1-rev-1

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Parent topic: LAPACK-like Extensions Routines

getrs_batch

Solves a system of linear equations with a batch of LU-factored square coefficient matrices, with multiple right-hand
sides.

Description

getrs_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

getrs_batch (Buffer Version)

Description

The buffer version of getrs_batch supports only the strided API.

Strided API
The routine solves for the following systems of linear equations 𝑋𝑖:
𝐴𝑖𝑋𝑖 = 𝐵𝑖, if trans=mkl::transpose::nontrans
𝐴𝑇

𝑖 𝑋𝑖 = 𝐵𝑖, if trans=mkl::transpose::trans
𝐴𝐻

𝑖 𝑋𝑖 = 𝐵𝑖, if trans=mkl::transpose::conjtrans
Before calling this routine, the Strided API of the getrf_batch (Buffer Version) function should be called
to compute the LU factorizations of 𝐴𝑖.

Syntax

namespace oneapi::mkl::lapack {
void getrs_batch(cl::sycl::queue &queue, mkl::transpose trans, std::int64_t n,␣

→˓std::int64_t nrhs, cl::sycl::buffer<T> &a, std::int64_t lda, std::int64_t stride_a,␣
→˓cl::sycl::buffer<std::int64_t> &ipiv, std::int64_t stride_ipiv, cl::sycl::buffer<T> &b,
→˓ std::int64_t ldb, std::int64_t stride_b, std::int64_t batch_size, cl::sycl::buffer<T>␣
→˓&scratchpad, std::int64_t scratchpad_size)
}

11.2. oneMKL Domains 1466

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue Device queue where calculations will be performed.

trans
Form of the equations:
If trans = mkl::transpose::nontrans, then 𝐴𝑖𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::trans, then 𝐴𝑇

𝑖 𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::conjtrans, then 𝐴𝐻

𝑖 𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.

n Order of the matrices 𝐴𝑖 and the number of rows in matrices 𝐵𝑖 (0 ≤ 𝑛).

nrhs Number of right-hand sides (0 ≤ nrhs).

a Array containing the factorizations of the matrices𝐴𝑖, as returned the Strided API of the getrf_batch (Buffer Version)
function.

lda Leading dimension of 𝐴𝑖.

stride_a Stride between the beginnings of matrices 𝐵𝑖 inside the batch array b.

ipiv ipiv array, as returned by the Strided API of the getrf_batch (Buffer Version) function.

stride_ipiv Stride between the beginnings of arrays ipiv𝑖 inside the array ipiv.

b Array containing the matrices 𝐵𝑖 whose columns are the right-hand sides for the systems of equations.

ldb Leading dimension of 𝐵𝑖.

batch_size Specifies the number of problems in a batch.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
then the value returned by the Strided API of the getrs_batch_scratchpad_size function.

Output Parameters

b Solution matrices 𝑋𝑖.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

11.2. oneMKL Domains 1467

oneAPI Specification, Release 1.1-rev-1

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

If info is zero, then diagonal element of some of 𝑈𝑖 is zero, and the solve could not be com-
pleted. The indices of such matrices in the batch can be obtained with ids() method of the
exception object. The indices of first zero diagonal elements in these 𝑈𝑖 matrices can be ob-
tained by exceptions() method of exception object.

getrs_batch (USM Version)

Description

The USM version of getrs_batch supports the group API and strided API.

Group API
The routine solves the following systems of linear equations for 𝑋𝑖 (𝑖 ∈ {1...𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒}):
𝐴𝑖𝑋𝑖 = 𝐵𝑖, if trans=mkl::transpose::nontrans
𝐴𝑇

𝑖 𝑋𝑖 = 𝐵𝑖, if trans=mkl::transpose::trans
𝐴𝐻

𝑖 𝑋𝑖 = 𝐵𝑖, if trans=mkl::transpose::conjtrans
Before calling this routine, call the Group API of the getrf_batch (USM Version) function to compute the
LU factorizations of 𝐴𝑖.
Total number of problems to solve, batch_size, is a sum of sizes of all of the groups of parameters as
provided by group_sizes array.

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event getrs_batch(cl::sycl::queue &queue, mkl::transpose *trans, std::int64_

→˓t *n, std::int64_t *nrhs, T **a, std::int64_t *lda, std::int64_t **ipiv, T **b,␣
→˓std::int64_t *ldb, std::int64_t group_count, std::int64_t *group_sizes, T *scratchpad,␣
→˓std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue Device queue where calculations will be performed.

trans
Array of group_count parameters 𝑡𝑟𝑎𝑛𝑠𝑔 indicating the form of the equations for the group 𝑔:
If trans = mkl::transpose::nontrans, then 𝐴𝑖𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::trans, then 𝐴𝑇

𝑖 𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::conjtrans, then 𝐴𝐻

𝑖 𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.

n Array of group_count parameters 𝑛𝑔 specifying the order of the matrices 𝐴𝑖 and the number of rows in matrices
𝐵𝑖 (0 ≤ 𝑛𝑔) belonging to group 𝑔.

nrhs Array of group_count parameters nrhs𝑔 specifying the number of right-hand sides (0 ≤ nrhs𝑔) for group 𝑔.

a Array of batch_size pointers to factorizations of the matrices 𝐴𝑖, as returned by the Group API of
the:ref:onemkl_lapack_getrf_batch_usm function.

lda Array of group_count parameters lda𝑔 specifying the leading dimensions of 𝐴𝑖 from group 𝑔.

11.2. oneMKL Domains 1468

oneAPI Specification, Release 1.1-rev-1

ipiv ipiv array, as returned by the Group API of the getrf_batch (USM Version) function.

b The array containing batch_size pointers to the matrices𝐵𝑖 whose columns are the right-hand sides for the systems
of equations.

ldb Array of group_count parameters ldb𝑔 specifying the leading dimensions of 𝐵𝑖 in the group 𝑔.

group_count Specifies the number of groups of parameters. Must be at least 0.

group_sizes Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve
for each of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all
parameter group sizes.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
then the value returned by the Group API of the getrs_batch_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

b Solution matrices 𝑋𝑖.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

If info is zero, then diagonal element of some of 𝑈𝑖 is zero, and the solve could not be com-
pleted. The indices of such matrices in the batch can be obtained with ids() method of the
exception object. The indices of first zero diagonal elements in these 𝑈𝑖 matrices can be ob-
tained by exceptions() method of exception object.

Strided API
The routine solves the following systems of linear equations for 𝑋𝑖:
𝐴𝑖𝑋𝑖 = 𝐵𝑖, if trans=mkl::transpose::nontrans

11.2. oneMKL Domains 1469

oneAPI Specification, Release 1.1-rev-1

𝐴𝑇
𝑖 𝑋𝑖 = 𝐵𝑖, if trans=mkl::transpose::trans

𝐴𝐻
𝑖 𝑋𝑖 = 𝐵𝑖, if trans=mkl::transpose::conjtrans

Before calling this routine, the Strided API of the getrf_batch function should be called to compute the
LU factorizations of 𝐴𝑖.

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event getrs_batch(cl::sycl::queue &queue, mkl::transpose trans, std::int64_t␣

→˓n, std::int64_t nrhs, T *a, std::int64_t lda, std::int64_t stride_a, std::int64_t␣
→˓*ipiv, std::int64_t stride_ipiv, T *b, std::int64_t ldb, std::int64_t stride_b,␣
→˓std::int64_t batch_size, T *scratchpad, std::int64_t scratchpad_size, const std::vector
→˓<cl::sycl::event> &events = {})
};

Input Parameters

queue Device queue where calculations will be performed.

trans
Form of the equations:
If trans = mkl::transpose::nontrans, then 𝐴𝑖𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::trans, then 𝐴𝑇

𝑖 𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::conjtrans, then 𝐴𝐻

𝑖 𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.

n Order of the matrices 𝐴𝑖 and the number of rows in matrices 𝐵𝑖 (0 ≤ 𝑛).

nrhs Number of right-hand sides (0 ≤ nrhs).

a Array containing the factorizations of the matrices 𝐴𝑖, as returned by the Strided API of
the:ref:onemkl_lapack_getrf_batch_usm function.

lda Leading dimension of 𝐴𝑖.

stride_a Stride between the beginnings of matrices 𝐵𝑖 inside the batch array b.

ipiv ipiv array, as returned by getrf_batch (USM) function.

stride_ipiv Stride between the beginnings of arrays ipiv𝑖 inside the array ipiv.

b Array containing the matrices 𝐵𝑖 whose columns are the right-hand sides for the systems of equations.

ldb Leading dimensions of 𝐵𝑖.

batch_size Number of problems in a batch.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
then the value returned by the Strided API of the getrs_batch_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

11.2. oneMKL Domains 1470

oneAPI Specification, Release 1.1-rev-1

Output Parameters

b Solution matrices 𝑋𝑖.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

If info is zero, then diagonal element of some of 𝑈𝑖 is zero, and the solve could not be completed. The
indices of such matrices in the batch can be obtained with ids() method of the exception object. The indices
of first zero diagonal elements in these 𝑈𝑖 matrices can be obtained by exceptions() method of exception
object.

Parent topic: LAPACK-like Extensions Routines

getrs_batch_scratchpad_size

Computes size of scratchpad memory required for the getrs_batch function.

Description

getrs_batch_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Group API
Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Group API
of the getrs_batch function.

11.2. oneMKL Domains 1471

oneAPI Specification, Release 1.1-rev-1

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t getrs_batch_scratchpad_size(cl::sycl::queue &queue, mkl::transpose *trans,

→˓ std::int64_t *n, std::int64_t *nrhs, std::int64_t *lda, std::int64_t *ldb, std::int64_
→˓t group_count, std::int64_t *group_sizes)
}

Input Parameters

queue Device queue where calculations will be performed.

trans
Array of group_count parameters trans𝑔 indicating the form of the equations for the group 𝑔:
If trans = mkl::transpose::nontrans, then 𝐴𝑖𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::trans, then 𝐴𝑇

𝑖 𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::conjtrans, then 𝐴𝑖𝐻𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.

n Array of group_count parameters 𝑛𝑔 specifying the order of the matrices 𝐴𝑖 and the number of rows in matrices
𝐵𝑖 (0 ≤ 𝑛𝑔) belonging to group 𝑔.

nrhs Array of group_count parameters nrhsg specifying the number of right-hand sides (0 ≤ nrhs𝑔) for group 𝑔.

lda Array of group_count parameters lda𝑔 specifying the leading dimensions of 𝐴𝑖 from group 𝑔.

ldb Array of group_count parameters ldb𝑔 specifying the leading dimensions of 𝐵𝑖 in the group 𝑔.

group_count Number of groups of parameters. Must be at least 0.

group_sizes Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve
for each of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all
parameter group sizes.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Group API of the
getrs_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Strided API
Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API
of the getrs_batch function.

11.2. oneMKL Domains 1472

oneAPI Specification, Release 1.1-rev-1

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t getrs_batch_scratchpad_size(cl::sycl::queue &queue, mkl::transpose trans,␣

→˓std::int64_t n, std::int64_t nrhs, std::int64_t lda, std::int64_t stride_a, std::int64_
→˓t stride_ipiv, std::int64_t ldb, std::int64_t stride_b, std::int64_t batch_size)
};

Input Parameters

queue Device queue where calculations will be performed.

trans
Indicates the form of the equations:
If trans = mkl::transpose::nontrans, then 𝐴𝑖𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::trans, then 𝐴𝑇

𝑖 𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.
If trans = mkl::transpose::conjtrans, then 𝐴𝐻

𝑖 𝑋𝑖 = 𝐵𝑖 is solved for 𝑋𝑖.

n Order of the matrices 𝐴𝑖 and the number of rows in matrices 𝐵𝑖 (0 ≤ 𝑛).

nrhs Number of right-hand sides (0 ≤ nrhs).

lda Leading dimension of 𝐴𝑖.

stride_a Stride between the beginnings of matrices 𝐵𝑖 inside the batch array b.

stride_ipiv Stride between the beginnings of arrays ipivi inside the array ipiv.

ldb Leading dimension of 𝐵𝑖.

batch_size Number of problems in a batch.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API of the
getrs_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Parent topic: LAPACK-like Extensions Routines

11.2. oneMKL Domains 1473

oneAPI Specification, Release 1.1-rev-1

orgqr_batch

Generates the orthogonal/unitary matrix 𝑄𝑖 of the QR factorizations for a group of general matrices.

Description

orgqr_batch supports the following precisions.

T
float
double

orgqr_batch (Buffer Version)

Description

The buffer version of orgqr_batch supports only the strided API.

Strided API
The routine generates the wholes or parts of 𝑚× 𝑛 orthogonal matrices 𝑄𝑖 of the batch of QR
factorizations formed by the Strided API of the geqrf_batch (Buffer Version) function.
Usually 𝑄𝑖 is determined from the QR factorization of an 𝑚× 𝑝 matrix 𝐴𝑖 with 𝑚 ≥ 𝑝.
To compute the whole matrices 𝑄𝑖, use:
orgqr_batch(queue, m, m, p, a, ...)

To compute the leading 𝑝 columns of 𝑄𝑖 (which form an orthonormal basis in the space spanned by the
columns of 𝐴𝑖):
orgqr_batch(queue, m, p, p, a, ...)

To compute the matrices 𝑄𝑘
𝑖 of the QR factorizations of leading 𝑘 columns of the matrices 𝐴𝑖:

orgqr_batch(queue, m, m, k, a, ...)

To compute the leading 𝑘 columns of 𝑄𝑘
𝑖 (which form an orthonormal basis in the space spanned by

leading 𝑘 columns of the matrices 𝐴𝑖):
orgqr_batch(queue, m, k, k, a, ...)

Syntax

namespace oneapi::mkl::lapack {
void orgqr_batch(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, std::int64_t␣

→˓k, cl::sycl::buffer<T> &a, std::int64_t lda, std::int64_t stride_a, cl::sycl::buffer<T>
→˓ &tau, std::int64_t stride_tau, std::int64_t batch_size, cl::sycl::buffer<T> &
→˓scratchpad, std::int64_t scratchpad_size)
}

11.2. oneMKL Domains 1474

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue Device queue where calculations will be performed.

m Number of rows in the matrices 𝐴𝑖 (0 ≤ 𝑚).

n Number of columns in the matrices 𝐴𝑖 (0 ≤ 𝑛).

k Number of elementary reflectors whose product defines the matrices 𝑄𝑖 (0 ≤ 𝑘 ≤ 𝑛).

a Array resulting after call to the Strided API of the geqrf_batch (Buffer Version) function.

lda Leading dimension of 𝐴𝑖 (lda ≤ 𝑚).

stride_a The stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

tau Array resulting from call to the Strided API of the geqrf_batch (Buffer Version) function.

stride_tau Stride between the beginnings of arrays 𝜏𝑖 inside the array tau.

batch_size Specifies the number of problems in a batch.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
then the value returned by the Strided API of the orgqr_batch_scratchpad_size function.

Output Parameters

a Batch of 𝑛 leading columns of the 𝑚×𝑚 orthogonal matrices 𝑄𝑖.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

11.2. oneMKL Domains 1475

oneAPI Specification, Release 1.1-rev-1

orgqr_batch (USM Version)

Description

The USM version of orgqr_batch supports the group API and strided API.

Group API
The routine generates the wholes or parts of 𝑚× 𝑛 orthogonal matrices 𝑄𝑖 of the batch of QR
factorizations formed by the Group API of the geqrf_batch (USM Version) function.
Usually 𝑄𝑖 is determined from the QR factorization of an 𝑚× 𝑝 matrix 𝐴𝑖 with 𝑚 ≥ 𝑝.
To compute the whole matrices 𝑄𝑖, use:
orgqr_batch(queue, m, m, p, a, ...)

To compute the leading 𝑝 columns of 𝑄𝑖 (which form an orthonormal basis in the space spanned by the
columns of 𝐴𝑖):
orgqr_batch(queue, m, p, p, a, ...)

To compute the matrices 𝑄𝑘
𝑖 of the QR factorizations of leading 𝑘 columns of the matrices 𝐴𝑖:

orgqr_batch(queue, m, m, k, a, ...)

To compute the leading 𝑘 columns of 𝑄𝑘
𝑖 (which form an orthonormal basis in the space spanned by

leading 𝑘 columns of the matrices 𝐴𝑖):
orgqr_batch(queue, m, k, k, a, ...)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event orgqr_batch(cl::sycl::queue &queue, std::int64_t *m, std::int64_t *n,␣

→˓std::int64_t *k, T **a, std::int64_t *lda, T **tau, std::int64_t group_count,␣
→˓std::int64_t *group_sizes, T *scratchpad, std::int64_t scratchpad_size, const␣
→˓std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue Device queue where calculations will be performed.

m Array of group_count𝑚𝑔 parameters as previously supplied to group version of geqrf_batch function.

n Array of group_count 𝑛𝑔 parameters as previously supplied to group version of geqrf_batch function.

k Array of group_count 𝑘𝑔 parameters as previously supplied to the Group API of the geqrf_batch (USM Version)
function. The number of elementary reflectors whose product defines the matrices 𝑄𝑖 (0 ≤ 𝑘𝑔 ≤ 𝑛𝑔).

a Array resulting after call to the Group API of the geqrf_batch (USM Version) function.

lda Array of leading dimensions of 𝐴𝑖 as previously supplied to the Group API of the geqrf_batch (USM Version)
function.

tau Array resulting after call to the Group API of the geqrf_batch (USM Version) function.

group_count Number of groups of parameters. Must be at least 0.

group_sizes Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve
for each of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all
parameter group sizes.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

11.2. oneMKL Domains 1476

oneAPI Specification, Release 1.1-rev-1

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
then the value returned by Group API of the orgqr_batch_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a 𝑛𝑔 leading columns of the 𝑚𝑔×𝑚𝑔 orthogonal matrices 𝑄𝑖, where 𝑔 is an index of group of parameters correspond-
ing to 𝑄𝑖.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

Strided API
The routine generates the wholes or parts of 𝑚× 𝑛 orthogonal matrices 𝑄𝑖 of the batch of QR
factorizations formed by the Strided API of the geqrf_batch (USM Version) function.
Usually 𝑄𝑖 is determined from the QR factorization of an 𝑚× 𝑝 matrix 𝐴𝑖 with 𝑚 ≥ 𝑝.
To compute the whole matrices 𝑄𝑖, use:
orgqr_batch(queue, m, m, p, a, ...)

To compute the leading 𝑝 columns of 𝑄𝑖 (which form an orthonormal basis in the space spanned by the
columns of 𝐴𝑖):
orgqr_batch(queue, m, p, p, a, ...)

To compute the matrices 𝑄𝑘
𝑖 of the QR factorizations of leading 𝑘 columns of the matrices 𝐴𝑖:

orgqr_batch(queue, m, m, k, a, ...)

To compute the leading 𝑘 columns of 𝑄𝑘
𝑖 (which form an orthonormal basis in the space spanned by

leading 𝑘 columns of the matrices 𝐴𝑖):
orgqr_batch(queue, m, k, k, a, ...)

11.2. oneMKL Domains 1477

oneAPI Specification, Release 1.1-rev-1

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event orgqr_batch(cl::sycl::queue &queue, std::int64_t m, std::int64_t n,␣

→˓std::int64_t k, T *a, std::int64_t lda, std::int64_t stride_a, T *tau, std::int64_t␣
→˓stride_tau, std::int64_t batch_size, T *scratchpad, std::int64_t scratchpad_size,␣
→˓const std::vector<cl::sycl::event> &events = {})
};

Input Parameters

queue Device queue where calculations will be performed.

m Number of rows in the matrices 𝐴𝑖 (0 ≤ 𝑚).

n Number of columns in the matrices 𝐴𝑖 (0 ≤ 𝑛).

k Number of elementary reflectors whose product defines the matrices 𝑄𝑖 (0 ≤ 𝑘 ≤ 𝑛).

a Array resulting after call to the Strided API of the geqrf_batch (USM Version) function.

lda Leading dimension of 𝐴𝑖 (lda ≤ 𝑚).

stride_a The stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

tau Array resulting from call to the Strided API of the geqrf_batch (USM Version) function.

stride_tau Stride between the beginnings of arrays 𝜏𝑖 inside the array tau.

batch_size Specifies the number of problems in a batch.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
then the value returned by the Strided API of the orgqr_batch_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a Batch of 𝑛 leading columns of the 𝑚×𝑚 orthogonal matrices 𝑄𝑖.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

11.2. oneMKL Domains 1478

oneAPI Specification, Release 1.1-rev-1

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

Parent topic: LAPACK-like Extensions Routines

orgqr_batch_scratchpad_size

Computes size of scratchpad memory required for the orgqr_batch function.

Description

orgqr_batch_scratchpad_size supports the following precisions.

T
float
double

Group API
Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Group API
of the orgqr_batch function.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t orgqr_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t *m,␣

→˓std::int64_t *n, std::int64_t *k, std::int64_t *lda, std::int64_t group_count,␣
→˓std::int64_t *group_sizes)
}

Input Parameters

queue Device queue where calculations will be performed.

m Array of group_count𝑚𝑔 parameters.

n Array of group_count 𝑛𝑔 parameters.

k Array of group_count kg parameters. The number of elementary reflectors whose product defines the matrices 𝑄𝑖

(0 ≤ 𝑘𝑔 ≤ 𝑛𝑔).

lda Array of leading dimensions of 𝐴𝑖.

group_count Number of groups of parameters. Must be at least 0.

group_sizes Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve
for each of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all
parameter group sizes.

11.2. oneMKL Domains 1479

oneAPI Specification, Release 1.1-rev-1

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Group API of the
orgqr_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Strided API
Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API
of the orgqr_batch function.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t orgqr_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t m,␣

→˓std::int64_t n, std::int64_t k, std::int64_t lda, std::int64_t stride_a, std::int64_t␣
→˓stride_tau, std::int64_t batch_size)
};

Input Parameters

queue Device queue where calculations will be performed.

m Number of rows in the matrices 𝐴𝑖 (0 ≤ 𝑚).

n Number of columns in the matrices Ai (0 ≤ 𝑛).

k Number of elementary reflectors whose product defines the matrices 𝑄𝑖 (0 ≤ 𝑘 ≤ 𝑛).

lda Leading dimension of 𝐴𝑖 (lda ≤ 𝑚).

stride_a Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

stride_tau Stride between the beginnings of arrays 𝑡𝑎𝑢𝑖 inside the array tau.

batch_size Number of problems in a batch.

11.2. oneMKL Domains 1480

oneAPI Specification, Release 1.1-rev-1

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API of the
orgqr_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Parent topic: LAPACK-like Extensions Routines

potrf_batch

Computes the LU factorizations of a batch of general matrices.

Description

potrf_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

potrf_batch (Buffer Version)

Description

The buffer version of potrf_batch supports only the strided API.

Strided API
The routine forms the Cholesky factorizations of a symmetric positive-definite or, for complex data,
Hermitian positive-definite matrices 𝐴𝑖, 𝑖 ∈ {1...𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒}:
𝐴𝑖 = 𝑈𝑇

𝑖 𝑈𝑖 for real data, 𝐴𝑖 = 𝑈𝐻
𝑖 𝑈𝑖 for complex data if uplo = mkl::uplo::upper,

𝐴𝑖 = 𝐿𝑖𝐿
𝑇
𝑖 for real data, 𝐴𝑖 = 𝐿𝑖𝐿

𝐻
𝑖 for complex data if uplo = mkl::uplo::lower,

where 𝐿𝑖 is a lower triangular matrix and 𝑈𝑖 is upper triangular.

11.2. oneMKL Domains 1481

oneAPI Specification, Release 1.1-rev-1

Syntax

namespace oneapi::mkl::lapack {
void potrf_batch(cl::sycl::queue &queue, mkl::uplo uplo, std::int64_t n,␣

→˓cl::sycl::buffer<T> &a, std::int64_t lda, std::int64_t stride_a, std::int64_t batch_
→˓size, cl::sycl::buffer<T> &scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue Device queue where calculations will be performed.

uplo
Indicates whether the upper or lower triangular part of 𝐴𝑖 is stored and how 𝐴𝑖 is factored:
If uplo = mkl::uplo::upper, the array a stores the upper triangular parts of the matrices 𝐴𝑖,
If uplo = mkl::uplo::lower, the array a stores the lower triangular parts of the matrices 𝐴𝑖.

n Order of the matrices 𝐴𝑖, (0 ≤ 𝑛).

a Array containing batch of input matrices 𝐴𝑖, each of 𝐴𝑖 being of size lda · 𝑛 and holding either upper or lower
triangular parts of the matrices 𝐴𝑖 (see uplo).

lda Leading dimension of 𝐴𝑖.

stride_a Stride between the beginnings of matrices 𝐴𝑖 inside the batch.

batch_size Number of problems in a batch.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
then the value returned by the Strided API of the potrf_batch_scratchpad_size function.

Output Parameters

a Cholesky factors 𝑈𝑖 or 𝐿𝑖, as specified by uplo.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

11.2. oneMKL Domains 1482

oneAPI Specification, Release 1.1-rev-1

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

If info is zero, then the leading minors of some of matrices (and therefore some matrices 𝐴𝑖 themselves)
are not positive-definite, and the factorizations could not be completed for these matrices from the batch.
The indices of such matrices in the batch can be obtained with ids() method of the exception object. The
orders of corresponding not positive-definite leading minors of these matrices can be obtained by excep-
tions() method of exception object.

potrf_batch (USM Version)

Description

The USM version of potrf_batch supports the group API and strided API.

Group API
The routine forms the Cholesky factorizations of symmetric positive-definite or, for complex data,
Hermitian positive-definite matrices 𝐴𝑖, 𝑖 ∈ {1...𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒}:
𝐴𝑖 = 𝑈𝑇

𝑖 𝑈𝑖 for real data (𝐴𝑖 = 𝑈𝐻
𝑖 𝑈𝑖 for complex), if uplo𝑔 is mkl::uplo::upper,

𝐴𝑖 = 𝐿𝑖𝐿
𝑇
𝑖 for real data (𝐴𝑖 = 𝐿𝑖𝐿

𝐻
𝑖 for complex), if uplo𝑔 is mkl::uplo::lower,

where 𝐿𝑖 is a lower triangular matrix and 𝑈𝑖 is upper triangular, 𝑔 is an index of group of parameters
corresponding to 𝐴𝑖, and total number of problems to solve, batch_size, is a sum of sizes of all of the
groups of parameters as provided by group_sizes array

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event potrf_batch(cl::sycl::queue &queue, mkl::uplo *uplo, std::int64_t *n,␣

→˓T **a, std::int64_t *lda, std::int64_t group_count, std::int64_t *group_sizes, T␣
→˓*scratchpad, std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events␣
→˓= {})
}

Input Parameters

queue Device queue where calculations will be performed.

uplo
Array of group_count uplo𝑔 parameters. Each uplo𝑔 indicates whether the upper or lower triangular parts of
the input matrices are provided:
If uplo𝑔 is mkl::uplo::upper, input matrices from array a belonging to group 𝑔 store the upper triangular
parts,
If uplo𝑔 is mkl::uplo::lower, input matrices from array a belonging to group 𝑔 store the lower triangular
parts.

n Array of group_count 𝑛𝑔 parameters. Each 𝑛𝑔 specifies the order of the input matrices from array a belonging to
group 𝑔.

a Array of batch_size pointers to input matrices 𝐴𝑖, each being of size lda𝑔 ·𝑛𝑔 (𝑔 is an index of group to which 𝐴𝑖

belongs to) and holding either upper or lower triangular part as specified by uplo𝑔 .

11.2. oneMKL Domains 1483

oneAPI Specification, Release 1.1-rev-1

lda Array of group_count lda𝑔 parameters. Each lda𝑔 specifies the leading dimensions of the matrices from a be-
longing to group 𝑔.

group_count Number of groups of parameters. Must be at least 0.

group_sizes Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve
for each of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all
parameter group sizes.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
then the value returned by the Group API of the potrf_batch_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a Cholesky factors 𝑈𝑖 or 𝐿𝑖, as specified by uplo𝑔 from corresponding group of parameters.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

If info is zero, then the leading minors of some of the input matrices (and therefore some matrices them-
selves) are not positive-definite, and the factorizations could not be completed for these matrices from the
batch. The indices of such matrices in the batch can be obtained with ids() method of the exception ob-
ject. The orders of corresponding not positive-definite leading minors of these matrices can be obtained
by exceptions() method of the exception object.

Strided API
The routine forms the Cholesky factorizations of a symmetric positive-definite or, for complex data,
Hermitian positive-definite matrices 𝐴𝑖, 𝑖 ∈ {1...𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒}:
𝐴𝑖 = 𝑈𝑇

𝑖 𝑈𝑖 for real data, 𝐴𝑖 = 𝑈𝐻
𝑖 𝑈𝑖 for complex data if uplo = mkl::uplo::upper,

𝐴𝑖 = 𝐿𝑖𝐿
𝑇
𝑖 for real data, 𝐴𝑖 = 𝐿𝑖𝐿

𝐻
𝑖 for complex data if uplo = mkl::uplo::lower,

11.2. oneMKL Domains 1484

oneAPI Specification, Release 1.1-rev-1

where 𝐿𝑖 is a lower triangular matrix and 𝑈𝑖 is upper triangular.

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event potrf_batch(cl::sycl::queue &queue, mkl::uplo uplo, std::int64_t n, T␣

→˓*a, std::int64_t lda, std::int64_t stride_a, std::int64_t batch_size, T *scratchpad,␣
→˓std::int64_t scratchpad_size, const std::vector<cl::sycl::event> &events = {})
};

Input Parameters

queue Device queue where calculations will be performed.

uplo
Indicates whether the upper or lower triangular part of 𝐴𝑖 is stored and how 𝐴𝑖 is factored:
If uplo = mkl::uplo::upper, the array a stores the upper triangular parts of the matrices 𝐴𝑖,
If uplo = mkl::uplo::lower, the array a stores the lower triangular parts of the matrices 𝐴𝑖.

n Order of the matrices 𝐴𝑖, (0 ≤ 𝑛).

a Array containing batch of input matrices 𝐴𝑖, each of 𝐴𝑖 being of size lda · 𝑛 and holding either upper or lower
triangular parts of the matrices 𝐴𝑖 (see uplo).

lda Leading dimension of 𝐴𝑖.

stride_a Stride between the beginnings of matrices 𝐴𝑖 inside the batch.

batch_size Number of problems in a batch.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
then the value returned by the Strided API of the potrf_batch_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a Cholesky factors 𝑈𝑖 or 𝐿𝑖, as specified by uplo.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

11.2. oneMKL Domains 1485

oneAPI Specification, Release 1.1-rev-1

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

If info is zero, then the leading minors of some of matrices (and therefore some matrices 𝐴𝑖 themselves)
are not positive-definite, and the factorizations could not be completed for these matrices from the batch.
The indices of such matrices in the batch can be obtained with ids() method of the exception object. The
orders of corresponding not positive-definite leading minors of these matrices can be obtained by excep-
tions() method of exception object.

Parent topic: LAPACK-like Extensions Routines

potrf_batch_scratchpad_size

Computes size of scratchpad memory required for the potrf_batch function.

Description

potrf_batch_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Group API
Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Group API
of the potrf_batch function.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t potrf_batch_scratchpad_size(cl::sycl::queue &queue, mkl::uplo *uplo,␣

→˓std::int64_t *n, std::int64_t *lda, std::int64_t group_count, std::int64_t *group_
→˓sizes)
}

11.2. oneMKL Domains 1486

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue Device queue where calculations will be performed.

uplo
Array of group_count uplo𝑔 parameters.
Each of uplo𝑔 indicates whether the upper or lower triangular parts of the input matrices are provided:
If uplo𝑔 is mkl::uplo::upper, input matrices from array a belonging to group 𝑔 store the upper triangular
parts,
If uplo𝑔 is mkl::uplo::lower, input matrices from array a belonging to group 𝑔 store the lower triangular
parts.

n
Array of group_count 𝑛𝑔 parameters.
Each ng specifies the order of the input matrices belonging to group 𝑔.

lda
Array of group_count lda𝑔 parameters.
Each ldag specifies the leading dimensions of the matrices belonging to group 𝑔.

group_count Number of groups of parameters. Must be at least 0.

group_sizes Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve
for each of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all
parameter group sizes.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Group API of the
potrf_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Strided API
Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API
of the potrf_batch function.

11.2. oneMKL Domains 1487

oneAPI Specification, Release 1.1-rev-1

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t potrf_batch_scratchpad_size(cl::sycl::queue &queue, mkl::uplo uplo,␣

→˓std::int64_t n, std::int64_t lda, std::int64_t stride_a, std::int64_t batch_size)
};

Input Parameters

queue Device queue where calculations will be performed.

uplo
Indicates whether the upper or lower triangular part of 𝐴𝑖 is stored and how 𝐴𝑖 is factored:
If uplo = mkl::uplo::upper, the array a stores the upper triangular parts of the matrices 𝐴𝑖,
If uplo = mkl::uplo::lower, the array a stores the lower triangular parts of the matrices 𝐴𝑖.

n Order of the matrices 𝐴𝑖, (0 ≤ 𝑛).

lda Leading dimension of 𝐴𝑖.

stride_a Stride between the beginnings of matrices 𝐴𝑖 inside the batch.

batch_size Number of problems in a batch.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API of the
potrf_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Parent topic: LAPACK-like Extensions Routines

11.2. oneMKL Domains 1488

oneAPI Specification, Release 1.1-rev-1

potrs_batch

Computes the LU factorizations of a batch of general matrices.

Description

potrs_batch supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

potrs_batch (Buffer Version)

Description

The buffer version of potrs_batch supports only the strided API.

Strided API
The routine solves for 𝑋𝑖 the systems of linear equations 𝐴𝑖𝑋𝑖 = 𝐵𝑖 with a symmetric positive-definite
or, for complex data, Hermitian positive-definite matrices 𝐴𝑖, given the Cholesky factorization of 𝐴𝑖,
𝑖 ∈ {1...𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒}:
𝐴𝑖 = 𝑈𝑇

𝑖 𝑈𝑖 for real data, 𝐴𝑖 = 𝑈𝐻
𝑖 𝑈𝑖 for complex data if uplo = mkl::uplo::upper,

𝐴𝑖 = 𝐿𝑖𝐿
𝑇
𝑖 for real data, 𝐴𝑖 = 𝐿𝑖𝐿

𝐻
𝑖 for complex data if uplo = mkl::uplo::lower,

where 𝐿𝑖 is a lower triangular matrix and 𝑈𝑖 is upper triangular.
The systems are solved with multiple right-hand sides stored in the columns of the matrices 𝐵𝑖.
Before calling this routine, matrices 𝐴𝑖 should be factorized by call to the Strided API of the potrf_batch
(Buffer Version) function.

Syntax

namespace oneapi::mkl::lapack {
void potrs_batch(cl::sycl::queue &queue, mkl::uplo uplo, std::int64_t n, std::int64_t␣

→˓nrhs, cl::sycl::buffer<T> &a, std::int64_t lda, std::int64_t stride_a, cl::sycl::buffer
→˓<T> &b, std::int64_t ldb, std::int64_t stride_b, std::int64_t batch_size,␣
→˓cl::sycl::buffer<T> &scratchpad, std::int64_t scratchpad_size)
}

11.2. oneMKL Domains 1489

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue Device queue where calculations will be performed.

uplo
Indicates how the input matrices have been factored:
If uplo = mkl::uplo::upper, the upper triangle 𝑈𝑖 of 𝐴𝑖 is stored, where 𝐴𝑖 = 𝑈𝑇

𝑖 𝑈𝑖 for real data,
𝐴𝑖 = 𝑈𝐻

𝑖 𝑈𝑖 for complex data.
If uplo = mkl::uplo::lower, the upper triangle 𝐿𝑖 of 𝐴𝑖 is stored, where 𝐴𝑖 = 𝐿𝑖𝐿

𝑇
𝑖 for real data,

𝐴𝑖 = 𝐿𝑖𝐿
𝐻
𝑖 for complex data.

n The order of matrices 𝐴𝑖 (0 ≤ 𝑛).

nrhs The number of right-hand sides (0 ≤ nrhs).

a Array containing batch of factorizations of the matrices 𝐴𝑖, as returned by the Strided API of the potrf_batch (Buffer
Version) function.

lda Leading dimension of 𝐴𝑖.

stride_a Stride between the beginnings of matrices inside the batch array a.

b Array containing batch of matrices 𝐵𝑖 whose columns are the right-hand sides for the systems of equations.

ldb Leading dimension of 𝐵𝑖.

stride_b Stride between the beginnings of matrices 𝐵𝑖 inside the batch array b.

batch_size Number of problems in a batch.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
then the value returned by the Strided API of the potrs_batch_scratchpad_size function.

Output Parameters

b Solution matrices 𝑋𝑖.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

11.2. oneMKL Domains 1490

oneAPI Specification, Release 1.1-rev-1

If info is zero, then for some of the matrices diagonal element of the Cholesky factor is zero, and the
solve could not be completed. The indices of such matrices in the batch can be obtained with ids() method
of the exception object. The indices of first zero diagonal elements in these matrices can be obtained by
exceptions() method of exception object.

potrs_batch (USM Version)

Description

The USM version of potrs_batch supports the group API and strided API.

Group API

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event potrs_batch(cl::sycl::queue &queue, mkl::uplo *uplo, std::int64_t *n,␣

→˓std::int64_t *nrhs, T **a, std::int64_t *lda, T **b, std::int64_t *ldb, std::int64_t␣
→˓group_count, std::int64_t *group_sizes, T *scratchpad, std::int64_t scratchpad_size,␣
→˓const std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue Device queue where calculations will be performed.

uplo
Array of group_count uplo𝑔 parameters.
Each of uplo𝑔 indicates whether the upper or lower triangular parts of the input matrices are provided:
If uplo𝑔 is mkl::uplo::upper, input matrices from array a belonging to group 𝑔 store the upper triangular
parts,
If uplo𝑔 is mkl::uplo::lower, input matrices from array a belonging to group 𝑔 store the lower triangular
parts.

n
Array of group_count 𝑛𝑔 parameters.
Each 𝑛𝑔 specifies the order of the input matrices from array a belonging to group 𝑔.

nrhs
Array of group_count nrhs𝑔 parameters.
Each nrhs𝑔 specifies the number of right-hand sides supplied for group 𝑔 in corresponding part of array b.

a Array of batch_size pointers to Cholesky factored matrices 𝐴𝑖 as returned by the Group API of the potrf_batch
(USM Version) function.

lda
Array of group_count lda𝑔 parameters.
Each lda𝑔 specifies the leading dimensions of the matrices from a belonging to group 𝑔.

b Array of batch_size pointers to right-hand side matrices 𝐵𝑖, each of size ldb𝑔 ·nrhs𝑔 , where 𝑔 is an index of group
corresponding to 𝐵𝑖.

11.2. oneMKL Domains 1491

oneAPI Specification, Release 1.1-rev-1

ldb
Array of group_count ldb𝑔 parameters.
Each ldb𝑔 specifies the leading dimensions of the matrices from b belonging to group 𝑔.

group_count Number of groups of parameters. Must be at least 0.

group_sizes Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve
for each of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all
parameter group sizes.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
then the value returned by the Group API of the potrs_batch_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

b Solution matrices 𝑋𝑖.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the n-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

If info is zero, then for some of the matrices diagonal element of the Cholesky factor is zero, and the
solve could not be completed. The indices of such matrices in the batch can be obtained with ids() method
of the exception object. The indices of first zero diagonal elements in these matrices can be obtained by
exceptions() method of exception object.

Strided API
The routine solves for 𝑋𝑖 the systems of linear equations 𝐴𝑖𝑋𝑖 = 𝐵𝑖 with a symmetric positive-definite
or, for complex data, Hermitian positive-definite matrices 𝐴𝑖, given the Cholesky factorization of 𝐴𝑖,
𝑖 ∈ {1...𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒}:
𝐴𝑖 = 𝑈𝑇

𝑖 𝑈𝑖 for real data, 𝐴𝑖 = 𝑈𝐻
𝑖 𝑈𝑖 for complex data if uplo = mkl::uplo::upper,

11.2. oneMKL Domains 1492

oneAPI Specification, Release 1.1-rev-1

𝐴𝑖 = 𝐿𝑖𝐿
𝑇
𝑖 for real data, 𝐴𝑖 = 𝐿𝑖𝐿

𝐻
𝑖 for complex data if uplo = mkl::uplo::lower,

where 𝐿𝑖 is a lower triangular matrix and 𝑈𝑖 is upper triangular.
The systems are solved with multiple right-hand sides stored in the columns of the matrices 𝐵𝑖.
Before calling this routine, matrices 𝐴𝑖 should be factorized by call to the Strided API of the potrf_batch
(USM Version) function.

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event potrs_batch(cl::sycl::queue &queue, mkl::uplo uplo, std::int64_t n,␣

→˓std::int64_t nrhs, T *a, std::int64_t lda, std::int64_t stride_a, T *b, std::int64_t␣
→˓ldb, std::int64_t stride_b, std::int64_t batch_size, T *scratchpad, std::int64_t␣
→˓scratchpad_size, const std::vector<cl::sycl::event> &events = {})
};

Input Parameters

queue Device queue where calculations will be performed.

uplo
Indicates how the input matrices have been factored:
If uplo = mkl::uplo::upper, the upper triangle 𝑈𝑖 of 𝐴𝑖 is stored, where 𝐴𝑖 = 𝑈𝑇

𝑖 𝑈𝑖 for real data,
𝐴𝑖 = 𝑈𝐻

𝑖 𝑈𝑖 for complex data.
If uplo = mkl::uplo::lower, the upper triangle 𝐿𝑖 of 𝐴𝑖 is stored, where 𝐴𝑖 = 𝐿𝑖𝐿

𝑇
𝑖 for real data,

𝐴𝑖 = 𝐿𝑖𝐿
𝐻
𝑖 for complex data.

n The order of matrices 𝐴𝑖 (0 ≤ 𝑛).

nrhs The number of right-hand sides (0 ≤ 𝑛𝑟ℎ𝑠).

a Array containing batch of factorizations of the matrices 𝐴𝑖, as returned by the Strided API of the potrf_batch (USM
Version) function.

lda Leading dimension of 𝐴𝑖.

stride_a Stride between the beginnings of matrices inside the batch array a.

b Array containing batch of matrices 𝐵𝑖 whose columns are the right-hand sides for the systems of equations.

ldb Leading dimension of 𝐵𝑖.

stride_b Stride between the beginnings of matrices 𝐵𝑖 inside the batch array b.

batch_size Number of problems in a batch.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
then the value returned by the Strided API of the potrs_batch_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

11.2. oneMKL Domains 1493

oneAPI Specification, Release 1.1-rev-1

Output Parameters

b Solution matrices 𝑋𝑖.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

If info is zero, then for some of the matrices diagonal element of the Cholesky factor is zero, and the
solve could not be completed. The indices of such matrices in the batch can be obtained with ids() method
of the exception object. The indices of first zero diagonal elements in these matrices can be obtained by
exceptions() method of exception object.

Parent topic: LAPACK-like Extensions Routines

potrs_batch_scratchpad_size

Computes size of scratchpad memory required for the potrs_batch function.

Description

potrs_batch_scratchpad_size supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

11.2. oneMKL Domains 1494

oneAPI Specification, Release 1.1-rev-1

Group API
Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Group API
of the potrs_batch function.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t potrs_batch_scratchpad_size(cl::sycl::queue &queue, mkl::uplo *uplo,␣

→˓std::int64_t *n, std::int64_t *nrhs, std::int64_t *lda, std::int64_t *ldb, std::int64_
→˓t group_count, std::int64_t *group_sizes)
}

Input Parameters

queue Device queue where calculations will be performed.

uplo
Array of group_count uplo𝑔 parameters.
Each of uplo𝑔 indicates whether the upper or lower triangular parts of the input matrices are provided:
If uplo𝑔 is mkl::uplo::upper, input matrices from array a belonging to group 𝑔 store the upper triangular
parts,
If uplo𝑔 is mkl::uplo::lower, input matrices from array a belonging to group 𝑔 store the lower triangular
parts.

n
Array of group_count 𝑛𝑔 parameters.
Each 𝑛𝑔 specifies the order of the input matrices belonging to group 𝑔.

nrhs
Array of group_count nrhs𝑔 parameters.
Each 𝑟ℎ𝑠𝑔 specifies the number of right-hand sides supplied for group 𝑔.

lda
Array of group_count lda𝑔 parameters.
Each lda𝑔 specifies the leading dimensions of the matrices belonging to group 𝑔.

ldb
Array of group_count ldb𝑔 parameters.
Each ldb𝑔 specifies the leading dimensions of the matrices belonging to group 𝑔.

group_count Number of groups of parameters. Must be at least 0.

group_sizes Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve for
each of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all parameter
group sizes.

11.2. oneMKL Domains 1495

oneAPI Specification, Release 1.1-rev-1

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Group API of the
potrs_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Strided API
Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API
of the potrs_batch function.

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t potrs_batch_scratchpad_size(cl::sycl::queue &queue, mkl::uplo uplo,␣

→˓std::int64_t n, std::int64_t nrhs, std::int64_t lda, std::int64_t stride_a, std::int64_
→˓t ldb, std::int64_t stride_b, std::int64_t batch_size)
};

Input Parameters

queue Device queue where calculations will be performed.

uplo
Indicates how the input matrices have been factored:
If uplo = mkl::uplo::upper, the upper triangle 𝑈𝑖 of 𝐴𝑖 is stored, where 𝐴𝑖 = 𝑈𝑇

𝑖 𝑈𝑖 for real data,
𝐴𝑖 = 𝑈𝐻

𝑖 𝑈𝑖 for complex data.
If uplo = mkl::uplo::lower, the upper triangle 𝐿𝑖 of 𝐴𝑖 is stored, where 𝐴𝑖 = 𝐿𝑖𝐿

𝑇
𝑖 for real data,

𝐴𝑖 = 𝐿𝑖𝐿
𝐻
𝑖 for complex data.

n Order of matrices 𝐴𝑖 (0 ≤ 𝑛).

nrhs Number of right-hand sides (0 ≤ nrhs).

lda Leading dimension of 𝐴𝑖.

stride_a Stride between the beginnings of matrices inside the batch array a.

ldb Leading dimensions of 𝐵𝑖.

stride_b Stride between the beginnings of matrices 𝐵𝑖 inside the batch array b.

batch_size Number of problems in a batch.

11.2. oneMKL Domains 1496

oneAPI Specification, Release 1.1-rev-1

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API of the
potrs_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Parent topic: LAPACK-like Extensions Routines

ungqr_batch

Generates the complex unitary matrices 𝑄𝑖 of the batch of QR factorizations formed by the geqrf_batch function.

Description

ungqr_batch supports the following precisions.

T
std::complex<float>
std::complex<double>

ungqr_batch (Buffer Version)

Description

The buffer version of ungqr_batch supports only the strided API.

Strided API
The routine generates the wholes or parts of :math`m times m` unitary matrices 𝑄𝑖 of the batch of QR
factorization formed by the Strided API of the geqrf_batch (Buffer Version).
Usually 𝑄𝑖 is determined from the QR factorization of an 𝑚× 𝑝 matrix 𝐴𝑖 with :math`m ge p`.
To compute the whole matrices 𝑄𝑖, use:
ungqr_batch(queue, m, m, p, a, ...)

To compute the leading 𝑝 columns of 𝑄𝑖 (which form an orthonormal basis in the space spanned by the
columns of 𝐴𝑖):
ungqr_batch(queue, m, p, p, a, ...)

To compute the matrices 𝑄𝑖 of the QR factorizations of leading 𝑘 columns of the matrices 𝐴𝑖:
ungqr_batch(queue, m, m, k, a, ...)

To compute the leading 𝑘 columns of 𝑄𝑘
𝑖 (which form an orthonormal basis in the space spanned by

leading 𝑘 columns of the matrices 𝐴𝑖):

11.2. oneMKL Domains 1497

oneAPI Specification, Release 1.1-rev-1

ungqr_batch(queue, m, k, k, a, ...)

Syntax

namespace oneapi::mkl::lapack {
void ungqr_batch(cl::sycl::queue &queue, std::int64_t m, std::int64_t n, std::int64_t␣

→˓k, cl::sycl::buffer<T> &a, std::int64_t lda, std::int64_t stride_a, cl::sycl::buffer<T>
→˓ &tau, std::int64_t stride_tau, std::int64_t batch_size, cl::sycl::buffer<T> &
→˓scratchpad, std::int64_t scratchpad_size)
}

Input Parameters

queue Device queue where calculations will be performed.

m Number of rows in the matrices 𝐴𝑖 (0 ≤ 𝑚).

n Number of columns in the matrices 𝐴𝑖 (0 ≤ 𝑛).

k Number of elementary reflectors whose product defines the matrices 𝑄𝑖 (0 ≤ 𝑘 ≤ 𝑛).

a Array resulting after call to the Strided API of the geqrf_batch (USM Version) function.

lda Leading dimension of 𝐴𝑖 (lda ≤ 𝑚).

stride_a Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

tau Array resulting after call to the Strided API of the geqrf_batch (USM Version) function.

stride_tau Stride between the beginnings of arrays 𝑡𝑎𝑢𝑖 inside the array tau.

batch_size Number of problems in a batch.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
then the value returned by strided version of the Strided API of the ungqr_batch_scratchpad_size function.

Output Parameters

a Array data is overwritten by a batch of n leading columns of the 𝑚×𝑚 unitary matrices 𝑄𝑖.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of problems during calculations. The info code of the problem can be obtained
by info() method of exception object:

11.2. oneMKL Domains 1498

oneAPI Specification, Release 1.1-rev-1

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed
scratchpad is of insufficient size, and required size should be not less then value returned by
detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

ungqr_batch (USM Version)

Description

The USM version of ungqr_batch supports the group API and strided API.

Group API
The routine generates the wholes or parts of :math`m times m` unitary matrices 𝑄𝑖 of the batch of QR
factorization formed by the Group API of the geqrf_batch (Buffer Version).
Usually 𝑄𝑖 is determined from the QR factorization of an 𝑚× 𝑝 matrix 𝐴𝑖 with :math`m ge p`.
To compute the whole matrices 𝑄𝑖, use:
ungqr_batch(queue, m, m, p, a, ...)

To compute the leading 𝑝 columns of 𝑄𝑖 (which form an orthonormal basis in the space spanned by the
columns of 𝐴𝑖):
ungqr_batch(queue, m, p, p, a, ...)

To compute the matrices 𝑄𝑖 of the QR factorizations of leading 𝑘 columns of the matrices 𝐴𝑖:
ungqr_batch(queue, m, m, k, a, ...)

To compute the leading 𝑘 columns of 𝑄𝑘
𝑖 (which form an orthonormal basis in the space spanned by

leading 𝑘 columns of the matrices 𝐴𝑖):
ungqr_batch(queue, m, k, k, a, ...)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event ungqr_batch(cl::sycl::queue &queue, std::int64_t *m, std::int64_t *n,␣

→˓std::int64_t *k, T **a, std::int64_t *lda, T **tau, std::int64_t group_count,␣
→˓std::int64_t *group_sizes, T *scratchpad, std::int64_t scratchpad_size, const␣
→˓std::vector<cl::sycl::event> &events = {})
}

Input Parameters

queue Device queue where calculations will be performed.

m Array of group_count𝑚𝑔 parameters as previously supplied to the Group API of the geqrf_batch (USM Version)
function.

n Array of group_count 𝑛𝑔 parameters as previously supplied to the Group API of the geqrf_batch (USM Version)
function.

k

11.2. oneMKL Domains 1499

oneAPI Specification, Release 1.1-rev-1

Array of group_count 𝑘𝑔 parameters as previously supplied to the Group API of the geqrf_batch (USM
Version) function.
The number of elementary reflectors whose product defines the matrices 𝑄𝑖 (0 ≤ 𝑘𝑔 ≤ 𝑛𝑔).

a Array resulting after call to the Group API of the geqrf_batch (USM Version) function.

lda Array of leading dimensions of 𝐴𝑖 as previously supplied to the Group API of the geqrf_batch (USM Version)
function.

tau Array resulting after call to the Group API of the geqrf_batch (USM Version) function.

group_count Number of groups of parameters. Must be at least 0.

group_sizes Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve
for each of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all
parameter group sizes.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
then the value returned by Group API of the ungqr_batch_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

Output Parameters

a Matrices pointed to by array a are overwritten by 𝑛𝑔 leading columns of the 𝑚𝑔×𝑚𝑔 orthogonal matrices 𝑄𝑖, where
𝑔 is an index of group of parameters corresponding to 𝑄𝑖.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value. If info equals to value passed as
scratchpad size, and detail() returns non zero, then passed scratchpad is of insufficient size, and
required size should be not less then value returned by detail() method of exception object.

If info is not zero and detail() returns zero, then there were some errors for some of the prob-
lems in the supplied batch and info code contains the number of failed calculations in a batch.

Strided API
The routine generates the wholes or parts of :math`m times m` unitary matrices 𝑄𝑖 of the batch of QR
factorization formed by the Strided API of the geqrf_batch (USM Version).
Usually 𝑄𝑖 is determined from the QR factorization of an 𝑚× 𝑝 matrix 𝐴𝑖 with :math`m ge p`.
To compute the whole matrices 𝑄𝑖, use:

11.2. oneMKL Domains 1500

oneAPI Specification, Release 1.1-rev-1

ungqr_batch(queue, m, m, p, a, ...)

To compute the leading 𝑝 columns of 𝑄𝑖 (which form an orthonormal basis in the space spanned by the
columns of 𝐴𝑖):
ungqr_batch(queue, m, p, p, a, ...)

To compute the matrices 𝑄𝑖 of the QR factorizations of leading 𝑘 columns of the matrices 𝐴𝑖:
ungqr_batch(queue, m, m, k, a, ...)

To compute the leading 𝑘 columns of 𝑄𝑘
𝑖 (which form an orthonormal basis in the space spanned by

leading 𝑘 columns of the matrices 𝐴𝑖):
ungqr_batch(queue, m, k, k, a, ...)

Syntax

namespace oneapi::mkl::lapack {
cl::sycl::event ungqr_batch(cl::sycl::queue &queue, std::int64_t m, std::int64_t n,␣

→˓std::int64_t k, T *a, std::int64_t lda, std::int64_t stride_a, T *tau, std::int64_t␣
→˓stride_tau, std::int64_t batch_size, T *scratchpad, std::int64_t scratchpad_size,␣
→˓const std::vector<cl::sycl::event> &events = {})
};

Input Parameters

queue Device queue where calculations will be performed.

m Number of rows in the matrices 𝐴𝑖 (0 ≤ 𝑚).

n Number of columns in the matrices 𝐴𝑖 (0 ≤ 𝑛).

k Number of elementary reflectors whose product defines the matrices 𝑄𝑖 (0 ≤ 𝑘 ≤ 𝑛).

a Array resulting after call to the Strided API of the geqrf_batch (USM Version) function.

lda Leading dimension of 𝐴𝑖 (lda ≤ 𝑚).

stride_a Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

tau Array resulting after call to the Strided API of the geqrf_batch (USM Version) function.

stride_tau Stride between the beginnings of arrays 𝑡𝑎𝑢𝑖 inside the array tau.

batch_size Number of problems in a batch.

scratchpad Scratchpad memory to be used by routine for storing intermediate results.

scratchpad_size Size of scratchpad memory as a number of floating point elements of type T. Size should not be less
then the value returned by strided version of the Strided API of the ungqr_batch_scratchpad_size function.

events List of events to wait for before starting computation. Defaults to empty list.

11.2. oneMKL Domains 1501

oneAPI Specification, Release 1.1-rev-1

Output Parameters

a Array data is overwritten by a batch of n leading columns of the 𝑚×𝑚 unitary matrices 𝑄𝑖.

Return Values

Output event to wait on to ensure computation is complete.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::lapack::batch_error

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

The info code of the problem can be obtained by info() method of exception object:

If info = -n, the 𝑛-th parameter had an illegal value.

If info equals to value passed as scratchpad size, and detail() returns non zero, then passed scratchpad is
of insufficient size, and required size should be not less then value returned by detail() method of exception
object.

If info is not zero and detail() returns zero, then there were some errors for some of the problems in the
supplied batch and info code contains the number of failed calculations in a batch.

Parent topic: LAPACK-like Extensions Routines

ungqr_batch_scratchpad_size

Computes size of scratchpad memory required for the ungqr_batch function.

Description

ungqr_batch_scratchpad_size supports the following precisions.

T
std::complex<float>
std::complex<double>

Group API
Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Group API
of the ungqr_batch function.

11.2. oneMKL Domains 1502

oneAPI Specification, Release 1.1-rev-1

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t ungqr_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t *m,␣

→˓std::int64_t *n, std::int64_t *k, std::int64_t *lda, std::int64_t group_count,␣
→˓std::int64_t *group_sizes)
}

Input Parameters

queue Device queue where calculations will be performed.

m Array of group_count𝑚𝑔 parameters.

n Array of group_count 𝑛𝑔 parameters.

k
Array of group_count 𝑘𝑔 parameters.
Number of elementary reflectors whose product defines the matrices 𝑄𝑖 (0 ≤ 𝑘𝑔 ≤ 𝑛𝑔).

lda Array of leading dimensions of 𝐴𝑖.

group_count Number of groups of parameters. Must be at least 0.

group_sizes Array of group_count integers. Array element with index 𝑔 specifies the number of problems to solve
for each of the groups of parameters 𝑔. So the total number of problems to solve, batch_size, is a sum of all
parameter group sizes.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Group API of the
ungqr_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Strided API
Computes the number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API
of the ungqr_batch function.

11.2. oneMKL Domains 1503

oneAPI Specification, Release 1.1-rev-1

Syntax

namespace oneapi::mkl::lapack {
template <typename T>
std::int64_t ungqr_batch_scratchpad_size(cl::sycl::queue &queue, std::int64_t m,␣

→˓std::int64_t n, std::int64_t k, std::int64_t lda, std::int64_t stride_a, std::int64_t␣
→˓stride_tau, std::int64_t batch_size)
};

Input Parameters

queue Device queue where calculations will be performed.

m Number of rows in the matrices 𝐴𝑖 (0 ≤ 𝑚).

n Number of columns in the matrices 𝐴𝑖 (0 ≤ 𝑛).

k Number of elementary reflectors whose product defines the matrices 𝑄𝑖 (0 ≤ 𝑘 ≤ 𝑛).

lda Leading dimensions of 𝐴𝑖 (lda ≤ 𝑚).

stride_a Stride between the beginnings of matrices 𝐴𝑖 inside the batch array a.

stride_tau Stride between the beginnings of arrays 𝜏𝑖 inside the array tau.

batch_size Number of problems in a batch.

Return Values

Number of elements of type T the scratchpad memory should able to hold to be passed to the Strided API of the
ungqr_batch function.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::unimplemented

oneapi::mkl::unsupported_device

oneapi::mkl::lapack::invalid_argument

Exception is thrown in case of incorrect supplied argument value. Position of wrong argument can be
determined by info() method of exception object.

Parent topic: LAPACK-like Extensions Routines

11.2. oneMKL Domains 1504

oneAPI Specification, Release 1.1-rev-1

Note

Different arrays used as parameters to oneMKL LAPACK routines must not overlap.

Warning

LAPACK routines assume that input matrices do not contain IEEE 754 special values such as INF or NaN values.
Using these special values may cause LAPACK to return unexpected results or become unstable.

Parent topic: Dense Linear Algebra

11.2.2 Sparse Linear Algebra

The oneAPI Math Kernel Library provides a Data Parallel C++ interface to some of the Sparse Linear Algebra routines.

Sparse BLAS provides basic operations on sparse vectors and matrices, and separates them into two stages: analysis
(also called inspector stage or optimize stage) and execution. For a given matrix, the analysis would typically be
called one time and the execution may be called multiple times. During the analysis stage, the API inspects the matrix
properties including size, sparsity pattern and available parallelism and can apply matrix format or structure changes
to enable a more optimized algorithm. In the execution stage, multiple routine calls can take advantage of the analysis
stage data in order to improve performance.

In order to save information in between calls to Sparse BLAS computation routines, the matrix_handle_t type is intro-
duced, that is essentially an opaque pointer, used to store data related to initial sparse matrix and data obtained during
analysis stage.

Sparse BLAS

Sparse BLAS Routines provide basic operations on sparse vectors and matrices

Routines Description
init_matrix_handle Initialize the sparse matrix handle
release_matrix_handle Release the sparse matrix handle
set_csr_data Fills the internal CSR data structure
optimize_gemv Optimize routine for gemv
optimize_trmv Optimize routine for trmv
optimize_trsv Optimize routine for trsv
gemv Sparse matrix-dense vector product using a general sparse matrix
gemvdot Sparse matrix-dense vector product followed by dot product
symv Sparse matrix-dense vector product using a symmetric sparse matrix
trmv Sparse matrix-dense vector product using a triangular sparse matrix
trsv Solving a linear system with a triangular sparse matrix
gemm Sparse matrix-dense matrix product using a general sparse matrix

• Sparse storage formats

11.2. oneMKL Domains 1505

oneAPI Specification, Release 1.1-rev-1

init_matrix_handle

Initializes a matrix_handle_t object to default values.

Description and Assumptions

The oneapi::mkl::sparse::init_matrix_handle function initializes the matrix_handle_t object with default values.

Syntax

namespace oneapi::mkl::sparse {

void init_matrix_handle (oneapi::mkl::sparse::matrix_handle_t *handle);

}

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

Parent topic: Sparse BLAS

release_matrix_handle

Releases internal data and sets matrix_handle_t object to NULL.

Description and Assumptions

The oneapi::mkl::sparse::release_matrix_handle releases any internal data that the matrix_handle_t object holds
and sets it with defaults values, otherwise it throws an exception. The routine also waits for the dependencies to be
finished before releasing any data in case of USM.

11.2. oneMKL Domains 1506

oneAPI Specification, Release 1.1-rev-1

Syntax

namespace oneapi::mkl::sparse {

void release_matrix_handle (oneapi::mkl::sparse::matrix_handle_t handle,
const std::vector<sycl::event> &dependencies = {});

}

Input parameter

handle Handle to object containing sparse matrix and other internal data. Created using one of the
oneapi::mkl::sparse::set_<sparse_matrix_type>_structure routines.

dependencies List of events that handle depends on. The call waits on the events(if any) before resetting the handle
to default values.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

Parent topic: Sparse BLAS

set_csr_data

Takes a matrix handle and the input CSR matrix arrays and fills the internal CSR data structure.

Description and Assumptions

Refer to Supported Types for a list of supported <fp> and <intType>. The mkl::sparse::set_csr_data routine takes a
matrix handle for a sparse matrix of dimensions num_rows -by- num_cols represented in the CSR format, and fills the
internal CSR data structure.

11.2. oneMKL Domains 1507

oneAPI Specification, Release 1.1-rev-1

set_csr_data (Buffer version)

Syntax

namespace oneapi::mkl::sparse {

void set_csr_data (oneapi::mkl::sparse::matrix_handle_t handle,
intType num_rows,
intType num_cols,
oneapi::mkl::index_base index,
sycl::buffer<intType, 1> &row_ptr,
sycl::buffer<intType, 1> &col_ind,
sycl::buffer<fp, 1> &val);

}

Input Parameters

handle Handle to object containing sparse matrix and other internal data for subsequent DPC++ Sparse BLAS oper-
ations.

num_rows Number of rows of the input matrix .

num_cols Number of columns of the input matrix .

index Indicates how input arrays are indexed. The possible options are described in index_base enum class.

row_ptr SYCL memory object containing an array of length num_rows+1. Refer to CSR format for detailed descrip-
tion of row_ptr.

col_ind SYCL memory object which stores an array containing the column indices in index-based numbering. Refer
to CSR format for detailed description of col_ind.

val SYCL memory object which stores an array containing non-zero elements of the input matrix. Refer to CSR format
for detailed description of val.

Output Parameters

handle Handle to object containing sparse matrix and other internal data for subsequent SYCL Sparse BLAS opera-
tions.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized

11.2. oneMKL Domains 1508

oneAPI Specification, Release 1.1-rev-1

oneapi::mkl::unsupported_device

set_csr_data (USM version)

Syntax

namespace oneapi::mkl::sparse {

void set_csr_data (oneapi::mkl::sparse::matrix_handle_t handle,
intType num_rows,
intType num_cols,
oneapi::mkl::index_base index,
intType *row_ptr,
intType *col_ind,
fp *val);

}

Input Parameters

handle Handle to object containing sparse matrix and other internal data for subsequent DPC++ Sparse BLAS oper-
ations.

num_rows Number of rows of the input matrix .

num_cols Number of columns of the input matrix .

index Indicates how input arrays are indexed. The possible options are described in index_base enum class.

row_ptr USM object containing an array of length num_rows+1. Refer to CSR format for detailed description of
row_ptr

col_ind USM object which stores an array containing the column indices in index-based numbering. Refer to CSR
format for detailed description of col_ind

val USM object which stores an array containing non-zero elements of the input matrix. Refer to CSR format for
detailed description of val

Output Parameters

handle Handle to object containing sparse matrix and other internal data for subsequent SYCL Sparse BLAS opera-
tions.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc

11.2. oneMKL Domains 1509

oneAPI Specification, Release 1.1-rev-1

oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

Parent topic: Sparse BLAS

gemm

Computes a sparse matrix times dense matrix product.

Description and Assumptions

Refer to Supported Types for a list of supported <fp> and <intType> types. The oneapi::mkl::sparse::gemm routine
computes a sparse matrix-dense matrix product defined as

𝐶 ← 𝛼 · op(𝐴) · op(𝐵) + 𝛽 · 𝐶

where 𝛼 and 𝛽 are scalars, 𝐴 is a sparse matrix, 𝐵 and 𝐶 are dense matrices, op() is a matrix modifier for 𝐴 and 𝐵
using the following description:

op(𝐴) =

⎧⎪⎨⎪⎩
𝐴, oneapi::mkl::transpose::nontrans
𝐴𝑇 , oneapi::mkl::transpose::trans
𝐴𝐻 , oneapi::mkl::transpose::conjtrans

and op(𝐴) is an m-by-k matrix , op(𝐵) is an k-by-columns matrix, and 𝐶 is an m-by-columns matrix.

Dense matrix storage is in either row-major or column-major format. Sparse matrix formats are compressed sparse row
(CSR) formats.

gemm (Buffer version)

Syntax

namespace oneapi::mkl::sparse {

void gemm (sycl::queue &queue,
oneapi::mkl::layout dense_matrix_layout,
oneapi::mkl::transpose transpose_A,
oneapi::mkl::transpose transpose_B,
const fp alpha,
oneapi::mkl::sparse::matrix_handle_t A_handle,
sycl::buffer<fp, 1> &B,
const std::int64_t columns,
const std::int64_t ldb,
const fp beta,
sycl::buffer<fp, 1> &C,
const std::int64_t ldc);

}

11.2. oneMKL Domains 1510

oneAPI Specification, Release 1.1-rev-1

Input parameters

queue Specifies the SYCL command queue which will be used for SYCL kernels execution.

dense_matrix_layout Specifies the storage scheme in memory for the dense matrices. Note that this layout applies to
both 𝐵 and 𝐶 dense matrices. The possible options are described in layout enum class.

transpose_A Specifies operation op() on input matrix 𝐴. The possible options are described in transpose enum class.

transpose_B Specifies operation op() on input matrix 𝐵. The possible options are described in transpose enum class.

alpha Specifies the scalar 𝛼.

A_handle Handle to object containing sparse matrix, 𝐴. Created using the oneapi::mkl::sparse::set_csr_data routine.

B
The input dense matrix 𝐵 in the sparse matrix-dense matrix product. 𝐵 is a one dimensional SYCL
memory object containing an array of size:

B not transposed B transposed
Row ma-
jor

B is an k-by-columns matrix so must have size
at least k*ldb.

B is an columns-by-kmatrix so must have size
at least columns*ldb

Column
major

B is an k-by-columns matrix so must have size
at least ldb*columns.

B is an columns-by-kmatrix so must have size
at least ldb*k

See Matrix Storage for more details.

columns Number of columns of matrix 𝐶.

ldb
Specifies the leading dimension of matrix 𝐵. It must be positive.

B not transposed B transposed
Row major ldb must be at least columns. ldb must be at least k.
Column major ldb must be at least k. ldb must be at least columns.

beta Specifies the scalar beta.

C The dense matrix input/output array. A one-dimensional SYCL memory object containing an array of size at least
m*ldc if row_major layout is used to store dense matrices or at least ldc*columns if column_major layout is
used to store dense matrices.

ldc Specifies the leading dimension of matrix 𝐶. Must be positive and at least columns if row major layout is used to
store dense matrices or at least m if column major layout is used to store dense matrices.

Output Parameters

C Dense matrix output is overwritten by the updated matrix, 𝐶.

11.2. oneMKL Domains 1511

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

gemm (USM version)

Syntax

namespace oneapi::mkl::sparse {

sycl::event gemm (sycl::queue &queue,
oneapi::mkl::layout dense_matrix_layout,
oneapi::mkl::transpose transpose_A,
oneapi::mkl::transpose transpose_B,
const fp alpha,
oneapi::mkl::sparse::matrix_handle_t A_handle,
const fp *B,
const std::int64_t columns,
const std::int64_t ldb,
const fp beta,
const fp *C,
const std::int64_t ldc,
const std::vector<sycl::event> &dependencies = {});

}

Input parameters

queue Specifies the SYCL command queue which will be used for SYCL kernels execution.

dense_matrix_layout Specifies the storage scheme in memory for the dense matrices. Note that this layout applies to
both 𝐵 and 𝐶 dense matrices. The possible options are described in layout enum class.

transpose_A Specifies operation op() on input matrix 𝐴. The possible options are described in transpose enum class.

transpose_B Specifies operation op() on input matrix 𝐵. The possible options are described in transpose enum class.

alpha Specifies the scalar 𝛼.

A_handle Handle to object containing sparse matrix, 𝐴. Created using the oneapi::mkl::sparse::set_csr_data routine.

B

11.2. oneMKL Domains 1512

oneAPI Specification, Release 1.1-rev-1

The dense matrix in the sparse-dense matrix product. A device accessible USM object containing an
array of size:

B not transposed B transposed
Row ma-
jor

B is an k-by-columns matrix so must have size
at least k*ldb.

B is an columns-by-kmatrix so must have size
at least columns*ldb

Column
major

B is an k-by-columns matrix so must have size
at least ldb*columns.

B is an columns-by-kmatrix so must have size
at least ldb*k

See Matrix Storage for more details.

columns Number of columns of matrix 𝐶.

ldb
Specifies the leading dimension of matrix 𝐵. It must be positive.

B not transposed B transposed
Row major ldb must be at least columns. ldb must be at least k.
Column major ldb must be at least k. ldb must be at least columns.

beta Specifies the scalar beta.

C The dense matrix input/output array. A device accessible USM object containing an array of size at least m*ldc
if row_major layout is used to store dense matrices or at least ldc*columns if column_major layout is used to
store dense matrices.

ldc Specifies the leading dimension of matrix 𝐶. Must be positive and at least columns if row major layout is used to
store dense matrices or at least m if column major layout is used to store dense matrices.

dependencies List of events that oneapi::mkl::sparse::gemm routine depends on. If omitted, defaults to no dependen-
cies.

Output Parameters

C Dense matrix output is overwritten by the updated matrix 𝐶.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

11.2. oneMKL Domains 1513

oneAPI Specification, Release 1.1-rev-1

Return Values

Output event that can be waited upon or added as a dependency for the completion of gemm routine.

Parent topic: Sparse BLAS

gemv

Computes a sparse matrix-dense vector product.

Description and Assumptions

Refer to Supported Types for a list of supported <fp> and <intType>. The oneapi::mkl::sparse::gemv routine computes
a sparse matrix-dense vector product defined as

𝑦 ← 𝛼op(𝐴)𝑥 + 𝛽𝑦

where 𝛼 and 𝛽 are scalars, 𝑥 and 𝑦 are dense vectors, A is a sparse matrix.

gemv (Buffer version)

Syntax

namespace oneapi::mkl::sparse {

void gemv (sycl::queue &queue,
oneapi::mkl::transpose transpose_val,
const fp alpha,
oneapi::mkl::sparse::matrix_handle_t A_handle,
sycl::buffer<fp, 1> &x,
const fp beta,
sycl::buffer<fp, 1> &y);

}

Input Parameters

queue Specifies the SYCL command queue which will be used for SYCL kernels execution.

transpose_val Specifies operation op() on input matrix. The possible options are described in transpose enum class.

alpha Specifies the scalar 𝛼.

A_handle Handle to object containing sparse matrix, 𝐴. Created using the oneapi::mkl::sparse::set_csr_data routine.

x SYCL memory object containing an array of size at least equal to the number of columns of matrix op(𝐴).

beta Specifies the scalar 𝛽.

y SYCL memory object containing an array of size at least equal to the number of rows of matrix op(𝐴).

11.2. oneMKL Domains 1514

oneAPI Specification, Release 1.1-rev-1

Output Parameters

y Overwritten by the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

gemv (USM version)

Syntax

namespace oneapi::mkl::sparse {

sycl::event gemv (sycl::queue &queue,
oneapi::mkl::transpose transpose_val,
const fp alpha,
oneapi::mkl::sparse::matrix_handle_t A_handle,
const fp *x,
const fp beta,
const fp *y,
const std::vector<sycl::event> &dependencies = {});

}

Input Parameters

queue Specifies the SYCL command queue which will be used for SYCL kernels execution.

transpose_val Specifies operation op() on input matrix. The possible options are described in transpose enum class.

alpha Specifies the scalar 𝛼.

A_handle Handle to object containing sparse matrix, 𝐴. Created using the oneapi::mkl::sparse::set_csr_data routine.

x Device-accessible USM object containing an array of size at least equal to the number of columns of matrix op(𝐴).

beta Specifies the scalar 𝛽.

y Device-accessible USM object containing an array of size at least equal to the number of rows of matrix op(𝐴).

dependencies List of events that oneapi::mkl::sparse::gemv routine depends on. If omitted, defaults to no dependen-
cies.

11.2. oneMKL Domains 1515

oneAPI Specification, Release 1.1-rev-1

Output Parameters

y Overwritten by the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

Return Values

Output event that can be waited upon or added as a dependency for the completion of gemv routine.

Parent topic: Sparse BLAS

gemvdot

Computes a sparse matrix-dense vector product with dot product.

Description and Assumptions

Refer to Supported Types for a list of supported <fp> and <intType>. The oneapi::mkl::sparse::gemvdot routine
computes a sparse matrix-dense vector product and dot product defined as

𝑦 ← 𝛼op(𝐴)𝑥 + 𝛽𝑦

𝑑← 𝑥𝑦

where:

A is a general sparse matrix, 𝛼, 𝛽, and d are scalars, 𝑥 and 𝑦 are dense vectors.

gemvdot (Buffer version)

Syntax

namespace oneapi::mkl::sparse {

void gemvdot (sycl::queue &queue,
oneapi::mkl::transpose transpose_val,

(continues on next page)

11.2. oneMKL Domains 1516

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

fp alpha,
oneapi::mkl::sparse::matrix_handle_t A_handle,
sycl::buffer<fp, 1> &x,
fp beta,
sycl::buffer<fp, 1> &y,
sycl::buffer<fp, 1> &d);

}

Input Parameters

queue Specifies the SYCL command queue which will be used for SYCL kernels execution.

transpose_val Specifies operation op() on input matrix. The possible options are described in transpose enum class.

alpha Specifies the scalar 𝛼.

A_handle Handle to object containing sparse matrix 𝐴. Created using the oneapi::mkl::sparse::set_csr_data routine.

x SYCL memory object containing an array of size at least equal to the number of columns of matrix op(𝐴).

beta Specifies the scalar 𝛽.

y SYCL memory object containing an array of size at least equal to the number of rows of matrix op(𝐴).

d SYCL scalar memory object used to store the result of dot product.

Output Parameters

y Overwritten by the updated vector y.

d Overwritten by the dot product of x and y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

11.2. oneMKL Domains 1517

oneAPI Specification, Release 1.1-rev-1

gemvdot (USM version)

Syntax

namespace oneapi::mkl::sparse {

sycl::event gemvdot (sycl::queue &queue,
oneapi::mkl::transpose transpose_val,
fp alpha,
oneapi::mkl::sparse::matrix_handle_t A_handle,
fp *x,
fp beta,
fp *y,
fp *d,
const std::vector<sycl::event> &dependencies = {});

}

Input Parameters

queue Specifies the SYCL command queue which will be used for SYCL kernels execution.

transpose_val Specifies operation op() on input matrix. The possible options are described in transpose enum class.

alpha Specifies the scalar 𝛼.

A_handle Handle to object containing sparse matrix 𝐴. Created using the oneapi::mkl::sparse::set_csr_data routine.

x Device-accessible USM object containing an array of size at least equal to the number of columns of matrix op(𝐴).

beta Specifies the scalar 𝛽.

y Device-accessible USM object containing an array of size at least equal to the number of rows of matrix op(𝐴)

d Device-accessible USM scalar object used to store the result of dot product.

dependencies List of events that oneapi::mkl::sparse::gemvdot routine depends on. If omitted, defaults to no depen-
dencies.

Output Parameters

y Overwritten by the updated vector y.

d Overwritten by the dot product of x and y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument

11.2. oneMKL Domains 1518

oneAPI Specification, Release 1.1-rev-1

oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

Return Values

Output event that can be waited upon or added as a dependency for the completion of gemvdot routine.

Parent topic: Sparse BLAS

optimize_gemv

Performs internal optimizations for oneapi::mkl::sparse::gemv by analyzing the matrix structure.

Description and Assumptions

The oneapi::mkl::sparse::optimize_gemv routine analyzes matrix structure and performs optimizations. Optimized
data is then stored in the handle.

optimize_gemv (Buffer version)

Syntax

namespace oneapi::mkl::sparse {

void optimize_gemv (sycl::queue &queue,
oneapi::mkl::transpose transpose_val,
oneapi::mkl::sparse::matrix_handle_t handle);

}

Input Parameters

queue Specifies the SYCL command queue which will be used for SYCL kernels execution.

transpose_val Specifies operation op() on input matrix. The possible options are described in transpose enum class.

handle Handle to object containing sparse matrix and other internal data. Created using the
oneapi::mkl::sparse::set_csr_data routine.

11.2. oneMKL Domains 1519

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

optimize_gemv (USM version)

Syntax

namespace oneapi::mkl::sparse {

sycl::event optimize_gemv (sycl::queue &queue,
oneapi::mkl::transpose transpose_val,
oneapi::mkl::sparse::matrix_handle_t handle,
std::vector<sycl::event> &dependencies);

}

Input Parameters

queue Specifies the SYCL command queue which will be used for SYCL kernels execution.

transpose_val Specifies operation op() on input matrix. The possible options are described in transpose enum class.

handle Handle to object containing sparse matrix and other internal data. Created using the
oneapi::mkl::sparse::set_csr_data routine.

dependencies List of events that oneapi::mkl::sparse::optimize_gemv routine depends on.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized

11.2. oneMKL Domains 1520

oneAPI Specification, Release 1.1-rev-1

oneapi::mkl::unsupported_device

Return Values

Output event that can be waited upon or added as a dependency for the completion of optimize_gemv routine.

Parent topic: Sparse BLAS

symv

Computes a sparse matrix-dense vector product for a symmetric part of the sparse matrix.

Description and Assumptions

Refer to Supported Types for a list of supported <fp> and <intType>. The oneapi::mkl::sparse::symv routine computes
a sparse matrix-dense vector product over a symmetric part defined as

𝑦 ← 𝛼𝐴𝑥 + 𝛽𝑦

where:

𝛼 and 𝛽 are scalars, 𝑥 and 𝑦 are dense vectors, A is a sparse matrix.

symv (Buffer version)

Syntax

namespace oneapi::mkl::sparse {

void symv (sycl::queue &queue,
oneapi::mkl::uplo uplo_val,
fp alpha,
oneapi::mkl::sparse::matrix_handle_t A_handle,
sycl::buffer<fp, 1> &x,
fp beta,
sycl::buffer<fp, 1> &y);

}

Input Parameters

queue Specifies the SYCL command queue which will be used for SYCL kernels execution.

uplo_val Specifies which part is to be processed. The possible options are described in uplo enum class.

alpha Specifies the scalar 𝛼.

A_handle Handle to object containing sparse matrix 𝐴. Created using the oneapi::mkl::sparse::set_csr_data routine.

x SYCL memory object containing an array of size at least equal to the number of columns of 𝐴 matrix.

beta Specifies the scalar 𝛽.

y SYCL memory object containing an array of size at least equal to the number of rows of 𝐴 matrix.

11.2. oneMKL Domains 1521

oneAPI Specification, Release 1.1-rev-1

Output Parameters

y Overwritten by the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

symv (USM version)

Syntax

namespace oneapi::mkl::sparse {

sycl::event symv (sycl::queue &queue,
oneapi::mkl::uplo uplo_val,
fp alpha,
oneapi::mkl::sparse::matrix_handle_t A_handle,
fp *x,
fp beta,
fp *y,
const std::vector<sycl::event> &dependencies = {});

}

Input Parameters

queue Specifies the SYCL command queue which will be used for SYCL kernels execution.

uplo_val Specifies which part is to be processed. The possible options are described in uplo enum class.

alpha Specifies the scalar 𝛼.

A_handle Handle to object containing sparse matrix 𝐴. Created using the oneapi::mkl::sparse::set_csr_data routine.

x Device-accessible USM object containing an array of size at least equal to the number of columns of 𝐴 matrix.

beta Specifies the scalar 𝛽.

y Device-accessible USM object containing an array of size at least equal to the number of rows of 𝐴 matrix.

dependencies List of events that oneapi::mkl::sparse::symv routine depends on. If omitted, defaults to no dependen-
cies.

11.2. oneMKL Domains 1522

oneAPI Specification, Release 1.1-rev-1

Output Parameters

y Overwritten by the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

Return Values

Output event that can be waited upon or added as a dependency for the completion of symv routine.

Parent topic: Sparse BLAS

trmv

Computes a sparse matrix-dense vector product over upper or lower triangular matrix parts.

Description and Assumptions

Refer to Supported Types for a list of supported <fp> and <intType>. The oneapi::mkl::sparse::trmv routine computes
a sparse matrix-dense vector product over a triangular part defined as

𝑦 ← 𝛼op(𝐴)𝑥 + 𝛽𝑦

where: 𝑎𝑙𝑝ℎ𝑎 and 𝑏𝑒𝑡𝑎 are scalars, 𝑥 and 𝑦 are dense vectors, A is a sparse matrix.

trmv (Buffer version)

Syntax

namespace oneapi::mkl::sparse {

void trmv (sycl::queue &queue,
oneapi::mkl::uplo uplo_val
oneapi::mkl::transpose transpose_val,
oneapi::mkl::diag diag_val
fp alpha,

(continues on next page)

11.2. oneMKL Domains 1523

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

oneapi::mkl::sparse::matrix_handle_t A_handle,
sycl::buffer<fp, 1> &x,
fp beta,
sycl::buffer<fp, 1> &y);

}

Input Parameters

queue Specifies the SYCL command queue which will be used for SYCL kernels execution.

uplo_val Specifies which part is to be processed. The possible options are described in uplo enum class.

transpose_val Specifies operation op() on input matrix. The possible options are described in transpose enum class.

diag_val Specifies if the diagonal is unit or not. The possible options are described in diag enum class.

alpha Specifies the scalar 𝛼.

A_handle Handle to object containing sparse matrix 𝐴. Created using the oneapi::mkl::sparse::set_csr_data routine.

x SYCL memory object containing an array of size at least equal to the number of columns of matrix op(𝐴).

beta Specifies the scalar 𝛽.

y SYCL memory object containing an array of size at least equal to the number of rows of matrix op(𝐴).

Output Parameters

y Overwritten by the updated vector y.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

11.2. oneMKL Domains 1524

oneAPI Specification, Release 1.1-rev-1

trmv (USM version)

Syntax

namespace oneapi::mkl::sparse {

sycl::event trmv (sycl::queue &queue,
oneapi::mkl::uplo uplo_val
oneapi::mkl::transpose transpose_val,
oneapi::mkl::diag diag_val
fp alpha,
oneapi::mkl::sparse::matrix_handle_t A_handle,
fp *x,
fp beta,
fp *y
const std::vector<sycl::event> &dependencies = {});

}

Input Parameters

queue Specifies the SYCL command queue which will be used for SYCL kernels execution.

uplo_val Specifies which part is to be processed. The possible options are described in uplo enum class.

transpose_val Specifies operation op() on input matrix. The possible options are described in transpose enum class.

diag_val Specifies if the diagonal is unit or not. The possible options are described in diag enum class.

alpha Specifies the scalar 𝛼.

A_handle Handle to object containing sparse matrix 𝐴. Created using the oneapi::mkl::sparse::set_csr_data routine.

x Device-accessible USM object containing an array of size at least equal to the number of columns of matrix op(𝐴).

beta Specifies the scalar 𝛽.

y Device-accessible USM object containing an array of size at least equal to the number of rows of matrix op(𝐴).

dependencies List of events that oneapi::mkl::sparse::trmv routine depends on. If omitted, defaults to no dependen-
cies.

Output Parameters

y Overwritten by the updated vector y.

11.2. oneMKL Domains 1525

oneAPI Specification, Release 1.1-rev-1

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

Return Values

Output event that can be waited upon or added as a dependency for the completion of trmv routine.

Parent topic: Sparse BLAS

optimize_trmv

Performs internal optimizations for oneapi::mkl::sparse::trmv by analyzing the matrix structure.

Description and Assumptions

The oneapi::mkl::sparse::optimize_trmv routine analyzes matrix structure and performs optimizations. Optimized data
is then stored in the handle.

optimize_trmv (Buffer version)

Syntax

namespace oneapi::mkl::sparse {

void optimize_trmv (sycl::queue &queue,
oneapi::mkl::uplo uplo_val,
oneapi::mkl::transpose transpose_val,
oneapi::mkl::diag diag_val,
oneapi::mkl::sparse::matrix_handle_t handle);

}

11.2. oneMKL Domains 1526

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue Specifies the SYCL command queue which will be used for SYCL kernels execution.

uplo_val Specifies which part is to be processed. The possible options are described in uplo enum class.

transpose_val Specifies operation op() on input matrix. The possible options are described in transpose enum class.

diag_val Specifies if the diagonal is unit or not. The possible options are described in diag enum class.

handle Handle to object containing sparse matrix and other internal data. Created using the
oneapi::mkl::sparse::set_csr_data routine.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

optimize_trmv (USM version)

Syntax

namespace oneapi::mkl::sparse {

sycl::event optimize_trmv (sycl::queue &queue,
oneapi::mkl::uplo uplo_val,
oneapi::mkl::transpose transpose_val,
oneapi::mkl::diag diag_val,
oneapi::mkl::sparse::matrix_handle_t handle,
std::vector<sycl::event> &dependencies);

}

Input Parameters

queue Specifies the SYCL command queue which will be used for SYCL kernels execution.

uplo_val Specifies which part is to be processed. The possible options are described in uplo enum class.

transpose_val Specifies operation op() on input matrix. The possible options are described in transpose enum class.

diag_val Specifies if the diagonal is unit or not. The possible options are described in diag enum class.

handle Handle to object containing sparse matrix and other internal data. Created using the
oneapi::mkl::sparse::set_csr_data routine.

11.2. oneMKL Domains 1527

oneAPI Specification, Release 1.1-rev-1

dependencies List of events that oneapi::mkl::sparse::optimize_trmv routine depends on.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

Return Values

Output event that can be waited upon or added as a dependency for the completion of optimize_trmv routine.

Parent topic: Sparse BLAS

trsv

Solves a system of linear equations for a triangular sparse matrix.

Description and Assumptions

Refer to Supported Types for a list of supported <fp> and <intType>. The oneapi::mkl::sparse::trsv routine solves a
system of linear equations for a square matrix:

op(𝐴)𝑦 ← 𝑥

where: A is a triangular sparse matrix of size m rows by m columns, op is a matrix modifier for matrix A, x and y are
dense vectors of length at least m.

trsv (Buffer version)

Syntax

namespace oneapi::mkl::sparse {

void trsv (sycl::queue &queue,
oneapi::mkl::uplo uplo_val
oneapi::mkl::transpose transpose_val,
oneapi::mkl::diag diag_val
oneapi::mkl::sparse::matrix_handle_t A_handle,
sycl::buffer<fp, 1> &x,

(continues on next page)

11.2. oneMKL Domains 1528

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

sycl::buffer<fp, 1> &y);

}

Input Parameters

queue Specifies the SYCL command queue which will be used for SYCL kernels execution.

uplo_val Specifies which part is to be processed. The possible options are described in uplo enum class.

transpose_val Specifies operation op() on input matrix. The possible options are described in transpose enum class.

diag_val Specifies if the diagonal is unit or not. The possible options are described in diag enum class.

A_handle Handle to object containing sparse matrix 𝐴. Created using the oneapi::mkl::sparse::set_csr_data routine.

x SYCL memory object containing an array of size at least equal to the number of columns of matrix op(𝐴).

y SYCL memory object containing an array of size at least equal to the number of rows of matrix op(𝐴).

Output Parameters

y SYCL memory object containing an array of size at least nRows filled with the solution to the system of linear
equations.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

trsv (USM version)

Syntax

namespace oneapi::mkl::sparse {

sycl::event trsv (sycl::queue &queue,
oneapi::mkl::uplo uplo_val
oneapi::mkl::transpose transpose_val,
oneapi::mkl::diag diag_val
oneapi::mkl::sparse::matrix_handle_t A_handle,

(continues on next page)

11.2. oneMKL Domains 1529

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

fp *x,
fp *y
const std::vector<sycl::event> &dependencies = {});

}

Input Parameters

queue Specifies the SYCL command queue which will be used for SYCL kernels execution.

uplo_val Specifies which part is to be processed. The possible options are described in uplo enum class.

transpose_val Specifies operation op() on input matrix. The possible options are described in transpose enum class.

diag_val Specifies if the diagonal is unit or not. The possible options are described in diag enum class.

A_handle Handle to object containing sparse matrix 𝐴. Created using the oneapi::mkl::sparse::set_csr_data routine.

x Device-accessible USM object containing an array of size at least equal to the number of columns of matrix op(𝐴).

y Device-accessible USM object containing an array of size at least equal to the number of rows of matrix op(𝐴).

dependencies List of events that oneapi::mkl::sparse::trmv routine depends on. If omitted, defaults to no dependen-
cies.

Output Parameters

y Device-accessible USM object containing an array of size at least nRows filled with the solution to the system of
linear equations.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

11.2. oneMKL Domains 1530

oneAPI Specification, Release 1.1-rev-1

Return Values

Output event that can be waited upon or added as a dependency for the completion of trmv routine.

Parent topic: Sparse BLAS

optimize_trsv

Performs internal optimizations for oneapi::mkl::sparse::trsv by analyzing the matrix structure.

Description and Assumptions

The oneapi::mkl::sparse::optimize_trsv routine analyzes matrix structure and performs optimizations. Optimized data
is then stored in the handle.

optimize_trsv (Buffer version)

Syntax

namespace oneapi::mkl::sparse {

void optimize_trsv (sycl::queue &queue,
oneapi::mkl::uplo uplo_val,
oneapi::mkl::transpose transpose_val,
oneapi::mkl::diag diag_val,
oneapi::mkl::sparse::matrix_handle_t handle);

}

Input Parameters

queue Specifies the SYCL command queue which will be used for SYCL kernels execution.

uplo_val Specifies which part is to be processed. The possible options are described in uplo enum class.

transpose_val Specifies operation op() on input matrix. The possible options are described in transpose enum class.

diag_val Specifies if the diagonal is unit or not. The possible options are described in diag enum class.

handle Handle to object containing sparse matrix and other internal data. Created using the
oneapi::mkl::sparse::set_csr_data routine.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument

11.2. oneMKL Domains 1531

oneAPI Specification, Release 1.1-rev-1

oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

optimize_trmv (USM version)

Syntax

namespace oneapi::mkl::sparse {

sycl::event optimize_trsv (sycl::queue &queue,
oneapi::mkl::uplo uplo_val,
oneapi::mkl::transpose transpose_val,
oneapi::mkl::diag diag_val,
oneapi::mkl::sparse::matrix_handle_t handle,
std::vector<sycl::event> &dependencies);

}

Input Parameters

queue Specifies the SYCL command queue which will be used for SYCL kernels execution.

uplo_val Specifies which part is to be processed. The possible options are described in uplo enum class.

transpose_val Specifies operation op() on input matrix. The possible options are described in transpose enum class.

diag_val Specifies if the diagonal is unit or not. The possible options are described in diag enum class.

handle Handle to object containing sparse matrix and other internal data. Created using the
oneapi::mkl::sparse::set_csr_data routine.

dependencies List of events that oneapi::mkl::sparse::optimize_trsv routine depends on.

Throws

This routine shall throw the following exceptions if the associated condition is detected. An implementation may throw
additional implementation-specific exception(s) in case of error conditions not covered here.

oneapi::mkl::computation_error
oneapi::mkl::device_bad_alloc
oneapi::mkl::host_bad_alloc
oneapi::mkl::invalid_argument
oneapi::mkl::unimplemented
oneapi::mkl::uninitialized
oneapi::mkl::unsupported_device

11.2. oneMKL Domains 1532

oneAPI Specification, Release 1.1-rev-1

Return Values

Output event that can be waited upon or added as a dependency for the completion of optimize_trsv routine.

Parent topic: Sparse BLAS

Supported Types

Data Types <fp> Integer Types <intType>
float std::int32_t
double std::int64_t
std::complex<float>
std::complex<double>

General descriptions

matrix_handle_t

Type for the handle that can be used to store information about the initial sparse matrix (represented in a sparse format)
and data created/obtained during the analysis stage to be used in the execution stage.

Sparse storage formats

CSR

There are a variety of matrix storage formats available for representing the sparse matrix. One of the most popular is
compressed sparse row (CSR) format, that is represented by three arrays: row_ptr, col_ind and val, and index parameter.

num_rowsNumber of rows in the sparse matrix.
num_colsNumber of columns in the sparse matrix.
in-
dex

Parameter that is used to specify whether the matrix has zero or one-based indexing.

val An array that contains the non-zero elements of the sparse matrix stored row by row.
col_indAn integer array of column indices for non-zero elements stored in the val array, such that col_ind[i] is the

column number (using zero- or one-based indexing) of the element of the sparse matrix stored in val[i].
row_ptrAn integer array of size equal to num_rows + 1. Element j of this integer array gives the position of the

element in the val array that is first non-zero element in a row j of A. Note that this position is equal to
row_ptr[j] - index. Last element of the row_ptr array (row_ptr[num_rows]) stores the sum of, number of
nonzero elements and index*(number of nonzero elements + *index).

A sparse matrix can be represented in a CSR format in a following way (assuming zero-based indexing):

𝐴 =

⎛⎝1 0 2
0 −1 4
3 0 0

⎞⎠

11.2. oneMKL Domains 1533

oneAPI Specification, Release 1.1-rev-1

num_rows 3
num_cols 3
index 0
val 1 2 -1 4 3
col_ind 0 2 1 2 0
row_ptr 0 2 4 5

Parent topic: Sparse BLAS

Parent topic: Sparse Linear Algebra

11.2.3 Discrete Fourier Transforms

The Discrete Fourier Transform Functions offer several options for computing Discrete Fourier Transforms (DFTs).

Discrete Fourier Transform Functions

The general form of the d-dimensional discrete Fourier transform(DFT) is

𝑧𝑘1,𝑘2,...,𝑘𝑑
= 𝜎

𝑛𝑑−1∑︁
𝑗𝑑=0

. . .

𝑛2−1∑︁
𝑗2=0

𝑛1−1∑︁
𝑗1=0

𝑤𝑗1,𝑗2,...,𝑗𝑑 exp

[︃
𝛿2𝜋𝑖

(︃
𝑑∑︁

ℓ=1

𝑗ℓ𝑘ℓ
𝑛ℓ

)︃]︃
.

for 𝑘ℓ = 0, . . . , 𝑛ℓ − 1 and ℓ ∈ {1, . . . , 𝑑}, where 𝜎 is a scale factor, 𝛿 = −1 for the forward transform, and 𝛿 = +1
for the backward(inverse) transform. In the forward transform, the input sequence (𝑤𝑗1,𝑗2,...,𝑗𝑑) belongs to the set of
complex-valued sequences or real-valued sequences. Respective domains for the backward transform are represented
by complex-valued sequences or complex conjugate-even sequences.

The discrete Fourier transform to be performed is defined by the creation of a descriptor class, with the associated
configuration parameters, described in Configuration Parameters and Enums. Once the descriptor class is defined and
commit is called and provided with a sycl::queue to define the device and context, it can be used for computing
the forward and/or backward transformations. The available data storage formats for the various configurations are
described in Storage Formats.

The routines and objects associated with computing a discrete Fourier transform.

Routines and Objects Description
descriptor A class to define the specific discrete Fourier transform problem to be ap-

plied.
descriptor::set_value A member function of descriptor class to set non-default configuration pa-

rameters and define the DFT transformation to be applied.
descriptor::get_value A member function of descriptor class to query configuration parameters

that define the DFT transformation to be applied.
descriptor::commit A member function of descriptor class to finalize the DFT descriptor before

computations.
compute_forward Computes the in-place/out-of-place forward transformation.
compute_backward Computes the in-place/out-of-place backward transformation.

Parent topic: oneMKL Domains

11.2. oneMKL Domains 1534

oneAPI Specification, Release 1.1-rev-1

Configuration Parameters and Enums

The following enum classes are defined in the oneapi::mkl::dft namespace which are used for configuring the
discrete Fourier transform problem in the descriptor class prior to a call to commit.

enum
class

Description

precision The floating-point precision in which the transform is carried out. Used as a template argument for
descriptor class.

domain The forward domain data type for dft transformation. Used as a template argument for descriptor class.
con-
fig_param

The configuration parameters to specify the DFT transformation desired. These can be set and retrieved
via the set_value and get_value functions.

con-
fig_value

Some possible enum values that the config_param configuration parameters can take on.

precision

The floating-point precision in which the transform is to be carried out. The data must be presented in this precision,
the computation is carried out in this precision, and the result is delivered in this precision.

Syntax

enum class precision {
SINGLE,
DOUBLE

};

Value Description
SINGLE data and transforms are executed using single(fp32) precision
DOUBLE data and transforms are executed using double(fp64) precision

domain

The discrete Fourier transform supports forward transformations on input sequences of two domains, from the forward
domain to the backward domain. The backward transformation operates on input sequences from the backward domain
to the forward domain. This domain value defines the forward domain and the backward domain is always implied to
be complex-valued.

Syntax

enum class domain {
REAL,
COMPLEX

};

11.2. oneMKL Domains 1535

oneAPI Specification, Release 1.1-rev-1

Value Forward do-
main

Backward do-
main

Description

REAL real-valued complex-
valued

Forward transformation is real-to-complex, backward transform is
complex-to-real.

COM-
PLEX

complex-
valued

complex-
valued

Forward and backward transformations are complex-to-complex.

config_param

enum class config_param {

FORWARD_DOMAIN,
DIMENSION,
LENGTHS,
PRECISION,

FORWARD_SCALE,
BACKWARD_SCALE,

NUMBER_OF_TRANSFORMS,

COMPLEX_STORAGE,
REAL_STORAGE,
CONJUGATE_EVEN_STORAGE,

PLACEMENT,

INPUT_STRIDES,
OUTPUT_STRIDES,

FWD_DISTANCE,
BWD_DISTANCE,

WORKSPACE,
ORDERING,
TRANSPOSE,
PACKED_FORMAT,
COMMIT_STATUS

};

Many of the config_param enum’s will take values in config_value or other std::int64_t,
std::vector<std::int64_t>, or floating-point precision values as specified in the following table.

11.2. oneMKL Domains 1536

oneAPI Specification, Release 1.1-rev-1

Value Description
FOR-
WARD_DOMAIN

Read-only value of forward domain set at descriptor construction time.

DI-
MEN-
SION

Read-only value of the dimension of the transformation. Value is a positive integer of type
std::int64_t set at descriptor construction.

LENGTHSFor a one-dimensional transform, the transform length is specified by a positive integer value represented
in an integer scalar (std::int64_t). For multi-dimensional (≥ 2) transform, the lengths of each of the
dimensions are supplied in an integer vector (std::vector<std::int64_t>) at descriptor construc-
tion time.

PRECI-
SION

Read-only value of precision set at descriptor construction time.

FOR-
WARD_SCALE

The forward transform is associated with a scale factor, 𝜎, of real floating-point type precision, the default
value is 1.0.

BACK-
WARD_SCALE

The backward transform is associated with a scale factor, 𝜎, of real floating-point type precision, the
default value is 1.0.

NUM-
BER_OF_TRANSFORMS

If you need to perform a large number of identical DFTs, you can do this in a single call to a com-
pute_forward function with the value of this equal to the actual number of the transforms. Takes a value
of std::int64_t with default value of 1.

COM-
PLEX_STORAGE

Specifies the data storage format for domain with value of COMPLEX.

REAL_STORAGESpecifies the data storage format for domain with value of REAL.
CON-
JU-
GATE_EVEN_STORAGE

Specifies the data storage format using conjugate-even symmetry of the data which allows to store only
half of the mathematical results.

PLACE-
MENT

Choose between in-place(value is config_value::INPLACE) and out-of-place (value is
config_value::NOT_INPLACE) transformations. For in-place transformation, the computational
functions overwrite the input data with the output results. The default is config_value::INPLACE.
When the configuration parameter is set to config_value::NOT_INPLACE, the input and output data
sets must have no common elements.

IN-
PUT_STRIDES

Defines the layout of multi-dimensional input data in computer memory. The value for a d-dimensional
dataset is a d-dimensional vector of type std::vector<std::int64_t> representing offsets of ele-
ments of the appropriate data type as specified in INPUT_STRIDES and OUTPUT_STRIDES.

OUT-
PUT_STRIDES

Defines the layout of multi-dimensional output data in computer memory. The value for a d-dimensional
dataset is a d-dimensional vector of type std::vector<std::int64_t> representing offsets of ele-
ments of the appropriate data type as specified in INPUT_STRIDES and OUTPUT_STRIDES.

FWD_DISTANCEIf computing multiple(batched) transforms, this parameter specifies the distance (in elements) between
the first data elements of consecutive data sets in the forward domain. Provided in type std::int64_t,
the default value is 1.

BWD_DISTANCEIf computing multiple(batched) transforms, this parameter specifies the distance (in elements) between
the first data elements of consecutive data sets in the backward domain. Provided in type std::int64_t,
the default value is 1.

WORKSPACESome FFT algorithm computation steps require a scratch space for permutations or other purposes. To
manage the use of auxiliary storage, set to config_value::ALLOW to permit the use of auxiliary storage
and config_value::AVOID to avoid using auxiliary storage if possible.

OR-
DER-
ING

Some FFT algorithms apply an explicit permutation stage that can be time consuming. The value of
config_value::ORDERED (default) applies the data ordering for all transformations. The value of
config_value::BACKWARD_SCRAMBLED applies ordering for forward transform, but allows backward
transform to have scrambled data if it gives a performance advantage.

TRANS-
POSE

A boolean value to indicate providing the transposition of output results (for multi-dimensional trans-
forms). Default value is false.

PACKED_FORMATPacking format for complex domain data storage of finite conjugate-even sequences from real-to-complex
or complex-to-real transformations.

COM-
MIT_STATUS

Read-only value indicates whether the descriptor is ready for computation after a successful com-
mit. Value of config_value::COMMITTED indicates a successful call to commit. A value of
config_value::UNCOMMITTED (default) is set after descriptor constructor call and before successful
call to commit.

11.2. oneMKL Domains 1537

oneAPI Specification, Release 1.1-rev-1

config_value

These are some of the non-integer/floating-point values that the config_param configuration parameters can take on.

enum class config_value {

// for config_param::COMMIT_STATUS
COMMITTED,
UNCOMMITTED,

// for config_param::COMPLEX_STORAGE,
// config_param::REAL_STORAGE and
// config_param::CONJUGATE_EVEN_STORAGE
COMPLEX_COMPLEX,
REAL_COMPLEX,
REAL_REAL,

// for config_param::PLACEMENT
INPLACE,
NOT_INPLACE,

// for config_param::ORDERING
ORDERED,
BACKWARD_SCRAMBLED,

// Allow/avoid certain usages
ALLOW,
AVOID,
NONE,

// for config_param::PACKED_FORMAT for storing conjugate-even finite sequence in real␣
→˓containers

CCE_FORMAT

};

Parent topic: Discrete Fourier Transform Functions

Forward and Backward Scale

The forward and backward transformations are each associated with a scale factor, 𝜎, having the default value of 1.
For example, for a one-dimensional transform of length n , you can use the default scale of 1 for the forward transform
and set the scale factor for the backward transform to be 1/ n , thus making the backward transform the inverse of the
forward transform. Use real floating point data type corresponding to precision.

Parent topic Configuration Parameters and Enums

11.2. oneMKL Domains 1538

oneAPI Specification, Release 1.1-rev-1

Number of Transforms

If you need to perform a large number of identical DFTs, you can do this in a single call to a compute* function with
the value of this configuration parameter equal to the actual number of the transforms. The default value is 1. You can
set this parameter to a positive integer value using the std::int64_t data type.

When setting the number of transforms to a value greater than one, you also need to specify the distance between the
forward data sets and the distance between the backward data sets using the config_param::FWD_DISTANCE and
config_param::BWD_DISTANCE configuration parameters corresponding to the specified domain.

Note:
• The data sets must not have common elements

• All the sets of data in each domain must be located within the same memory block.

Parent topic Configuration Parameters and Enums

Storage Formats

Depending on the value of the domain template value, the implementation of the DFT supports several storage schemes
for input and output data. (See Charles Van Loan, Computational Frameworks for the Fast Fourier
Transform , SIAM, Philadelphia, 1992 for motivation of these schemes).

The data elements are placed within contiguous memory blocks, defined with generalized strides (see INPUT_STRIDES
and OUTPUT_STRIDES). For multiple transforms, all sets of data should be located within the same memory block,
and the data sets should be placed at the same distance from each other (see NUMBER_OF TRANSFORMS and
:config_param::FWD_DISTANCE, config_param::BWD_DISTANCE).

The input data and strides sizes are stored and offsets counted in terms of elements of the data type (complex or real)
based on the storage format and forward domain as seen in Element types for complex-to-complex transformation and
COMPLEX_STORAGE, Element types for real-to-complex transformations and REAL_STORAGE and Element types
for real-to-complex transformations and CONJUGATE_EVEN_STORAGE.

COMPLEX_STORAGE

For the domain template parameter with value COMPLEX, both input and output sequences belong to the complex domain.
In this case, the configuration parameter COMPLEX_STORAGE can have one of the two values:COMPLEX_COMPLEX
(default) or REAL_REAL .

COMPLEX_COMPLEX

With the config_value::COMPLEX_COMPLEX storage, complex-valued data sequences are stored in a single com-
plex container (array/sycl::buffer), AZ, so that a complex-valued element 𝑧𝑘1,𝑘2,...,𝑘𝑑

of the m-th d-dimensional
sequence is accessed at 𝐴𝑍[𝑚 * distance + stride0 + 𝑘1 * stride1 + 𝑘2 * stride2 + · · ·+ 𝑘𝑑 * stride𝑑] as a structure con-
sisting of the real and imaginary parts. This code illustrates the use of config_value::COMPLEX_COMPLEX storage
with three dimensions (𝑛1, 𝑛2, 𝑛3) and m batches:

std::complex<datatype> * AZ; // 2*sizeof(datatype)*n1*n2*n3*m
std::vector<std::int64_t> ios; // length 4 of sizes
std::int64_t iodist;

(continues on next page)

11.2. oneMKL Domains 1539

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

// ...

// on input: Z(k1,k2,k3,m)
// = AZ[ios[0] + k1*ios[1] + k2*ios[2] + k3*ios[3] + m*iodist]
compute_forward(descr, AZ); // complex-to-complex in-place FFT
// on output: Z{k1,k2,k3,m}
// = AZ[ios[0] + k1*ios[1] + k2*ios[2] + k3*ios[3] + m*iodist]

REAL_REAL

With the config_value::REAL_REAL storage, complex-valued data sequences are stored by two real containers
(arrays/sycl::buffer’s), AR and AI, so that a complex-valued element 𝑧𝑘1,𝑘2,...,𝑘𝑑

of the m-th d-dimensional se-
quence has real part 𝐴𝑅[𝑚 * distance + stride0 + 𝑘1 * stride1 + 𝑘2 * stride2 + · · · + 𝑘𝑑 * stride𝑑] and imaginary
part 𝐴𝐼[𝑚 * distance + stride0 + 𝑘1 * stride1 + 𝑘2 * stride2 + · · · + 𝑘𝑑 * stride𝑑]. This code illustrates the use of
config_value::REAL_REAL storage with three dimensions (𝑛1, 𝑛2, 𝑛3) and m batches:

datatype * AR; // sizeof(datatype)*n1*n2*n3*m
datatype * AI; // sizeof(datatype)*n1*n2*n3*m
std::vector<std::int64_t> ios; // length 4 of strides
std::int64_t iodist;

// ...

// on input: Z(k1,k2,k3,m)
// = AR[ios[0] + k1*ios[1] + k2*ios[2] + k3*ios[3] + m*iodist]
// + i*AI[ios[0] + k1*ios[1] + k2*ios[2] + k3*ios[3] + m*iodist]
compute_forward(descr, AR, AI); // complex-to-complex in-place FFT
// on output: Z{k1,k2,k3,m}
// = AR[ios[0] + k1*ios[1] + k2*ios[2] + k3*ios[3] + m*iodist]
// + i*AI[ios[0] + k1*ios[1] + k2*ios[2] + k3*ios[3] + m*iodist]

REAL_STORAGE

For the domain template parameter with value REAL, only the value of REAL_REAL is supported.

REAL_REAL

With the REAL_REAL storage, real-valued data sequences in a real domain are stored by one real container (ar-
ray/sycl::buffer), AR, so that a real-valued element 𝑟𝑘1,𝑘2,...,𝑘𝑑

of the m-th d-dimensional sequence is accessed
as 𝐴𝑅[𝑚 * distance + stride0 + 𝑘1 * stride1 + 𝑘2 * stride2 + · · · + 𝑘𝑑 * stride𝑑]. This code illustrates the use of
config_value::REAL_REAL storage with three dimensions (𝑛1, 𝑛2, 𝑛3) and m batches:

datatype * AR; // sizeof(datatype)*n1*n2*n3*m
datatype * AI; // sizeof(datatype)*n1*n2*n3*m
std::vector<std::int64_t> ios; // length 4 of strides
std::int64_t iodist;

// ...

(continues on next page)

11.2. oneMKL Domains 1540

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

// on input: R(k1,k2,k3,m)
// = AR[ios[0] + k1*ios[1] + k2*ios[2] + k3*ios[3] + m*iodist]
compute_forward(descr, AR, AI); // real-to-complex in-place FFT
// on output: Z{k1,k2,k3,m}
// = AR[ios[0] + k1*ios[1] + k2*ios[2] + k3*ios[3] + m*iodist]
// + i*AI[ios[0] + k1*ios[1] + k2*ios[2] + k3*ios[3] + m*iodist]

CONJUGATE_EVEN_STORAGE

For the domain template parameter with value REAL and considered as a conjugate-even domain, the value
of config_value::COMPLEX_COMPLEX is supported. The conjugate-even symmetry of the data enables stor-
ing only about a half of the whole mathematical result, so that one part of it can be directly referenced in
the memory while the other part can be reconstructed depending on the selected storage configuration. The
config_param::PACKED_FORMAT configuration parameter defines how the data is packed. Possible values for
config_param::PACKED_FORMAT depend on the values of the config_param::CONJUGATE_EVEN_STORAGE con-
figuration parameter.

CONJUGATE_EVEN_STORAGE Supported PACKED_FORMATS
COMPLEX_COMPLEX config_value::CCE_FORMAT can be used with transforms of any dimension.

COMPLEX_COMPLEX

There is only one config_param::PACKED_FORMAT supported by the config_value::COMPLEX_COMPLEX value for
config_param::CONJUGATE_EVEN_STORAGE, mainly the config_value::CCE_FORMAT. The complex-valued data
sequence consists of one complex container (array/sycl::buffer), AZ, so that a complex-valued element 𝑧𝑘1,𝑘2,...,𝑘𝑑

of the m-th d-dimensional sequence can be accessed or reconstructed as follows:

Consider a d-dimensional real-to-complex transform.

Because the input sequence, R, is real-valued, the mathematical result, Z, has conjugate-even symmetry: 𝑧𝑘1,𝑘2,...,𝑘𝑑
=

conjugate(𝑧𝑛1−𝑘1,𝑛2−𝑘2,...,𝑛𝑑−𝑘𝑑
), where index arithmetic is performed modulo the length of the respective dimension.

Obviously, the first element of the result is real-valued: 𝑧0,0,...,0 = conjugate(𝑧0,0,...,0).

For dimensions with even lengths, some of the other elements are real-valued as well. For example, if 𝑛𝑠 is even,
then 𝑧0,0,...,𝑛𝑠

2 ,0,...,0 = conjugate(𝑧0,0,...,𝑛𝑠
2 ,0,...,0). With the conjugate-even symmetry, approximately a half of the

result suffices to fully reconstruct it. For an arbitrary dimension, ℎ , it suffices to store elements 𝑧𝑘1,...,𝑘ℎ,...,𝑘𝑑
for the

following indices:

• 𝑘ℎ = 0, . . . ,
[︀
𝑛ℎ

2

]︀
• 𝑘𝑖 = 0, . . . , 𝑛𝑖 − 1, where 𝑖 = 1, . . . , 𝑑 and 𝑖 ̸= ℎ

and assuming that integer division rounds down.

The symmetry property enables reconstructing the remaining elements: for 𝑘ℎ =
[︀
𝑛ℎ

2

]︀
+ 1, . . . , 𝑛ℎ − 1. The halved

dimension is always assumed to be the dimension for which storage is contiguous in memory (see strides), for example
in a 2D row-major format, it is the last dimension and for 2D column-major format it is the first dimension.

11.2. oneMKL Domains 1541

oneAPI Specification, Release 1.1-rev-1

Packed complex domain formats for a 1D real-to-complex transformation considered as a conjugate-
even-domain with COMPLEX_COMPLEX storage and 𝑛 = 2𝐿 (even size) or 𝑛 = 2𝐿 + 1 (odd size).

𝑘 = 0 1 2 . . . L-2 L-1 L
CCE 𝑍0 𝑍1 𝑍2 . . . 𝑍𝐿−2 𝑍𝐿−1 𝑍𝐿

Packed complex domain formats for a 2D 𝑛1 × 𝑛2 real-to-complex transformations considered as a
conjugate-even-domain with COMPLEX_COMPLEX storage and 𝑛1 = 2𝐾 (even size) and 𝑛2 = 2𝐿
(even size) using row-major input data.

𝑘1∖𝑘2 0 1 2 . . . L-1 L
0 𝑍0,0 𝑍0,1 𝑍0,2 . . . 𝑍0,𝐿−1 𝑍0,𝐿

1 𝑍1,0 𝑍1,1 𝑍1,2 . . . 𝑍1,𝐿−1 𝑍1,𝐿

2 𝑍2,0 𝑍2,1 𝑍2,2 . . . 𝑍2,𝐿−1 𝑍2,𝐿

. .
𝑛1 − 2 𝑍𝑛1−2,0 𝑍𝑛1−2,1 𝑍𝑛1−2,2 . . . 𝑍𝑛1−2,𝐿−1 𝑍𝑛1−2,𝐿
𝑛1 − 1 𝑍𝑛1−1,0 𝑍𝑛1−1,1 𝑍𝑛1−1,2 . . . 𝑍𝑛1−1,𝐿−1 𝑍𝑛1−1,𝐿

The following code illustrates usage of the config_value::COMPLEX_COMPLEX storage for a two-dimensional
conjugate-even domain with row-major input data:

datatype * AR; // sizeof(datatype)*n1*n2*m
std::complex<datatype> * AZ; // sizeof(datatype)*n1*n2*m
std::vector<std::int64_t> is; // length 3 of input strides
std::vector<std::int64_t> os; // length 3 of output strides
std::int64_t idist, odist;

// ...

// on input: R(k1,k2,m)
// = AR[is[0] + k1*is[1] + k2*is[2] + m*idist]
compute_forward(descr, AR, AZ); // real-to-complex out-of-place FFT
// on output:
// for k2=0,n2/2: Z{k1,k2,m} = AZ[os[0] + k1*os[1] + k2*os[2] + m*odist]
// for k2=n2/2+1,n2-1: Z{k1,k2,m} = conj(AZ[os[0] + (n1-k1)%n1*os[1]
// + (n2-k2)%n2*os[2] + m*odist])

For the backward transform, the input and output parameters and layouts exchange roles. Set the strides describing the
layout in the backward/forward domain as input/output strides, respectively. For example:

// ...
descr.set_value(config_param::INPUT_STRIDES, fwd_domain_strides);
descr.set_value(config_param::OUTPUT_STRIDES, bwd_domain_strides);
descr.commit(queue);
compute_forward(descr, ...);
// ...
descr.set_value(config_param::INPUT_STRIDES, bwd_domain_strides);
descr.set_value(config_param::OUTPUT_STRIDES, fwd_domain_strides);
descr.commit(queue);
compute_backward(descr, ...);

11.2. oneMKL Domains 1542

oneAPI Specification, Release 1.1-rev-1

Parent topic Configuration Parameters and Enums

INPUT_STRIDES and OUTPUT_STRIDES

The FFT interface provides configuration parameters that define the layout of multidimensional data in the computer
memory. For d-dimensional data set, 𝑋 , defined by dimensions 𝑛1× 𝑛2× · · · × 𝑛𝑑 , the layout describes where a par-
ticular element 𝑋(𝑘1, 𝑘2, . . . , 𝑘𝑑) of the data set is located. The memory address of the element 𝑋(𝑘1, 𝑘2, . . . , 𝑘𝑑)
is expressed by the formula: 𝑋(𝑘1, 𝑘2, . . . , 𝑘𝑑) = the +𝑠0 + 𝑘1 * 𝑠1 + 𝑘2 * 𝑠2 + · · · + 𝑘𝑑 * 𝑠𝑑-th element
of the container (sycl::buffer or USM pointer) provided to the compute function, where 𝑠0 is the displace-
ment and 𝑠1, . . . , 𝑠𝑑 are generalized strides. The configuration parameters config_param::INPUT_STRIDES and
config_param::OUTPUT_STRIDES enable you to get and set these values. The configuration value is a 𝑑+1 lengthed
std::vector<std::int64_t> of values (𝑠0, 𝑠1, . . . , 𝑠𝑑).

The offset is counted in elements of the data type (complex or real) defined by the descriptor configuration as tabulated
below.

The computation functions take containers(sycl::buffer or USM pointer) which are typed according to the descrip-
tor configuration parameters. Specifically, the forward domain which defines the type of transformation and the stor-
age format configuration parameters: config_param::COMPLEX_STORAGE, config_param::REAL_STORAGE and
config_param::CONJUGATE_EVEN_STORAGE define the type of the elements as shown here:

Assumed Element Types using complex-to-complex transform and config_param::COMPLEX_STORAGE:

COMPLEX_STORAGE Element type of forward data Element type of backward data
COMPLEX_COMPLEX Complex Complex
REAL_REAL Real Real

Assumed Element Types using real-to-complex transform and config_param::REAL_STORAGE:

REAL_STORAGE Element type of forward data Element type of backward data
REAL_REAL Real Real

Assumed Element Types using real-to-complex transform and config_param::CONJUGATE_EVEN_STORAGE:

CONJUGATE_EVEN_STORAGE Element type of forward data Element type of backward data
COMPLEX_COMPLEX Real Complex

The config_param::INPUT_STRIDES configuration parameter defines the layout of the input data, while the element
type is defined by the forward domain for the compute_forward function and by the backward domain for the com-
pute_backward function. The config_param::OUTPUT_STRIDES configuration parameter defines the layout of the
output data, while the element type is defined by the backward domain for the compute_forward function and by the
forward domain for compute_backward function.

For in-place transforms (config_param::PLACEMENT=config_value::INPLACE), the configuration set by
config_param::OUTPUT_STRIDES is ignored when the element types in the forward and backward domains are the
same. If they are different, set config_param::OUTPUT_STRIDES explicitly (even though the transform is in-place).
Ensure a consistent configuration for in-place transforms, that is, the locations of the first elements on input and output
must coincide in each dimension.

11.2. oneMKL Domains 1543

oneAPI Specification, Release 1.1-rev-1

Parent topic Configuration Parameters and Enums

FORWARD_DISTANCE and BACKWARD_DISTANCE

The FFT interface enables computation of multiple transforms. To compute multiple transforms, you need to specify
the data distribution of the multiple sets of data. The distance between the first data elements of consecutive data
sets, FORWARD_DISTANCE for forward domain data or BACKWARD_DISTANCE for backward domain data, specifies the
distribution. The configuration setting is a value of std::int64_t data type.

The default value for both configuration settings is one. You must set this parameter explicitly if the number of trans-
forms is greater than one (see Number of Transforms).

The distance is counted in elements of the data type defined by the descriptor configuration (rather than by the
type of the variable passed to the computation functions). Specifically, the domain template parameter, and the
COMPLEX_STORAGE, REAL_STORAGE and CONJUGATE_EVEN_STORAGE configuration parameters described in Storage
Formats define the type of the elements as shown in the complex_storage, real_storage and conjugate_even_storage
tables.

For in-place transforms (PLACEMENT=INPLACE), the configuration set by FORWARD_DISTANCE and
BACKWARD_DISTANCE should be consistent, that is, the locations of the data sets for input and output must
coincide.

Parent topic: Configuration Parameters and Enums

descriptor

The descriptor class defines a discrete Fourier transform problem to be computed.

Description

The discrete Fourier transform problem is defined through the use of the oneapi::mkl::dft::descriptor class
which lives in the oneapi::mkl::dft:: namespace. The enum and config_param values associated with the de-
scriptor class can be found in Configuration Parameters and Enums including precision, domain and config_param.
The descriptor class allows to set several configuration parameters using set_value (and query using get_value) and
then upon call to commit with a sycl::queue, is ready to be used in computations on the specified device.

This class is then passed to a compute_forward or compute_backward function along with the data for the actual
transformation to be applied.

Note: The compute_forward and compute_backward functions may need to be able to access the internals of the
descriptor to apply the transform, this could be done for instance, by labeling them as friend functions of the descriptor
class.

11.2. oneMKL Domains 1544

oneAPI Specification, Release 1.1-rev-1

descriptor class

Syntax

The descriptor class lives in the oneapi::mkl::dft namespace.

namespace oneapi::mkl::dft {

template <oneapi::mkl::dft::precision prec, oneapi::mkl::dft::domain dom>
class descriptor {
public:

// Syntax for 1-dimensional DFT
descriptor(std::int64_t length);

// Syntax for d-dimensional DFT
descriptor(std::vector<std::int64_t> dimensions);

~descriptor();

void set_value(config_param param, ...);

void get_value(config_param param, ...);

void commit(sycl::queue &queue);

};

}

Descriptor class template parameters

precision prec Specifies the floating-point precision in which the transform is to be carried out.

domain dom Specifies the forward domain for the transformations.

Descriptor class member functions

Routines Description
constructors Initialize descriptor for 1-dimensional or N-dimensional transformations
set_value Sets one particular configuration parameter with the specified configuration value.
get_value Gets the configuration value of one particular configuration parameter.
commit Performs all initialization for the actual FFT computation.

11.2. oneMKL Domains 1545

oneAPI Specification, Release 1.1-rev-1

Descriptor class constructors

The constructors for the discrete Fourier transform descriptor class with default configuration settings for a given
precision, forward domain type and dimension of the transform.

The constructors allocate memory for the descriptor data structure and instantiate it with all the default configuration
settings for the precision, (forward) domain, and dimensions of the transform. The constructors do not perform any
significant computational work, such as computation of twiddle factors. The function commit does this work after use
of the function set_value to set values of all necessary parameters.

Syntax (one-dimensional transform)

namespace oneapi::mkl::dft {

template <oneapi::mkl::dft::precision prec, oneapi::mkl::dft::domain dom>
descriptor<prec,dom>(std::int64_t length);

}

Syntax (multi-dimensional transform)

namespace oneapi::mkl::dft {

template <oneapi::mkl::dft::precision prec, oneapi::mkl::dft::domain dom>
descriptor<prec,dom>(std::vector<std::int64_t> dimensions);

}

Input Parameters

length dimension(length) of data for a 1-dimensional transform.

dimensions vector of 𝑑 ≥ 0 dimensions(lengths) of data for a d-dimensional transform.

Throws

The descriptor() constructor shall throw the following exceptions if the associated condition is detected. An implemen-
tation may throw additional implementation-specific exception(s) in case of error conditions not covered here:

oneapi::mkl::host_bad_alloc() If any memory allocations on host have failed, for instance due to insufficient memory.

oneapi::mkl::unimplemented() If length of dimensions vector is larger than is supported by the library implemen-
tation.

Descriptor class member table: Descriptor class member functions

11.2. oneMKL Domains 1546

oneAPI Specification, Release 1.1-rev-1

set_value

Sets DFT configuration values before commit.

Description

This function sets one particular configuration parameter with the specified configuration value. Each configuration
parameter is a named constant, and the configuration value must have the corresponding type, which can be a named
constant or a native type. For available configuration parameters and the corresponding configuration values, see
config_param. All calls to set_param must be done before commit.

Syntax

namespace oneapi::mkl::dft {

template <oneapi::mkl::dft::precision prec, oneapi::mkl::dft::domain dom>
void descriptor<prec,dom>::set_value(config_param param, ...);

}

Input Parameters

param The enum value of config_param to be set.

. . . The corresponding value or container corresponding to the specific parameter. Defined in config_param.

Throws

The descriptor::set_value() routine shall throw the following exceptions if the associated condition is detected. An
implementation may throw additional implementation-specific exception(s) in case of error conditions not covered
here:

oneapi::mkl::invalid_argument() If the provided config_param or config_value is not valid.

oneapi::mkl::unimplemented() If the provided config_param or config_value is valid, but not supported by the library
implementation.

Descriptor class member table: Descriptor class member functions

get_value

Retrieves current DFT configuration values.

11.2. oneMKL Domains 1547

oneAPI Specification, Release 1.1-rev-1

Description

This function gets one particular configuration parameter with the specified configuration value. Each configuration
parameter is a named constant, and the configuration value must have the corresponding type, which can be a named
constant or a native type. For available configuration parameters and the corresponding configuration values, see
config_param.

Syntax

namespace oneapi::mkl::dft {

template <oneapi::mkl::dft::precision prec, oneapi::mkl::dft::domain dom>
void descriptor<prec,dom>::get_value(config_param param, ...);

}

Input Parameters

param The enum value of config_param to be retrieved.

. . . The corresponding value or container corresponding to the specific parameter. Defined in config_param.

Throws

The descriptor::get_value() routine shall throw the following exceptions if the associated condition is detected. An
implementation may throw additional implementation-specific exception(s) in case of error conditions not covered
here:

oneapi::mkl::invalid_argument() If the requested config_param is not correct.

Descriptor class member table: Descriptor class member functions

commit

Finalizes DFT descriptor after all configuration parameters have been set.

Description

This function completes initialization of a previously created descriptor, which is required before the descriptor can
be used for FFT computations. Typically, committing the descriptor performs all initialization that is required for the
actual FFT computation on the device specified through input queue. The initialization performed by the function may
involve exploring different factorizations of the input length to find the optimal computation method.

All calls to the set_value function to change configuration parameters of a descriptor need to happen after the constructor
call for the descriptor class and before a call to commit. Typically, a commit function call is immediately followed by
a computation function call (see compute_forward or compute_backward)

11.2. oneMKL Domains 1548

oneAPI Specification, Release 1.1-rev-1

Syntax

namespace oneapi::mkl::dft {

template <oneapi::mkl::dft::precision prec, oneapi::mkl::dft::domain dom>
void descriptor<prec,dom>::commit(sycl::queue& queue);

}

Input Parameters

queue Valid DPC++ queue specifying the device and context on which the transformation will be executed.

Throws

The following oneMKL exceptions may be thrown in this function:

The descriptor::commit() routine shall throw the following exceptions if the associated condition is detected. An im-
plementation may throw additional implementation-specific exception(s) in case of error conditions not covered here:

oneapi::mkl::invalid_argument() If the queue is found to be invalid in any way.

oneapi::mkl::host_bad_alloc() If any host side only memory allocations fail, for instance due to lack of memory.

oneapi::mkl::device_bad_alloc() If any device or shared memory allocation fail.

Descriptor class member table: Descriptor class member functions

Parent topic: Discrete Fourier Transform Functions

compute_forward

This function computes the forward transform defined by an instantiation of the descriptor class.

Description

The compute_forward function accepts the descriptor and one or more data parameters and in the case of USM data,
any syc::event dependencies. Given a successfully configured and committed descriptor, this function computes the
forward transform, that is, the transform with the minus sign, 𝛿 = −1, in the exponent.

The configuration parameters config_param::COMPLEX_STORAGE, config_param::REAL_STORAGE and
config_param::CONJUGATE_EVEN_STORAGE define the layout of the input and output data and must be prop-
erly set in a call to set_value.

Note: The compute_forward function may need to access the internals and private/protected members of the descriptor
class. This could be done, for instance, by labeling it as a friend function to the descriptor class.

11.2. oneMKL Domains 1549

oneAPI Specification, Release 1.1-rev-1

compute_forward (Buffer version)

Syntax (In-place transform)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename data_type>
void compute_forward(descriptor_type &desc,

sycl::buffer<data_type, 1> &inout);

}

Syntax (In-place transform, using config_param::COMPLEX_STORAGE=config_value::REAL_REAL data
format)

namespace oneapi::mkl::dft {

template <typename descriptor_type typename data_type>
void compute_forward(descriptor_type &desc,

sycl::buffer<data_type, 1> &inout_re,
sycl::buffer<data_type, 1> &inout_im);

}

Syntax (Out-of-place transform)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename input_type, typename output_type>
void compute_forward(descriptor_type &desc,

sycl::buffer<input_type, 1> &in,
sycl::buffer<output_type, 1> &out);

}

Syntax (Out-of-place transform, using config_param::COMPLEX_STORAGE=config_value::REAL_REAL
data format)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename input_type, typename output_type>
void compute_forward(descriptor_type &desc,

sycl::buffer<input_type, 1> &in_re,
sycl::buffer<input_type, 1> &in_im,
sycl::buffer<output_type, 1> &out_re,
sycl::buffer<output_type, 1> &out_im);

}

11.2. oneMKL Domains 1550

oneAPI Specification, Release 1.1-rev-1

Input Parameters

desc A fully configured and committed discrete Fourier transform descriptor class object, defining the type of trans-
formation and data layout to be applied. At commit time, the sycl::queue has already been provided.

inout Sycl buffer containing an array of length no less than is specified at the descriptor construction time to
house both the input and output data sequences for the in-place transformation. Corresponds to the choice of
config_value::INPLACE for the configuration parameter config_param::PLACEMENT.

inout_re Sycl buffer containing an array of length no less than is specified at the descriptor construction
time to house the real part of both the input and output data sequences for the in-place transformation
when using the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configu-
ration parameter. Corresponds to the choice of config_value::INPLACE for the configuration parameter
config_param::PLACEMENT.

inout_im Sycl buffer containing an array of length no less than is specified at the descriptor construction time
to house the imaginary part of both the input and output data sequences for the in-place transformation
when using the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configu-
ration parameter. Corresponds to the choice of config_value::INPLACE for the configuration parameter
config_param::PLACEMENT.

in Sycl buffer containing an array of length no less than is specified at the descriptor construction time to house the input
data sequence for the out-of-place transformation. Corresponds to the choice of config_value::NOT_INPLACE
for the configuration parameter config_param::PLACEMENT.

in_re Sycl buffer containing an array of length no less than is specified at the descriptor construction time to house the
real part of input data sequence for the out-of-place transformation when using the config_value::REAL_REAL
format for the config_param::COMPLEX_STORAGE configuration parameter. Corresponds to the choice of
config_value::NOT_INPLACE for the configuration parameter config_param::PLACEMENT.

in_im Sycl buffer containing an array of length no less than is specified at the descriptor construction
time to house the imaginary part of input data sequence for the out-of-place transformation when us-
ing the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configuration pa-
rameter. Corresponds to the choice of config_value::NOT_INPLACE for the configuration parameter
config_param::PLACEMENT.

Output Parameters

inout Sycl buffer containing an array of length no less than is specified at the descriptor construction time to
house both the input and output data sequences for the in-place transformation. Corresponds to the choice of
config_value::INPLACE for the configuration parameter config_param::PLACEMENT.

inout_re Sycl buffer containing an array of length no less than is specified at the descriptor construction
time to house the real part of both the input and output data sequences for the in-place transformation
when using the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configu-
ration parameter. Corresponds to the choice of config_value::INPLACE for the configuration parameter
config_param::PLACEMENT.

inout_im Sycl buffer containing an array of length no less than is specified at the descriptor construction time
to house the imaginary part of both the input and output data sequences for the in-place transformation
when using the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configu-
ration parameter. Corresponds to the choice of config_value::INPLACE for the configuration parameter
config_param::PLACEMENT.

out Sycl buffer containing an array of length no less than is specified at the descriptor construction time
to house the output data sequence for the out-of-place transformation. Corresponds to the choice of
config_value::NOT_INPLACE for the configuration parameter config_param::PLACEMENT.

11.2. oneMKL Domains 1551

oneAPI Specification, Release 1.1-rev-1

out_re Sycl buffer containing an array of length no less than is specified at the descriptor construction
time to house the real part of output data sequence for the out-of-place transformation when using
the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configuration pa-
rameter. Corresponds to the choice of config_value::NOT_INPLACE for the configuration parameter
config_param::PLACEMENT.

out_im Sycl buffer containing an array of length no less than is specified at the descriptor construction
time to house the imaginary part of output data sequence for the out-of-place transformation when us-
ing the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configuration pa-
rameter. Corresponds to the choice of config_value::NOT_INPLACE for the configuration parameter
config_param::PLACEMENT.

Throws

The oneapi::mkl::dft::compute_forward routine shall throw the following exceptions if the associated condition is
detected. An implementation may throw additional implementation-specific exception(s) in case of error conditions
not covered here:

oneapi::mkl::invalid_argument() If the provided descriptor class is invalid, for instance, if it is a nullptr or if the value
of config_param::COMMIT_STATUS in descriptor is not config_param::COMMITTED.

compute_forward (USM version)

Syntax (In-place transform)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename data_type>
sycl::event compute_forward(descriptor_type &desc,

data_type *inout,
const std::vector<cl::sycl::event> &

→˓dependencies = {});
}

Syntax (In-place transform, using config_param::COMPLEX_STORAGE=config_value::REAL_REAL data
format)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename data_type>
sycl::event compute_forward(descriptor_type &desc,

data_type *inout_re,
data_type *inout_im,
const std::vector<cl::sycl::event> &

→˓dependencies = {});

}

11.2. oneMKL Domains 1552

oneAPI Specification, Release 1.1-rev-1

Syntax (Out-of-place transform)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename input_type, typename output_type>
sycl::event compute_forward(descriptor_type &desc,

input_type *in,
output_type *out,
const std::vector<cl::sycl::event> &

→˓dependencies = {});

}

Syntax (Out-of-place transform, using config_param::COMPLEX_STORAGE=config_value::REAL_REAL
data format)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename input_type, typename output_type>
sycl::event compute_forward(descriptor_type &desc,

input_type *in_re,
input_type *in_im,
output_type *out_re,
output_type *out_im,
const std::vector<cl::sycl::event> &

→˓dependencies = {});

}

Input Parameter

desc A fully configured and committed discrete Fourier transform descriptor class object, defining the type of trans-
formation and data layout to be applied. At commit time, the sycl::queue has already been provided.

inout USM pointer containing an array of length no less than is specified at the descriptor construction time to
house both the input and output data sequences for the in-place transformation. Corresponds to the choice of
config_value::INPLACE for the configuration parameter config_param::PLACEMENT.

inout_re USM pointer containing an array of length no less than is specified at the descriptor construction
time to house the real part of both the input and output data sequences for the in-place transformation
when using the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configu-
ration parameter. Corresponds to the choice of config_value::INPLACE for the configuration parameter
config_param::PLACEMENT.

inout_im USM pointer containing an array of length no less than is specified at the descriptor construction time
to house the imaginary part of both the input and output data sequences for the in-place transformation
when using the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configu-
ration parameter. Corresponds to the choice of config_value::INPLACE for the configuration parameter
config_param::PLACEMENT.

in USM pointer containing an array of length no less than is specified at the descriptor construction time
to house the input data sequence for the out-of-place transformation. Corresponds to the choice of
config_value::NOT_INPLACE for the configuration parameter config_param::PLACEMENT.

11.2. oneMKL Domains 1553

oneAPI Specification, Release 1.1-rev-1

in_re USM pointer containing an array of length no less than is specified at the descriptor construction
time to house the real part of the input data sequence for the out-of-place transformation when us-
ing the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configuration pa-
rameter. Corresponds to the choice of config_value::NOT_INPLACE for the configuration parameter
config_param::PLACEMENT.

in_im USM pointer containing an array of length no less than is specified at the descriptor construction time
to house the imaginary part of the input data sequence for the out-of-place transformation when us-
ing the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configuration pa-
rameter. Corresponds to the choice of config_value::NOT_INPLACE for the configuration parameter
config_param::PLACEMENT.

dependencies A vector of sycl::event’s that represent the previously enqueued tasks that must be finished before
this transformation can be started.

Output Parameters

inout USM pointer containing an array of length no less than is specified at the descriptor construction time to
house both the input and output data sequences for the in-place transformation. Corresponds to the choice of
config_value::INPLACE for the configuration parameter config_param::PLACEMENT.

inout_re USM pointer containing an array of length no less than is specified at the descriptor construction
time to house the real part of both the input and output data sequences for the in-place transformation
when using the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configu-
ration parameter. Corresponds to the choice of config_value::INPLACE for the configuration parameter
config_param::PLACEMENT.

inout_im USM pointer containing an array of length no less than is specified at the descriptor construction time
to house the imaginary part of both the input and output data sequences for the in-place transformation
when using the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configu-
ration parameter. Corresponds to the choice of config_value::INPLACE for the configuration parameter
config_param::PLACEMENT.

out USM pointer containing an array of length no less than is specified at the descriptor construction time
to house the output data sequence for the out-of-place transformation. Corresponds to the choice of
config_value::NOT_INPLACE for the configuration parameter config_param::PLACEMENT.

out_re USM pointer containing an array of length no less than is specified at the descriptor construction
time to house the real part of the output data sequence for the out-of-place transformation when us-
ing the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configuration pa-
rameter. Corresponds to the choice of config_value::NOT_INPLACE for the configuration parameter
config_param::PLACEMENT.

out_im USM pointer containing an array of length no less than is specified at the descriptor construction time
to house the imaginary part of the output data sequence for the out-of-place transformation when us-
ing the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configuration pa-
rameter. Corresponds to the choice of config_value::NOT_INPLACE for the configuration parameter
config_param::PLACEMENT.

11.2. oneMKL Domains 1554

oneAPI Specification, Release 1.1-rev-1

Throws

The oneapi::mkl::dft::compute_forward() routine shall throw the following exceptions if the associated condition is
detected. An implementation may throw additional implementation-specific exception(s) in case of error conditions
not covered here:

oneapi::mkl::invalid_argument() If the provided descriptor class is invalid, for instance, if it is a nullptr or if the value
of config_param::COMMIT_STATUS in descriptor is not config_param::COMMITTED. It will also be thrown
if the input/output pointers are NULL.

Return Values

This function returns a sycl::event that allows to track progress of this transformation, and can be passed as a
dependency to other routines that may depend on the results of this transformation to be finished before proceeding
with the other operations.

Parent topic: Discrete Fourier Transform Functions

compute_backward

This function computes the backward transform defined by an instantiation of the descriptor class.

Description

The compute_backward function accepts the descriptor and one or more data parameters and in the case of USM data,
any syc::event dependencies. Given a successfully configured and committed descriptor, this function computes the
backward transform, that is, the transform with the plus sign, 𝛿 = +1, in the exponent.

The configuration parameters config_param::COMPLEX_STORAGE, config_param::REAL_STORAGE and
config_param::CONJUGATE_EVEN_STORAGE define the layout of the input and output data and must be prop-
erly set in a call to set_value.

Note: The compute_backward function may need to access the internals and private/protected members of the de-
scriptor class. This could be done, for instance, by labeling it as a friend function to the descriptor class.

compute_backward (Buffer version)

Syntax (In-place transform)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename data_type>
void compute_backward(descriptor_type &desc,

sycl::buffer<data_type, 1> &inout);

}

11.2. oneMKL Domains 1555

oneAPI Specification, Release 1.1-rev-1

Syntax (In-place transform, using config_param::COMPLEX_STORAGE=config_value::REAL_REAL data
format)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename data_type>
void compute_backward(descriptor_type &desc,

sycl::buffer<data_type, 1> &inout_re,
sycl::buffer<data_type, 1> &inout_im);

}

Syntax (Out-of-place transform)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename input_type, typename output_type>
void compute_backward(descriptor_type &desc,

sycl::buffer<input_type, 1> &in,
sycl::buffer<output_type, 1> &out);

}

Syntax (Out-of-place transform, using config_param::COMPLEX_STORAGE=config_value::REAL_REAL
data format)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename input_type, typename output_type>
void compute_backward(descriptor_type &desc,

sycl::buffer<input_type, 1> &in_re,
sycl::buffer<input_type, 1> &in_im,
sycl::buffer<output_type, 1> &out_re,
sycl::buffer<output_type, 1> &out_im);

}

Input Parameters

desc A fully configured and committed discrete Fourier transform descriptor class object, defining the type of backward
transformation and data layout to be applied. At commit time, the sycl::queue has already been provided.

inout Sycl buffer containing an array of length no less than is specified at the descriptor construction time to
house both the input and output data sequences for the in-place transformation. Corresponds to the choice of
config_value::INPLACE for the configuration parameter config_param::PLACEMENT.

inout_re Sycl buffer containing an array of length no less than is specified at the descriptor construction
time to house the real part of both the input and output data sequences for the in-place transformation
when using the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configu-
ration parameter. Corresponds to the choice of config_value::INPLACE for the configuration parameter
config_param::PLACEMENT.

11.2. oneMKL Domains 1556

oneAPI Specification, Release 1.1-rev-1

inout_im Sycl buffer containing an array of length no less than is specified at the descriptor construction time
to house the imaginary part of both the input and output data sequences for the in-place transformation
when using the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configu-
ration parameter. Corresponds to the choice of config_value::INPLACE for the configuration parameter
config_param::PLACEMENT.

in Sycl buffer containing an array of length no less than is specified at the descriptor construction time to house the input
data sequence for the out-of-place transformation. Corresponds to the choice of config_value::NOT_INPLACE
for the configuration parameter config_param::PLACEMENT.

in_re Sycl buffer containing an array of length no less than is specified at the descriptor construction time to house the
real part of input data sequence for the out-of-place transformation when using the config_value::REAL_REAL
format for the config_param::COMPLEX_STORAGE configuration parameter. Corresponds to the choice of
config_value::NOT_INPLACE for the configuration parameter config_param::PLACEMENT.

in_im Sycl buffer containing an array of length no less than is specified at the descriptor construction
time to house the imaginary part of input data sequence for the out-of-place transformation when us-
ing the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configuration pa-
rameter. Corresponds to the choice of config_value::NOT_INPLACE for the configuration parameter
config_param::PLACEMENT.

Output Parameters

inout Sycl buffer containing an array of length no less than is specified at the descriptor construction time to
house both the input and output data sequences for the in-place transformation. Corresponds to the choice of
config_value::INPLACE for the configuration parameter config_param::PLACEMENT.

inout_re Sycl buffer containing an array of length no less than is specified at the descriptor construction
time to house the real part of both the input and output data sequences for the in-place transformation
when using the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configu-
ration parameter. Corresponds to the choice of config_value::INPLACE for the configuration parameter
config_param::PLACEMENT.

inout_im Sycl buffer containing an array of length no less than is specified at the descriptor construction time
to house the imaginary part of both the input and output data sequences for the in-place transformation
when using the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configu-
ration parameter. Corresponds to the choice of config_value::INPLACE for the configuration parameter
config_param::PLACEMENT.

out Sycl buffer containing an array of length no less than is specified at the descriptor construction time
to house the output data sequence for the out-of-place transformation. Corresponds to the choice of
config_value::NOT_INPLACE for the configuration parameter config_param::PLACEMENT.

out_re Sycl buffer containing an array of length no less than is specified at the descriptor construction
time to house the real part of output data sequence for the out-of-place transformation when using
the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configuration pa-
rameter. Corresponds to the choice of config_value::NOT_INPLACE for the configuration parameter
config_param::PLACEMENT.

out_im Sycl buffer containing an array of length no less than is specified at the descriptor construction
time to house the imaginary part of output data sequence for the out-of-place transformation when us-
ing the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configuration pa-
rameter. Corresponds to the choice of config_value::NOT_INPLACE for the configuration parameter
config_param::PLACEMENT.

11.2. oneMKL Domains 1557

oneAPI Specification, Release 1.1-rev-1

Throws

The oneapi::mkl::dft::compute_backward() routine shall throw the following exceptions if the associated condition is
detected. An implementation may throw additional implementation-specific exception(s) in case of error conditions
not covered here:

oneapi::mkl::invalid_argument() If the provided descriptor class is invalid, for instance, if it is a nullptr or if the value
of config_param::COMMIT_STATUS in descriptor is not config_param::COMMITTED.

compute_backward (USM version)

Syntax (In-place transform)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename data_type>
sycl::event compute_backward(descriptor_type &desc,

data_type *inout,
const std::vector<cl::sycl::event> &

→˓dependencies = {});
}

Syntax (In-place transform, using config_param::COMPLEX_STORAGE=config_value::REAL_REAL data
format)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename data_type>
sycl::event compute_backward(descriptor_type &desc,

data_type *inout_re,
data_type *inout_im,
const std::vector<cl::sycl::event> &

→˓dependencies = {});

}

Syntax (Out-of-place transform)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename input_type, typename output_type>
sycl::event compute_backward(descriptor_type &desc,

input_type *in,
output_type *out,
const std::vector<cl::sycl::event> &

→˓dependencies = {});

}

11.2. oneMKL Domains 1558

oneAPI Specification, Release 1.1-rev-1

Syntax (Out-of-place transform, using config_param::COMPLEX_STORAGE=config_value::REAL_REAL
data format)

namespace oneapi::mkl::dft {

template <typename descriptor_type, typename input_type, typename output_type>
sycl::event compute_backward(descriptor_type &desc,

input_type *in_re,
input_type *in_im,
output_type *out_re,
output_type *out_im,
const std::vector<cl::sycl::event> &

→˓dependencies = {});

}

Input Parameters

desc A fully configured and committed discrete Fourier transform descriptor class object, defining the type of backward
transformation and data layout to be applied. At commit time, the sycl::queue has already been provided.

inout USM pointer containing an array of length no less than is specified at the descriptor construction time to
house both the input and output data sequences for the in-place transformation. Corresponds to the choice of
config_value::INPLACE for the configuration parameter config_param::PLACEMENT.

inout_re USM pointer containing an array of length no less than is specified at the descriptor construction
time to house the real part of both the input and output data sequences for the in-place transformation
when using the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configu-
ration parameter. Corresponds to the choice of config_value::INPLACE for the configuration parameter
config_param::PLACEMENT.

inout_im USM pointer containing an array of length no less than is specified at the descriptor construction time
to house the imaginary part of both the input and output data sequences for the in-place transformation
when using the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configu-
ration parameter. Corresponds to the choice of config_value::INPLACE for the configuration parameter
config_param::PLACEMENT.

in USM pointer containing an array of length no less than is specified at the descriptor construction time
to house the input data sequence for the out-of-place transformation. Corresponds to the choice of
config_value::NOT_INPLACE for the configuration parameter config_param::PLACEMENT.

in_re USM pointer containing an array of length no less than is specified at the descriptor construction
time to house the real part of the input data sequence for the out-of-place transformation when us-
ing the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configuration pa-
rameter. Corresponds to the choice of config_value::NOT_INPLACE for the configuration parameter
config_param::PLACEMENT.

in_im USM pointer containing an array of length no less than is specified at the descriptor construction time
to house the imaginary part of the input data sequence for the out-of-place transformation when us-
ing the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configuration pa-
rameter. Corresponds to the choice of config_value::NOT_INPLACE for the configuration parameter
config_param::PLACEMENT.

dependencies A vector of sycl::event’s that represent the previously enqueued tasks that must be finished before
this transformation can be started.

11.2. oneMKL Domains 1559

oneAPI Specification, Release 1.1-rev-1

Output Parameters

inout USM pointer containing an array of length no less than is specified at the descriptor construction time to
house both the input and output data sequences for the in-place transformation. Corresponds to the choice of
config_value::INPLACE for the configuration parameter config_param::PLACEMENT.

inout_re USM pointer containing an array of length no less than is specified at the descriptor construction
time to house the real part of both the input and output data sequences for the in-place transformation
when using the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configu-
ration parameter. Corresponds to the choice of config_value::INPLACE for the configuration parameter
config_param::PLACEMENT.

inout_im USM pointer containing an array of length no less than is specified at the descriptor construction time
to house the imaginary part of both the input and output data sequences for the in-place transformation
when using the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configu-
ration parameter. Corresponds to the choice of config_value::INPLACE for the configuration parameter
config_param::PLACEMENT.

out USM pointer containing an array of length no less than is specified at the descriptor construction time
to house the output data sequence for the out-of-place transformation. Corresponds to the choice of
config_value::NOT_INPLACE for the configuration parameter config_param::PLACEMENT.

out_re USM pointer containing an array of length no less than is specified at the descriptor construction
time to house the real part of the output data sequence for the out-of-place transformation when us-
ing the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configuration pa-
rameter. Corresponds to the choice of config_value::NOT_INPLACE for the configuration parameter
config_param::PLACEMENT.

out_im USM pointer containing an array of length no less than is specified at the descriptor construction time
to house the imaginary part of the output data sequence for the out-of-place transformation when us-
ing the config_value::REAL_REAL format for the config_param::COMPLEX_STORAGE configuration pa-
rameter. Corresponds to the choice of config_value::NOT_INPLACE for the configuration parameter
config_param::PLACEMENT.

Throws

The oneapi::mkl::dft::compute_backward() routine shall throw the following exceptions if the associated condition is
detected. An implementation may throw additional implementation-specific exception(s) in case of error conditions
not covered here:

oneapi::mkl::invalid_argument() If the provided descriptor class is invalid, for instance, if it is a nullptr or if the value
of config_param::COMMIT_STATUS in descriptor is not config_param::COMMITTED. It will also be thrown
if the input/output pointers are NULL.

Return Values

This function returns a sycl::event that allows to track progress of this transformation, and can be passed as a
dependency to other routines that may depend on the results of this transformation to be finished before proceeding
with the other operations.

Parent topic: Discrete Fourier Transform Functions

11.2. oneMKL Domains 1560

oneAPI Specification, Release 1.1-rev-1

11.2.4 Random Number Generators

The oneAPI Math Kernel Library Random Number Generators provides a set of routines implementing commonly
used pseudorandom, quasi-random, and non-deterministic generators with continuous and discrete distributions.

Random Number Generators (RNG) Overview

Definitions

The pseudo-random number generator is defined by a structure(𝑆, 𝜇, 𝑓 , 𝑈 , 𝑔), where:

• 𝑆 is a finite set of states (the state space)

• 𝜇 is a probability distribution on 𝑆 for the initial state (or seed) 𝑠0
• 𝑓 : 𝑆 → 𝑆 is the transition function

• 𝑈 – a finite set of output symbols

• 𝑔 : 𝑆 → 𝑈 an output function

The generation of random numbers is as follows:

1. Generate the initial state (called the seed) 𝑠0 according to 𝜇 and compute 𝑢0 = 𝑔(𝑠0).

2. Iterate for 𝑖 = 1, ..., and 𝑢𝑖 = 𝑔(𝑠𝑖). Output values 𝑢𝑖 are the so-called random numbers produced by the PRNG.

In computational statistics, random variate generation is usually made in two steps:

1. Generating imitations of independent and identically distributed (i.i.d.) random variables having the uniform
distribution over the interval (0, 1)

2. Applying transformations to these i.i.d. 𝑈(0, 1) random variates in order to generate (or imitate) random variates
and random vectors from arbitrary distributions.

Structure

RNG domain contains two classes types:

• Engines (basic random number generators) classes, which holds the state of generator and is a source of i.i.d.
random. Refer to Engines (Basic Random Number Generators) for a detailed description.

• Distribution classes templates (transformation classes) for different types of statistical distributions, for example,
uniform, normal (Gaussian), binomial, etc. These classes contain all of the distribution’s parameters (including
generation method). Refer to Distributions for a detailed description of the distributions.

The RNG domain also contains two types of free functions:

• Generation routines. The current routines are used to obtain random numbers from a given engine with proper
statistics defined by a given distribution. Refer to the Generate Routine section for a detailed description.

• Service routines. The routines are used to modify the engine state. Refer to Service Routines for a description of
these routines.

Engine classes work with both generation and service routines. Distribution classes are used in generation routines
only. Refer to the oneMKL RNG Usage Model section for the description of typical RNG scenario.

11.2. oneMKL Domains 1561

oneAPI Specification, Release 1.1-rev-1

oneMKL RNG Usage Model

Description

A typical algorithm for random number generators is as follows:

1. Create and initialize the object for basic random number generator.

• Use the skip_ahead or leapfrog function if it is required (used in parallel with random number generation
for Host and CPU devices).

2. Create and initialize the object for distribution generator.

3. Call the generate routine to get random numbers with appropriate statistical distribution.

The following example demonstrates generation of random numbers that is output of basic generator (engine)
PHILOX4X32X10. The seed is equal to 777. The generator is used to generate 10,000 normally distributed ran-
dom numbers with parameters a = 5 and sigma= 2. The purpose of the example is to calculate the sample mean for
normal distribution with the given parameters.

Buffer-based example

#include <iostream>
#include <vector>

#include "CL/sycl.hpp"
#include "oneapi/mkl/rng.hpp"

int main() {
sycl::queue queue;
const size_t n = 10000;
const std::uint64_t seed = 777;
std::vector<double> r(n);

oneapi::mkl::rng::philox4x32x10 engine(queue, seed); // basic random number␣
→˓generator object

oneapi::mkl::rng::gaussian<double, oneapi::mkl::rng::gaussian_method::box_muller2>␣
→˓distr(5.0, 2.0); // distribution object

{
//create buffer for random numbers
sycl::buffer<double, 1> r_buf(r.data(), r.size());
oneapi::mkl::rng::generate(distr, engine, n, r_buf); // perform generation

}

double s = 0.0;
for(int i = 0; i < n; i++) {

s += r[i];
}
s /= n;

std::cout << "Average = " << s << std::endl;
return 0;

}

11.2. oneMKL Domains 1562

oneAPI Specification, Release 1.1-rev-1

USM-based example

#include <iostream>
#include <vector>

#include "CL/sycl.hpp"
#include "oneapi/mkl/rng.hpp"

int main() {
sycl::queue queue;
const size_t n = 10000;
const std::uint64_t seed = 777;

// create USM allocator
sycl::usm_allocator<double, sycl::usm::alloc::shared> allocator(queue.get_context(),␣

→˓queue.get_device());

// create vector with USM allocator
std::vector<double, decltype(allocator)> r(n, allocator);

oneapi::mkl::rng::philox4x32x10 engine(queue, seed); // basic random number␣
→˓generator object

oneapi::mkl::rng::gaussian<double, oneapi::mkl::rng::gaussian_method::box_muller2>␣
→˓distr(5.0, 2.0); // distribution object

auto event = oneapi::mkl::rng::generate(distr, engine, n, r.data()); // perform␣
→˓generation
// sycl::event object is returned by generate function for synchronization
event.wait(); // synchronization can be also done by queue.wait()

double s = 0.0;
for(int i = 0; i < n; i++) {

s += r[i];
}
s /= n;

std::cout << "Average = " << s << std::endl;
return 0;

}

USM usage

You can also use USM with raw pointers by using the sycl::malloc_shared/malloc_device functions.

Parent topic: Random Number Generators

11.2. oneMKL Domains 1563

oneAPI Specification, Release 1.1-rev-1

Generate Routine

• generate Entry point to obtain random numbers from a given engine with proper statistics of a given distribution.

Parent topic: Random Number Generators

generate

Entry point to obtain random numbers from a given engine with proper statistics of a given distribution.

Description and Assumptions

oneapi::mkl::rng::generate function produces random numbers sequence from the given engine object and applied
transformation from a given distribution object.

generate (Buffer version)

Syntax

namespace oneapi::mkl::rng {
template<typename DistrType, typename EngineType>
void generate (const DistrType& distr, EngineType& engine, std::int64_t n, sycl::buffer
→˓<typename DistrType::result_type, 1>& r);
}

Template Parameters

DistrType Type of distribution which is used for random number generation.

EngineType Type of engine which is used for random number generation.

Input Parameters

distr Distribution object. See Distributions for details.

engine Engine object. See Engines (Basic Random Number Generators) for details.

n Number of random values to be generated.

Output Parameters

r sycl::buffer of generated values.

11.2. oneMKL Domains 1564

oneAPI Specification, Release 1.1-rev-1

Throws

oneapi::mkl::invalid_argument Exception is thrown when n > r.get_count(), or n < 0

generate (USM version)

Syntax

namespace oneapi::mkl::rng {
template<typename DistrType, typename EngineType>
sycl::event generate (const DistrType& distr, EngineType& engine, std::int64_t n,␣
→˓typename DistrType::result_type* r, const std::vector<sycl::event> & dependencies);
}

Template Parameters

DistrType Type of distribution which is used for random number generation.

EngineType Type of engine which is used for random number generation.

Input Parameters

distr Distribution object. See Distributions for details.

engine Engine object. See Engines (Basic Random Number Generators) for details.

n Number of random values to be generated.

dependencies Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

r pointer to generated values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when r == nullptr, or n < 0

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Generate Routine

11.2. oneMKL Domains 1565

oneAPI Specification, Release 1.1-rev-1

Engines (Basic Random Number Generators)

oneMKL RNG provides pseudorandom, quasi-random, and non-deterministic random number generators for Data
Parallel C++:

Rou-
tine

Description

de-
fault_engine

The default random engine

mrg32k3aThe combined multiple recursive pseudorandom number generator MRG32k3a[L’Ecuyer99a]
philox4x32x10Philox4x32-10 counter-based pseudorandom number generator with a period of

2128PHILOX4X32X10[Salmon11]
mcg31m1The 31-bit multiplicative congruential pseudorandom number generator MCG(1132489760, 231 -1)

[L’Ecuyer99]
r250 The 32-bit generalized feedback shift register pseudorandom number generator GFSR(250,

103)[Kirkpatrick81]
mcg59 The 59-bit multiplicative congruential pseudorandom number generator MCG(1313, 259) from NAG Nu-

merical Libraries [NAG]
wich-
mann_hill

Wichmann-Hill pseudorandom number generator (a set of 273 basic generators) from NAG Numerical
Libraries [NAG]

mt19937Mersenne Twister pseudorandom number generator MT19937[Matsumoto98] with period length 219937-1
of the produced sequence

mt2203 Set of 6024 Mersenne Twister pseudorandom number generators MT2203[Matsumoto98]
<onemkl_rng_bibliography>, [Matsumoto00]. Each of them generates a sequence of period length
equal to 22203-1. Parameters of the generators provide mutual independence of the corresponding
sequences.

sfmt19937SIMD-oriented Fast Mersenne Twister pseudorandom number generator SFMT19937[Saito08] with a pe-
riod length equal to 219937-1 of the produced sequence.

sobol Sobol quasi-random number generator [Sobol76], [Bratley88], which works in arbitrary dimension.
nieder-
reiter

Niederreiter quasi-random number generator [Bratley92], which works in arbitrary dimension.

ars5 ARS-5 counter-based pseudorandom number generator with a period of 2128, which uses instructions from
the AES-NI set ARS5[Salmon11].

non-
deter-
min-
istic

Non-deterministic random number generator

For some basic generators, oneMKL RNG provides two methods of creating independent states in multiprocessor
computations, which are the leapfrog method and the block-splitting method. These sequence splitting methods are
also useful in sequential Monte Carlo. The description of these functions can be found in the Service Routines section.

In addition, the MT2203 pseudorandom number generator is a set of 6024 generators designed to create up to 6024
independent random sequences, which might be used in parallel Monte Carlo simulations. Another generator that has
the same feature is Wichmann-Hill. It allows creating up to 273 independent random streams. The properties of the
generators designed for parallel computations are discussed in detail in [Coddington94].

Parent topic: Random Number Generators

• default_engine The default random engine (implementation defined)

• mrg32k3a The combined multiple recursive pseudorandom number generator MRG32k3a [L’Ecuyer99a]

• philox4x32x10 A Philox4x32-10 counter-based pseudorandom number generator. [Salmon11].

11.2. oneMKL Domains 1566

oneAPI Specification, Release 1.1-rev-1

• mcg31m1 The 31-bit multiplicative congruential pseudorandom number generator MCG(1132489760, 231 -1)
[L’Ecuyer99]

• mcg59 The 59-bit multiplicative congruential pseudorandom number generator MCG(1313, 259) from NAG
Numerical Libraries [NAG].

• r250 The 32-bit generalized feedback shift register pseudorandom number generator
GFSR(250,103)[Kirkpatrick81].

• wichmann_hill Wichmann-Hill pseudorandom number generator (a set of 273 basic generators) from NAG Nu-
merical Libraries [NAG].

• mt19937 Mersenne Twister pseudorandom number generator MT19937 [Matsumoto98] with period length
219937-1 of the produced sequence.

• sfmt19937 SIMD-oriented Fast Mersenne Twister pseudorandom number generator SFMT19937 [Saito08] with
a period length equal to 219937-1 of the produced sequence.

• mt2203 Set of 6024 Mersenne Twister pseudorandom number generators MT2203 [Matsumoto98], [Mat-
sumoto00]. Each of them generates a sequence of period length equal to 22203-1. Parameters of the generators
provide mutual independence of the corresponding sequences..

• ars5 ARS-5 counter-based pseudorandom number generator with a period of 2128, which uses instructions from
the AES-NI set ARS5[Salmon11].

• sobol Sobol quasi-random number generator [Sobol76], [Bratley88], which works in arbitrary dimension.

• niederreiter Niederreiter quasi-random number generator [Bratley92], which works in arbitrary dimension.

• nondeterministic Non-deterministic random number generator.

default_engine

Default random engine.

Description

The choice of engine type named by default_engine is implementation-defined. The implementation may select this
type on the basis of performance, size, quality, or any combination of such factors.

type alias default_engine

Syntax

using default_engine = implementation-defined;

Parent topic: Engines (Basic Random Number Generators)

11.2. oneMKL Domains 1567

oneAPI Specification, Release 1.1-rev-1

mrg32k3a

The combined multiple recursive pseudorandom number generator MRG32k3a.

Description

MRG32k3a engine is a 32-bit combined multiple recursive generator with two components of order 3 [L’Ecuyer99a].
MRG32k3a combined generator meets the requirements for modern RNGs, such as good multidimensional uniformity,
or a long period (𝑝 ≈ 2191).

Generation algorithm

𝑥𝑛 = 𝑎11𝑥𝑛−1 + 𝑎12𝑥𝑛−2 + 𝑎13𝑥𝑛−3(𝑚𝑜𝑑 𝑚1)

𝑦𝑛 = 𝑎21𝑦𝑛−1 + 𝑎22𝑦𝑛−2 + 𝑎23(𝑚𝑜𝑑 𝑚2)

𝑧𝑛 = 𝑥𝑛 − 𝑦𝑛(𝑚𝑜𝑑 𝑚1)

𝑢𝑛 = 𝑧𝑛/𝑚1

𝑎11 = 0, 𝑎12 = 1403580, 𝑎13 = −810728,𝑚1 = 232 − 209

𝑎21 = 527612, 𝑎22 = 0, 𝑎23 = −1370589,𝑚2 = 232 − 22853

class mrg32k3a

Syntax

namespace oneapi::mkl::rng {
class mrg32k3a {
public:

static constexpr std::uint32_t default_seed = 1;

mrg32k3a(sycl::queue queue, std::uint32_t seed = default_seed);

mrg32k3a(sycl::queue queue, std::initializer_list<std::uint32_t> seed);

mrg32k3a(const mrg32k3a& other);

mrg32k3a(mrg32k3a&& other);

mrg32k3a& operator=(const mrg32k3a& other);

mrg32k3a& operator=(mrg32k3a&& other);

~mrg32k3a();
};
}

11.2. oneMKL Domains 1568

oneAPI Specification, Release 1.1-rev-1

Class Members

Routine Description
sycl::queue queue, std::uint32_t seed = default_seed Constructor for common seed initialization of the

engine
mrg32k3a(sycl::queue queue,
std::initializer_list<std::uint32_t> seed)

Constructor for extended seed initialization of the
engine

mrg32k3a(const mrg32k3a& other) Copy constructor
mrg32k3a(mrg32k3a&& other) Move constructor
mrg32k3a& operator=(const mrg32k3a& other) Copy assignment operator
mrg32k3a& operator=(mrg32k3a&& other) Move assignment operator

Constructors

mrg32k3a::sycl::queue queue, std::uint32_t seed = default_seed

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue
to obtain random numbers from a given engine.

seed The initial conditions of the generator state, assume 𝑥−3 = 𝑠𝑒𝑒𝑑𝑚𝑜𝑑𝑚1, 𝑥−2 = 𝑥−1 = 𝑦−3 = 𝑦−2 = 𝑦−1 = 1.

mrg32k3a::mrg32k3a(sycl::queue queue, std::initializer_list<std::uint32_t> seed)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state, assume if 𝑛 = 0 : 𝑥−3 = 𝑥−2 = 𝑥−1 = 𝑦−3 = 𝑦−2 = 𝑦−1 = 1

if 𝑛 = 1 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0] 𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑥−1 = 𝑦−3 = 𝑦−2 = 𝑦−1 = 1

if 𝑛 = 2 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0] 𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1] 𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑦−3 = 𝑦−2 = 𝑦−1 = 1

if 𝑛 = 3 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0] 𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1] 𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑠𝑒𝑒𝑑[2] 𝑚𝑜𝑑 𝑚1

𝑦−3 = 𝑦−2 = 𝑦−1 = 1

if 𝑛 = 4 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0] 𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1] 𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑠𝑒𝑒𝑑[2] 𝑚𝑜𝑑 𝑚1

𝑦−3 = 𝑠𝑒𝑒𝑑[3] 𝑚𝑜𝑑 𝑚2, 𝑦−2 = 𝑦−1 = 1

if 𝑛 = 5 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0] 𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1] 𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑠𝑒𝑒𝑑[2] 𝑚𝑜𝑑 𝑚1

𝑦−3 = 𝑠𝑒𝑒𝑑[3] 𝑚𝑜𝑑 𝑚2, 𝑦−2 = 𝑠𝑒𝑒𝑑[4] 𝑚𝑜𝑑 𝑚2, 𝑦−1 = 1

if 𝑛 > 6 : 𝑥−3 = 𝑠𝑒𝑒𝑑[0] 𝑚𝑜𝑑 𝑚1, 𝑥−2 = 𝑠𝑒𝑒𝑑[1] 𝑚𝑜𝑑 𝑚1, 𝑥−1 = 𝑠𝑒𝑒𝑑[2] 𝑚𝑜𝑑 𝑚1

𝑦−3 = 𝑠𝑒𝑒𝑑[3] 𝑚𝑜𝑑 𝑚2, 𝑦−2 = 𝑠𝑒𝑒𝑑[4] 𝑚𝑜𝑑 𝑚2, 𝑦−1 = 𝑠𝑒𝑒𝑑[5] 𝑚𝑜𝑑 𝑚2

if the values prove to be 𝑥−3 = 𝑥−2 = 𝑥−1 = 0, assume 𝑥−3 = 1

if the values prove to be 𝑦−3 = 𝑦−2 = 𝑦−1 = 0, assume 𝑦−3 = 1

11.2. oneMKL Domains 1569

oneAPI Specification, Release 1.1-rev-1

mrg32k3a::mrg32k3a(const mrg32k3a& other)

Input Parameters

other Valid mrg32k3a object. The queue and state of the other engine is copied and applied to the current engine.

mrg32k3a::mrg32k3a(mrg32k3a&& other)

Input Parameters

other Valid mrg32k3a object. The queue and state of the other engine is moved to the current engine.

mrg32k3a::mrg32k3a& operator=(const mrg32k3a& other)

Input Parameters

other Valid mrg32k3a object. The queue and state of the other engine is copied and applied to the current engine.

mrg32k3a::mrg32k3a& operator=(mrg32k3a&& other)

Input Parameters

other Valid mrg32k3a r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Engines (Basic Random Number Generators)

philox4x32x10

The Philox4x32x10 counter-based pseudorandom number generator.

Description

The Philox4x32x10 engine is a keyed family of generator of counter-based BRNG. The state consists of 128-bit integer
counter 𝑐 and two 32-bits keys 𝑘0 and 𝑘1.

Generation algorithm

The generator has 32-bit integer output obtained in the following way [Salmon11]:

1. 𝑐𝑛 = 𝑐𝑛−1 + 1

2. 𝜔𝑛 = 𝑓(𝑐𝑛), where 𝑓 is a function that takes 128-bit argument and returns a 128-bit number. The returned number is obtained as follows:
2.1. The argument 𝑐 is interpreted as four 32-bit numbers 𝑐 = 𝐿1𝑅1𝐿0𝑅0, where 𝐴𝐵𝐶𝐷 =
𝐴 · 296 + 𝐵 · 264 + 𝐶 · 232 + 𝐷, put 𝑘00 = 𝑘0, 𝑘

0
1 = 𝑘1.

2.2. The following recurrence is calculated:

𝐿𝑖+1
1 = 𝑚𝑢𝑙𝑙𝑜(𝑅𝑖

1, 0𝑥𝐷2511𝐹53)

𝑅𝑖+1
1 = 𝑚𝑢𝑙ℎ𝑖(𝑅𝑖

0, 0𝑥𝐶𝐷9𝐸8𝐷57)⊕ 𝑘𝑖0 ⊕ 𝐿𝑖
0

11.2. oneMKL Domains 1570

oneAPI Specification, Release 1.1-rev-1

𝐿𝑖+1
0 = 𝑚𝑢𝑙𝑙𝑜(𝑅𝑖

0, 0𝑥𝐶𝐷9𝐸8𝐷57)

𝑅𝑖+1
0 = 𝑚𝑢𝑙ℎ𝑖(𝑅𝑖

1, 0𝑥𝐷2511𝐹53)⊕ 𝑘𝑖1 ⊕ 𝐿𝑖
1

𝑘𝑖+1
0 = 𝑘𝑖0 + 0𝑥𝐵𝐵67𝐴𝐸85

𝑘𝑖+1
1 = 𝑘𝑖1 + 0𝑥9𝐸3779𝐵9, where 𝑚𝑢𝑙ℎ𝑖(𝑎, 𝑏) and 𝑚𝑢𝑙𝑙𝑜(𝑎, 𝑏) are high and low parts of the 𝑎 · 𝑏 product

respectively.

2.3. Put 𝑓(𝑐) = 𝐿𝑁
1 𝑅𝑁

1 𝐿𝑁
0 𝑅𝑁

0 , where 𝑁 = 10

3. Integer output: 𝑟4𝑛+𝑘 = 𝜔𝑛(𝑘), where 𝜔𝑛(𝑘) is the k-th 32-bit integer in quadruple 𝜔𝑛, 𝑘 = 0, 1, 2, 3

4. Real output: 𝑢𝑛 = (𝑖𝑛𝑡)𝑟𝑛/232 + 1/2

class philox4x32x10

Syntax

namespace oneapi::mkl::rng {
class philox4x32x10 {
public:
static constexpr std::uint64_t default_seed = 0;

philox4x32x10(sycl::queue queue, std::uint64_t seed = default_seed);

philox4x32x10(sycl::queue queue, std::initializer_list<std::uint64_t> seed);

philox4x32x10(const philox4x32x10& other);

philox4x32x10(philox4x32x10&& other);

philox4x32x10& operator=(const philox4x32x10& other);

philox4x32x10& operator=(philox4x32x10&& other);

~philox4x32x10();
};
}

Class Members

Routine Description
philox4x32x10(sycl::queue queue, std::uint64_t seed = de-
fault_seed)

Constructor for common seed initialization of
the engine

philox4x32x10(sycl::queue queue,
std::initializer_list<std::uint64_t> seed)

Constructor for extended seed initialization of
the engine

philox4x32x10(const philox4x32x10& other) Copy constructor
philox4x32x10(philox4x32x10&& other) Move constructor
philox4x32x10& operator=(const philox4x32x10& other) Copy assignment operator
philox4x32x10& operator=(philox4x32x10&& other) Move assignment operator

11.2. oneMKL Domains 1571

oneAPI Specification, Release 1.1-rev-1

Constructors

philox4x32x10::philox4x32x10(sycl::queue queue, std::uint64_t seed = default_seed)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state, assume 𝑘 = 𝑠𝑒𝑒𝑑, 𝑐 = 0, where 𝑘 is a 64-bit key, 𝑐 is a 128-bit
counter.

philox4x32x10::philox4x32x10(sycl::queue queue, std::initializer_list<std::uint64_t>␣
→˓seed)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state, assume if 𝑛 = 0 : 𝑘 = 0, 𝑐 = 0

if 𝑛 = 1 : 𝑘 = 𝑠𝑒𝑒𝑑[0], 𝑐 = 0

if 𝑛 = 2 : 𝑘 = 𝑠𝑒𝑒𝑑[0], 𝑐 = 𝑠𝑒𝑒𝑑[1]

if 𝑛 = 3 : 𝑘 = 𝑠𝑒𝑒𝑑[0], 𝑐 = 𝑠𝑒𝑒𝑑[1] + 𝑠𝑒𝑒𝑑[2] · 264

for 𝑛 > 3 following arguments are ignored

philox4x32x10::philox4x32x10(const philox4x32x10& other)

Input Parameters

other Valid philox4x32x10 object. The queue and state of the other engine is copied and applied to the current
engine.

philox4x32x10::philox4x32x10(philox4x32x10&& other)

Input Parameters

other Valid philox4x32x10 r-value object. The queue and state of the other engine is moved to the current engine.

philox4x32x10::philox4x32x10& operator=(const philox4x32x10& other)

11.2. oneMKL Domains 1572

oneAPI Specification, Release 1.1-rev-1

Input Parameters

other Valid philox4x32x10 object. The queue and state of the other engine is copied and applied to the current
engine.

philox4x32x10::philox4x32x10& operator=(philox4x32x10&& other)

Input Parameters

other Valid philox4x32x10 r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Engines (Basic Random Number Generators)

mcg31m1

The 31-bit multiplicative congruential pseudorandom number generator MCG(1132489760, 231 -1).

Description

The mcg31m1 engine is a 31-bit multiplicative congruential generator [L’Ecuyer99]. The mcg31m1 generator belongs
to linear congruential generators with the period length of approximately 231. Such generators are still used as default
random number generators in various software systems, mainly due to the simplicity of the portable versions imple-
mentation, speed, and compatibility with the earlier systems versions. However, their period length does not meet the
requirements for modern basic generators. Still, the mcg31m1 generator possesses good statistic properties and you
may successfully use it to generate random numbers of different distributions for small samplings.

Generation algorithm

𝑥𝑛 = 𝑎𝑥𝑛−1(𝑚𝑜𝑑 𝑚)

𝑢𝑛 = 𝑥𝑛/𝑚

𝑎 = 1132489760,𝑚 = 231 − 1

class mcg31m1

Syntax

namespace oneapi::mkl::rng {
class mcg31m1 {
public:

static constexpr std::uint32_t default_seed = 1;

mcg31m1(sycl::queue queue, std::uint32_t seed = default_seed);

mcg31m1(const mcg31m1& other);

mcg31m1(mcg31m1&& other);

mcg31m1& operator=(const mcg31m1& other);
(continues on next page)

11.2. oneMKL Domains 1573

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

mcg31m1& operator=(mcg31m1&& other);

~mcg31m1();
};
}

Class Members

Routine Description
mcg31m1(sycl::queue queue, std::uint32_t seed = de-
fault_seed)

Constructor for common seed initialization of the en-
gine

mcg31m1(const mcg31m1& other) Copy constructor
mcg31m1(mcg31m1&& other) Move constructor
mcg31m1& operator=(const mcg31m1& other) Copy assignment operator
mcg31m1& operator=(mcg31m1&& other) Move assignment operator

Constructors

mcg31m1::mcg31m1(sycl::queue queue, std::uint32_t seed = default_seed)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state, assume 𝑥0 = 𝑠𝑒𝑒𝑑𝑚𝑜𝑑 0𝑥7𝐹𝐹𝐹𝐹𝐹𝐹𝐹 , if 𝑥0 = 0, assume 𝑥0 = 1.

mcg31m1::mcg31m1(const mcg31m1& other)

Input Parameters

other Valid mcg31m1 object. The queue and state of the other engine is copied and applied to the current engine.

mcg31m1::mcg31m1(mcg31m1&& other)

Input Parameters

other Valid mcg31m1 object. The queue and state of the other engine is moved to the current engine.

mcg31m1::mcg31m1& operator=(const mcg31m1& other)

11.2. oneMKL Domains 1574

oneAPI Specification, Release 1.1-rev-1

Input Parameters

other Valid mcg31m1 object. The queue and state of the other engine is copied and applied to the current engine.

mcg31m1::mcg31m1& operator=(mcg31m1&& other)

Input Parameters

other Valid mcg31m1 r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Engines (Basic Random Number Generators)

mcg59

The 59-bit multiplicative congruential pseudorandom number generator.

Description

The mcg59 engine is a 59-bit multiplicative congruential generator from NAG Numerical Libraries NAG. The mcg59
generator belongs to linear congruential generators with the period length of approximately 257.

Generation algorithm

𝑥𝑛 = 𝑎𝑥𝑛−1(𝑚𝑜𝑑 𝑚)

𝑢𝑛 = 𝑥𝑛/𝑚

𝑎 = 1313,𝑚 = 259

class mcg59

Syntax

namespace oneapi::mkl::rng {
class mcg59 {
public:

static constexpr std::uint64_t default_seed = 1;

mcg59(sycl::queue queue, std::uint64_t seed = default_seed);

mcg59(const mcg59& other);

mcg59(mcg59&& other);

mcg59& operator=(const mcg59& other);

mcg59& operator=(mcg59&& other);

~mcg59();
(continues on next page)

11.2. oneMKL Domains 1575

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

};
}

Class Members

Routine Description
mcg59(sycl::queue queue, std::uint64_t seed = de-
fault_seed)

Constructor for common seed initialization of the en-
gine

mcg59(const mcg59& other) Copy constructor
mcg59(mcg59&& other) Move constructor
mcg59& operator=(const mcg59& other) Copy assignment operator
mcg59& operator=(mcg59&& other) Move assignment operator

Constructors

mcg59::mcg59(sycl::queue queue, std::uint64_t seed = default_seed)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state, assume 𝑥0 = 𝑠𝑒𝑒𝑑 𝑚𝑜𝑑 259, if 𝑥0 = 0, assume 𝑥0 = 1.

mcg59::mcg59(const mcg59& other)

Input Parameters

other Valid mcg59 object. The queue and state of the other engine is copied and applied to the current engine.

mcg59::mcg59(mcg59&& other)

Input Parameters

other Valid mcg59 object. The queue and state of the other engine is moved to the current engine.

11.2. oneMKL Domains 1576

oneAPI Specification, Release 1.1-rev-1

mcg59::mcg59& operator=(const mcg59& other)

Input Parameters

other Valid mcg59 object. The queue and state of the other engine is copied and applied to the current engine.

mcg59::mcg59& operator=(mcg59&& other)

Input Parameters

other Valid mcg59 r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Engines (Basic Random Number Generators)

r250

The 32-bit generalized feedback shift register pseudorandom number generator GFSR(250,103) [Kirkpatrick81].

Description

Feedback shift register generators possess ample theoretical foundation and were initially intended for cryptographic
and communication applications. The stream state is the array of 250 32-bit integers.

Generation algorithm

𝑥𝑛 = 𝑥𝑛−103 ⊕ 𝑥𝑛−250

𝑢𝑛 = 𝑥𝑛/232

class r250

Syntax

namespace oneapi::mkl::rng {
class r250 {
public:

static constexpr std::uint32_t default_seed = 1;

r250(sycl::queue queue, std::uint32_t seed = default_seed);

r250(sycl::queue queue, std::vector<std::uint32_t> seed);

r250(const r250& other);

r250(r250&& other);

r250& operator=(const r250& other);

(continues on next page)

11.2. oneMKL Domains 1577

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

r250& operator=(r250&& other);

~r250();
};
}

Class Members

Routine Description
r250(sycl::queue queue, std::uint32_t seed = de-
fault_seed)

Constructor for common seed initialization of the en-
gine

r250(sycl::queue queue, std::vector<std::uint32_t>
seed)

Constructor for extended seed initialization of the en-
gine

r250(const r250& other) Copy constructor
r250(r250&& other) Move constructor
r250& operator=(const r250& other) Copy assignment operator
r250& operator=(r250&& other) Move assignment operator

Constructors

r250::r250(sycl::queue queue, std::uint32_t seed = default_seed)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state, assume 𝑥−250 = 𝑠𝑒𝑒𝑑. If 𝑠𝑒𝑒𝑑 = 0, assume 𝑠𝑒𝑒𝑑 = 1. Other
values in state are initialized according to recurrent correlation 𝑥𝑛+1 = 69069𝑥𝑛(𝑚𝑜𝑑 232). Then the values
𝑥7𝑘−247, 𝑘 = 0, 1, ..., 31 are interpreted as a binary matrix of size 32 x 32 and diagonal bits are set to 0, the
under-diagonal bits to 0.

r250::r250(sycl::queue queue, std::vector<std::uint32_t> seed)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state if 𝑛 > 0 : 𝑥𝑘−250 = 𝑠𝑒𝑒𝑑[𝑘], 𝑘 = 0, 1, ..., 249

r250::r250(const r250& other)

11.2. oneMKL Domains 1578

oneAPI Specification, Release 1.1-rev-1

Input Parameters

other Valid r250 object. The queue and state of the other engine is copied and applied to the current engine.

r250::r250(r250&& other)

Input Parameters

other Valid r250 object. The queue and state of the other engine is moved to the current engine.

r250::r250& operator=(const r250& other)

Input Parameters

other Valid r250 object. The queue and state of the other engine is copied and applied to the current engine.

r250::r250& operator=(r250&& other)

Input Parameters

other Valid r250 r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Engines (Basic Random Number Generators)

wichmann_hill

The wichmann_hill engine is the set of 273 Wichmann-Hill’s combined multiplicative congruential generators from
NAG Numerical Libraries [NAG].

Description

The set of 372 different basic pseudorandom number generators wichmann_hill is the second basic generator in the
NAG libraries.

Generation algorithm

𝑥𝑛 = 𝑎1,𝑗𝑥𝑛−1(𝑚𝑜𝑑 𝑚1,𝑗)

𝑦𝑛 = 𝑎2,𝑗𝑦𝑛−1(𝑚𝑜𝑑 𝑚2,𝑗)

𝑧𝑛 = 𝑎3,𝑗𝑧𝑛−1(𝑚𝑜𝑑 𝑚3,𝑗)

𝑤𝑛 = 𝑎4,𝑗𝑤𝑛−1(𝑚𝑜𝑑 𝑚4,𝑗)

𝑢𝑛 = (𝑥𝑛/𝑚1,𝑗 + 𝑦𝑛/𝑚2,𝑗 + 𝑧𝑛/𝑚3,𝑗 + 𝑤𝑛/𝑚4,𝑗)𝑚𝑜𝑑 1

The constants 𝑎𝑖,𝑗 range from 112 to 127, the constants 𝑚𝑖,𝑗 are prime numbers ranging from 16718909 to 16776917,
close to 224.

11.2. oneMKL Domains 1579

oneAPI Specification, Release 1.1-rev-1

class wichmann_hill

Syntax

namespace oneapi::mkl::rng {
class wichmann_hill {
public:

static constexpr std::uint32_t default_seed = 1;

wichmann_hill(sycl::queue queue, std::uint32_t seed = default_seed);

wichmann_hill(sycl::queue queue, std::uint32_t seed, std::uint32_t engine_idx);

wichmann_hill(sycl::queue queue, std::initializer_list<std::uint32_t> seed);

wichmann_hill(sycl::queue queue, std::initializer_list<std::uint32_t> seed,␣
→˓std::uint32_t engine_idx);

wichmann_hill(const wichmann_hill& other);

wichmann_hill(wichmann_hill&& other);

wichmann_hill& operator=(const wichmann_hill& other);

wichmann_hill& operator=(wichmann_hill&& other);

~wichmann_hill();
};
}

Class Members

Routine Description
wichmann_hill(sycl::queue queue, std::uint32_t seed
= default_seed)

Constructor for common seed initialization of the engine
(for this case multiple generators of the set would be used)

wichmann_hill(sycl::queue queue, std::uint32_t
seed, std::uint32_t engine_idx)

Constructor for common seed initialization of the engine
(for this case single generator of the set would be used)

wichmann_hill(sycl::queue& queue,
std::initializer_list<std::uint32_t> seed)

Constructor for extended seed initialization of the engine
(for this case multiple generators of the set would be used)

wichmann_hill(sycl::queue& queue,
std::initializer_list<std::uint32_t> seed,
std::uint32_t engine_idx)

Constructor for extended seed initialization of the engine
(for this case single generator of the set would be used)

wichmann_hill(const wichmann_hill& other) Copy constructor
wichmann_hill(wichmann_hill&& other) Move constructor
wichmann_hill& operator=(const wichmann_hill&
other)

Copy assignment operator

wichmann_hill& operator=(wichmann_hill&&
other)

Move assignment operator

11.2. oneMKL Domains 1580

oneAPI Specification, Release 1.1-rev-1

Constructors

wichmann_hill::wichmann_hill(sycl::queue queue, std::uint32_t seed = default_seed)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state. Assume 𝑥0 = 𝑠𝑒𝑒𝑑 𝑚𝑜𝑑 𝑚1, 𝑦0 = 𝑧0 = 𝑤0 = 1. If 𝑥0 = 0, assume
𝑥0 = 1.

wichmann_hill::wichmann_hill(sycl::queue queue, std::uint32_t seed, std::uint32_t engine_
→˓idx)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state. Assume 𝑥0 = 𝑠𝑒𝑒𝑑 𝑚𝑜𝑑 𝑚1, 𝑦0 = 𝑧0 = 𝑤0 = 1. If 𝑥0 = 0, assume
𝑥0 = 1.

engine_idx The index of the set 1, . . . , 273.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑖𝑑𝑥 > 273

wichmann_hill::wichmann_hill(sycl::queue& queue, std::initializer_list<std::uint32_t>␣
→˓seed)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state, assume: if 𝑛 = 0 : 𝑥0 = 𝑦0 = 𝑧0 = 𝑤0 = 1

if 𝑛 = 1 : 𝑥0 = 𝑠𝑒𝑒𝑑[0] 𝑚𝑜𝑑 𝑚1, 𝑦0 = 𝑧0 = 𝑤0 = 1. If 𝑥0 = 0, assume 𝑥0 = 1.

if 𝑛 = 2 : 𝑥0 = 𝑠𝑒𝑒𝑑[0] 𝑚𝑜𝑑 𝑚1, 𝑦0 = 𝑠𝑒𝑒𝑑[1] 𝑚𝑜𝑑 𝑚2, 𝑧0 = 𝑤0 = 1.

if 𝑛 = 3 : 𝑥0 = 𝑠𝑒𝑒𝑑[0] 𝑚𝑜𝑑 𝑚1, 𝑦0 = 𝑠𝑒𝑒𝑑[1] 𝑚𝑜𝑑 𝑚2, 𝑧0 = 𝑠𝑒𝑒𝑑[2] 𝑚𝑜𝑑 𝑚3, 𝑤0 = 1.

if 𝑛 > 4 : 𝑥0 = 𝑠𝑒𝑒𝑑[0] 𝑚𝑜𝑑 𝑚1, 𝑦0 = 𝑠𝑒𝑒𝑑[1] 𝑚𝑜𝑑 𝑚2

𝑧0 = 𝑠𝑒𝑒𝑑[2] 𝑚𝑜𝑑 𝑚3, 𝑤0 = 𝑠𝑒𝑒𝑑[3] 𝑚𝑜𝑑 𝑚4.

wichmann_hill::wichmann_hill(sycl::queue& queue, std::initializer_list<std::uint32_t>␣
→˓seed, std::uint32_t engine_idx)

11.2. oneMKL Domains 1581

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state, assume: if 𝑛 = 0 : 𝑥0 = 𝑦0 = 𝑧0 = 𝑤0 = 1

if 𝑛 = 1 : 𝑥0 = 𝑠𝑒𝑒𝑑[0] 𝑚𝑜𝑑 𝑚1, 𝑦0 = 𝑧0 = 𝑤0 = 1. If 𝑥0 = 0, assume 𝑥0 = 1.

if 𝑛 = 2 : 𝑥0 = 𝑠𝑒𝑒𝑑[0] 𝑚𝑜𝑑 𝑚1, 𝑦0 = 𝑠𝑒𝑒𝑑[1] 𝑚𝑜𝑑 𝑚2, 𝑧0 = 𝑤0 = 1.

if 𝑛 = 3 : 𝑥0 = 𝑠𝑒𝑒𝑑[0] 𝑚𝑜𝑑 𝑚1, 𝑦0 = 𝑠𝑒𝑒𝑑[1] 𝑚𝑜𝑑 𝑚2, 𝑧0 = 𝑠𝑒𝑒𝑑[2] 𝑚𝑜𝑑 𝑚3, 𝑤0 = 1.

if 𝑛 > 4 : 𝑥0 = 𝑠𝑒𝑒𝑑[0] 𝑚𝑜𝑑 𝑚1, 𝑦0 = 𝑠𝑒𝑒𝑑[1] 𝑚𝑜𝑑 𝑚2

𝑧0 = 𝑠𝑒𝑒𝑑[2] 𝑚𝑜𝑑 𝑚3, 𝑤0 = 𝑠𝑒𝑒𝑑[3] 𝑚𝑜𝑑 𝑚4.

engine_idx The index of the set 1, . . . , 273.

wichmann_hill::wichmann_hill(const wichmann_hill& other)

Input Parameters

other Valid wichmann_hill object. The queue and state of the other engine is copied and applied to the current
engine.

wichmann_hill::wichmann_hill(wichmann_hill&& other)

Input Parameters

other Valid wichmann_hill object. The queue and state of the other engine is moved to the current engine.

wichmann_hill::wichmann_hill& operator=(const wichmann_hill& other)

Input Parameters

other Valid wichmann_hill object. The queue and state of the other engine is copied and applied to the current
engine.

wichmann_hill::wichmann_hill& operator=(wichmann_hill&& other)

Input Parameters

other Valid wichmann_hill r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Engines (Basic Random Number Generators)

11.2. oneMKL Domains 1582

oneAPI Specification, Release 1.1-rev-1

mt19937

Mersenne Twister pseudorandom number generator.

Description

The Mersenne Twister pseudorandom number generator, mt19937, is a modification of twisted generalized feedback
shift register generator [Matsumoto98]. MT19937 has the period length of 219937−1 and is 623-dimensionally equidis-
tributed with up to 32-bit accuracy. These properties make the generator applicable for simulations in various fields of
science and engineering. The state of the generator is represented by 624 32-bit unsigned integer numbers.

Generation algorithm

𝑥𝑛 = 𝑥𝑛−(624−397) ⊕ ((𝑥𝑛−624&0𝑥80000000)|(𝑥𝑛−624+1&0𝑥7𝐹𝐹𝐹𝐹𝐹𝐹𝐹))𝐴

𝑦𝑛 = 𝑥𝑛

𝑦𝑛 = 𝑦𝑛 ⊕ (𝑦𝑛 >> 11)

𝑦𝑛 = 𝑦𝑛 ⊕ ((𝑦𝑛 << 7)&0𝑥9𝐷2𝐶5680)

𝑦𝑛 = 𝑦𝑛 ⊕ ((𝑦𝑛 << 15)&0𝑥𝐸𝐹𝐶60000)

𝑦𝑛 = 𝑦𝑛 ⊕ (𝑦𝑛 >> 18)

𝑢𝑛 = 𝑦𝑛/232

Matrix 𝐴𝑗(32𝑥32) has the following format:

⎡⎢⎢⎢⎢⎣
0 1 0
0 0 ... 0 ...
...
0 ... 0 0 1
𝑎31 𝑎30 𝑎0

⎤⎥⎥⎥⎥⎦
Where the 32-bit vector 𝑎 = 𝑎31..𝑎0 has the value 𝑎 = 0𝑥9908𝐵0𝐷𝐹 .

class mt19937

Syntax

namespace oneapi::mkl::rng {
class mt19937 {
public:

static constexpr std::uint32_t default_seed = 1;

mt19937(sycl::queue queue, std::uint32_t seed = default_seed);

mt19937(sycl::queue queue, std::initializer_list<std::uint32_t> seed);

mt19937(const mt19937& other);

mt19937(mt19937&& other);
(continues on next page)

11.2. oneMKL Domains 1583

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

mt19937& operator=(const mt19937& other);

mt19937& operator=(mt19937&& other);

~mt19937();
};
}

Class Members

Routine Description
mt19937(sycl::queue queue, std::uint32_t seed = de-
fault_seed)

Constructor for common seed initialization of the
engine

mt19937(sycl::queue queue,
std::initializer_list<std::uint32_t> seed)

Constructor for extended seed initialization of the
engine

mt19937(const mt19937& other) Copy constructor
mt19937(mt19937&& other) Move constructor
mt19937& operator=(const mt19937& other) Copy assignment operator
mt19937& operator=(mt19937&& other) Move assignment operator

Constructors

mt19937::mt19937(sycl::queue queue, std::uint32_t seed = default_seed)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state. The initialization algorithm described in [MT2203].

mt19937::mt19937(sycl::queue queue, std::initializer_list<std::uint32_t> seed)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state. The initialization algorithm described in [MT2203].

mt19937::mt19937(const mt19937& other)

11.2. oneMKL Domains 1584

oneAPI Specification, Release 1.1-rev-1

Input Parameters

other Valid mt19937 object. The queue and state of the other engine is copied and applied to the current engine.

mt19937::mt19937(mt19937&& other)

Input Parameters

other Valid mt19937 object. The queue and state of the other engine is moved to the current engine.

mt19937::mt19937& operator=(const mt19937& other)

Input Parameters

other Valid mt19937 object. The queue and state of the other engine is copied and applied to the current engine.

mt19937::mt19937& operator=(mt19937&& other)

Input Parameters

other Valid mt19937 r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Engines (Basic Random Number Generators)

sfmt19937

The SIMD-oriented Mersenne Twister pseudorandom number generator.

Description

SIMD-oriented Fast Mersenne Twister pseudorandom number generator SFMT19937 [Saito08] with a period length
equal to 219937 − 1 of the produced sequence. The state of the engine contains the array of 156 128-bit integers.

Generation algorithm

𝑤𝑛 = 𝑤0𝐴⊕ 𝑤𝑀𝐵 ⊕ 𝑤𝑛−2𝐶 ⊕ 𝑤𝑛−1𝐷

Where 𝑤0, 𝑤𝑀 , 𝑤𝑛−2, ... are the 128-bit integers, and 𝑤𝐴,𝑤𝐵,𝑤𝐶,𝑤𝐷 operations are defined as follows:

𝑤𝐴 = (𝑤 << 8)⊕ 𝑤, left shift of 128-bit integer 𝑤 by 𝑎 followed by exclusive-or operation

𝑤𝐵 = (𝑤 >> 8)&𝑚𝑎𝑠𝑘, right shift of each 32-bit integer in quadruple 𝑤 by and-operator with quadruple of 32-bit
masks 𝑚𝑎𝑠𝑘 = (0𝑥𝐵𝐹𝐹𝐹𝐹𝐹𝐹6, 0𝑥𝐷𝐹𝐹𝐴𝐹𝐹𝐹𝐹, 0𝑥𝐷𝐷𝐹𝐸𝐶𝐵7𝐹, 0𝑥𝐷𝐹𝐹𝐹𝐹𝐹𝐸𝐹)

𝑤𝐶 = (𝑤 >> 8)⊕ 𝑤, right shift of 128-bit integer 𝑤

𝑤𝐷 = (𝑤 << 8), left shift of each 32-bit integer in quadruple 𝑤

Integer output: 𝑟4𝑛+𝑘 = 𝑤𝑛(𝑘), where 𝑤𝑛(𝑘) is the k-th 32-bit integer in quadruple 𝑤𝑛, 𝑘 = 0, 1, 2, 3

𝑢𝑛 = (𝑖𝑛𝑡)𝑟𝑛/232 + 1/2

11.2. oneMKL Domains 1585

oneAPI Specification, Release 1.1-rev-1

class sfmt19937

Syntax

namespace oneapi::mkl::rng {
class sfmt19937 {
public:

static constexpr std::uint32_t default_seed = 1;

sfmt19937(sycl::queue queue, std::uint32_t seed = default_seed);

sfmt19937(sycl::queue queue, std::initializer_list<std::uint32_t> seed);

sfmt19937(const sfmt19937& other);

sfmt19937(sfmt19937&& other);

sfmt19937& operator=(const sfmt19937& other);

sfmt19937& operator=(sfmt19937&& other);

~sfmt19937();
};
}

Class Members

Routine Description
sfmt19937(sycl::queue queue, std::uint32_t seed = de-
fault_seed)

Constructor for common seed initialization of the
engine

sfmt19937(sycl::queue queue,
std::initializer_list<std::uint32_t> seed)

Constructor for extended seed initialization of the
engine

sfmt19937(const sfmt19937& other) Copy constructor
sfmt19937(sfmt19937&& other) Move constructor
sfmt19937& operator=(const sfmt19937& other) Copy assignment operator
sfmt19937& operator=(sfmt19937&& other) Move assignment operator

Constructors

11.2. oneMKL Domains 1586

oneAPI Specification, Release 1.1-rev-1

sfmt19937::sfmt19937(sycl::queue queue, std::uint32_t seed = default_seed)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state. The initialization algorithm described in [Saito08].

sfmt19937::sfmt19937(sycl::queue queue, std::initializer_list<std::uint32_t> seed)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state. The initialization algorithm described in [Saito08].

sfmt19937::sfmt19937(const sfmt19937& other)

Input Parameters

other Valid sfmt19937 object. The queue and state of the other engine is copied and applied to the current engine.

sfmt19937::sfmt19937(sfmt19937&& other)

Input Parameters

other Valid sfmt19937 object. The queue and state of the other engine is moved to the current engine.

sfmt19937::sfmt19937& operator=(const sfmt19937& other)

Input Parameters

other Valid sfmt19937 object. The queue and state of the other engine is copied and applied to the current engine.

sfmt19937::sfmt19937& operator=(sfmt19937&& other)

Input Parameters

other Valid sfmt19937 r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Engines (Basic Random Number Generators)

11.2. oneMKL Domains 1587

oneAPI Specification, Release 1.1-rev-1

mt2203

The mt2203 engine is the set of 6024 Mersenne Twister pseudorandom number generators MT2203 [Matsumoto98],
[Matsumoto00].

Description

The set of 6024 basic pseudorandom number generators MT2203 is a natural addition to the MT19937 generator.
MT2203 generators are intended for use in large scale Monte Carlo simulations performed on multi-processor computer
systems.

Generation algorithm

For 𝑗 = 1, ..., 6024:

𝑥𝑛,𝑗 = 𝑥𝑛−(69−34),𝑗 ⊕ ((𝑥𝑛−69,𝑗&0𝑥𝐹𝐹𝐹𝐹𝐹𝐹𝐸0)|(𝑥𝑛+69+1,𝑗&0𝑥1𝐹))𝐴𝑗

𝑦𝑛,𝑗 = 𝑥𝑛,𝑗

𝑦𝑛,𝑗 = 𝑦𝑛,𝑗 ⊕ (𝑦𝑛,𝑗 >> 12)

𝑦𝑛,𝑗 = 𝑦𝑛,𝑗 ⊕ ((𝑦𝑛,𝑗 << 7)&𝑏𝑗)

𝑦𝑛,𝑗 = 𝑦𝑛,𝑗 ⊕ ((𝑦𝑛,𝑗 << 15)&𝑐𝑗)

𝑦𝑛,𝑗 = 𝑦𝑛,𝑗 ⊕ (𝑦𝑛,𝑗 >> 18)

Matrix 𝐴𝑗(32𝑥32) has the following format:

⎡⎢⎢⎢⎢⎣
0 1 0
0 0 ... 0 ...
...
0 ... 0 0 1

𝑎31,𝑗 𝑎30,𝑗 𝑎0,1

⎤⎥⎥⎥⎥⎦
class mt2203

Syntax

namespace oneapi::mkl::rng {
class mt2203 {
public:

static constexpr std::uint32_t default_seed = 1;

mt2203(sycl::queue queue, std::uint32_t seed = default_seed);

mt2203(sycl::queue queue, std::uint32_t seed, std::uint32_t engine_idx);

mt2203(sycl::queue queue, std::initializer_list<std::uint32_t> seed);

mt2203(sycl::queue queue, std::initializer_list<std::uint32_t> seed, std::uint32_t␣
→˓engine_idx);

(continues on next page)

11.2. oneMKL Domains 1588

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

mt2203(const mt2203& other);

mt2203(mt2203&& other);

mt2203& operator=(const mt2203& other);

mt2203& operator=(mt2203&& other);

~mt2203();
};
}

Class Members

Routine Description
mt2203(sycl::queue queue, std::uint32_t seed =
default_seed)

Constructor for common seed initialization of the engine (for
this case multiple generators of the set would be used)

mt2203(sycl::queue queue, std::uint32_t seed,
std::uint32_t engine_idx)

Constructor for common seed initialization of the engine (for
this case single generator of the set would be used)

mt2203(sycl::queue queue,
std::initializer_list<std::uint32_t> seed)

Constructor for extended seed initialization of the engine (for
this case multiple generators of the set would be used)

mt2203(sycl::queue queue,
std::initializer_list<std::uint32_t> seed,
std::uint32_t engine_idx)

Constructor for extended seed initialization of the engine (for
this case single generator of the set would be used)

mt2203(const mt2203& other) Copy constructor
mt2203(mt2203&& other) Move constructor
mt2203& operator=(const mt2203& other) Copy assignment operator
mt2203& operator=(mt2203&& other) Move assignment operator

Constructors

mt2203::mt2203(sycl::queue queue, std::uint32_t seed = default_seed)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state. The initialization algorithm described in [MT2203].

11.2. oneMKL Domains 1589

oneAPI Specification, Release 1.1-rev-1

mt2203::mt2203(sycl::queue queue, std::uint32_t seed, std::uint32_t engine_idx)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state. The initialization algorithm described in [MT2203].

engine_idx The index of the set 1, . . . , 6024.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑖𝑑𝑥 > 6024

mt2203::mt2203(sycl::queue queue, std::initializer_list<std::uint32_t> seed)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state. The initialization algorithm described in [MT2203].

mt2203::mt2203(sycl::queue queue, std::initializer_list<std::uint32_t> seed, std::uint32_
→˓t engine_idx)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state. The initialization algorithm described in [MT2203].

engine_idx The index of the set 1, . . . , 6024.

mt2203::mt2203(const mt2203& other)

Input Parameters

other Valid mt2203 object. The queue and state of the other engine is copied and applied to the current engine.

mt2203::mt2203(mt2203&& other)

11.2. oneMKL Domains 1590

oneAPI Specification, Release 1.1-rev-1

Input Parameters

other Valid mt2203 object. The queue and state of the other engine is moved to the current engine.

mt2203::mt2203& operator=(const mt2203& other)

Input Parameters

other Valid mt2203 object. The queue and state of the other engine is copied and applied to the current engine.

mt2203::mt2203& operator=(mt2203&& other)

Input Parameters

other Valid mt2203 r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Engines (Basic Random Number Generators)

ars5

The ars5 counter-based pseudorandom number generator.

Description

The ars5 engine is a keyed family of counter-based BRNG. The state consists of a 128-bit integer counter 𝑐 and a 128-bit
key 𝑘. The BRNG is based on the AES encryption algorithm [FIPS-197].

Generation algorithm

The generator has a 32-bit integer output obtained in the following way [Salmon11]:

1. The i-th number is defined by the following formula 𝑟𝑖 = (𝑓(𝑖/4) >> ((𝑖 𝑚𝑜𝑑 4) * 32)) 𝑚𝑜𝑑 232

2. Function 𝑓(𝑐) takes a 128-bit argument and returns a 128-bit number. The returned number is obtained as follows:
2.1. 𝑐0 = 𝑐⊕ 𝑘 and 𝑘0 = 𝑘.

2.2. The following recurrence is calculated N = 5 times:

𝑐𝑖+1 = 𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠(𝑐)

𝑐𝑖+1 = 𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠(𝑐𝑖+1)

𝑐𝑖+1 = 𝑀𝑖𝑥𝐶𝑜𝑙𝑢𝑚𝑛𝑠(𝑐𝑖+1), this step is omitted if 𝑖 + 1 = 𝑁

𝑐𝑖+1 = 𝐴𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦(𝑐𝑖+1, 𝑘𝑗)

𝐿𝑜(𝑘𝑖+1) = 𝐿𝑜(𝑘) + 0𝑥9𝐸3779𝐵97𝐹4𝐴7𝐶15

𝐻𝑖(𝑘𝑖+1) = 𝐻𝑖(𝑘) + 0𝑥𝐵𝐵67𝐴𝐸8584𝐶𝐴𝐴73𝐵

Specification for 𝑆𝑢𝑏𝐵𝑦𝑡𝑒𝑠, 𝑆ℎ𝑖𝑓𝑡𝑅𝑜𝑤𝑠,𝑀𝑖𝑥𝐶𝑜𝑙𝑢𝑚𝑛𝑠,𝐴𝑑𝑑𝑅𝑜𝑢𝑛𝑑𝐾𝑒𝑦 functions can be found in
[FIPS-197].

2.3. Put 𝑓(𝑐) = 𝑐𝑁 , where 𝑁 = 10

3. Real output: 𝑢𝑛 = (𝑖𝑛𝑡)𝑟𝑛/232 + 1/2

11.2. oneMKL Domains 1591

oneAPI Specification, Release 1.1-rev-1

class ars5

Syntax

namespace oneapi::mkl::rng {
class ars5 {
public:

static constexpr std::uint64_t default_seed = 0;

ars5(sycl::queue queue, std::uint64_t seed = default_seed);

ars5(sycl::queue queue, std::initializer_list<std::uint64_t> seed);

ars5(const ars5& other);

ars5(ars5&& other);

ars5& operator=(const ars5& other);

ars5& operator=(ars5&& other);

~ars5();
};
}

Class Members

Routine Description
ars5(sycl::queue queue, std::uint64_t seed) Constructor for common seed initialization of the

engine
ars5(sycl::queue queue, std::initializer_list<std::uint64_t>
seed)

Constructor for extended seed initialization of the
engine

ars5(const ars5& other) Copy constructor
ars5(ars5&& other) Move constructor
ars5& operator=(const ars5& other) Copy assignment operator
ars5& operator=(ars5&& other) Move assignment operator

Constructors

11.2. oneMKL Domains 1592

oneAPI Specification, Release 1.1-rev-1

ars5::ars5(sycl::queue queue, std::uint64_t seed)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state, assume 𝑘 = 𝑠𝑒𝑒𝑑, 𝑐 = 0, where 𝑘 is 128-bit key, 𝑐 is 128-bit counter.

ars5::ars5(sycl::queue queue, std::initializer_list<std::uint64_t> seed)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

seed The initial conditions of the generator state, assume if 𝑛 = 0 : 𝑘 = 0, 𝑐 = 0

if 𝑛 = 1 : 𝑘 = 𝑠𝑒𝑒𝑑[0], 𝑐 = 0

if 𝑛 = 2 : 𝑘 = 𝑠𝑒𝑒𝑑[0] + 𝑠𝑒𝑒𝑑[1] · 264, 𝑐 = 0

if 𝑛 = 3 : 𝑘 = 𝑠𝑒𝑒𝑑[0] + 𝑠𝑒𝑒𝑑[1] · 264, 𝑐 = 𝑠𝑒𝑒𝑑[2]

if 𝑛 = 4 : 𝑘 = 𝑠𝑒𝑒𝑑[0] + 𝑠𝑒𝑒𝑑[1] · 264, 𝑐 = 𝑠𝑒𝑒𝑑[2] + 𝑠𝑒𝑒𝑑[3] · 264

for 𝑛 > 4 following arguments are ignored

ars5::ars5(const ars5& other)

Input Parameters

other Valid ars5 object. The queue and state of the other engine is copied and applied to the current engine.

ars5::ars5(ars5&& other)

Input Parameters

other Valid ars5 r-value object. The queue and state of the other engine is moved to the current engine.

ars5::ars5& operator=(const ars5& other)

Input Parameters

other Valid ars5 object. The queue and state of the other engine is copied and applied to the current engine.

ars5::ars5& operator=(ars5&& other)

11.2. oneMKL Domains 1593

oneAPI Specification, Release 1.1-rev-1

Input Parameters

other Valid ars5 r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Engines (Basic Random Number Generators)

sobol

The sobol is a 32-bit Gray code-based quasi-random number generator.

Description

Bratley and Fox [Bratley88] provide an implementation of the SOBOL quasi-random number generator. The default di-
mensions of quasi-random vectors can vary from 1 to 40 inclusive. It is also allowed to register user-defined parameters
(direction numbers).

Generation algorithm

𝑥𝑛 = 𝑥𝑛1
⊕ 𝑣𝑐

𝑢𝑛 = 𝑥𝑛/232

The value 𝑐 is the right-most zero bit in 𝑛− 1; 𝑥𝑛 is s-dimensional vector of 32-bit values. The s-dimensional vectors
(calculated during engine initialization) 𝑣𝑖, 𝑖 = 1, 32 are called direction numbers. The vector 𝑢𝑛 is the generator
output normalized to the unit hypercube (0, 1)𝑠.

class sobol

Syntax

namespace oneapi::mkl::rng {
class sobol {
public:

static constexpr std::uint32_t default_dimensions_number = 1;

sobol(sycl::queue queue, std::uint32_t dimensions = default_dimensions_number);

sobol(sycl::queue queue, std::vector<std::uint32_t>& direction_numbers);

sobol(const sobol& other);

sobol(sobol&& other);

sobol& operator=(const sobol& other);

sobol& operator=(sobol&& other);

~sobol();
};
}

11.2. oneMKL Domains 1594

oneAPI Specification, Release 1.1-rev-1

Class Members

Routine Description
sobol(sycl::queue queue, std::uint32_t di-
mensions = default_dimensions_number)

Constructor with specified number of dimensions. The value should
be 1..40.

sobol(sycl::queue queue,
std::vector<std::uint32_t>& direc-
tion_numbers)

Constructor for extended use-case, when it’s needed to use the num-
ber of dimensions greater than 40 or obtain another sequence.

sobol(const sobol& other) Copy constructor
sobol(sobol&& other) Move constructor
sobol& operator=(const sobol& other) Copy assignment operator
sobol& operator=(sobol&& other) Move assignment operator

Constructors

sobol::sobol(sycl::queue queue, std::uint32_t dimensions = default_dimensions_number)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

dimensions Number of dimensions. If 𝑑𝑖𝑚𝑒𝑛 < 1 or 𝑑𝑖𝑚𝑒𝑛 > 40, assume 𝑑𝑖𝑚𝑒𝑛 = 1.

sobol::sobol(sycl::queue queue, std::vector<std::uint32_t>& direction_numbers)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

direction_numbers If you want to generate quasi-random vectors of greater dimension or obtain another sequence,
you can register a set of your own direction_numbers. The number of dimensions corresponds to direc-
tion_numbers.size() / 32.

sobol::sobol(const sobol& other)

Input Parameters

other Valid sobol object. The queue and state of the other engine is copied and applied to the current engine.

11.2. oneMKL Domains 1595

oneAPI Specification, Release 1.1-rev-1

sobol::sobol(sobol&& other)

Input Parameters

other Valid sobol object. The queue and state of the other engine is moved to the current engine.

sobol::sobol& operator=(const sobol& other)

Input Parameters

other Valid sobol object. The queue and state of the other engine is copied and applied to the current engine.

sobol::sobol& operator=(sobol&& other)

Input Parameters

other Valid sobol r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Engines (Basic Random Number Generators)

niederreiter

The niederreiter generator is a 32-bit Gray code-based quasi-random number generator.

Description

According to results of Bratley, Fox and Niederreiter [Bratley92] Niederreiter sequences have the best known theoret-
ical asymptotic properties. The default dimension of quasi-random vectors can vary from 1 to 318 inclusive. It is also
allowed to register user-defined parameters (irreducible polynomials).

Generation algorithm

𝑥𝑛 = 𝑥𝑛1 ⊕ 𝑣𝑐

𝑢𝑛 = 𝑥𝑛/232

The value 𝑐 is the right-most zero bit in 𝑛− 1; 𝑥𝑛 is s-dimensional vector of 32-bit values. The s-dimensional vectors
(calculated during engine initialization) 𝑣𝑖, 𝑖 = 1, 32 are called direction numbers. The vector 𝑢𝑛 is the generator
output normalized to the unit hypercube (0, 1)𝑠.

11.2. oneMKL Domains 1596

oneAPI Specification, Release 1.1-rev-1

class niederreiter

Syntax

namespace oneapi::mkl::rng {
class niederreiter {
public:

static constexpr std::uint32_t default_dimensions_number = 1;

niederreiter(sycl::queue queue, std::uint32_t dimensions = default_dimensions_
→˓number);

niederreiter(sycl::queue queue, std::vector<std::uint32_t>& irred_polynomials);

niederreiter(const niederreiter& other);

niederreiter(niederreiter&& other);

niederreiter& operator=(const niederreiter& other);

niederreiter& operator=(niederreiter&& other);

~niederreiter();
};
}

Class Members

Routine Description
niederreiter(sycl::queue queue, std::uint32_t
dimensions = default_dimensions_number)

Constructor with specified number of dimensions. The value
should be 1..318.

niederreiter(sycl::queue queue,
std::vector<std::uint32_t>& ir-
red_polynomials)

Constructor for extended use-case, when it’s needed to use the num-
ber of dimensions greater than 318 or obtain another sequence.

niederreiter(const niederreiter& other) Copy constructor
niederreiter(niederreiter&& other) Move constructor
niederreiter& operator=(const niederreiter&
other)

Copy assignment operator

niederreiter& operator=(niederreiter&&
other)

Move assignment operator

11.2. oneMKL Domains 1597

oneAPI Specification, Release 1.1-rev-1

Constructors

niederreiter::niederreiter(sycl::queue queue, std::uint32_t dimensions = default_
→˓dimensions_number)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

dimensions Number of dimensions. If 𝑑𝑖𝑚𝑒𝑛 < 1 or 𝑑𝑖𝑚𝑒𝑛 > 318, assume 𝑑𝑖𝑚𝑒𝑛 = 1.

niederreiter::niederreiter(sycl::queue queue, std::vector<std::uint32_t>& irred_
→˓polynomials)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

irred_polynomials If you want to generate quasi-random vectors of greater dimension or obtain another sequence,
you can register a set of your own irreducible polynomials. The number of dimensions corresponds to the length
of the vector.

niederreiter::niederreiter(const niederreiter& other)

Input Parameters

other Valid niederreiter object. The queue and state of the other engine is copied and applied to the current
engine.

niederreiter::niederreiter(niederreiter&& other)

Input Parameters

other Valid niederreiter object. The queue and state of the other engine is moved to the current engine.

niederreiter::niederreiter& operator=(const niederreiter& other)

Input Parameters

other Valid niederreiter object. The queue and state of the other engine is copied and applied to the current
engine.

niederreiter::niederreiter& operator=(niederreiter&& other)

11.2. oneMKL Domains 1598

oneAPI Specification, Release 1.1-rev-1

Input Parameters

other Valid niederreiter r-value object. The queue and state of the other engine is moved to the current engine.

Parent topic: Engines (Basic Random Number Generators)

nondeterministic

Non-deterministic random number generator.

Description

Implementation defined generator with non-deterministic source of randomness (for example, a hardware device).

class nondeterministic

Syntax

namespace oneapi::mkl::rng {
class nondeterministic {
public:

nondeterministic(sycl::queue queue);

nondeterministic(const nondeterministic& other);

nondeterministic(nondeterministic&& other);

nondeterministic& operator=(const nondeterministic& other);

nondeterministic& operator=(nondeterministic&& other);

~nondeterministic();
};
}

Class Members

Routine Description
nondeterministic(sycl::queue queue) Constructor for the particular device
nondeterministic(const nondeterministic& other) Copy constructor
nondeterministic(nondeterministic&& other) Move constructor
nondeterministic& operator=(const nondeterministic& other) Copy assignment operator
nondeterministic& operator=(nondeterministic&& other) Move assignment operator

11.2. oneMKL Domains 1599

oneAPI Specification, Release 1.1-rev-1

Constructors

nondeterministic::nondeterministic(sycl::queue queue)

Input Parameters

queue Valid sycl::queue object, calls of the oneapi::mkl::rng::generate() routine submits kernels in this queue to
obtain random numbers from a given engine.

nondeterministic::nondeterministic(const nondeterministic& other)

Input Parameters

other Valid nondeterministic object. The queue and state of the other engine is copied and applied to the current
engine.

nondeterministic::nondeterministic(nondeterministic&& other)

Input Parameters

other Valid nondeterministic object. The queue and state of the other engine is moved to the current engine.

nondeterministic::nondeterministic& operator=(const nondeterministic& other)

Input Parameters

other Valid nondeterministic object. The queue and state of the other engine is copied and applied to the current
engine.

nondeterministic::nondeterministic& operator=(nondeterministic&& other)

Input Parameters

other Valid nondeterministic r-value object. The queue and state of the other engine is moved to the current
engine.

Parent topic: Engines (Basic Random Number Generators)

Service Routines

Routine Description
leapfrog Proceed state of engine by the leapfrog method to generate a subsequence of the original sequence
skip_ahead Proceed state of engine by the skip-ahead method to skip a given number of elements from the original

sequence

Parent topic: Random Number Generators

11.2. oneMKL Domains 1600

oneAPI Specification, Release 1.1-rev-1

leapfrog

Proceed state of engine by the leapfrog method.

Description and Assumptions

oneapi::mkl::rng::leapfrog function generates random numbers in an engine with non-unit stride. This feature is par-
ticularly useful in distributing random numbers from the original stream across the stride buffers without generating
the original random sequence with subsequent manual distribution. see Figure “Leapfrog Method”.

Leapfrog Method

leapfrog

Syntax

namespace oneapi::mkl::rng {
template<typename EngineType>
void oneapi::mkl::rng::leapfrog(EngineType& engine, std::uint64_t idx, std::uint64_t␣
→˓stride);
}

Template Parameters

EngineType Type of engine. Note: may not be supported by all available engine classes.

Input Parameters

engine Engine which state would be skipped.

idx Index of the computational node.

stride Largest number of computational nodes, or stride.

11.2. oneMKL Domains 1601

oneAPI Specification, Release 1.1-rev-1

Example

// Creating 3 identical engines
mkl::rng::mcg31m1 engine_1(queue, seed);

mkl::rng::mcg31m1 engine_2(engine_1);
mkl::rng::mcg31m1 engine_3(engine_1);

// Leapfrogging the states of engines
mkl::rng::leapfrog(engine_1, 0 , 3);
mkl::rng::leapfrog(engine_2, 1 , 3);
mkl::rng::leapfrog(engine_3, 2 , 3);
// Generating random numbers

Parent topic: Service Routines

skip_ahead

Proceed state of engine by the skip-ahead method.

Description and Assumptions

oneapi::mkl::rng::skip_ahead function changes the current state of the engine so that with the further call of the gener-
ator the output subsequence begins with the specified offset see Figure “Block-Splitting Method”.

Block-Splitting Method

skip_ahead

Syntax

namespace oneapi::mkl::rng {
template<typename EngineType>
void oneapi::mkl::rng::skip_ahead(EngineType& engine, std::uint64_t num_to_skip);
}

11.2. oneMKL Domains 1602

oneAPI Specification, Release 1.1-rev-1

Template Parameters

EngineType Type of engine. Note: may not be supported by all available engine classes.

Input Parameters

engine Engine which state would be skipped.

num_to_skip Number of elements to skip in the engine’s sequence.

Example

// Creating 3 identical engines
oneapi::mkl::rng::mcg31m1 engine_1(queue, seed);
oneapi::mkl::rng::mcg31m1 engine_2(engine_1);
oneapi::mkl::rng::mcg31m1 engine_3(engine_2);

// Skipping ahead by 7 elements the 2nd engine
oneapi::mkl::rng::skip_ahead(engine_2, 7);

// Skipping ahead by 14 elements the 3rd engine
oneapi::mkl::rng::skip_ahead(engine_3, 14);

skip_ahead (Interface with a partitioned number of skipped elements)

Syntax

namespace oneapi::mkl::rng {
template<typename EngineType>
void oneapi::mkl::rng::skip_ahead(EngineType& engine, std::initializer_list<std::uint64_
→˓t> num_to_skip);
}

Template Parameters

EngineType Type of engine. Note: may not be supported by all available engine classes.

Input Parameters

engine Engine which state would be skipped.

num_to_skip Partitioned number of elements to skip in the engine’s sequence. The total number of skipped elements
would be: 𝑛𝑢𝑚_𝑡𝑜_𝑠𝑘𝑖𝑝[0] + 𝑛𝑢𝑚_𝑡𝑜_𝑠𝑘𝑖𝑝[1] · 264 + ... + 𝑛𝑢𝑚_𝑡𝑜_𝑠𝑘𝑖𝑝[1] · 264(𝑛−1), where n is a number
of elements in num_to_skip list.

11.2. oneMKL Domains 1603

oneAPI Specification, Release 1.1-rev-1

Example with Partitioned Numer of Elements

// Creating the first engine
oneapi::mkl::rng::mrg32k3a engine_1(queue, seed);

// To skip 2^64 elements in the random stream number of skipped elements should be
/represented as num_to_skip = 2^64 = 0 + 1 * 2^64
std::initializer_list<std::uint64_t> num_to_skip = {0, 1};

// Creating the 2nd engine based on 1st. Skipping by 2^64
oneapi::mkl::rng::mrg32k3a engine_2(engine_1);
oneapi::mkl::rng::skip_ahead(engine_2, num_to_skip);

Parent topic: Service Routines

Distributions

oneMKL RNG routines are used to generate random numbers with different types of distribution. Each function group
is introduced below by the type of underlying distribution and contains a short description of its functionality, as well as
specifications of the call sequence and the explanation of input and output parameters. Table Continuous Distribution
Generators and Table Discrete Distribution Generators list the random number generator routines with data types and
output distributions, and sets correspondence between data types of the generator routines and the basic random number
generators.

Table Continuous Distribution Generators

Routine Description
uniform (continuous) Uniform continuous distribution on the interval [a,b)
gaussian Normal (Gaussian) distribution
exponential Exponential distribution
laplace Laplace distribution (double exponential distribution)
weibull Weibull distribution
cauchy Cauchy distribution
rayleigh Rayleigh distribution
lognormal Lognormal distribution
gumbel Gumbel (extreme value) distribution
gamma Gamma distribution
beta Beta distribution
chi_square Chi-Square distribution
gaussian_mv Normal Multivariate (Gaussian Multivariate) distribution

Table Discrete Distribution Generators

11.2. oneMKL Domains 1604

oneAPI Specification, Release 1.1-rev-1

Type of Distribution Description
uniform (discrete) Uniform discrete distribution on the interval [a,b)
uniform_bits Uniformly distributed bits in 32/64-bit chunks
bits Bits of underlying BRNG integer recurrence
bernoulli Bernoulli distribution
geometric Geometric distribution
binomial Binomial distribution
hypergeometric Hypergeometric distribution
poisson Poisson distribution
poisson_v Poisson distribution with varying mean
negative_binomial Negative binomial distribution, or Pascal distribution
multinomial Multinomial distribution

Modes of random number generation

The library provides two modes of random number generation, accurate and fast. Accurate generation
mode is intended for applications that are highly demanding to accuracy of calculations. When used in
this mode, the generators produce random numbers lying completely within the definitional domain for
all values of the distribution parameters. For example, random numbers obtained from the generator of
continuous distribution that is uniform on interval [a,b] belong to this interval irrespective of what a and b
values may be. Fast mode provides high performance generation and also guarantees that generated random
numbers belong to the definitional domain except for some specific values of distribution parameters. The
generation mode is set by specifying the relevant value of the method parameter in generator routines. The
list of distributions that support accurate mode of generation is given in the table below.

Table Distribution Generators with Accurate Method

Distribution Method
uniform (contin-
uous)

oneapi::mkl::rng::unform_method::accurate

exponential oneapi::mkl::rng::exponential_method::icdf_accurate
weibull oneapi::mkl::rng::weibull_method::icdf_accurate
rayleigh oneapi::mkl::rng::rayleigh_method::icdf_accurate
lognormal oneapi::mkl::rng::lognormal_method::box_muller2_accurate,

oneapi::mkl::rng::lognormal_method::icdf_accurate
gamma oneapi::mkl::rng::gamma_method::marsaglia_accurate
beta oneapi::mkl::rng::beta_method::cja_accurate

Parent topic: Random Number Generators

11.2. oneMKL Domains 1605

oneAPI Specification, Release 1.1-rev-1

11.2. oneMKL Domains 1606

oneAPI Specification, Release 1.1-rev-1

Distributions Template Parameter Method

Method Dis-
tri-
bu-
tions

Math Description

uniform_method::standard
uniform_method::accurate

uniform(s,
d)
uniform(i)

Standard method. uniform_method::standard_accurate supported for
uniform(s, d) only.

gaussian_method::box_mullergaussianGenerates normally distributed random number x thru the pair of uniformly distributed
numbers 𝑢1 and 𝑢2 according to the formula: 𝑥 =

√
−2𝑙𝑛𝑢1 sin(2𝜋𝑢2)

gaussian_method::box_muller2gaussian
lognormal

Generates normally distributed random numbers 𝑥1 and 𝑥2 thru the pair of uniformly
distributed numbers 𝑢1 and 𝑢2 according to the formulas: 𝑥1 =

√
−2𝑙𝑛𝑢1 sin 2𝜋𝑢2 𝑥2 =√

−2𝑙𝑛𝑢1 cos 2𝜋𝑢2

gaussian_method::icdfgaussianInverse cumulative distribution function (ICDF) method.
exponential_method::icdf
exponential_method::icdf_accurate

exponentialInverse cumulative distribution function (ICDF) method.

weibull_method::icdf
weibull_method::icdf_accurate

weibullInverse cumulative distribution function (ICDF) method.

cauchy_method::icdfcauchyInverse cumulative distribution function (ICDF) method.
rayleigh_method::icdf
rayleigh_method::icdf_accurate

rayleighInverse cumulative distribution function (ICDF) method.

bernoulli_method::icdfbernoulliInverse cumulative distribution function (ICDF) method.
geometric_method::icdfgeometricInverse cumulative distribution function (ICDF) method.
gumbel_method::icdfgumbelInverse cumulative distribution function (ICDF) method.
lognormal_method::icdf
lognormal_method::icdf_accurate

lognormalInverse cumulative distribution function (ICDF) method.

lognormal_method::box_muller2
lognormal_method::box_muller2_accurate

lognormalGenerated normally distributed random numbers 𝑥1 and 𝑥2 by box_muller2 method are
converted to lognormal distribution.

gamma_method::marsaglia
gamma_method::marsaglia_accurate

gamma For 𝛼 > 1, a gamma distributed random number is generated as a cube of properly scaled
normal random number; for 0.6 ≤ 𝛼 < 1, a gamma distributed random number is gener-
ated using rejection from Weibull distribution; for 𝛼 < 0.6, a gamma distributed random
number is obtained using transformation of exponential power distribution; for 𝛼 = 1,
gamma distribution is reduced to exponential distribution.

beta_method::cja
beta_method::cja_accurate

beta Cheng-Jonhnk-Atkinson method. For 𝑚𝑖𝑛(𝑝, 𝑞) > 1, Cheng method is used; for
𝑚𝑖𝑛(𝑝, 𝑞) < 1, Johnk method is used, if 𝑞 + 𝐾 * 𝑝2 + 𝐶 ≤ 0(𝐾 = 0.852..., 𝐶 =
−0.956...) otherwise, Atkinson switching algorithm is used; for 𝑚𝑎𝑥(𝑝, 𝑞) < 1, method
of Johnk is used; for 𝑚𝑖𝑛(𝑝, 𝑞) < 1,𝑚𝑎𝑥(𝑝, 𝑞) > 1, Atkinson switching algorithm is
used (CJA stands for Cheng, Johnk, Atkinson); for 𝑝 = 1 or 𝑞 = 1, inverse cumulative
distribution function method is used; for 𝑝 = 1 and 𝑞 = 1, beta distribution is reduced to
uniform distribution.

chi_square_method::gamma_basedchi_square(most common): If 𝜈 ≥ 17 or 𝜈 is odd and 5 ≤ 𝜈 ≤ 15, a chi-square distribution is
reduced to a Gamma distribution with these parameters: Shape 𝛼 = 𝜈/2Offset 𝑎 = 0
Scale factor 𝛽 = 2 The random numbers of the Gamma distribution are generated.

binomial_method::btpebinomialAcceptance/rejection method for 𝑛𝑡𝑟𝑖𝑎𝑙 *𝑚𝑖𝑛(𝑝, 1 − 𝑝) ≥ 30 with decomposition into
four regions: two parallelograms, triangle, left exponential tail, right exponential tail.

poisson_method::ptpepoissonAcceptance/rejection method for 𝜆 ≥ 27 with decomposition into four regions: two par-
allelograms, triangle, left exponential tail, right exponential tail.

poisson_method::gaussian_icdf_basedpoissonfor 𝜆 ≥ 1, method based on Poisson inverse CDF approximation by Gaussian inverse
CDF; for 𝜆 < 1, table lookup method is used.

poisson_v_method::gaussian_icdf_basedpoisson_vfor 𝜆 ≥ 1, method based on Poisson inverse CDF approximation by Gaussian inverse
CDF; for 𝜆 < 1, table lookup method is used.

hypergeometric_method::h2pehypergeometricAcceptance/rejection method for large mode of distribution with decomposition into three
regions: rectangular, left exponential tail, right exponential tail.

negative_binomial_method::nbarnegative_binomialAcceptance/rejection method for: (𝑎−1)(1−𝑝)
𝑝 ≥ 100 with decomposition into five re-

gions: rectangular, 2 trapezoid, left exponential tail, right exponential tail.
multinomial_method::poisson_icdf_basedmultinomialMultinomial distribution with parameters 𝑚, 𝑘, and a probability vector 𝑝. Random num-

bers of the multinomial distribution are generated by Poisson Approximation method.
gaussian_mv_method::box_mullergaussian_mvBoxMuller method for gaussian_mv method.
gaussian_mv_method::box_muller2gaussian_mvBoxMuller2 method for gaussian_mv method.
gaussian_mv_method::icdfgaussian_mvInverse cumulative distribution function (ICDF) method.

11.2. oneMKL Domains 1607

oneAPI Specification, Release 1.1-rev-1

Parent topic: Distributions

uniform (continuous)

Class is used for generation of uniformly distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers uniformly distributed
over the interval [𝑎, 𝑏), where 𝑎, 𝑏 are the left and right bounds of the interval, respectively, and 𝑎, 𝑏 ∈ 𝑅; 𝑎 < 𝑏

The probability distribution is given by:

𝑓𝑎,𝑏(𝑥) =

{︂
1

𝑏−𝑎 , 𝑥 ∈ [𝑎, 𝑏)

0, 𝑥 /∈ [𝑎, 𝑏)

The cumulative distribution function is as follows:

𝐹𝑎,𝑏(𝑥) =

⎧⎨⎩
0, 𝑥 < 𝑎

𝑥−𝑎
𝑏−𝑎 , 𝑎 ≤ 𝑥 < 𝑏, 𝑥 ∈ 𝑅

1, 𝑥 ≥ 𝑏

class uniform

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = uniform_method::by_default>
class uniform {
public:

using method_type = Method;
using result_type = RealType;
uniform();
explicit uniform(RealType a, RealType b);
RealType a() const;
RealType b() const;

};
}

Template parameters

typename RealType
Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::uniform_method::by_default Transformation method, which will be used
for generation. Supported types:

• oneapi::mkl::rng::uniform_method::by_default

11.2. oneMKL Domains 1608

oneAPI Specification, Release 1.1-rev-1

• oneapi::mkl::rng::uniform_method::standard

• oneapi::mkl::rng::uniform_method::accurate

See description of the methods in Distributions methods template parameter

Class Members

Routine Description
uniform() Default constructor
explicit uniform(RealType a, RealType b) Constructor with parameters
RealType a() const Method to obtain left bound a
RealType b() const Method to obtain right bound b

Member types

uniform::method_type = Method

Description

The type which defines transformation method for generation.

uniform::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

uniform::uniform()

Description

Default constructor for distribution, parameters set as a = 0.0, b = 1.0.

11.2. oneMKL Domains 1609

oneAPI Specification, Release 1.1-rev-1

explicit uniform::uniform(RealType a, RealType b)

Description

Constructor with parameters. a is a left bound, b is a right bound, assume 𝑎 < 𝑏.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑎 ≥ 𝑏

Characteristics

RealType uniform::a() const

Return Value

Returns the distribution parameter a - left bound.

RealType uniform::b() const

Return Value

Returns the distribution parameter b - right bound.

Parent topic: Distributions

gaussian

Class is used for generation of normally distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers normally distributed
with mean (𝑚𝑒𝑎𝑛, 𝑎) and standard deviation (𝑠𝑡𝑑𝑑𝑒𝑣, 𝜎), where 𝑎, 𝜎 ∈ 𝑅;𝜎 > 0.

The probability distribution is given by:

𝑓𝑎,𝜎(𝑥) =
1

𝜎
√

2𝜋
𝑒𝑥𝑝(− (𝑥− 𝑎)2

2 * 𝜎2
), 𝑥 ∈ 𝑅.

The cumulative distribution function is as follows:

𝐹𝑎,𝜎(𝑥) =

∫︁ 𝑥

−∞

1

𝜎
√

2𝜋
𝑒𝑥𝑝(− (𝑦 − 𝑎)2

2 * 𝜎2
)𝑑𝑦, 𝑥 ∈ 𝑅.

11.2. oneMKL Domains 1610

oneAPI Specification, Release 1.1-rev-1

class gaussian

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = gaussian_method::by_default>
class gaussian {
public:

using method_type = Method;
using result_type = RealType;
gaussian();
explicit gaussian(RealType mean, RealType stddev);
RealType mean() const;
RealType stddev() const;

};
}

Template parameters

typename RealType
Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::gaussian_method::by_default Transformation method, which will be used
for generation. Supported types:

• oneapi::mkl::rng::gaussian_method::by_default

• oneapi::mkl::rng::gaussian_method::box_muller

• oneapi::mkl::rng::gaussian_method::box_muller2

• oneapi::mkl::rng::gaussian_method::icdf

See description of the methods in Distributions methods template parameter

Class Members

Routine Description
gaussian() Default constructor
explicit gaussian(RealType mean, RealType stddev) Constructor with parameters
RealType mean() const Method to obtain mean value
RealType stddev() const Method to obtain standard deviation value

11.2. oneMKL Domains 1611

oneAPI Specification, Release 1.1-rev-1

Member types

gaussian::method_type = Method

Description

The type which defines transformation method for generation.

gaussian::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

gaussian::gaussian()

Description

Default constructor for distribution, parameters set as mean = 0.0, stddev = 1.0.

explicit gaussian::gaussian(RealType mean, RealType stddev)

Description

Constructor with parameters. mean is a mean value, stddev is a standard deviation value.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑠𝑡𝑑𝑑𝑒𝑣 ≤ static_cast<RealType>(0.0)

Characteristics

RealType gaussian::mean() const

Return Value

Returns the distribution parameter mean - mean value.

RealType gaussian::stddev() const

11.2. oneMKL Domains 1612

oneAPI Specification, Release 1.1-rev-1

Return Value

Returns the distribution parameter stddev - standard deviation value.

Parent topic: Distributions

exponential

Class is used for generation of exponentially distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers exponentially dis-
tributed with displacement 𝑎 and scalefactor 𝛽, where 𝑎, 𝛽 ∈ 𝑅;𝛽 > 0.

The probability distribution is given by:

𝑓𝑎,𝛽(𝑥) =

{︂ 1
𝛽 𝑒𝑥𝑝(−𝑥−𝑎

𝛽), 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎

The cumulative distribution function is as follows:

𝐹𝑎,𝛽(𝑥) =

{︂
1− 𝑒𝑥𝑝(−𝑥−𝑎

𝛽), 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎

class exponential

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = exponential_method::by_default>
class exponential {
public:

using method_type = Method;
using result_type = RealType;
exponential();
explicit exponential(RealType a, RealType beta);
RealType a() const;
RealType beta() const;

};
}

Template parameters

typename RealType
Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::exponential_method::by_default Transformation method, which will be
used for generation. Supported types:

11.2. oneMKL Domains 1613

oneAPI Specification, Release 1.1-rev-1

• oneapi::mkl::rng::exponential_method::by_default

• oneapi::mkl::rng::exponential_method::icdf

• oneapi::mkl::rng::exponential_method::icdf_accurate

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
exponential() Default constructor
explicit exponential(RealType a, RealType beta) Constructor with parameters
RealType a() const Method to obtain displacement value
RealType beta() const Method to obtain scalefactor

Member types

exponential::method_type = Method

Description

The type which defines transformation method for generation.

exponential::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

exponential::exponential()

Description

Default constructor for distribution, parameters set as a = 0.0, beta = 1.0.

explicit exponential::exponential(RealType a, RealType beta)

11.2. oneMKL Domains 1614

oneAPI Specification, Release 1.1-rev-1

Description

Constructor with parameters. a is a displacement, beta is a scalefactor.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑏𝑒𝑡𝑎 ≤ static_cast<RealType>(0.0)

Characteristics

RealType exponential::a() const

Return Value

Returns the distribution parameter a - displacement.

RealType exponential::beta() const

Return Value

Returns the distribution parameter beta - scalefactor value.

Parent topic: Distributions

laplace

Class is used for generation of Laplace distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers Laplace distributed
with mean value (or average) 𝑎, and scalefactor (𝑏, 𝛽), where 𝑎, 𝛽 ∈ 𝑅;𝛽 > 0. The scalefactor value determines the
standard deviation as 𝜎 = 𝛽

√
2.

The probability distribution is given by:

𝑓𝑎,𝛽(𝑥) =
1√
2𝛽

𝑒𝑥𝑝(−|𝑥− 𝑎|
𝛽

), 𝑥 ∈ 𝑅.

The cumulative distribution function is as follows:

𝐹𝑎,𝛽(𝑥) =

{︃
1
2𝑒𝑥𝑝(− |𝑥−𝑎|𝛽), 𝑥 ≥ 𝑎

1− 1
2𝑒𝑥𝑝(− |𝑥−𝑎|𝛽), 𝑥 < 𝑎

11.2. oneMKL Domains 1615

oneAPI Specification, Release 1.1-rev-1

class laplace

Syntax

template<typename RealType = float, typename Method = laplace_method::by_default>
class laplace {
public:

using method_type = Method;
using result_type = RealType;
laplace();
explicit laplace(RealType a, RealType b);
RealType a() const;
RealType b() const;

};

Template parameters

typename RealType
Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::laplace_method::by_default Transformation method, which will be used
for generation. Supported types:

• oneapi::mkl::rng::laplace_method::by_default

• oneapi::mkl::rng::laplace_method::icdf

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
laplace() Default constructor
explicit laplace(RealType a, RealType b) Constructor with parameters
RealType a() const Method to obtain mean value
RealType b() const Method to obtain scalefactor value

Member types

laplace::method_type = Method

11.2. oneMKL Domains 1616

oneAPI Specification, Release 1.1-rev-1

Description

The type which defines transformation method for generation.

laplace::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

laplace::laplace()

Description

Default constructor for distribution, parameters set as a = 0.0, and beta = 1.0.

explicit laplace::laplace(RealType a, RealType b)

Description

Constructor with parameters. a is a mean value, beta is a scalefactor value.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑏 ≤ static_cast<RealType>(0.0)

Characteristics

RealType laplace::a() const

Return Value

Returns the distribution parameter a - mean value.

RealType laplace::b() const

11.2. oneMKL Domains 1617

oneAPI Specification, Release 1.1-rev-1

Return Value

Returns the distribution parameter b - scalefactor value.

Parent topic: Distributions

weibull

Class is used for generation of Weibull distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers Weibull distributed
with displacement 𝑎, scalefactor 𝛽, and shape 𝛼, where 𝑎, 𝛽, 𝛼 ∈ 𝑅;𝛼 > 0;𝛽 > 0.

The probability distribution is given by:

𝑓𝑎,𝛼,𝛽(𝑥) =

{︂ 𝛼
𝛽𝛼 (𝑥− 𝑎)𝛼−1𝑒𝑥𝑝((−𝑥−𝑎

𝛽)𝛼), 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎

The cumulative distribution function is as follows:

𝐹𝑎,𝛼,𝛽(𝑥) =

{︂
1− 𝑒𝑥𝑝((−𝑥−𝑎

𝛽)𝛼), 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎

class weibull

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = weibull_method::by_default>
class weibull {
public:

using method_type = Method;
using result_type = RealType;
weibull();
explicit weibull(RealType alpha, RealType a, RealType b);
RealType alpha() const;
RealType a() const;
RealType beta() const;

};
}

11.2. oneMKL Domains 1618

oneAPI Specification, Release 1.1-rev-1

Template parameters

typename RealType
Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::weibull_method::by_default Transformation method, which will be used
for generation. Supported types:

• oneapi::mkl::rng::weibull_method::by_default

• oneapi::mkl::rng::weibull_method::icdf

• oneapi::mkl::rng::weibull_method::icdf_accurate

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
weibull() Default constructor
explicit weibull(RealType alpha, RealType a, RealType beta) Constructor with parameters
RealType alpha() const Method to obtain shape value
RealType a() const Method to obtain displacement value
RealType beta() const Method to obtain scalefactor value

Member types

weibull::method_type = Method

Description

The type which defines transformation method for generation.

weibull::result_type = RealType

Description

The type which defines type of generated random numbers.

11.2. oneMKL Domains 1619

oneAPI Specification, Release 1.1-rev-1

Constructors

weibull::weibull()

Description

Default constructor for distribution, parameters set as alpha = 1.0, a = 0.0, and b = 1.0.

explicit weibull::weibull(RealType alpha, RealType a, RealType beta)

Description

Constructor with parameters. alpha is a shape value, a is a displacement value, beta is a scalefactor value.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑎𝑙𝑝ℎ𝑎 ≤ static_cast<RealType>(0.0), or 𝑏𝑒𝑡𝑎 ≤
static_cast<RealType>(0.0)

Characteristics

RealType weibull::alpha() const

Return Value

Returns the distribution parameter alpha - shape value.

RealType weibull::a() const

Return Value

Returns the distribution parameter a - displacement value.

RealType weibull::beta() const

Return Value

Returns the distribution parameter beta - scalefactor value.

Parent topic: Distributions

11.2. oneMKL Domains 1620

oneAPI Specification, Release 1.1-rev-1

cauchy

Class is used for generation of Cauchy distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers Cauchy distributed
with displacement 𝑎, and scale parameter (𝑏, 𝛽), where 𝑎, 𝛽 ∈ 𝑅;𝛽 > 0.

The probability distribution is given by:

𝑓𝑎,𝛽(𝑥) =
1

𝜋𝛽(1 + (𝑥−𝑎
𝛽)2)

, 𝑥 ∈ 𝑅.

The cumulative distribution function is as follows:

𝐹𝑎,𝛽(𝑥) =
1

2
+

1

𝜋
arctan (

𝑥− 𝑎

𝛽
), 𝑥 ∈ 𝑅.

class cauchy

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = cauchy_method::by_default>
class cauchy {
public:

using method_type = Method;
using result_type = RealType;
cauchy();
explicit cauchy(RealType a, RealType b);
RealType a() const;
RealType b() const;

};
}

Template parameters

typename RealType
Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::cauchy_method::by_default Transformation method, which will be used
for generation. Supported types:

• oneapi::mkl::rng::cauchy_method::by_default

• oneapi::mkl::rng::cauchy_method::icdf

See description of the methods in Distributions methods template parameter.

11.2. oneMKL Domains 1621

oneAPI Specification, Release 1.1-rev-1

Class Members

Routine Description
cauchy() Default constructor
explicit cauchy(RealType a, RealType b) Constructor with parameters
RealType a() const Method to obtain displacement value
RealType b() const Method to obtain scalefactor value

Member types

cauchy::method_type = Method

Description

The type which defines transformation method for generation.

cauchy::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

cauchy::cauchy()

Description

Default constructor for distribution, parameters set as a = 0.0, and b = 1.0.

explicit cauchy::cauchy(RealType a, RealType b)

Description

Constructor with parameters. a is a displacement value, b is a scalefactor value.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑏 ≤ static_cast<RealType>(0.0)

11.2. oneMKL Domains 1622

oneAPI Specification, Release 1.1-rev-1

Characteristics

RealType cauchy::a() const

Return Value

Returns the distribution parameter a - displacement value.

RealType cauchy::b() const

Return Value

Returns the distribution parameter b - scalefactor value.

Parent topic: Distributions

rayleigh

Class is used for generation of Rayleigh distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers Rayleigh distributed
with displacement 𝑎, and scalefactor (𝑏, 𝛽), where 𝑎, 𝛽 ∈ 𝑅;𝛽 > 0.

The Rayleigh distribution is a special case of the weibull distribution, where the shape parameter alpha = 2 .

The probability distribution is given by:

𝑓𝑎,𝛽(𝑥) =

{︃
2(𝑥−𝑎)

𝛽2 𝑒𝑥𝑝(− (𝑥−𝑎)2)
𝛽2), 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎

The cumulative distribution function is as follows:

𝐹𝑎,𝛽(𝑥) =

{︃
1− 𝑒𝑥𝑝(− (𝑥−𝑎)2)

𝛽2), 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎

class rayleigh

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = rayleigh_method::by_default>
class rayleigh {
public:

using method_type = Method;
using result_type = RealType;
rayleigh();
explicit rayleigh(RealType a, RealType b);

(continues on next page)

11.2. oneMKL Domains 1623

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

RealType a() const;
RealType b() const;

};
}

Template parameters

typename RealType
Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::rayleigh_method::by_default Transformation method, which will be used
for generation. Supported types:

• oneapi::mkl::rng::rayleigh_method::by_default

• oneapi::mkl::rng::rayleigh_method::icdf

• oneapi::mkl::rng::rayleigh_method::icdf_accurate

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
rayleigh() Default constructor
explicit rayleigh(RealType a, RealType b) Constructor with parameters
RealType a() const Method to obtain displacement value
RealType b() const Method to obtain scalefactor value

Member types

rayleigh::method_type = Method

Description

The type which defines transformation method for generation.

rayleigh::result_type = RealType

11.2. oneMKL Domains 1624

oneAPI Specification, Release 1.1-rev-1

Description

The type which defines type of generated random numbers.

Constructors

rayleigh::rayleigh()

Description

Default constructor for distribution, parameters set as a = 0.0, and b = 1.0.

explicit rayleigh::rayleigh(RealType a, RealType b)

Description

Constructor with parameters. a is a displacement value, b is a scalefactor value.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑏 ≤ static_cast<RealType>(0.0)

Characteristics

RealType rayleigh::a() const

Return Value

Returns the distribution parameter a - displacement value.

RealType rayleigh::b() const

Return Value

Returns the distribution parameter b - scalefactor value.

Parent topic: Distributions

11.2. oneMKL Domains 1625

oneAPI Specification, Release 1.1-rev-1

lognormal

Class is used for generation of lognormally distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers lognormally dis-
tributed with mean (𝑚, 𝑎) and standard deviation (𝑠, 𝜎) of subject normal distribution, displacement (𝑑𝑖𝑠𝑝𝑙, 𝑏), and
scalefactor (𝑠𝑐𝑎𝑙𝑒, 𝛽), where 𝑎, 𝜎, 𝑏, 𝛽 ∈ 𝑅;𝜎 > 0;𝛽 > 0.

The probability distribution is given by:

𝑓𝑎,𝜎,𝑏,𝛽(𝑥) =

{︃
1

𝜎(𝑥−𝑏)
√
2𝜋

𝑒𝑥𝑝(− [𝑙𝑛((𝑥−𝑏)/𝛽)−𝑎]2
2*𝜎2), 𝑥 > 𝑏

0, 𝑥 ≤ 𝑏

The cumulative distribution function is as follows:

𝐹𝑎,𝜎,𝑏,𝛽(𝑥) =

{︂
Φ((𝑙𝑛((𝑥−𝑏)/𝛽)−𝑎)

𝜎), 𝑥 > 𝑏
0, 𝑥 ≤ 𝑏

class lognormal

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = lognormal_method::by_default>
class lognormal {
public:

using method_type = Method;
using result_type = RealType;
lognormal();
explicit lognormal(RealType m, RealType s, RealType displ = static_cast<RealType>(0.

→˓0), RealType scale = static_cast<RealType>(1.0));
RealType m() const;
RealType s() const;
RealType displ() const;
RealType scale() const;

};
}

Template parameters

typename RealType
Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::lognormal_method::by_default Transformation method, which will be
used for generation. Supported types:

• oneapi::mkl::rng::lognormal_method::by_default

11.2. oneMKL Domains 1626

oneAPI Specification, Release 1.1-rev-1

• oneapi::mkl::rng::lognormal_method::box_muller2

• oneapi::mkl::rng::lognormal_method::icdf

• oneapi::mkl::rng::lognormal_method::box_muller2_accurate

• oneapi::mkl::rng::lognormal_method::icdf_accurate

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
lognormal() Default constructor
explicit lognormal(RealType m, RealType s, RealType displ =
static_cast<RealType>(0.0), RealType scale = static_cast<RealType>(1.0))

Constructor with parame-
ters

RealType m() const Method to obtain mean
value

RealType s() const Method to obtain standard
deviation value

RealType displ() const Method to obtain dis-
placement value

RealType scale() const Method to obtain scale-
factor value

Member types

lognormal::method_type = Method

Description

The type which defines transformation method for generation.

lognormal::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

lognormal::lognormal()

11.2. oneMKL Domains 1627

oneAPI Specification, Release 1.1-rev-1

Description

Default constructor for distribution, parameters set as m = 0.0, s = 1.0, displ = 0.0, scale = 1.0.

explicit lognormal::lognormal(RealType m, RealType s, RealType displ = static_cast
→˓<RealType>(0.0), RealType scale = static_cast<RealType>(1.0))

Description

Constructor with parameters. m is a mean value, s is a standard deviation value, displ is a displacement value, scale is
a scalefactor value.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑠 ≤ static_cast<RealType>(0.0), or 𝑠𝑐𝑎𝑙𝑒 ≤
static_cast<RealType>(0.0)

Characteristics

RealType lognormal::m() const

Return Value

Returns the distribution parameter m - mean value.

RealType lognormal::s() const

Return Value

Returns the distribution parameter s - standard deviation value.

RealType lognormal::displ() const

Return Value

Returns the distribution parameter displ - displacement value.

RealType lognormal::scale() const

11.2. oneMKL Domains 1628

oneAPI Specification, Release 1.1-rev-1

Return Value

Returns the distribution parameter scale - scalefactor value.

Parent topic: Distributions

gumbel

Class is used for generation of Gumbel distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers Gumbel distributed
with displacement 𝑎, and scalefactor (𝑏, 𝛽), where 𝑎, 𝛽 ∈ 𝑅;𝛽 > 0.

The probability distribution is given by:

𝑓𝑎,𝛽(𝑥) =
1

𝛽
𝑒𝑥𝑝(−𝑥− 𝑎

𝛽
)𝑒𝑥𝑝(−𝑒𝑥𝑝(

𝑥− 𝑎

𝛽
)), 𝑥 ∈ 𝑅.

The cumulative distribution function is as follows:

𝐹𝑎,𝛽(𝑥) = 1− 𝑒𝑥𝑝(−𝑒𝑥𝑝(
𝑥− 𝑎

𝛽
)), 𝑥 ∈ 𝑅.

class gumbel

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = gumbel_method::by_default>
class gumbel {
public:

using method_type = Method;
using result_type = RealType;
gumbel();
explicit gumbel(RealType a, RealType b);
RealType a() const;
RealType b() const;

};
}

Template parameters

typename RealType
Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::gumbel_method::by_default Transformation method, which will be used
for generation. Supported types:

11.2. oneMKL Domains 1629

oneAPI Specification, Release 1.1-rev-1

• oneapi::mkl::rng::gumbel_method::by_default

• oneapi::mkl::rng::gumbel_method::icdf

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
gumbel() Default constructor
explicit gumbel(RealType a, RealType b) Constructor with parameters
RealType a() const Method to obtain displacement value
RealType b() const Method to obtain scalefactor value

Member types

gumbel::method_type = Method

Description

The type which defines transformation method for generation.

gumbel::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

gumbel::gumbel()

Description

Default constructor for distribution, parameters set as a = 0.0, and beta = 1.0.

11.2. oneMKL Domains 1630

oneAPI Specification, Release 1.1-rev-1

explicit gumbel::gumbel(RealType a, RealType b)

Description

Constructor with parameters. a is a displacement value, beta is a scalefactor value.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑏 ≤ static_cast<RealType>(0.0)

Characteristics

RealType gumbel::a() const

Return Value

Returns the distribution parameter a - displacement value.

RealType gumbel::b() const

Return Value

Returns the distribution parameter b - scalefactor value.

Parent topic: Distributions

gamma

Class is used for generation of gamma distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers gamma distributed
with shape 𝛼, displacement 𝑎, and scale parameter 𝛽, where 𝑎, 𝛼, 𝛽 ∈ 𝑅;𝛼 > 0;𝛽 > 0.

The probability distribution is given by:

𝑓𝑎,𝛼,𝛽(𝑥) =

{︂
1

Γ(𝛼)𝛽𝛼 (𝑥− 𝑎)𝛼−1𝑒−(𝑥−𝑎)/𝛽 , 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎

The cumulative distribution function is as follows:

𝐹𝑎,𝛼,𝛽(𝑥) =

{︂ ∫︀ 𝑥

𝑎
1

Γ(𝛼)𝛽𝛼 (𝑦 − 𝑎)𝛼−1𝑒−(𝑦−𝑎)/𝛽𝑑𝑦, 𝑥 ≥ 𝑎

0, 𝑥 < 𝑎

11.2. oneMKL Domains 1631

oneAPI Specification, Release 1.1-rev-1

class gamma

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = gamma_method::by_default>
class gamma {
public:

using method_type = Method;
using result_type = RealType;
gamma();
explicit gamma(RealType alpha, RealType a, RealType beta);
RealType alpha() const;
RealType a() const;
RealType beta() const;

};
}

Template parameters

typename RealType
Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::gamma_method::by_default Transformation method, which will be used
for generation. Supported types:

• oneapi::mkl::rng::gamma_method::by_default

• oneapi::mkl::rng::gamma_method::marsaglia

• oneapi::mkl::rng::gamma_method::marsaglia_accurate

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
gamma() Default constructor
explicit gamma(RealType alpha, RealType a, RealType beta) Constructor with parameters
RealType alpha() const Method to obtain shape value
RealType a() const Method to obtain displacement value
RealType beta() const Method to obtain scale value

11.2. oneMKL Domains 1632

oneAPI Specification, Release 1.1-rev-1

Member types

gamma::method_type = Method

Description

The type which defines transformation method for generation.

gamma::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

gamma::gamma()

Description

Default constructor for distribution, parameters set as alpha = 1.0, a = 0.0, and beta = 1.0.

explicit gamma::gamma(RealType alpha, RealType a, RealType beta)

Description

Constructor with parameters. alpha is a shape value, a is a displacement value, beta is a scale parameter.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑎𝑙𝑝ℎ𝑎 ≤ static_cast<RealType>(0.0), or 𝑏𝑒𝑡𝑎 ≤
static_cast<RealType>(0.0)

Characteristics

RealType gamma::alpha() const

11.2. oneMKL Domains 1633

oneAPI Specification, Release 1.1-rev-1

Return Value

Returns the distribution parameter alpha - shape value.

RealType gamma::a() const

Return Value

Returns the distribution parameter a - displacement value.

RealType gamma::beta() const

Return Value

Returns the distribution parameter beta - scale parameter.

Parent topic: Distributions

beta

Class is used for generation of beta distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers beta distributed with
shape parameters 𝑝 and 𝑞, displacement 𝛼 and scale parameter (𝑏, 𝛽), where 𝑝, 𝑞. 𝛼, 𝛽 ∈ 𝑅; 𝑝 > 0; 𝑞 > 0;𝛽 > 0.

The probability distribution is given by:

𝑓𝑝,𝑞,𝛼,𝛽(𝑥) =

{︂ 1
𝐵(𝑝,𝑞)*𝛽𝑝+𝑞−1 (𝑥− 𝑎)𝑝−1 * (𝛽 + 𝛼− 𝑥)𝑞−1, 𝛼 ≤ 𝑥 < 𝛼 + 𝛽

0, 𝑥 < 𝛼, 𝑥 ≥ 𝛼 + 𝛽

The cumulative distribution function is as follows:

𝐹𝑎,𝑏(𝑥) =

⎧⎨⎩
0, 𝑥 < 𝛼∫︀ 𝑥

𝛼
1

𝐵(𝑝,𝑞)*𝛽𝑝+𝑞−1 (𝑦 − 𝛼)𝑝−1 * (𝛽 + 𝛼− 𝑦)𝑞−1𝑑𝑦, 𝛼 ≤ 𝑥 < 𝛼 + 𝛽, 𝑥 ∈ 𝑅

1, 𝑥 ≥ 𝛼 + 𝛽

Where 𝐵(𝑝, 1) is the complete beta function.

class beta

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = beta_method::by_default>
class beta {
public:

using method_type = Method;
using result_type = RealType;

(continues on next page)

11.2. oneMKL Domains 1634

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

beta();
explicit beta(RealType p, RealType q, RealType a, RealType b);
RealType p() const;
RealType q() const;
RealType a() const;
RealType b() const;

};
}

Template parameters

typename RealType
Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::beta_method::by_default Transformation method, which will be used for
generation. Supported types:

• oneapi::mkl::rng::beta_method::by_default

• oneapi::mkl::rng::beta_method::cja

• oneapi::mkl::rng::beta_method::cja_accurate

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
beta() Default constructor
explicit beta(RealType p, RealType q, RealType a, RealType b) Constructor with parameters
RealType p() const Method to obtain shape p
RealType q() const Method to obtain shape q
RealType a() const Method to obtain displacement 𝛼
RealType b() const Method to obtain scalefactor 𝛽

Member types

beta::method_type = Method

11.2. oneMKL Domains 1635

oneAPI Specification, Release 1.1-rev-1

Description

The type which defines transformation method for generation.

beta::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

beta::beta()

Description

Default constructor for distribution, parameters set as p = 1.0, q = 0.0, 𝛼 = 1.0, 𝛽 = 1.0.

explicit beta::beta(RealType p, RealType q, RealType a, RealType b)

Description

Constructor with parameters. p and q are shapes, 𝛼 is a displacement, 𝛽 is a scalefactor.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑝 ≤ 0.0𝑓 , or 𝑞 ≤ 0.0𝑓 , or 𝛽 ≤ 0.0𝑓

Characteristics

RealType beta::p() const

Return Value

Returns the distribution parameter p - shape.

RealType beta::q() const

11.2. oneMKL Domains 1636

oneAPI Specification, Release 1.1-rev-1

Return Value

Returns the distribution parameter q - shape.

RealType beta::a() const

Return Value

Returns the distribution parameter 𝛼 - displacement.

RealType beta::b() const

Return Value

Returns the distribution parameter 𝛽 - scalefactor.

Parent topic: Distributions

chi_square

Class is used for generation of chi-square distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers chi-square distributed
with 𝑛 degrees of freedom, 𝑛 ∈ 𝑁 ;𝑛 > 0.

The probability distribution is given by:

𝑓𝑛(𝑥) =

{︃
𝑥

𝑛−2
2 𝑒−

𝑥
2

2𝑛/2Γ(𝑛/2)
, 𝑥 ≥ 0

0, 𝑥 < 0

The cumulative distribution function is as follows:

𝐹𝑛(𝑥) =

{︃ ∫︀ 𝑥

0
𝑦

𝑛−2
2 𝑒−

𝑥
2

2𝑛/2Γ(𝑛/2)
𝑑𝑦, 𝑥 ≥ 0

0, 𝑥 < 0

class chi_square

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = float, typename Method = chi_square_method::by_default>
class chi_square {
public:

using method_type = Method;
using result_type = RealType;
chi_square();
explicit chi_square(std::int32_t n);

(continues on next page)

11.2. oneMKL Domains 1637

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int32_t n() const;
};
}

Template parameters

typename RealType
Type of the produced values. Supported types:

• float

• double

typename Method = oneapi::mkl::rng::chi_square_method::by_default Transformation method, which will be
used for generation. Supported types:

• oneapi::mkl::rng::chi_square_method::by_default

• oneapi::mkl::rng::chi_square_method::gamma_based

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
chi_square() Default constructor
explicit chi_square(std::int32_t n) Constructor with parameters
std::int32_t n() const Method to obtain number of degrees of freedom n

Member types

chi_square::method_type = Method

Description

The type which defines transformation method for generation.

chi_square::result_type = RealType

Description

The type which defines type of generated random numbers.

11.2. oneMKL Domains 1638

oneAPI Specification, Release 1.1-rev-1

Constructors

chi_square::chi_square()

Description

Default constructor for distribution, parameters set as n = 5.

explicit chi_square::chi_square(std::int32_t n)

Description

Constructor with parameters. n is the number of degrees of freedom.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑛 < 1

Characteristics

std::int32_t chi_square::n() const

Return Value

Returns the distribution parameter n - number of degrees of freedom.

Parent topic: Distributions

gaussian_mv

Class is used for generation of multivariate normally distributed real types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide n random numbers 𝑑-variate normally
distributed, with mean 𝑎 and variance-covariance matrix 𝐶, where 𝑎 ∈ 𝑅𝑑; 𝐶 is dxd symmetric positive matrix.

The probability density function is given by:

𝑓𝑎,𝐶(𝑥) =
1√︀

𝑑𝑒𝑡(2𝜋𝐶)
𝑒𝑥𝑝(−1/2(𝑥− 𝑎)𝑇𝐶−1(𝑥− 𝑎)).

11.2. oneMKL Domains 1639

oneAPI Specification, Release 1.1-rev-1

class gaussian_mv

Syntax

namespace oneapi::mkl::rng {
template<typename RealType = std::int32_t, layout Layout = layout::packed, typename␣
→˓Method = gaussian_mv_method::by_default>
class gaussian_mv {
public:

using method_type = Method;
using result_type = RealType;
explicit gaussian_mv(std::uint32_t dimen, std::vector<RealType> mean, std::vector

→˓<RealType> matrix);
std::int32_t dimen() const;
std::vector<RealType> mean() const;
std::vector<RealType> matrix() const;

};
}

Template parameters

typename RealType
Type of the produced values. Supported types:

• float

• double

Template parameters

oneapi::mkl::rng::layout Layout
Matrix layout:

• oneapi::mkl::rng::layout::full

• oneapi::mkl::rng::layout::packed

• oneapi::mkl::rng::layout::diagonal

typename Method = oneapi::mkl::rng::gaussian_mv_method::by_default Transformation method, which will be
used for generation. Supported types:

• oneapi::mkl::rng::gaussian_mv_method::by_default

• oneapi::mkl::rng::gaussian_mv_method::box_muller

• oneapi::mkl::rng::gaussian_mv_method::box_muller2

• oneapi::mkl::rng::gaussian_mv_method::icdf

See description of the methods in Distributions methods template parameter.

11.2. oneMKL Domains 1640

oneAPI Specification, Release 1.1-rev-1

Class Members

Routine Description
explicit gaussian_mv(std::uint32_t dimen, std::vector<RealType>
mean, std::vector<RealType> matrix)

Constructor with parameters

std::int32_t dimen() const Method to obtain number of dimensions in
output random vectors

std::vector<double> mean() const Method to obtain mean vector a of dimen-
sion d.

std::vector<double> matrix() const Method to obtain variance-covariance ma-
trix C

Member types

gaussian_mv::method_type = Method

Description

The type which defines transformation method for generation.

gaussian_mv::result_type = RealType

Description

The type which defines type of generated random numbers.

Constructors

explicit gaussian_mv::gaussian_mv(std::uint32_t dimen, std::vector<RealType> mean,␣
→˓std::vector<RealType> matrix)

Description

Constructor with parameters. dimen is the number of dimensions, mean is a mean vector, matrix is a variance-
covariance matrix.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑚𝑒𝑎𝑛.𝑠𝑖𝑧𝑒() ≤ 0, or 𝑚𝑎𝑡𝑟𝑖𝑥.𝑠𝑖𝑧𝑒() ≤ 0

11.2. oneMKL Domains 1641

oneAPI Specification, Release 1.1-rev-1

Characteristics

std::int32_t gaussian_mv::dimen() const

Return Value

Returns the distribution parameter dimen.

std::vector<double> gaussian_mv::mean() const

Return Value

Returns the mean vector.

std::vector<double> gaussian_mv::matrix() const

Return Value

Returns the variance-covariance matrix.

Parent topic: Distributions

uniform (discrete)

Class is used for generation of uniformly distributed integer types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers uniformly distributed
over the interval [𝑎, 𝑏), where 𝑎, 𝑏 are the left and right bounds of the interval, respectively, and 𝑎, 𝑏 ∈ 𝑅; 𝑎 < 𝑏.

The probability distribution is given by:

𝑃 (𝑋 = 𝑘) =
1

𝑏− 𝑎
, 𝑘 ∈ {𝑎, 𝑎 + 1, ..., 𝑏− 1}

The cumulative distribution function is as follows:

𝐹𝑎,𝑏(𝑥) =

⎧⎨⎩
0, 𝑥 < 𝑎

⌊𝑥−𝑎+1⌋
𝑏−𝑎 , 𝑎 ≤ 𝑥 < 𝑏, 𝑥 ∈ 𝑅

1, 𝑥 ≥ 𝑏

11.2. oneMKL Domains 1642

oneAPI Specification, Release 1.1-rev-1

class uniform

Syntax

namespace oneapi::mkl::rng {
template<typename Method = uniform_method::by_default>
class uniform<std::int32_t, Method> {
public:

using method_type = Method;
using result_type = std::int32_t;
uniform();
explicit uniform(std::int32_t a, std::int32_t b);
std::int32_t a() const;
std::int32_t b() const;

};
}

Template parameters

typename Method = oneapi::mkl::rng::uniform_method::by_default Transformation method, which will be used
for generation. Supported types:

• oneapi::mkl::rng::uniform_method::by_default

• oneapi::mkl::rng::uniform_method::standard

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
uniform() Default constructor
explicit uniform(std::int32_t a, std::int32_t b) Constructor with parameters
std::int32_t a() const Method to obtain left bound a
std::int32_t b() const Method to obtain right bound b

Member types

method_type = Method

Description

The type which defines transformation method for generation.

result_type = std::int32_t

11.2. oneMKL Domains 1643

oneAPI Specification, Release 1.1-rev-1

Description

The type which defines type of generated random numbers.

Constructors

uniform()

Description

Default constructor for distribution, parameters set as a = 0, b = std::numeric_limits<std::int32_t>::max().

uniform(std::int32_t a, std::int32_t b)

Description

Constructor with parameters. a is a left bound, b is a right bound, assume 𝑎 < 𝑏.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑎 ≥ 𝑏

Characteristics

a() const

Return Value

Returns the distribution parameter a - left bound.

b() const

Return Value

Returns the distribution parameter b - right bound.

Parent topic: Distributions

11.2. oneMKL Domains 1644

oneAPI Specification, Release 1.1-rev-1

uniform_bits

Class is used for generation of uniformly distributed bits in 32/64-bit chunks.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide uniformly distributed bits in 32/64-bit
chunks. It is designed to ensure each bit in the 32/64-bit chunk is uniformly distributed. Can be not supported by the
specific engine.

class uniform_bits

Syntax

namespace oneapi::mkl::rng {
template<typename UIntType = std::uint32_t>
class uniform_bits {
public:

using result_type = UIntType;
};
}

Template parameters

typename UIntType
Type of the produced values. Supported types:

• std::uint32_t

• std::uint64_t

Member types

uniform_bits::result_type = UIntType

Description

The type which defines type of generated random numbers.

Parent topic: Distributions

11.2. oneMKL Domains 1645

oneAPI Specification, Release 1.1-rev-1

bits

Class is used for generation of underlying engine integer recurrence.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide integer random numbers. Each integer
can be treated as a vector of several bits. In a truly random generator, these bits are random, while in pseudorandom
generators this randomness can be violated.

class bits

Syntax

namespace oneapi::mkl::rng {
template<typename UIntType = std::uint32_t>
class bits {
public:

using result_type = UIntType;
};
}

Template parameters

typename UIntType
Type of the produced values. Supported types:

• std::uint32_t

Member types

bits::result_type = UIntType

Description

The type which defines type of generated random numbers.

Parent topic: Distributions

11.2. oneMKL Domains 1646

oneAPI Specification, Release 1.1-rev-1

bernoulli

Class is used for generation of Bernoulli distributed integer types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers Bernoulli distributed
with probability 𝑝 of a single trial success, where 𝑝 ∈ 𝑅; 0 ≤ 𝑝; 𝑝 ≤ 1.

The probability distribution is given by:

𝑃 (𝑋 = 1) = 𝑝

𝑃 (𝑋 = 0) = 1− 𝑝

The cumulative distribution function is as follows:

𝐹𝑝(𝑥) =

⎧⎨⎩ 0, 𝑥 < 0
1− 𝑝, 0 ≤ 𝑥 < 1, 𝑥 ∈ 𝑅

1, 𝑥 ≥ 1

class bernoulli

Syntax

namespace oneapi::mkl::rng {
template<typename IntType = std::int32_t, typename Method = bernoulli_method::by_default>
class bernoulli {
public:

using method_type = Method;
using result_type = IntType;
bernoulli();
explicit bernoulli(float p);
float p() const;

};
}

Template parameters

typename IntType
Type of the produced values. Supported types:

• std::int32_t

• std::uint32_t

typename Method = oneapi::mkl::rng::bernoulli_method::by_default Transformation method, which will be
used for generation. Supported types:

• oneapi::mkl::rng::bernoulli_method::by_default

• oneapi::mkl::rng::bernoulli_method::icdf

See description of the methods in Distributions methods template parameter.

11.2. oneMKL Domains 1647

oneAPI Specification, Release 1.1-rev-1

Class Members

Routine Description
bernoulli() Default constructor
explicit bernoulli(float p) Constructor with parameters
float p() const Method to obtain probability p

Member types

bernoulli::method_type = Method

Description

The type which defines transformation method for generation.

bernoulli::result_type = IntType

Description

The type which defines type of generated random numbers.

Constructors

bernoulli::bernoulli()

Description

Default constructor for distribution, parameters set as p = 0.5f.

explicit bernoulli::bernoulli(float p)

Description

Constructor with parameters. p is a probability.

Throws

oneapi::mkl::invalid_argument Exception is thrown when p > 1.0f, or p < 0.0f

11.2. oneMKL Domains 1648

oneAPI Specification, Release 1.1-rev-1

Characteristics

float p() const

Return Value

Returns the distribution parameter p - probability.

Parent topic: Distributions

geometric

Class is used for generation of geometrically distributed integer types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers geometrically dis-
tributed with probability 𝑝 of a single success trial, where 𝑝 ∈ 𝑅; 0 < 𝑝 < 1.

The probability distribution is given by:

𝑃 (𝑋 = 𝑘) = 𝑝 * (1− 𝑝)𝑘, 𝑘 = {0, 1, 2, ...}.

The cumulative distribution function is as follows:

𝐹𝑝(𝑥) =

{︂
0, 𝑥 < 0

1− (1− 𝑝)⌊𝑥+1⌋, 𝑥 ≥ 0

class geometric

Syntax

namespace oneapi::mkl::rng {
template<typename IntType = std::int32_t, typename Method = geometric_method::by_default>
class geometric {
public:

using method_type = Method;
using result_type = IntType;
geometric();
explicit geometric(float p);
float p() const;

};
}

11.2. oneMKL Domains 1649

oneAPI Specification, Release 1.1-rev-1

Template parameters

typename IntType
Type of the produced values. Supported types:

• std::int32_t

• std::uint32_t

typename Method = oneapi::mkl::rng::geometric_method::by_default Transformation method, which will be
used for generation. Supported types:

• oneapi::mkl::rng::geometric_method::by_default

• oneapi::mkl::rng::geometric_method::icdf

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
geometric() Default constructor
explicit geometric(float p) Constructor with parameters
float p() const Method to obtain probability value

Member types

geometric::method_type = Method

Description

The type which defines transformation method for generation.

geometric::result_type = IntType

Description

The type which defines type of generated random numbers.

Constructors

geometric::geometric()

11.2. oneMKL Domains 1650

oneAPI Specification, Release 1.1-rev-1

Description

Default constructor for distribution, parameters set as p = 0.5.

explicit geometric::geometric(float p)

Description

Constructor with parameters. p is a probability value.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑝 ≥ 1.0𝑓 , or 𝑝 ≤ 0.0𝑓

Characteristics

float geometric::p() const

Return Value

Returns the distribution parameter p - probability value.

Parent topic: Distributions

binomial

Class is used for generation of binomially distributed integer types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers binomially distributed
with a number of independent Bernoulli trials 𝑚, and with probability 𝑝 of a single trial success, where 𝑝 ∈ 𝑅; 0 ≤
𝑝 ≤ 1,𝑚 ∈ 𝑁 .

A binomially distributed variate represents the number of successes in 𝑚 independent Bernoulli trials with probability
of a single trial success 𝑝.

The probability distribution is given by:

𝑃 (𝑋 = 𝑘) = 𝐶𝑘
𝑚𝑝𝑘(1− 𝑝)𝑚−𝑘, 𝑘 ∈ {0, 1, ...,𝑚}

The cumulative distribution function is as follows:

𝐹𝑚,𝑝(𝑥) =

⎧⎨⎩
0, 𝑥 < 0∑︀⌊𝑥⌋

𝑘=0 𝐶
𝑘
𝑚𝑝𝑘(1− 𝑝)𝑚−𝑘, 0 ≤ 𝑥 < 𝑚, 𝑥 ∈ 𝑅

1, 𝑥 ≥ 𝑚

11.2. oneMKL Domains 1651

oneAPI Specification, Release 1.1-rev-1

class binomial

Syntax

namespace oneapi::mkl::rng {
template<typename IntType = std::int32_t, typename Method = binomial_method::by_default>
class binomial {
public:

using method_type = Method;
using result_type = IntType;
binomial();
explicit binomial(std::int32_t ntrial, double p);
std::int32_t ntrial() const;
double p() const;

};
}

Template parameters

typename IntType
Type of the produced values. Supported types:

• std::int32_t

typename Method = oneapi::mkl::rng::binomial_method::by_default Transformation method, which will be
used for generation. Supported types:

• oneapi::mkl::rng::binomial_method::by_default

• oneapi::mkl::rng::binomial_method::btpe

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
binomial() Default constructor
explicit binomial(std::int32_t ntrial, double p) Constructor with parameters
std::int32_t ntrial() const Method to obtain number of independent trials m
double p() const Method to obtain success probability of a single trial p

Member types

binomial::method_type = Method

11.2. oneMKL Domains 1652

oneAPI Specification, Release 1.1-rev-1

Description

The type which defines transformation method for generation.

binomial::result_type = IntType

Description

The type which defines type of generated random numbers.

Constructors

binomial::binomial()

Description

Default constructor for distribution, parameters set as m = 5, p = 0.5.

explicit binomial::binomial(std::int32_t ntrial, double p)

Description

Constructor with parameters. ntrial is the number of independent trials, p is the success probability of a single trial.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑝 > 1.0, or 𝑝 < 0.0, or 𝑛𝑡𝑟𝑖𝑎𝑙 < 1

Characteristics

std::int32_t binomial::ntrial() const

Return Value

Returns the distribution parameter m - number of independent trials.

double binomial::p() const

11.2. oneMKL Domains 1653

oneAPI Specification, Release 1.1-rev-1

Return Value

Returns the distribution parameter p - success probability of a single trial.

Parent topic: Distributions

hypergeometric

Class is used for generation of hypergeometrically distributed integer types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers hypergeometrically
distributed with lot size 𝑙, size of sampling 𝑠, and number of marked elements in the lot𝑚, where 𝑙,𝑚, 𝑠 ∈ 𝑁

⋃︀
{0}; 𝑙 ≥

𝑚𝑎𝑥(𝑠,𝑚).

Consider a lot of 𝑙 elements comprising 𝑚 marked and 𝑙 - 𝑚 unmarked elements. A trial sampling without replacement
of exactly 𝑠 elements from this lot helps to define the hypergeometric distribution, which is the probability that the group
of 𝑠 elements contains exactly 𝑘 marked elements.

The probability distribution is given by:

𝑃(𝑋 = 𝑘) =
𝐶𝑘

𝑚𝐶𝑠−𝑘
𝑙−𝑚

𝐶𝑠
𝑙

, 𝑘 ∈ {𝑚𝑎𝑥(0, 𝑠 + 𝑚− 𝑙), ...,𝑚𝑖𝑛(𝑠,𝑚)}.

The cumulative distribution function is as follows:

𝐹𝑙,𝑠,𝑚(𝑥) =

⎧⎪⎨⎪⎩
0, 𝑥 < 𝑚𝑎𝑥(0, 𝑠 + 𝑚− 𝑙)∑︀⌊𝑥⌋

𝑘=𝑚𝑎𝑥(0,𝑠+𝑚−𝑙)
𝐶𝑘

𝑚𝐶𝑠−𝑘
𝑙−𝑚

𝐶𝑠
𝑙

,𝑚𝑎𝑥(0, 𝑠 + 𝑚− 𝑙) ≤ 𝑥 ≤ 𝑚𝑖𝑛(𝑠,𝑚)

1, 𝑥 > 𝑚𝑖𝑛(𝑠,𝑚)

class hypergeometric

Syntax

namespace oneapi::mkl::rng {
template<typename IntType = std::int32_t, typename Method = hypergeometric_method::by_
→˓default>
class hypergeometric {
public:

using method_type = Method;
using result_type = IntType;
hypergeometric();
explicit hypergeometric(std::int32_t l, std::int32_T s, std::int32_T m);
std::int32_t s() const;
std::int32_t m() const;
std::int32_t l() const;

};
}

11.2. oneMKL Domains 1654

oneAPI Specification, Release 1.1-rev-1

Template parameters

typename IntType
Type of the produced values. Supported types:

• std::int32_t

• std::uint32_t

typename Method = oneapi::mkl::rng::hypergeometric_method::by_default Transformation method, which will
be used for generation. Supported types:

• oneapi::mkl::rng::hypergeometric_method::by_default

• oneapi::mkl::rng::hypergeometric_method::h2pe

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
hypergeometric() Default constructor
explicit hypergeometric(std::int32_t l, std::int32_T s,
std::int32_T m)

Constructor with parameters

std::int32_t s() const Method to obtain lot size
std::int32_t m() const Method to obtain size of sampling without re-

placement
std::int32_t l() const Method to obtain number of marked elements

Member types

hypergeometric::method_type = Method

Description

The type which defines transformation method for generation.

hypergeometric::result_type = IntType

Description

The type which defines type of generated random numbers.

11.2. oneMKL Domains 1655

oneAPI Specification, Release 1.1-rev-1

Constructors

hypergeometric::hypergeometric()

Description

Default constructor for distribution, parameters set as l = 1, s = 1, m = 1.

explicit hypergeometric::hypergeometric(std::int32_t l, std::int32_T s, std::int32_T m)

Description

Constructor with parameters. l is a lot size, s is a size of sampling without replacement, m is a number of marked
elements.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑠 < 0, or 𝑚 < 0, or 𝑙 < (𝑠 > 𝑚?𝑠 : 𝑚)

Characteristics

std::int32_t hypergeometric::l() const

Return Value

Returns the distribution parameter l - lot size value.

std::int32_t hypergeometric::s() const

Return Value

Returns the distribution parameter s - size of sampling without replacement.

std::int32_t hypergeometric::m() const

Return Value

Returns the distribution parameter m - number of marked elements.

Parent topic: Distributions

11.2. oneMKL Domains 1656

oneAPI Specification, Release 1.1-rev-1

poisson

Class is used for generation of Poisson distributed integer types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers Poisson distributed
with distribution parameter 𝜆, where 𝜆 ∈ 𝑅;𝜆 > 0;.

The probability distribution is given by:

𝑃 (𝑋 = 𝑘) =
𝜆𝑘𝑒−𝜆

𝑘!
.

The cumulative distribution function is as follows:

𝐹𝜆(𝑥) =

{︂ ∑︀⌊𝑥⌋
𝑘=0

𝜆𝑘𝑒−𝜆

𝑘! , 𝑥 ≥ 0
0, 𝑥 < 0

class poisson

Syntax

namespace oneapi::mkl::rng {
template<typename IntType = std::int32_t, typename Method = poisson_method::by_default>
class poisson {
public:

using method_type = Method;
using result_type = IntType;
poisson();
explicit poisson(double lambda);
double lambda() const;

};
}

Template parameters

typename IntType
Type of the produced values. Supported types:

• std::int32_t

typename Method = oneapi::mkl::rng::poisson_method::by_default Transformation method, which will be used
for generation. Supported types:

• oneapi::mkl::rng::poisson_method::by_default

• oneapi::mkl::rng::poisson_method::ptpe

• oneapi::mkl::rng::poisson_method::gaussian_icdf_based

See description of the methods in Distributions methods template parameter.

11.2. oneMKL Domains 1657

oneAPI Specification, Release 1.1-rev-1

Class Members

Routine Description
poisson() Default constructor
explicit poisson(double lambda) Constructor with parameters
double lambda() const Method to obtain distribution parameter

Member types

poisson::method_type = Method

Description

The type which defines transformation method for generation.

poisson::result_type = IntType

Description

The type which defines type of generated random numbers.

Constructors

poisson::poisson()

Description

Default constructor for distribution, parameters set as lambda = 0.5.

explicit poisson::poisson(double lambda)

Description

Constructor with parameters. lambda is a distribution parameter.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑙𝑎𝑚𝑏𝑑𝑎 ≤ 0.0

11.2. oneMKL Domains 1658

oneAPI Specification, Release 1.1-rev-1

Characteristics

double poisson::lambda() const

Return Value

Returns the distribution parameter lambda.

Parent topic: Distributions

poisson_v

Class is used for generation of Poisson distributed integer types random numbers with varying mean.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide n random numbers Poisson distributed,
with distribution parameter 𝜆𝑖, where 𝜆𝑖 ∈ 𝑅;𝜆𝑖 > 0; 𝑖 = 1, ..., 𝑛.

The probability distribution is given by:

𝑃 (𝑋𝑖 = 𝑘) =
𝜆𝑘
𝑖 𝑒
−𝜆𝑖

𝑘!
, 𝑘 ∈ {0, 1, 2, ...}.

The cumulative distribution function is as follows:

𝐹𝜆𝑖
(𝑥) =

{︃ ∑︀⌊𝑥⌋
𝑘=0

𝜆𝑘
𝑖 𝑒

−𝜆𝑖

𝑘! , 𝑥 ≥ 0
0, 𝑥 < 0

class poisson_v

Syntax

namespace oneapi::mkl::rng {
template<typename IntType = std::int32_t, typename Method = poisson_v_method::by_default>
class poisson_v {
public:

using method_type = Method;
using result_type = IntType;
explicit poisson_v(std::vector<double> lambda);
std::vector<double> lambda() const;

};
}

11.2. oneMKL Domains 1659

oneAPI Specification, Release 1.1-rev-1

Template parameters

typename IntType
Type of the produced values. Supported types:

• std::int32_t

typename Method = oneapi::mkl::rng::poisson_v_method::by_default Transformation method, which will be
used for generation. Supported types:

• oneapi::mkl::rng::poisson_v_method::by_default

• oneapi::mkl::rng::poisson_v_method::gaussian_icdf_based

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
explicit poisson_v(std::vector<double> lambda) Constructor with parameters
std::vector<double> lambda() const Method to obtain distribution parameter

Member types

poisson_v::method_type = Method

Description

The type which defines transformation method for generation.

poisson_v::result_type = IntType

Description

The type which defines type of generated random numbers.

Constructors

11.2. oneMKL Domains 1660

oneAPI Specification, Release 1.1-rev-1

explicit poisson_v::poisson_v(std::vector<double> lambda)

Description

Constructor with parameters. lambda is a distribution parameter.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑙𝑎𝑚𝑏𝑑𝑎.𝑠𝑖𝑧𝑒() ≤ 1

Characteristics

double poisson_v::lambda() const

Return Value

Returns the distribution parameter lambda.

Parent topic: Distributions

negative_binomial

Class is used for generation of negative binomially distributed integer types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide random numbers negative binomially
distributed with distribution parameters 𝑎 and 𝑝, where 𝑝, 𝑎 ∈ 𝑅; 0 ≤ 𝑝 ≤ 1, 𝑎 > 0.

The probability distribution is given by:

𝑃 (𝑋 = 𝑘) = 𝐶𝑘
𝑎+𝑘−1𝑝

𝑎(1− 𝑝)𝑘, 𝑘 ∈ {0, 1, 2, ...}

The cumulative distribution function is as follows:

𝐹𝑎,𝑝(𝑥) =

{︂ ∑︀⌊𝑥⌋
𝑘=0 𝐶

𝑘
𝑎+𝑘−1𝑝

𝑎(1− 𝑝)𝑘, 𝑥 ≥ 0, 𝑥 ∈ 𝑅
0, 𝑥 < 0

class negative_binomial

Syntax

namespace oneapi::mkl::rng {
template<typename IntType = std::int32_t, typename Method = negative_binomial_method::by_
→˓default>
class negative_binomial {
public:

(continues on next page)

11.2. oneMKL Domains 1661

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

using method_type = Method;
using result_type = IntType;
negative_binomial();
explicit negative_binomial(double a, double p);
double a() const;
double p() const;

};
}

Template parameters

typename IntType
Type of the produced values. Supported types:

• std::int32_t

• std::uint32_t

typename Method = oneapi::mkl::rng::negative_binomial_method::by_default Transformation method, which
will be used for generation. Supported types:

• oneapi::mkl::rng::negative_binomial_method::by_default

• oneapi::mkl::rng::negative_binomial_method::nbar

See description of the methods in Distributions methods template parameter.

Class Members

Routine Description
negative_binomial() Default constructor
explicit negative_binomial(double a, double p) Constructor with parameters
double a() const Method to obtain the first distribution parameter a
double p() const Method to obtain the second distribution parameter p

Member types

negative_binomial::method_type = Method

Description

The type which defines transformation method for generation.

negative_binomial::result_type = IntType

11.2. oneMKL Domains 1662

oneAPI Specification, Release 1.1-rev-1

Description

The type which defines type of generated random numbers.

Constructors

negative_binomial::negative_binomial()

Description

Default constructor for distribution, parameters set as a = 0.1, p = 0.5.

explicit negative_binomial::negative_binomial(double a, double p)

Description

Constructor with parameters. a is the first distribution parameter, p is the second distribution parameter.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑝 ≥ 1.0, or 𝑝 ≤ 0.0, or 𝑎 ≤ 0.0

Characteristics

double negative_binomial::a() const

Return Value

Returns the distribution parameter a - the first distribution parameter.

double negative_binomial::p() const

Return Value

Returns the distribution parameter p - the second distribution parameter.

Parent topic: Distributions

11.2. oneMKL Domains 1663

oneAPI Specification, Release 1.1-rev-1

multinomial

Class is used for generation of multinomially distributed integer types random numbers.

Description

The class object is used in the oneapi::mkl::rng::generate() function to provide n random numbers multinomially
distributed, with independent trials (𝑛𝑡𝑟𝑖𝑎𝑙,𝑚) and possible mutually exclusive outcomes 𝑘, with corresponding prob-
abilities 𝑝𝑖, where 𝑝𝑖 ∈ 𝑅; 0 ≤ 𝑝𝑖 ≤ 1;𝑚, 𝑘 ∈ 𝑁 .

The probability distribution is given by:

𝑃 (𝑋1 = 𝑥1, ..., 𝑋𝑘 = 𝑥𝑘) =
𝑚!

Π𝑘
𝑖=1𝑥𝑖!

Π𝑘
𝑖=1𝑝

𝑥𝑖
𝑖 , 0 ≤ 𝑥𝑖 ≤ 𝑚,

𝑘∑︁
𝑖=1

𝑥𝑖 = 𝑚

class multinomial

Syntax

namespace oneapi::mkl::rng {
template<typename IntType = std::int32_t, typename Method = multinomial_method::by_
→˓default>
class multinomial {
public:

using method_type = Method;
using result_type = IntType;
explicit multinomial(double ntrial, std::vector<double> p);
std::int32_t ntrial() const;
std::vector<double> p() const;

};
}

Template parameters

typename IntType
Type of the produced values. Supported types:

• std::int32_t

• std::uint32_t

typename Method = oneapi::mkl::rng::multinomial_method::by_default Transformation method, which will be
used for generation. Supported types:

• oneapi::mkl::rng::multinomial_method::by_default

• oneapi::mkl::rng::multinomial_method::poisson_icdf_based

See description of the methods in Distributions methods template parameter.

11.2. oneMKL Domains 1664

oneAPI Specification, Release 1.1-rev-1

Class Members

Routine Description
explicit multinomial(double ntrial, std::vector<double>
p)

Constructor with parameters

std::int32_t ntrial() const Method to obtain number of independent trials
std::vector<double> p() const Method to obtain probability vector of possible out-

comes

Member types

multinomial::method_type = Method

Description

The type which defines the transformation method for generation.

multinomial::result_type = IntType

Description

The type which defines the type of generated random numbers.

Constructors

explicit multinomial::multinomial(double ntrial, std::vector<double> p)

Description

Constructor with parameters. ntrial is a number of independent trials, p is a probability vector.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑛𝑡𝑟𝑖𝑎𝑙 < 0, or 𝑝.𝑠𝑖𝑧𝑒() < 1

Characteristics

std::int32_t multinomial::ntrial() const

11.2. oneMKL Domains 1665

oneAPI Specification, Release 1.1-rev-1

Return Value

Returns the distribution parameter ntrial.

std::vector<double> multinomial::p() const

Return Value

Returns the distribution parameter p.

Parent topic: Distributions

Bibliography

For more information about the RNG functionality, refer to the following publications:

• RNG
[Bratley88] Bratley P. and Fox B.L. Implementing Sobol’s Quasirandom Sequence Generator, ACM Transac-

tions on Mathematical Software, Vol. 14, No. 1, Pages 88-100, March 1988.

[Bratley92] Bratley P., Fox B.L., and Niederreiter H. Implementation and Tests of Low-Discrepancy Sequences,
ACM Transactions on Modeling and Computer Simulation, Vol. 2, No. 3, Pages 195-213, July 1992.

[Coddington94] Coddington, P. D. Analysis of Random Number Generators Using Monte Carlo Simulation.
Int. J. Mod. Phys. C-5, 547, 1994.

[L’Ecuyer99] L’Ecuyer, Pierre. Tables of Linear Congruential Generators of Different Sizes and Good Lattice
Structure. Mathematics of Computation, 68, 225, 249-260, 1999.

[L’Ecuyer99a] L’Ecuyer, Pierre. Good Parameter Sets for Combined Multiple Recursive Random Number Gen-
erators. Operations Research, 47, 1, 159-164, 1999.

[Kirkpatrick81] Kirkpatrick, S., and Stoll, E. A Very Fast Shift-Register Sequence Random Number Generator.
Journal of Computational Physics, V. 40. 517-526, 1981.

[Matsumoto98] Matsumoto, M., and Nishimura, T. Mersenne Twister: A 623-Dimensionally Equidistributed
Uniform Pseudo-Random Number Generator, ACM Transactions on Modeling and Computer Simulation,
Vol. 8, No. 1, Pages 3-30, January 1998.

[Matsumoto00] Matsumoto, M., and Nishimura, T. Dynamic Creation of Pseudorandom Number Generators,
56-69, in: Monte Carlo and Quasi-Monte Carlo Methods 1998, Ed. Niederreiter, H. and Spanier, J.,
Springer 2000, http://www.math.sci.hiroshima-u.ac.jp/%7Em-mat/MT/DC/dc.html.

[NAG] NAG Numerical Libraries. http://www.nag.co.uk/numeric/numerical_libraries.asp

[Saito08] Saito, M., and Matsumoto, M. SIMD-oriented Fast Mersenne Twister: a 128-bit Pseudorandom Num-
ber Generator. Monte Carlo and Quasi-Monte Carlo Methods 2006, Springer, Pages 607 – 622, 2008.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/earticles.html

[Salmon11] Salmon, John K., Morales, Mark A., Dror, Ron O., and Shaw, David E., Parallel Random Numbers:
As Easy as 1, 2, 3. SC ‘11 Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, 2011.

[Sobol76] Sobol, I.M., and Levitan, Yu.L. The production of points uniformly distributed in a multidimensional
cube. Preprint 40, Institute of Applied Mathematics, USSR Academy of Sciences, 1976 (In Russian).

[MT2203] http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html.

11.2. oneMKL Domains 1666

http://www.math.sci.hiroshima-u.ac.jp/%7Em-mat/MT/DC/dc.html
http://www.nag.co.uk/numeric/numerical_libraries.asp
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/ARTICLES/earticles.html
http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

oneAPI Specification, Release 1.1-rev-1

[FIPS-197] Federal Information Processing Standards Publication 197, ADVANCED ENCRYPTION STAN-
DARD (AES)

11.2.5 Summary Statistics

The oneMKL provides a set of Summary Statistics routines that compute basic statistical estimates for single and double
precision multi-dimensional datasets.

Summary Statistics Overview

Definitions

The oneMKL Summary Statistics domains consists of:

• Dataset structure. The structure consolidates the information of a multi-dimensional dataset (see detailed de-
scription in dataset).

• Computation routines. The routines are represented as free functions (see detailed description for each routine
in Summary Statistics Routines):

– Raw and central sums / moments up to the fourth order

– Variation coefficient

– Skewness and excess kurtosis (further referred as kurtosis)

– Minimum and maximum

Refer to oneMKL Summary Statistics Usage Model.

oneMKL Summary Statistics Usage Model

Description

A typical algorithm for summary statistics is as follows:

1. Create and initialize an object for dataset.

2. Call the summary statistics routine to calculate the appropriate estimate.

The following example demonstrates how to calculate mean values for a 3-dimensional dataset filled with random
numbers. For dataset creation, the make_dataset helper function is used.

Buffer-based example

#include <iostream>
#include <vector>

#include "CL/sycl.hpp"
#include "oneapi/mkl/stats.hpp"

int main() {
sycl::queue queue;

(continues on next page)

11.2. oneMKL Domains 1667

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const size_t n_observations = 1000;
const size_t n_dims = 3;
std::vector<float> x(n_observations * n_dims);
// fill x storage with random numbers
for(int i = 0; i < n_dims, i++) {
for(int j = 0; j < n_observations; j++) {

x[j + i * n_observations] = float(std::rand()) / float(RAND_MAX);
}

}
//create buffer for dataset
sycl::buffer<float, 1> x_buf(x.data(), x.size());
// create buffer for mean values
sycl::buffer<float, 1> mean_buf(n_dims);
// create oneapi::mkl::stats::dataset
auto dataset = oneapi::mkl::stats::make_dataset<oneapi::mkl::stats::layout::row_

→˓major>(n_dims, n_observations, x_buf);

oneapi::mkl::stats::mean(queue, dataset, mean_buf);

// create host accessor for mean_buf to print results
auto acc = mean_buf.template get_access<sycl::access::mode::read>();

for(int i = 0; i < n_dims; i++) {
std::cout << "Mean value for dimension " << i << ": " << acc[i] << std::endl;

}
return 0;

}

USM-based example

#include <iostream>
#include <vector>

#include "CL/sycl.hpp"
#include "oneapi/mkl/stats.hpp"

int main() {
sycl::queue queue;

const size_t n_observations = 1000;
const size_t n_dims = 3;

sycl::usm_allocator<float, sycl::usm::alloc::shared> allocator(queue);

std::vector<float, decltype(allocator)> x(n_observations * n_dims, allocator);
// fill x storage with random numbers
for(int i = 0; i < n_dims, i++) {

(continues on next page)

11.2. oneMKL Domains 1668

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

for(int j = 0; j < n_observations; j++) {
x[j + i * n_observations] = float(std::rand()) / float(RAND_MAX);

}
}
std::vector<float, decltype(allocator)> mean_buf(n_dims, allocator);
// create oneapi::mkl::stats::dataset
auto dataset = oneapi::mkl::stats::make_dataset<oneapi::mkl::stats::layout::row_

→˓major>(n_dims, n_observations, x);

sycl::event event = oneapi::mkl::stats::mean(queue, dataset, mean);
event.wait();
for(int i = 0; i < n_dims; i++) {
std::cout << "Mean value for dimension " << i << ": " << mean[i] << std::endl;

}
return 0;

}

USM usage

You can also use USM with raw pointers by using the sycl::malloc_shared/malloc_device functions.

Parent topic: Summary Statistics

dataset

The structure consolidates the information of a multi-dimensional dataset.

Description

The dataset struct object is used in Summary Statistics Routines as a multi-dimensional data storage. dataset struct
contains information about observations matrix and its size (dimensions x observations), observations weights and
indices for dimensions (defines dimensions to be processed).

structure dataset (Buffer version)

Syntax

namespace oneapi::mkl::stats {
template<layout ObservationsLayout, typename Type>

struct dataset<ObservationsLayout, sycl::buffer<Type, 1>> {

explicit dataset(std::int64_t n_dims_, std::int64_t n_observations_,
sycl::buffer<Type, 1> observations_, sycl::buffer<Type, 1> weights_ = {0}

→˓,
sycl::buffer<std::int64_t, 1> indices_ = {0}) :
n_dims(n_dims_), n_observations(n_observations_),
observations(observations_),
weights(weights_), indices(indices_) {};

(continues on next page)

11.2. oneMKL Domains 1669

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int64_t n_dims;
std::int64_t n_observations;
sycl::buffer<Type, 1> observations;
sycl::buffer<Type, 1> weights = {0};
sycl::buffer<std::int64_t, 1> indices = {0};
static constexpr layout layout = ObservationsLayout;
};

}

Template parameters

typename Type Type of the multi-dimensional data. Supported types:

• float

• double

oneapi::mkl::stats::layout ObservationsLayout Type of the multi-dimensional data layout. Supported types:

• oneapi::mkl::stats::layout::row_major

• oneapi::mkl::stats::layout::col_major

Struct Members

Routine De-
scrip-
tion

explicit dataset(std::int64_t n_dims_, std::int64_t n_observations_, sycl::buffer<Type, 1> observations_,
sycl::buffer<Type, 1> weights_ = {0}, sycl::buffer<std::int64_t, 1> indices_ = {0})

Con-
struc-
tor

Constructors

explicit dataset::dataset(std::int64_t n_dims_, std::int64_t n_observations_,
sycl::buffer<Type, 1> observations_,
sycl::buffer<Type, 1> weights_ = {0},
sycl::buffer<std::int64_t, 1> indices_ = {0})

Description

Constructor with parameters.

• n_dims_ is the number of dimensions

• n_observations_ is the number of observations

• observations_ is the matrix of observations

• weights_ is an optional parameter, represents array of weights for observations (of size n_observations). If the
parameter is not specified, each observation is assigned a weight equal 1.

11.2. oneMKL Domains 1670

oneAPI Specification, Release 1.1-rev-1

• indices_ is an optional parameter, represents array of dimensions that are processed (of size n_dims). If the
parameter is not specified, all dimensions are processed.

Throws

oneapi::mkl::invalid_argument Exception is thrown when n_dims_ ≤ 0, or n_observations_ ≤ 0, or observa-
tions_.get_count() == 0

structure dataset (USM version)

Syntax

namespace oneapi::mkl::stats {
template<layout ObservationsLayout, typename Type>

struct dataset<Type*, ObservationsLayout> {
explicit dataset(std::int64_t n_dims_, std::int64_t n_observations_, Type*␣

→˓observations_,
Type* weights_ = nullptr, std::int64_t* indices_ = nullptr) :
n_dims(n_dims_), n_observations(n_observations_),
observations(observations_),
weights(weights_), indices(indices_) {};

std::int64_t n_dims;
std::int64_t n_observations;
Type* observations;
Type* weights = nullptr;
std::int64_t* indices = nullptr;
static constexpr layout layout = ObservationsLayout;
};

}

Template parameters

typename Type Type of the multi-dimensional data. Supported types:

• float

• double

oneapi::mkl::stats::layout ObservationsLayout Type of the multi-dimensional data layout. Supported types:

• oneapi::mkl::stats::layout::row_major

• oneapi::mkl::stats::layout::col_major

11.2. oneMKL Domains 1671

oneAPI Specification, Release 1.1-rev-1

Struct Members

Routine De-
scrip-
tion

explicit dataset(std::int64_t n_dims_, std::int64_t n_observations_, Type* observations_, Type*
weights_ = nullptr, std::int64_t* indices_ = nullptr)

Con-
structor

Constructors

explicit dataset::dataset(std::int64_t n_dims_, std::int64_t n_observations_,
Type* observations_,
Type* weights_ = nullptr,
std::int64_t* indices_ = nullptr)

Description

Constructor with parameters.

• n_dims_ is the number of dimensions

• n_observations_ is the number of observations

• observations_ is the matrix of observations

• weights_ is an optional parameter, represents array of weights for observations (of size n_observations). If the
parameter is not specified, each observation is assigned a weight equal 1.

• indices_ is an optional parameter, represents array of dimensions that are processed (of size n_dims). If the
parameter is not specified, all dimensions are processed.

Throws

oneapi::mkl::invalid_argument Exception is thrown when n_dims_ ≤ 0, or n_observations_ ≤ 0, or observations_
== nullptr

Parent topic: Summary Statistics

Summary Statistics Routines

The oneMKL Summary Statistics routines calculate next estimates:

11.2. oneMKL Domains 1672

oneAPI Specification, Release 1.1-rev-1

Routine Description
raw_sum Raw sums up to the fourth order
central_sum Central sums up to the fourth order
central_sum with provided mean Central sums up to the fourth order with provided mean
mean Mean value
raw_moment Raw moments up to the fourth order
central_moment Central moments up to the fourth order
central_moment with provided mean Central moments up to the fourth order with provided mean
variation Variation coefficient
variation with provided mean Variation coefficient with provided mean
skewness Skewness value
skewness with provided mean Skewness value with provided mean
kurtosis Kurtosis value
kurtosis with provided mean Kurtosis value with provided mean
min Min value
max Max value
min_max Min and max values

Parent topic: Summary Statistics

raw_sum

Entry point to compute raw sums up to the 4th order.

Description and Assumptions

The oneapi::mkl::stats::raw_sum function is used to compute an array of raw sums up to the 4th order (raw sums for
each dataset’s dimension).

raw_sum supports the following precisions for data:

T
float
double

raw_sum (Buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void raw_sum(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> sum,
sycl::buffer<Type, 1> raw_sum_2 = {0},
sycl::buffer<Type, 1> raw_sum_3 = {0},
sycl::buffer<Type, 1> raw_sum_4 = {0});

}

11.2. oneMKL Domains 1673

oneAPI Specification, Release 1.1-rev-1

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

Output Parameters

sum sycl::buffer array of sum values.

raw_sum_2 Optional parameter. sycl::buffer array of 2nd order raw sum values.

raw_sum_3 Optional parameter. sycl::buffer array of 3rd order raw sum values.

raw_sum_4 Optional parameter. sycl::buffer array of 4th order raw sum values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when sum.get_count() == 0 & raw_sum_2.get_count() == 0 &
raw_sum_3.get_count() == 0 & raw_sum_4.get_count() == 0, or dataset object is invalid

raw_sum (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event raw_sum(sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* sum,
Type* raw_sum_2 = nullptr,
Type* raw_sum_3 = nullptr,
Type* raw_sum_4 = nullptr,
const std::vector<sycl::event> &dependencies = {});

}

11.2. oneMKL Domains 1674

oneAPI Specification, Release 1.1-rev-1

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

dependencies Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

sum Pointer to the array of sum values.

raw_sum_2 Optional parameter. Pointer to the array of the 2nd order raw sum values.

raw_sum_3 Optional parameter. Pointer to the array of the 3rd order raw sum values.

raw_sum_4 Optional parameter. Pointer to the array of the 2nd order raw sum values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when sum == nullptr & raw_sum_2 == nullptr & raw_sum_3
== nullptr & raw_sum_4 == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

central_sum

Entry point to compute central sums up to the 4th order.

11.2. oneMKL Domains 1675

oneAPI Specification, Release 1.1-rev-1

Description and Assumptions

The oneapi::mkl::stats::central_sum function is used to compute an array of central sums up to the 4th order (central
sums for each dataset’s dimension).

central_sum supports the following precisions for data:

T
float
double

central_sum (Buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void central_sum(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> central_sum_2,
sycl::buffer<Type, 1> central_sum_3 = {0},
sycl::buffer<Type, 1> central_sum_4 = {0});

}

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

Output Parameters

central_sum_2 sycl::buffer array of 2nd order central sum values.

central_sum_3 Optional parameter. sycl::buffer array of 3rd order central sum values.

central_sum_4 Optional parameter. sycl::buffer array of 4th order central sum values.

11.2. oneMKL Domains 1676

oneAPI Specification, Release 1.1-rev-1

Throws

oneapi::mkl::invalid_argument Exception is thrown when central_sum_2.get_count() == 0 & cen-
tral_sum_3.get_count() == 0 & central_sum_4.get_count() == 0, or dataset object is invalid

central_sum (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event central_sum(
sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* central_sum_2,
Type* central_sum_3 = nullptr,
Type* central_sum_4 = nullptr,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

dependencies Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

central_sum_2 Pointer to the array of the 2nd order central sum values.

central_sum_3 Optional parameter. Pointer to the array of the 3rd order central sum values.

central_sum_4 Optional parameter. Pointer to the array of the 2nd order central sum values.

11.2. oneMKL Domains 1677

oneAPI Specification, Release 1.1-rev-1

Throws

oneapi::mkl::invalid_argument Exception is thrown when central_sum_2 == nullptr & central_sum_3 == nullptr &
central_sum_4 == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

central_sum with provided mean

Entry point to compute central sums up to the 4th order with the provided mean values.

Description and Assumptions

The oneapi::mkl::stats::central_sum function is used to compute an array of central sums up to the 4th order (central
sums for each dataset’s dimension) with the provided mean values.

central_sum with provided mean supports the following precisions for data:

T
float
double

central_sum with provided mean (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void central_sum(sycl::queue& queue,
sycl::buffer<Type, 1> mean,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> central_sum_2,
sycl::buffer<Type, 1> central_sum_3 = {0},
sycl::buffer<Type, 1> central_sum_4 = {0});

}

11.2. oneMKL Domains 1678

oneAPI Specification, Release 1.1-rev-1

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

mean sycl::buffer to the array of provided mean values.

data Dataset which is used for computation.

Output Parameters

central_sum_2 sycl::buffer array of 2nd order central sum values.

central_sum_3 Optional parameter. sycl::buffer array of 3rd order central sum values.

central_sum_4 Optional parameter. sycl::buffer array of 4th order central sum values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when central_sum_2.get_count() == 0 & cen-
tral_sum_3.get_count() == 0 & central_sum_4.get_count() == 0, or mean.get_count() == 0, or dataset
object is invalid

central_sum with provided mean (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event central_sum(sycl::queue& queue,
Type* mean,
const dataset<ObservationsLayout, Type*>& data,
Type* central_sum_2,
Type* central_sum_3 = nullptr,
Type* central_sum_4 = nullptr,
const std::vector<sycl::event> &dependencies = {});

}

11.2. oneMKL Domains 1679

oneAPI Specification, Release 1.1-rev-1

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

mean Pointer to the array of provided mean values.

data Dataset which is used for computation.

dependencies Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

central_sum_2 Pointer to the array of the 2nd order central sum values.

central_sum_3 Optional parameter. Pointer to the array of the 3rd order central sum values.

central_sum_4 Optional parameter. Pointer to the array of the 2nd order central sum values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when central_sum_2 == nullptr & central_sum_3 == nullptr &
central_sum_4 == nullptr, or mean == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

mean

Entry point to compute mean values.

Description and Assumptions

The oneapi::mkl::stats::mean function is used to compute a mean array (mean value for each dataset’s dimension).

mean supports the following precisions for data:

T
float
double

11.2. oneMKL Domains 1680

oneAPI Specification, Release 1.1-rev-1

mean (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void mean(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> mean);

}

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

Output Parameters

mean sycl::buffer array of mean values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when mean.get_count() == 0, or dataset object is invalid

mean (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event mean(sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* mean,
const std::vector<sycl::event> &dependencies = {});

}

11.2. oneMKL Domains 1681

oneAPI Specification, Release 1.1-rev-1

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

dependencies Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

mean Pointer to the array of mean values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when mean == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

raw_moment

Entry point to compute raw moments up to the 4th order.

Description and Assumptions

The oneapi::mkl::stats::raw_moment function is used to compute array of raw moments up to the 4th order (raw mo-
ments for each dataset’s dimension).

raw_moment supports the following precisions for data:

T
float
double

11.2. oneMKL Domains 1682

oneAPI Specification, Release 1.1-rev-1

oneapi::mkl::stats::raw_moment (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = fast, typename Type, layout ObservationsLayout>

void raw_moment(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> mean,
sycl::buffer<Type, 1> raw_moment_2 = {0},
sycl::buffer<Type, 1> raw_moment_3 = {0},
sycl::buffer<Type, 1> raw_moment_4 = {0});

}

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

Output Parameters

mean sycl::buffer array of mean values.

raw_moment_2 Optional parameter. sycl::buffer array of 2nd order raw moment values.

raw_moment_3 Optional parameter. sycl::buffer array of 3rd order raw moment values.

raw_moment_4 Optional parameter. sycl::buffer array of 4th order raw moment values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when mean.get_count() == 0 & raw_moment_2.get_count() ==
0 & raw_moment_3.get_count() == 0 & raw_moment_4.get_count() == 0, or dataset object is invalid

11.2. oneMKL Domains 1683

oneAPI Specification, Release 1.1-rev-1

raw_moment (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event raw_moment(
sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* mean,
Type* raw_moment_2 = nullptr,
Type* raw_moment_3 = nullptr,
Type* raw_moment_4 = nullptr,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

dependencies Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

mean Pointer to the array of mean values.

raw_moment_2 Optional parameter. Pointer to the array of the 2nd order raw moment values.

raw_moment_3 Optional parameter. Pointer to the array of the 3rd order raw moment values.

raw_moment_4 Optional parameter. Pointer to the array of the 2nd order raw moment values.

11.2. oneMKL Domains 1684

oneAPI Specification, Release 1.1-rev-1

Throws

oneapi::mkl::invalid_argument Exception is thrown when mean == nullptr & raw_moment_2 == nullptr &
raw_moment_3 == nullptr & raw_moment_4 == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

central_moment

Entry point to compute central moments up to the 4th order.

Description and Assumptions

The oneapi::mkl::stats::central_moment function is used to compute an array of central moments up to the 4th order
(central moments for each dataset’s dimension).

central_moment supports the following precisions for data:

T
float
double

central_moment (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = oneapi::mkl::stats::method::fast, typename Type,

layout ObservationsLayout>
void central_moment(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> central_moment_2,
sycl::buffer<Type, 1> central_moment_3 = {0},
sycl::buffer<Type, 1> central_moment_4 = {0});

}

11.2. oneMKL Domains 1685

oneAPI Specification, Release 1.1-rev-1

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

Output Parameters

central_moment_2 sycl::buffer array of 2nd order central moment values.

central_moment_3 Optional parameter. sycl::buffer array of 3rd order central moment values.

central_moment_4 Optional parameter. sycl::buffer array of 4th order central moment values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when central_moment_2.get_count() == 0 & cen-
tral_moment_3.get_count() == 0 & central_moment_4.get_count() == 0, or dataset object is invalid

central_moment (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event central_moment(sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data, Type* central_moment_2,
Type* central_moment_3 = nullptr, Type* central_moment_4 = nullptr,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

11.2. oneMKL Domains 1686

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

dependencies Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

central_moment_2 Pointer to the array of the 2nd order central moment values.

central_moment_3 Optional parameter. Pointer to the array of the 3rd order central moment values.

central_moment_4 Optional parameter. Pointer to the array of the 2nd order central moment values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when central_moment_2 == nullptr & central_moment_3 ==
nullptr & central_moment_4 == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

central_moment with provided mean

Entry point to compute central moments up to the 4th order with the provided mean values.

Description and Assumptions

The oneapi::mkl::stats::central_moment function is used to compute an array of central moments up to the 4th order
(central moments for each dataset’s dimension) with the provided mean values.

central_moment with provided mean supports the following precisions for data:

T
float
double

central_moment with provided mean (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void central_moment(sycl::queue& queue,
sycl::buffer<Type, 1> mean,

(continues on next page)

11.2. oneMKL Domains 1687

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> central_moment_2,
sycl::buffer<Type, 1> central_moment_3 = {0},
sycl::buffer<Type, 1> central_moment_4 = {0});

}

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

mean sycl::buffer to the array of provided mean values.

data Dataset which is used for computation.

Output Parameters

central_moment_2 sycl::buffer array of 2nd order central moment values.

central_moment_3 Optional parameter. sycl::buffer array of 3rd order central moment values.

central_moment_4 Optional parameter. sycl::buffer array of 4th order central moment values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when central_moment_2.get_count() == 0 & cen-
tral_moment_3.get_count() == 0 & central_moment_4.get_count() == 0, or mean.get_count() == 0, or
dataset object is invalid

central_moment with provided mean (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event central_moment(sycl::queue& queue,
Type* mean,
const dataset<ObservationsLayout, Type*>& data,
Type* central_moment_2,
Type* central_moment_3 = nullptr,
Type* central_moment_4 = nullptr,

(continues on next page)

11.2. oneMKL Domains 1688

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const std::vector<sycl::event> &dependencies = {});
}

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

mean Pointer to the array of provided mean values.

data Dataset which is used for computation.

dependencies Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

central_moment_2 Pointer to the array of the 2nd order central moment values.

central_moment_3 Optional parameter. Pointer to the array of the 3rd order central moment values.

central_moment_4 Optional parameter. Pointer to the array of the 2nd order central moment values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when central_moment_2 == nullptr & central_moment_3 ==
nullptr & central_moment_4 == nullptr or mean == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

variation

Entry point to compute variation.

11.2. oneMKL Domains 1689

oneAPI Specification, Release 1.1-rev-1

Description and Assumptions

The oneapi::mkl::stats::variation function is used to compute a variation array (variation for each dataset’s dimension).

variation supports the following precisions for data:

T
float
double

variation (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void variation(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> variation);

}

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

Output Parameters

variation sycl::buffer array of variation values.

11.2. oneMKL Domains 1690

oneAPI Specification, Release 1.1-rev-1

Throws

oneapi::mkl::invalid_argument Exception is thrown when variation.get_count() == 0, or dataset object is invalid

variation (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event variation(sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* variation,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

dependencies Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

variation Pointer to the array of variation values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when variation == nullptr, or dataset object is invalid

11.2. oneMKL Domains 1691

oneAPI Specification, Release 1.1-rev-1

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

variation with provided mean

Entry point to compute variation with the provided mean values.

Description and Assumptions

The oneapi::mkl::stats::variation function is used to compute an array of variation (variation for each dataset’s dimen-
sion) with the provided mean values.

variation with provided mean supports the following precisions for data:

T
float
double

oneapi::mkl::stats::variation (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void variation(sycl::queue& queue, sycl::buffer<Type, 1> mean,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> variation);

}

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

11.2. oneMKL Domains 1692

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

mean sycl::buffer to the array of provided mean values.

data Dataset which is used for computation.

Output Parameters

variation sycl::buffer array of variation values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when variation.get_count() == 0, or mean.get_count() == 0, or
dataset object is invalid

variation with provided mean (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event variation(sycl::queue& queue,
Type* mean,
const dataset<ObservationsLayout, Type*>& data,
Type* variation,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

mean Pointer to the array of provided mean values.

data Dataset which is used for computation.

dependencies Optional parameter. List of events to wait for before starting computation, if any.

11.2. oneMKL Domains 1693

oneAPI Specification, Release 1.1-rev-1

Output Parameters

variation Pointer to the array of the variation values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when variation == nullptr, or mean == nullptr, or dataset object
is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

skewness

Entry point to compute skewness.

Description and Assumptions

The oneapi::mkl::stats::skewness function is used to compute a skewness array (skewness for each dataset’s dimension).

skewness supports the following precisions for data:

T
float
double

skewness (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void skewness(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> skewness);

}

11.2. oneMKL Domains 1694

oneAPI Specification, Release 1.1-rev-1

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

Output Parameters

skewness sycl::buffer array of skewness values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when skewness.get_count() == 0, or dataset object is invalid

skewness (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event skewness(sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* skewness,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

11.2. oneMKL Domains 1695

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

dependencies Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

skewness Pointer to the array of skewness values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when skewness == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

skewness with provided mean

Entry point to compute skewness with the provided mean values.

Description and Assumptions

The oneapi::mkl::stats::skewness function is used to compute an array of skewness (skewness for each dataset’s dimen-
sion) with the provided mean values.

skewness with provided mean supports the following precisions for data:

T
float
double

skewness with provided mean (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void skewness(sycl::queue& queue,
sycl::buffer<Type, 1> mean,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> skewness);

}

11.2. oneMKL Domains 1696

oneAPI Specification, Release 1.1-rev-1

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

mean sycl::buffer to the array of provided mean values.

data Dataset which is used for computation.

Output Parameters

skewness sycl::buffer array of skewness values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when skewness.get_count() == 0, or mean.get_count() == 0, or
dataset object is invalid

skewness with provided mean (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event skewness(sycl::queue& queue,
Type* mean,
const dataset<ObservationsLayout, Type*>& data,
Type* skewness,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

11.2. oneMKL Domains 1697

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

mean Pointer to the array of provided mean values.

data Dataset which is used for computation.

dependencies Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

skewness Pointer to the array of the skewness values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when skewness == nullptr, or mean == nullptr, or dataset object
is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

kurtosis

Entry point to compute kurtosis.

Description and Assumptions

The oneapi::mkl::stats::kurtosis function is used to compute a kurtosis array (kurtosis for each dataset’s dimension).

kurtosis supports the following precisions for data:

T
float
double

kurtosis (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>
void kurtosis(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> kurtosis);

}

11.2. oneMKL Domains 1698

oneAPI Specification, Release 1.1-rev-1

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

Output Parameters

kurtosis sycl::buffer array of kurtosis values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when kurtosis.get_count() == 0, or dataset object is invalid

kurtosis (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event kurtosis(sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* kurtosis,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

• oneapi::mkl::stats::method::one_pass

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

11.2. oneMKL Domains 1699

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

dependencies Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

kurtosis Pointer to the array of kurtosis values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when kurtosis == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

kurtosis with provided mean

Entry point to compute kurtosis with the provided mean values.

Description and Assumptions

The oneapi::mkl::stats::kurtosis function is used to compute an array of kurtosis (kurtosis for each dataset’s dimension)
with the provided mean values.

kurtosis with provided mean supports the following precisions for data:

T
float
double

kurtosis with provided mean (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type,

layout ObservationsLayout>
void oneapi::mkl::stats::kurtosis(sycl::queue& queue,
sycl::buffer<Type, 1> mean,
const oneapi::mkl::stats::dataset<sycl::buffer<Type, 1>, ObservationsLayout>& data,
sycl::buffer<Type, 1> kurtosis);

}

11.2. oneMKL Domains 1700

oneAPI Specification, Release 1.1-rev-1

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

mean sycl::buffer to the array of provided mean values.

data Dataset which is used for computation.

Output Parameters

kurtosis sycl::buffer array of kurtosis values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when kurtosis.get_count() == 0, or mean.get_count() == 0, or
dataset object is invalid

kurtosis with provided mean (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = fast, typename Type, layout ObservationsLayout>

sycl::event kurtosis(sycl::queue& queue,
Type* mean,
const dataset<ObservationsLayout, Type*>& data,
Type* kurtosis,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

11.2. oneMKL Domains 1701

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

mean Pointer to the array of provided mean values.

data Dataset which is used for computation.

dependencies Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

kurtosis Pointer to the array of the kurtosis values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when kurtosis == nullptr, or mean == nullptr, or dataset object
is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

min

Entry point to compute min values.

Description and Assumptions

The oneapi::mkl::stats::min function is used to compute min arrays (min value for each dataset’s dimension).

min supports the following precisions for data:

T
float
double

min (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = fast, typename Type, layout ObservationsLayout>

void min(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> min);

}

11.2. oneMKL Domains 1702

oneAPI Specification, Release 1.1-rev-1

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

Output Parameters

min sycl::buffer array of min values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when min.get_count() == 0, or dataset object is invalid

min (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = fast, typename Type, layout ObservationsLayout>

sycl::event min(sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* min,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

11.2. oneMKL Domains 1703

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

dependencies Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

min Pointer to the array of min values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when min == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

max

Entry point to compute max values.

Description and Assumptions

The oneapi::mkl::stats::max function is used to compute a max values arrays (max value for each dataset’s dimension).

max supports the following precisions for data:

T
float
double

max (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void max(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> max);

}

11.2. oneMKL Domains 1704

oneAPI Specification, Release 1.1-rev-1

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

Output Parameters

max sycl::buffer array of max values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when max.get_count() == 0, or dataset object is invalid

max (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event max(sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* max,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

11.2. oneMKL Domains 1705

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

dependencies Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

max Pointer to the array of max values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when max == nullptr, or dataset object is invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

min_max

Entry point to compute min and max values.

Description and Assumptions

The oneapi::mkl::stats::min_max function is used to compute min and max arrays (min and max values for each dataset’s
dimension).

min_max supports the following precisions for data:

T
float
double

min_max (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

void min_max(sycl::queue& queue,
const dataset<ObservationsLayout, sycl::buffer<Type, 1>>& data,
sycl::buffer<Type, 1> min,
sycl::buffer<Type, 1> max);

}

11.2. oneMKL Domains 1706

oneAPI Specification, Release 1.1-rev-1

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

Output Parameters

min sycl::buffer array of min values.

max sycl::buffer array of max values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when min.get_count() == 0, or max.get_count() == 0, or dataset
object is invalid

min_max (USM version)

Syntax

namespace oneapi::mkl::stats {
template<method Method = method::fast, typename Type, layout ObservationsLayout>

sycl::event min_max(sycl::queue& queue,
const dataset<ObservationsLayout, Type*>& data,
Type* min,
Type* max,
const std::vector<sycl::event> &dependencies = {});

}

Template Parameters

Method Method which is used for estimate computation. The specific values are as follows:

• oneapi::mkl::stats::method::fast

Type Data precision.

ObservationsLayout Data layout. The specific values are described in dataset.

11.2. oneMKL Domains 1707

oneAPI Specification, Release 1.1-rev-1

Input Parameters

queue The queue where the routine should be executed.

data Dataset which is used for computation.

dependencies Optional parameter. List of events to wait for before starting computation, if any.

Output Parameters

min Pointer to the array of min values.

max Pointer to the array of max values.

Throws

oneapi::mkl::invalid_argument Exception is thrown when min == nullptr, or max == nullptr, or dataset object is
invalid

Return Value

Output event to wait on to ensure computation is complete.

Parent topic: Summary Statistics Routines

Service Routines

Routine Description
make_dataset Creates a dataset from the provided parameters

Parent topic: Summary Statistics

make_dataset

Entry point to create a dataset from the provided parameters.

Description and Assumptions

The oneapi::mkl::stats::make_dataset function is used to create a dataset from the provided storage of the observations
matrix, the number of dimensions and observations, and other parameters.

make_dataset supports the following precisions for data:

T
float
double

11.2. oneMKL Domains 1708

oneAPI Specification, Release 1.1-rev-1

make_dataset (buffer version)

Syntax

namespace oneapi::mkl::stats {
template<layout ObservationsLayout = layout::row_major, typename Type>

dataset<sycl::buffer<Type, 1>, ObservationsLayout> make_dataset(
std::int64_t n_dims,
std::int64_t n_observations,
sycl::buffer<Type, 1> observations,
sycl::buffer<Type, 1> weights = {0},
sycl::buffer<std::int64_t, 1> indices = {0});

}

Template Parameters

ObservationsLayout Data layout. The specific values are described in dataset.

Type Data precision.

Input Parameters

n_dims The number of dimensions.

n_observations The number of observations.

observations Matrix of observations.

weights Optional parameter. Array of weights of size n_observations. Elements of the array are non-negative mem-
bers. If the parameter is not specified, each observation has weight equal to 1.

indices Optional parameter. Array of vector components that are processed. The size of the array is n_dims. If the
parameter is not specified, all components are processed.

Throws

oneapi::mkl::invalid_argument Exception is thrown when :math: n_dims leq 0, or :math: n_observations leq 0, or
observations.get_count() == 0

Return Value

Dataset holding specified parameters.

11.2. oneMKL Domains 1709

oneAPI Specification, Release 1.1-rev-1

make_dataset (USM version)

Syntax

namespace oneapi::mkl::stats {
template<layout ObservationsLayout = layout::row_major, typename Type>

dataset<Type*, ObservationsLayout> make_dataset(std::nt64_t
n_dims, std::int64_t n_observations,
Type* observations, Type* weights = nullptr, std::int64_t* indices = nullptr);

}

Template Parameters

ObservationsLayout Data layout. The specific values are described in dataset.

Type Data precision.

Input Parameters

n_dims The number of dimensions.

n_observations The number of observations.

observations Matrix of observations.

weights Optional parameter. Array of weights of size n_observations. Elements of the array are non-negative mem-
bers. If the parameter is not specified, each observation has weight equal to 1.

indices Optional parameter. Array of vector components that are processed. Size of array is n_dims. If the parameter
is not specified, all components are processed.

Throws

oneapi::mkl::invalid_argument Exception is thrown when 𝑛_𝑑𝑖𝑚𝑠 ≤ 0, or 𝑛_𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 ≤ 0, or observations
== nullptr

Return Value

Dataset holding specified parameters.

Parent topic: Service Routines

11.2.6 Vector Math

oneMKL Vector Mathematics functions (VM) compute a mathematical function of each of the vector elements. VM in-
cludes a set of functions (arithmetic, power, trigonometric, exponential, hyperbolic, special, and rounding) that operate
on vectors of real and complex numbers.

Application programs that improve performance with VM include nonlinear programming software, computation of
integrals, financial calculations, computer graphics, and many others.

VM functions fall into the following groups according to the operations they perform:

11.2. oneMKL Domains 1710

oneAPI Specification, Release 1.1-rev-1

• VM Mathematical Functions compute values of mathematical functions, such as sine, cosine, exponential, or
logarithm, on vectors stored contiguously in memory.

• VM Service Functions set/get the accuracy modes and the error codes, and create error handlers for mathematical
functions.

The VM mathematical functions take an input vector as an argument, compute values of the respective function element-
wise, and return the results in an output vector. All the VM mathematical functions can perform in-place operations,
where the input and output arrays are at the same memory locations.

• Special Value Notations

Special Value Notations

This defines notations of special values for complex functions. The definitions are provided in text, tables, or formulas.

• z, z1, z2, etc. denote complex numbers.

• i, i2=-1 is the imaginary unit.

• x, X, x1, x2, etc. denote real imaginary parts.

• y, Y, y1, y2, etc. denote imaginary parts.

• X and Y represent any finite positive IEEE-754 floating point values, if not stated otherwise.

• Quiet NaN and signaling NaN are denoted with QNAN and SNAN, respectively.

• The IEEE-754 positive infinities or floating-point numbers are denoted with a + sign before X, Y, etc.

• The IEEE-754 negative infinities or floating-point numbers are denoted with a - sign before X, Y, etc.

CONJ(z) and CIS(z) are defined as follows:

CONJ(x+i·y)=x-i·y

CIS(y)=cos(y)+i·sin(y).

The special value tables show the result of the function for the z argument at the intersection of the RE(z) column and
the i*IM(z) row. If the function encounters a special point for the argument z, the lower part of this cell shows the
special point and the VM status value for this element. An empty cell indicates that this argument is normal and the
result is well-defined computationally.

Parent topic: Vector Math

VM Mathematical Functions

This section describes VM functions that compute values of mathematical functions on real and complex vector argu-
ments with unit increment.

Each function is introduced by its short name, a brief description of its purpose, and the calling sequence for each type
of data, as well as a description of the input/output arguments.

The input range of parameters is equal to the mathematical range of the input data type, unless the function description
specifies input threshold values, which mark off the precision overflow, as follows:

• FLT_MAX denotes the maximum number representable in single precision real data type

• DBL_MAX denotes the maximum number representable in double precision real data type

The following tables list the available mathematical functions grouped by category.

11.2. oneMKL Domains 1711

oneAPI Specification, Release 1.1-rev-1

Arithmetic Routines Description
add Adds vector elements
sub Subtracts vector elements
sqr Squares vector elements
mul Multiplies vector elements
mulbyconj Multiplies elements of one vector by conjugated elements of the second

vector
conj Conjugates vector elements
abs Computes the absolute value of vector elements
arg Computes the argument of vector elements
linearfrac Performs linear fraction transformation of vectors
fmod Performs element by element computation of the modulus function of

vector a with respect to vector b
remainder Performs element by element computation of the remainder function on

the elements of vector a and the corresponding elements of vector b

Power and Root Routines Description
inv Inverts vector elements
div Divides elements of one vector by elements of the second vector
sqrt Computes the square root of vector elements
invsqrt Computes the inverse square root of vector elements
cbrt Computes the cube root of vector elements
invcbrt Computes the inverse cube root of vector elements
pow2o3 Computes the cube root of the square of each vector element
pow3o2 Computes the square root of the cube of each vector element
pow Raises each vector element to the specified power
powx Raises each vector element to the constant power
powr Computes a to the power b for elements of two vectors, where the ele-

ments of vector argument a are all non-negative
hypot Computes the square root of sum of squares

Exponential and Logarithmic Routines Description
exp Computes the base e exponential of vector elements
exp2 Computes the base 2 exponential of vector elements
exp10 Computes the base 10 exponential of vector elements
expm1 Computes the base e exponential of vector elements decreased by 1
ln Computes the natural logarithm of vector elements
log2 Computes the base 2 logarithm of vector elements
log10 Computes the base 10 logarithm of vector elements
log1p Computes the natural logarithm of vector elements that are increased

by 1
logb Computes the exponents of the elements of input vector a

Trigonometric Routines Description
cos Computes the cosine of vector elements
sin Computes the sine of vector elements
sincos Computes the sine and cosine of vector elements
cis Computes the complex exponent of vector elements (cosine and sine

combined to complex value)
continues on next page

11.2. oneMKL Domains 1712

oneAPI Specification, Release 1.1-rev-1

Table 10 – continued from previous page
Trigonometric Routines Description
tan Computes the tangent of vector elements
acos Computes the inverse cosine of vector elements
asin Computes the inverse sine of vector elements
atan Computes the inverse tangent of vector elements
atan2 Computes the four-quadrant inverse tangent of ratios of the elements of

two vectors
cospi Computes the cosine of vector elements multiplied by 𝜋
sinpi Computes the sine of vector elements multiplied by 𝜋
tanpi Computes the tangent of vector elements multiplied by 𝜋
acospi Computes the inverse cosine of vector elements divided by 𝜋
asinpi Computes the inverse sine of vector elements divided by 𝜋
atanpi Computes the inverse tangent of vector elements divided by 𝜋
atan2pi Computes the four-quadrant inverse tangent of the ratios of the corre-

sponding elements of two vectors divided by 𝜋
cosd Computes the cosine of vector elements multiplied by 𝜋/180
sind Computes the sine of vector elements multiplied by 𝜋/180
tand Computes the tangent of vector elements multiplied by 𝜋/180

Hyperbolic Routines Description
cosh Computes the hyperbolic cosine of vector elements
sinh Computes the hyperbolic sine of vector elements
tanh Computes the hyperbolic tangent of vector elements
acosh Computes the inverse hyperbolic cosine of vector elements
asinh Computes the inverse hyperbolic sine of vector elements
atanh Computes the inverse hyperbolic tangent of vector elements.

Special Routines Description
erf Computes the error function value of vector elements
erfc Computes the complementary error function value of vector elements
cdfnorm Computes the cumulative normal distribution function value of vector

elements
erfinv Computes the inverse error function value of vector elements
erfcinv Computes the inverse complementary error function value of vector el-

ements
cdfnorminv Computes the inverse cumulative normal distribution function value of

vector elements
lgamma Computes the natural logarithm for the absolute value of the gamma

function of vector elements
tgamma Computes the gamma function of vector elements
expint1 Computes the exponential integral of vector elements

Rounding Routines Description
floor Rounds towards minus infinity
ceil Rounds towards plus infinity
trunc Rounds towards zero infinity
round Rounds to nearest integer
nearbyint Rounds according to current mode

continues on next page

11.2. oneMKL Domains 1713

oneAPI Specification, Release 1.1-rev-1

Table 13 – continued from previous page
Rounding Routines Description
rint Rounds according to current mode and reports inexact result status
modf Computes the integer and fractional parts
frac Computes the fractional part

Miscellaneous Routines Description
copysign Returns vector of elements of one argument with signs changed to match

other argument elements
nextafter Returns vector of elements containing the next representable floating-

point values following the values from the elements of one vector in the
direction of the corresponding elements of another vector

fdim Returns vector containing the differences of the corresponding elements
of the vector arguments if the first is larger and +0 otherwise

fmax Returns the larger of each pair of elements of the two vector arguments
fmin Returns the smaller of each pair of elements of the two vector arguments
maxmag Returns the element with the larger magnitude between each pair of

elements of the two vector arguments
minmag Returns the element with the smaller magnitude between each pair of

elements of the two vector arguments

Parent topic: Vector Math

abs

Computes absolute value of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event abs(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<R,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event abs(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,

(continues on next page)

11.2. oneMKL Domains 1714

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

R* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

abs supports the following precisions.

T R
float float
double double
std::complex<float> float
std::complex<double> double

Description

The abs(a) function computes an absolute value of vector elements.

Argument Result Status code
+0 +0
-0 +0
+∞ +∞
-∞ +∞
QNAN QNAN
SNAN QNAN

Specifications for special values of the complex functions are defined according to the following formula

abs(a) = hypot(RE(a), IM(a)).

The abs function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

11.2. oneMKL Domains 1715

oneAPI Specification, Release 1.1-rev-1

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

acos

Computes inverse cosine of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event acos(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event acos(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,

(continues on next page)

11.2. oneMKL Domains 1716

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

acos supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The acos(a) function computes inverse cosine of vector elements.

Argument Result Status code
+0 +𝜋/2
-0 +𝜋/2
+1 +0
-1 +𝜋
|a| > 1 QNAN oneapi::mkl::vm::status::errdom
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

RE(a)
i·IM(a)

-∞ -X -0 +0 +X +∞ NAN

+i·∞ +3·𝜋/4-
i·∞

+𝜋/2-i·∞ +𝜋/2-i·∞ +𝜋/2-i·∞ +𝜋/2-i·∞ +𝜋/4-i·∞ QNAN-i·∞

+i·Y +𝜋-i·∞ +0-i·∞ QNAN+i·QNAN
+i·0 +𝜋-i·∞ +𝜋/2-i·0 +𝜋/2-i·0 +0-i·∞ QNAN+i·QNAN
-i·0 +𝜋+i·∞ +𝜋/2+i·0 +𝜋/2+i·0 +0+i·∞ QNAN+i·QNAN
-i·Y +𝜋+i·∞ +0+i·∞ QNAN+i·QNAN
-i·∞ +3𝜋/4+i·∞ +𝜋/2+i·∞ +𝜋/2+i·∞ +𝜋/2+i·∞ +𝜋/2+i·∞ +𝜋/4+i·∞ QNAN+i·∞
+i·NAN QNAN+i·∞QNAN+i·QNAN+𝜋/2+i·QNAN+𝜋/2+i·QNANQNAN+i·QNANQNAN+i·∞QNAN+i·QNAN

Notes:

• acos(CONJ(a))=CONJ(acos(a)).

11.2. oneMKL Domains 1717

oneAPI Specification, Release 1.1-rev-1

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

11.2. oneMKL Domains 1718

oneAPI Specification, Release 1.1-rev-1

acosh

Computes inverse hyperbolic cosine (nonnegative) of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event acosh(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event acosh(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

acosh supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

11.2. oneMKL Domains 1719

oneAPI Specification, Release 1.1-rev-1

Description

The acosh(a) function computes inverse hyperbolic cosine (nonnegative) of vector elements.

Argument Result Status code
+1 +0
a < +1 QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +∞
QNAN QNAN
SNAN QNAN

RE(a)
i·IM(a)

-∞ -X -0 +0 +X +∞ NAN

+i·∞ +∞ + 𝑖 ·
3𝜋
4

+∞+i·𝜋/2 +∞+i·𝜋/2 +∞+i·𝜋/2 +∞+i·𝜋/2 +∞+i·𝜋/4 +∞+i·QNAN

+i·Y +∞+i·𝜋 +∞+i·0 QNAN+i·QNAN
+i·0 +∞+i·𝜋 +0+i·𝜋/2 +0+i·𝜋/2 +∞+i·0 QNAN+i·QNAN
-i·0 +∞+i·𝜋 +0+i·𝜋/2 +0+i·𝜋/2 +∞+i·0 QNAN+i·QNAN
-i·Y +∞+i·𝜋 +∞+i·0 QNAN+i·QNAN
-i·∞ +∞ − 𝑖 ·

3𝜋
4

+∞-i·𝜋/2 +∞-i·𝜋/2 +∞-i·𝜋/2 +∞-i·𝜋/2 +∞-i·𝜋/4 +∞+i·QNAN

+i·NAN +∞+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN

Notes:

• acosh(CONJ(a))=CONJ(acosh(a)).

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1720

oneAPI Specification, Release 1.1-rev-1

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

acospi

Computes the inverse cosine of vector elements divided by 𝜋.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event acospi(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event acospi(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

(continues on next page)

11.2. oneMKL Domains 1721

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

acospi supports the following precisions.

T
float
double

Description

The acospi(a) function computes the inverse cosine of vector elements divided by 𝜋. For an argument a, the function
computes acos(a)/𝜋.

Argument Result Status code
+0 +1/2
-0 +1/2
+1 +0
-1 +1
|a| > 1 QNAN oneapi::mkl::vm::status::errdom
+∞ QNAN oneapi::mkl::vm::status::errdom

• ∞ QNAN oneapi::mkl::vm::status::errdom

QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1722

oneAPI Specification, Release 1.1-rev-1

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

add

Performs element by element addition of vector a and vector b.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event add(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event add(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},

(continues on next page)

11.2. oneMKL Domains 1723

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

add supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The add(a, b) function performs element by element addition of vector a and vector b.

Argument 1 Argument 2 Result Status code
+0 +0 +0
+0 -0 +0
-0 +0 +0
-0 -0 -0
+∞ +∞ +∞
+∞ -∞ QNAN
-∞ +∞ QNAN
-∞ -∞ -∞
SNAN any value QNAN
any value SNAN QNAN

Specifications for special values of the complex functions are defined according to the following formula

add(x1+i*y1, x2+i*y2) = (x1+x2) + i*(y1+y2)

Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when all RE(x),
RE(y), IM(x), IM(y) arguments are finite numbers, but the real or imaginary part of the computed result
is so large that it does not fit the target precision. In this case, the function returns ∞ in that part of
the result, and sets the VM status code to oneapi::mkl::vm::status::overflow (overriding any possible
oneapi::mkl::vm::status::accuracy_warning status).

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1724

oneAPI Specification, Release 1.1-rev-1

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

b Pointer b to the 2nd input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

arg

Computes argument of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event arg(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<R,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

(continues on next page)

11.2. oneMKL Domains 1725

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event arg(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
R* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

arg supports the following precisions.

T R
std::complex<float> float
std::complex<double> double

Description

The arg(a) function computes argument of vector elements.

See Special Value Notations for the conventions used in the table below.

RE(a) i·IM(a) -∞ -X -0 +0 +X +∞ NAN
+i·∞ +3·𝜋/4 +𝜋/2 +𝜋/2 +𝜋/2 +𝜋/2 +𝜋/4 NAN
+i·Y +𝜋 +𝜋/2 +𝜋/2 +0 NAN
+i·0 +𝜋 +𝜋 +𝜋 +0 +0 +0 NAN
-i·0 -𝜋 -𝜋 -𝜋 -0 -0 -0 NAN
-i·Y -𝜋 -𝜋/2 -𝜋/2 -0 NAN
-i·∞ -3·𝜋/4 -𝜋/2 -𝜋/2 -𝜋/2 -𝜋/2 -𝜋/4 NAN
+i·NAN NAN NAN NAN NAN NAN NAN NAN

Note

arg(a)=atan2(IM(a), RE(a))

The arg function does not generate any errors.

11.2. oneMKL Domains 1726

oneAPI Specification, Release 1.1-rev-1

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

asin

Computes inverse sine of vector elements.

11.2. oneMKL Domains 1727

oneAPI Specification, Release 1.1-rev-1

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event asin(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event asin(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

asin supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The asin(a) function computes inverse sine of vector elements.

Argument Result Status code
+0 +0
-0 -0
+1 +𝜋/2
-1 -𝜋/2
|a| > 1 QNAN oneapi::mkl::vm::status::errdom
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

11.2. oneMKL Domains 1728

oneAPI Specification, Release 1.1-rev-1

Specifications for special values of the complex functions are defined according to the following formula

asin(a) = -i*asinh(i*z).

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

11.2. oneMKL Domains 1729

oneAPI Specification, Release 1.1-rev-1

asinh

Computes inverse hyperbolic sine of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event asinh(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event asinh(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

asinh supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The asinh(a) function computes inverse hyperbolic sine of vector elements.

Argument Result Status code
+0 +0
-0 -0
+∞ +∞
-∞ -∞
QNAN QNAN
SNAN QNAN

11.2. oneMKL Domains 1730

oneAPI Specification, Release 1.1-rev-1

RE(a)
i·IM(a)

-∞ -X -0 +0 +X +∞ NAN

+i·∞ -∞+i·𝜋/4 -∞+i·𝜋/2 +∞+i·𝜋/2 +∞+i·𝜋/2 +∞+i·𝜋/2 +∞+i·𝜋/4 +∞+i·QNAN
+i·Y -∞+i·0 +∞+i·0 QNAN+i·QNAN
+i·0 +∞+i·0 +0+i·0 +0+i·0 +∞+i·0 QNAN+i·QNAN
-i·0 -∞-i·0 -0-i·0 +0-i·0 +∞-i·0 QNAN-

i·QNAN
-i·Y -∞-i·0 +∞-i·0 QNAN+i·QNAN
-i·∞ -∞-i·𝜋/4 -∞-i·𝜋/2 -∞-i·𝜋/2 +∞-i·𝜋/2 +∞-i·𝜋/2 +∞-i·𝜋/4 +∞+i·QNAN
+i·NAN -

∞+i·QNAN
QNAN+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN

The asinh(a) function does not generate any errors.

Notes:

• asinh(CONJ(a))=CONJ(asinh(a))

• asinh(-a)=-asinh(a).

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

11.2. oneMKL Domains 1731

oneAPI Specification, Release 1.1-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

asinpi

Computes the inverse sine of vector elements divided by 𝜋.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event asinpi(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event asinpi(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

asinpi supports the following precisions.

T
float
double

11.2. oneMKL Domains 1732

oneAPI Specification, Release 1.1-rev-1

Description

The asinpi(a) function computes the inverse sine of vector elements divided by 𝜋. For an argument a, the function
computes asinpi(a)/𝜋.

Argument Result Status code
+0 +0
-0 -0
+1 +1/2
-1 -1/2
|a| > 1 QNAN oneapi::mkl::vm::status::errdom
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

11.2. oneMKL Domains 1733

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

atan

Computes inverse tangent of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event atan(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event atan(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

atan supports the following precisions.

11.2. oneMKL Domains 1734

oneAPI Specification, Release 1.1-rev-1

T
float
double
std::complex<float>
std::complex<double>

Description

The atan(a) function computes inverse tangent of vector elements.

Argument Result Status code
+0 +0
-0 -0
+∞ +𝜋/2
-∞ -𝜋/2
QNAN QNAN
SNAN QNAN

The atan function does not generate any errors.

Specifications for special values of the complex functions are defined according to the following formula

atan(a) = -i*atanh(i*a).

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1735

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

atan2

Computes four-quadrant inverse tangent of elements of two vectors.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event atan2(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event atan2(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1736

oneAPI Specification, Release 1.1-rev-1

ad2d supports the following precisions.

T
float
double

Description

The atan2(a, b) function computes four-quadrant inverse tangent of elements of two vectors.

The elements of the output vector are computed as the four-quadrant arctangent of a[i] / b[i].

Argument 1 Argument 2 Result Status code
-∞ -∞ -3*𝜋/4
-∞ b < +0 -𝜋/2
-∞ -0 -𝜋/2
-∞ +0 -𝜋/2
-∞ b > +0 -𝜋/2
-∞ +∞ -𝜋/4
a < +0 -∞ -𝜋
a < +0 -0 -𝜋/2
a < +0 +0 -𝜋/2
a < +0 +∞ -0
-0 -∞ -𝜋
-0 b < +0 -𝜋
-0 -0 -𝜋
-0 +0 -0
-0 b > +0 -0
-0 +∞ -0
+0 -∞ +𝜋
+0 b < +0 +𝜋
+0 -0 +𝜋
+0 +0 +0
+0 b > +0 +0
+0 +∞ +0
a > +0 -∞ +𝜋
a > +0 -0 +𝜋/2
a > +0 +0 +𝜋/2
a > +0 +∞ +0
+∞ -∞ +3*𝜋/4
+∞ b < +0 +𝜋/2
+∞ -0 +𝜋/2
+∞ +0 +𝜋/2
+∞ b > +0 +𝜋/2
+∞ +∞ +𝜋/4
a > +0 QNAN QNAN
a > +0 SNAN QNAN
QNAN b > +0 QNAN
SNAN b > +0 QNAN
QNAN QNAN QNAN
QNAN SNAN QNAN

continues on next page

11.2. oneMKL Domains 1737

oneAPI Specification, Release 1.1-rev-1

Table 15 – continued from previous page
Argument 1 Argument 2 Result Status code
SNAN QNAN QNAN
SNAN SNAN QNAN

The atan2(a, b) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

b Pointer b to the 2nd input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

11.2. oneMKL Domains 1738

oneAPI Specification, Release 1.1-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

atan2pi

Computes the four-quadrant inverse tangent of the ratios of the corresponding elements of two vectors divided by 𝜋.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event atan2pi(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event atan2pi(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

atan2pi supports the following precisions.

T
float
double

11.2. oneMKL Domains 1739

oneAPI Specification, Release 1.1-rev-1

Description

The atan2pi(a, b) function computes the four-quadrant inverse tangent of the ratios of the corresponding elements of
two vectors divided by 𝜋.

For the elements of the output vector y, the function computers the four-quadrant arctangent of ai/bi, with the result
divided by 𝜋.

Argument 1 Argument 2 Result Status code
-∞ -∞ -3/4
-∞ b < +0 -1/2
-∞ -0 +1/2
-∞ +0 -1/2
-∞ x > +0 -1/2
-∞ +∞ -1/4
a < +0 -∞ -1
a < +0 -0 -1/2
a < +0 +0 -1/2
a < +0 +∞ -0
-0 -∞ -1
-0 b < +0 -1
-0 -0 -1
-0 +0 -0
-0 b > +0 -0
-0 +∞ -0
+0 -∞ +1
+0 b < +0 +1
+0 -0 +1
+0 +0 +0
+0 b > +0 +0
+0 +∞ +0
a > +0 -∞ +1
a > +0 -0 +1/2
x > +0 +0 +1/2
a > +0 +∞ +1/4
+∞ -∞ +3/4
+∞ b < +0 +1/2
+∞ -0 +1/2
+∞ +0 +1/2
+∞ b > +0 +1/2
+∞ +∞ +1/4
a > +0 QNAN QNAN
a > +0 SNAN QNAN
QNAN b > +0 QNAN
SNAN x > +0 QNAN
QNAN QNAN QNAN
QNAN SNAN QNAN
SNAN QNAN QNAN
SNAN SNAN QNAN

The atan2pi(a, b) function does not generate any errors.

11.2. oneMKL Domains 1740

oneAPI Specification, Release 1.1-rev-1

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

b Pointer b to the 2nd input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

atanh

Computes inverse hyperbolic tangent of vector elements.

11.2. oneMKL Domains 1741

oneAPI Specification, Release 1.1-rev-1

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event atanh(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event atanh(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

atanh supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The atanh(a) function computes inverse hyperbolic tangent of vector elements.

Argument Result Status code
+1 +∞ oneapi::mkl::vm::status::sing
-1 -∞ oneapi::mkl::vm::status::sing
|a| > 1 QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +∞ oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

11.2. oneMKL Domains 1742

oneAPI Specification, Release 1.1-rev-1

RE(a)
i·IM(a)

-∞ -X -0 +0 +X +∞ NAN

+i·∞ -0+i·𝜋/2 -0+i·𝜋/2 -0+i·𝜋/2 +0+i·𝜋/2 +0+i·𝜋/2 +0+i·𝜋/2 +0+i·𝜋/2
+i·Y -0+i·𝜋/2 +0+i·𝜋/2 QNAN+i·QNAN
+i·0 -0+i·𝜋/2 -0+i·0 +0+i·0 +0+i·𝜋/2 QNAN+i·QNAN
-i·0 -0-i·𝜋/2 -0-i·0 +0-i·0 +0-i·𝜋/2 QNAN-

i·QNAN
-i·Y -0-i·𝜋/2 +0-i·𝜋/2 QNAN+i·QNAN
-i·∞ -0-i·𝜋/2 -0-i·𝜋/2 -0-i·𝜋/2 +0-i·𝜋/2 +0-i·𝜋/2 +0-i·𝜋/2 +0-i·𝜋/2
+i·NAN -

0+i·QNAN
QNAN+i·QNAN-

0+i·QNAN
+0+i·QNAN QNAN+i·QNAN+0+i·QNAN QNAN+i·QNAN

Notes:

• atanh(±1±i*0)=±∞±i*0, and oneapi::mkl::vm::status::sing error is generated

• atanh(CONJ(a))=CONJ(atanh(a))

• atanh(-a)=-atanh(a).

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

11.2. oneMKL Domains 1743

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

atanpi

Computes the inverse tangent of vector elements divided by 𝜋.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event atanpi(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event atanpi(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

atanpi supports the following precisions.

11.2. oneMKL Domains 1744

oneAPI Specification, Release 1.1-rev-1

T
float
double

Description

The atanpi(a) function computes the inverse tangent of vector elements divided by 𝜋. For an argument a, the function
computes atan(a)/𝜋.

Argument Result Status code
+0 +0
-0 -0
+∞ +1/2
-∞ -1/2
QNAN QNAN
SNAN QNAN

The atanpi function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1745

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

cbrt

Computes a cube root of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event cbrt(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event cbrt(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

cbrt supports the following precisions.

11.2. oneMKL Domains 1746

oneAPI Specification, Release 1.1-rev-1

T
float
double

Description

The cbrt(a)function computes a cube root of vector elements.

Argument Result Status code
+0 +0
-0 -0
+∞ +∞
-∞ -∞
QNAN QNAN
SNAN QNAN
+0 +0

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

11.2. oneMKL Domains 1747

oneAPI Specification, Release 1.1-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

cdfnorm

Computes the cumulative normal distribution function values of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event cdfnorm(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event cdfnorm(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

cdfnorm supports the following precisions.

T
float
double

11.2. oneMKL Domains 1748

oneAPI Specification, Release 1.1-rev-1

Description

The cdfnorm function computes the cumulative normal distribution function values for elements of the input vector a
and writes them to the output vector y.

The cumulative normal distribution function is defined as given by:

cdfnorm(𝑥) =
1√
2𝜋

∫︁ 𝑥

−∞
𝑒−

𝑡2

2 d𝑥

Useful relations for these functions:

erf(𝑥) + erfc(𝑥) = 1

cdfnorm(𝑥) =
1

2

(︂
1 + erf

(︂
𝑥√
2

)︂)︂
= 1− 1

2
erfc

(︂
𝑥√
2

)︂
where erf and erfc are the error and complementary error functions, respectively.

The following figure illustrates the relationships among the family of error functions (erf, erfc, cdfnorm).

cdfnorm Family Functions Relationship |

Argument Result Status code
a < underflow +0 oneapi::mkl::vm::status::underflow
+∞ +1
-∞ +0
QNAN QNAN
SNAN QNAN

11.2. oneMKL Domains 1749

oneAPI Specification, Release 1.1-rev-1

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

11.2. oneMKL Domains 1750

oneAPI Specification, Release 1.1-rev-1

cdfnorminv

Computes the inverse cumulative normal distribution function values of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event cdfnorminv(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event cdfnorminv(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

cdfnorminv supports the following precisions.

T
float
double

Description

The cdfnorminv(a) function computes the inverse cumulative normal distribution function values for elements of the
input vector a and writes them to the output vector y.

The inverse cumulative normal distribution function is defined as given by:

cdfnorminv(𝑥) = cdfnorm−1(𝑥)

where cdfnorm(𝑥) denotes the cumulative normal distribution function.

11.2. oneMKL Domains 1751

oneAPI Specification, Release 1.1-rev-1

Useful relations:

erfcinv(𝑥) = erfinv(1− 𝑥)

cdfnorminv(𝑥) =
√

2 erfinv(2𝑥− 1)

=
√

2 erfcinv(2− 2𝑥)

where erfinv(𝑥) denotes the inverse error function and erfcinv(𝑥) denotes the inverse complementary error function.

The following figure illustrates the relationships among erfinv family functions (erfinv, erfcinv, cdfnorminv).

cdfnorminv Family Functions Relationship |

Argument Result Status code
+0.5 +0
+1 +∞ oneapi::mkl::vm::status::sing
-0 -∞ oneapi::mkl::vm::status::sing
+0 -∞ oneapi::mkl::vm::status::sing
a < -0 QNAN oneapi::mkl::vm::status::errdom
a > +1 QNAN oneapi::mkl::vm::status::errdom
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

11.2. oneMKL Domains 1752

oneAPI Specification, Release 1.1-rev-1

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

11.2. oneMKL Domains 1753

oneAPI Specification, Release 1.1-rev-1

ceil

Computes an integer value rounded towards plus infinity for each vector element.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event ceil(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event ceil(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

ceil supports the following precisions.

T
float
double

Description

The ceil(a) function computes an integer value rounded towards plus infinity for each vector element.

𝑦𝑖 = ⌈𝑎𝑖⌉

11.2. oneMKL Domains 1754

oneAPI Specification, Release 1.1-rev-1

Argument Result Status code
+0 +0
-0 -0
+∞ +∞
-∞ -∞
QNAN QNAN
SNAN QNAN

The ceil function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

11.2. oneMKL Domains 1755

oneAPI Specification, Release 1.1-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

cis

Computes complex exponent of real vector elements (cosine and sine of real vector elements combined to complex
value).

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event cis(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<R,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event cis(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
R* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

cis supports the following precisions.

T R
float std::complex<float>
double std::complex<double>

11.2. oneMKL Domains 1756

oneAPI Specification, Release 1.1-rev-1

Description

The cis(a) function computes complex exponent of real vector elements (cosine and sine of real vector elements com-
bined to complex value).

Argument Result Status code

• 0
+1+i·0

• 0
+1-i·0

• ∞ QNAN+i·QNAN oneapi::mkl::vm::status::errdom

• ∞ QNAN+i·QNAN oneapi::mkl::vm::status::errdom

QNAN QNAN+i·QNAN
SNAN QNAN+i·QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

11.2. oneMKL Domains 1757

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

conj

Performs element by element conjugation of the vector.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event conj(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event conj(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

conj supports the following precisions.

11.2. oneMKL Domains 1758

oneAPI Specification, Release 1.1-rev-1

T
std::complex<float>
std::complex<double>

Description

The conj function performs element by element conjugation of the vector.

No special values are specified. The conj function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

11.2. oneMKL Domains 1759

oneAPI Specification, Release 1.1-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

copysign

Returns vector of elements of one argument with signs changed to match other argument elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event copysign(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event copysign(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

copysign supports the following precisions.

T
float
double

11.2. oneMKL Domains 1760

oneAPI Specification, Release 1.1-rev-1

Description

The copysign(a, b) function returns the first vector argument elements with the sign changed to match the sign of the
second vector argument’s corresponding elements.

Argument 1 Argument 2 Result Status code
any value positive value +any value
any value negative value -any value

The copysign(a, b) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

b Pointer b to the 2nd input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

11.2. oneMKL Domains 1761

oneAPI Specification, Release 1.1-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

cos

Computes cosine of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event cos(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event cos(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

cos supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

11.2. oneMKL Domains 1762

oneAPI Specification, Release 1.1-rev-1

Description

The cos(a) function computes cosine of vector elements.

Note that arguments abs(a[i]) ≤ 213 and abs(a[i]) ≤ 216 for single and double precisions, respectively, are
called fast computational path. These are trigonometric function arguments for which VM provides the best possible
performance. Avoid arguments that do not belong to the fast computational path in the VM High Accuracy (HA) and
Low Accuracy (LA) functions. Alternatively, you can use VM Enhanced Performance (EP) functions that are fast on
the entire function domain. However, these functions provide less accuracy.

Argument Result VM status code
+0 +1
-0 +1
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Specifications for special values of the complex functions are defined according to the following formula

Cos(z) = Cosh(i*z).

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

11.2. oneMKL Domains 1763

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

cosd

Computes the cosine of vector elements multiplied by 𝜋/180.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event cosd(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event cosd(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1764

oneAPI Specification, Release 1.1-rev-1

cosd supports the following precisions.

T
float
double

Description

The cosd(a) function is a degree argument trigonometric function. It computes the cosine of vector elements multiplied
by 𝜋/180. For an argument a, the function computes cos(𝜋*a/180).

Note that arguments abs(ai) ≤ 224 for single precision or abs(ai) ≤ 252 for double precision, they belong to the fast
computational path: trigonometric function arguments for which VM provides the best possible performance. Avoid
arguments with do not belong to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA)
functions. For arguments which do not belong to the fast computational path you can use VM Enhanced Performance
(EP) functions, which are fast on the entire function domain. However, these functions provide lower accuracy.

Argument Result Status code
+0 +1
-0 +1
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

11.2. oneMKL Domains 1765

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

cosh

Computes hyperbolic cosine of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event cosh(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event cosh(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1766

oneAPI Specification, Release 1.1-rev-1

cosh supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The cosh(a) function computes hyperbolic cosine of vector elements.

Data Type Threshold Limitations on Input Parameters
single precision -Log(FLT_MAX)-Log2 <a[i] < Log(FLT_MAX)+Log2
double precision -Log(DBL_MAX)-Log2 <a[i] < Log(DBL_MAX)+Log2

Argument Result Status code
+0 +1
-0 +1
X > overflow +∞ oneapi::mkl::vm::status::overflow
X < -overflow +∞ oneapi::mkl::vm::status::overflow
+∞ +∞
-∞ +∞
QNAN QNAN
SNAN QNAN

+i·∞ +∞+i·QNAN QNAN+i·QNANQNAN-i·0 QNAN+i·0 QNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN
+i·Y +∞·Cos(Y)-

i·∞·Sin(Y)
+∞·CIS(Y) QNAN+i·QNAN

+i·0 +∞-i·0 +1-i·0 +1+i·0 +∞+i·0 QNAN+i·0
-i·0 +∞+i·0 +1+i·0 +1-i·0 +∞-i·0 QNAN-i·0
-i·Y +∞·Cos(Y)-

i·∞·Sin(Y)
+∞·CIS(Y) QNAN+i·QNAN

-i·∞ +∞+i·QNAN QNAN+i·QNANQNAN+i·0 QNAN-i·0 QNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN
+i·NAN +∞+i·QNAN QNAN+i·QNANQNAN+i·QNANQNAN-

i·QNAN
QNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN

Notes:

• The complex cosh(a) function sets the VM status code to oneapi::mkl::vm::status::overflow in the
case of overflow, that is, when RE(a), IM(a) are finite non-zero numbers, but the real or imaginary part
of the exact result is so large that it does not meet the target precision.

• cosh(CONJ(a))=CONJ(cosh(a))

• cosh(-a)=cosh(a).

11.2. oneMKL Domains 1767

oneAPI Specification, Release 1.1-rev-1

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

11.2. oneMKL Domains 1768

oneAPI Specification, Release 1.1-rev-1

cospi

Computes the cosine of vector elements multiplied by 𝜋.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event cospi(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event cospi(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

cospi supports the following precisions.:

T
float
double

Description

The cospi(a) function computes the cosine of vector elements multiplied by 𝜋. For an argument a, the function computes
cos(𝜋*a).

11.2. oneMKL Domains 1769

oneAPI Specification, Release 1.1-rev-1

Argument Result Status code
+0 +1
-0 +1
n + 0.5, for any integer n where n + 0.5 is representable +0
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

If arguments abs(ai) ≤ 222 for single precision or abs(ai) ≤ 251 for double precision, they belong to the fast computa-
tional path: arguments for which VM provides the best possible performance. Avoid arguments which do not belong
to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA) functions. For arguments which do
not belong to the fast computational path you can use VM Enhanced Performance (EP) functions, which are fast on the
entire function domain. However, these functions provide lower accuracy.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

11.2. oneMKL Domains 1770

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

div

Performs element by element division of vector a by vector b

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event div(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event div(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1771

oneAPI Specification, Release 1.1-rev-1

div supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The div(a, b) function performs element by element division of vector a by vector b.

Argument 1 Argument 2 Result VM status code
X > +0 +0 +∞ oneapi::mkl::vm::status::sing
X > +0 -0 -∞ oneapi::mkl::vm::status::sing
X < +0 +0 -∞ oneapi::mkl::vm::status::sing
X < +0 -0 +∞ oneapi::mkl::vm::status::sing
+0 +0 QNAN oneapi::mkl::vm::status::sing
-0 -0 QNAN oneapi::mkl::vm::status::sing
X > +0 +∞ +0
X > +0 -∞ -0
+∞ +∞ QNAN
-∞ -∞ QNAN
QNAN QNAN QNAN
SNAN SNAN QNAN

Specifications for special values of the complex functions are defined according to the following formula

Div(x1+i*y1, x2+i*y2) = (x1+i*y1)*(x2-i*y2)/(x2*x2+y2*y2).

Overflow in a complex function occurs when x2+i*y2 is not zero, x1, x2, y1, y2 are finite numbers, but the real or
imaginary part of the exact result is so large that it does not fit the target precision. In that case, the function returns∞
in that part of the result, and sets the VM status code to oneapi::mkl::vm::status::overflow.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

11.2. oneMKL Domains 1772

oneAPI Specification, Release 1.1-rev-1

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

b Pointer b to the 2nd input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

erf

Computes the error function value of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event erf(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

11.2. oneMKL Domains 1773

oneAPI Specification, Release 1.1-rev-1

namespace oneapi::mkl::vm {

sycl::event erf(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

erf supports the following precisions.

T
float
double

Description

The erf function computes the error function values for elements of the input vector a and writes them to the output
vector y.

The error function is defined as given by:

erf(𝑥) =
2√
𝜋

∫︁ 𝑥

0

𝑒−𝑡
2

d𝑡

Useful relations:

erfc(𝑥) = 1− erf(𝑥)

where erfc is the complementary error function.

Φ(𝑥) =
1

2

(︁
1 + erf

(︁
𝑥/
√

2
)︁)︁

where

Φ(𝑥) =
1√
2𝜋

∫︁ 𝑥

0

exp(−𝑡2/2) d𝑡

is the cumulative normal distribution function.

Φ−1(𝑥) =
√

2 erf−1(2𝑥− 1)

where Φ−1(𝑥) and erf−1(𝑥) are the inverses to Φ(𝑥) and erf(𝑥), respectively.

The following figure illustrates the relationships among erf family functions (erf, erfc, cdfnorm).

erf Family Functions Relationship |

11.2. oneMKL Domains 1774

oneAPI Specification, Release 1.1-rev-1

Useful relations for these functions:

erf(𝑥) + erfc(𝑥) = 1

cdfnorm(𝑥) =
1

2

(︂
1 + erf

(︂
𝑥√
2

)︂)︂
= 1− 1

2
erfc

(︂
𝑥√
2

)︂

Argument Result Status code
+∞ +1
-∞ -1
QNAN QNAN
SNAN QNAN

11.2. oneMKL Domains 1775

oneAPI Specification, Release 1.1-rev-1

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

erfc

Computes the complementary error function value of vector elements.

11.2. oneMKL Domains 1776

oneAPI Specification, Release 1.1-rev-1

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event erfc(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event erfc(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

erfc supports the following precisions.

T
float
double

Description

The erfc function computes the complementary error function values for elements of the input vector a and writes them
to the output vector y.

The complementary error function is defined as follows:

erfc(𝑥) =
2√
𝜋

∫︁ ∞
𝑥

𝑒−𝑡
2

d𝑡

11.2. oneMKL Domains 1777

oneAPI Specification, Release 1.1-rev-1

Useful relations:

erfc(𝑥) = 1− erf(𝑥)

Φ(𝑥) =
1

2

(︁
1 + erf

(︁
𝑥/
√

2
)︁)︁

where

Φ(𝑥) =
1√
2𝜋

∫︁ 𝑥

0

exp(−𝑡2/2) d𝑡

is the cumulative normal distribution function.

Φ−1(𝑥) =
√

2 erf−1(2𝑥− 1)

where Φ−1(𝑥) and erf−1(𝑥) are the inverses to Φ(𝑥) and erf(𝑥), respectively.

The following figure illustrates the relationships among erf family functions (erf, erfc, cdfnorm).

erfc Family Functions Relationship |

Useful relations for these functions:

erf(𝑥) + erfc(𝑥) = 1

cdfnorm(𝑥) =
1

2

(︂
1 + erf

(︂
𝑥√
2

)︂)︂
= 1− 1

2
erfc

(︂
𝑥√
2

)︂

11.2. oneMKL Domains 1778

oneAPI Specification, Release 1.1-rev-1

Argument Result Status code
a > underflow +0 oneapi::mkl::vm::status::underflow
+∞ +0
-∞ +2
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

11.2. oneMKL Domains 1779

oneAPI Specification, Release 1.1-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

erfcinv

Computes the inverse complementary error function value of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event erfcinv(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event erfcinv(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

erfcinv supports the following precisions.

T
float
double

11.2. oneMKL Domains 1780

oneAPI Specification, Release 1.1-rev-1

Description

The erfcinv(a) function computes the inverse complimentary error function values for elements of the input vector a
and writes them to the output vector y.

The inverse complementary error function is defined as given by:

erfcinv(𝑥) = erfinv(1− 𝑥)

Useful relations for these functions:

erfcinv(𝑥) = erfinv(1− 𝑥)

cdfnorminv(𝑥) =
√

2 erfinv(2𝑥− 1)

=
√

2 erfcinv(2− 2𝑥)

erfinv(𝑥) = erf−1(𝑥)

erf(𝑥) =
2√
𝜋

∫︁ 𝑥

0

𝑒−𝑡
2

d𝑡

where erf(𝑥) denotes the error function and erfinv(𝑥) denotes the inverse error function.

The following figure illustrates the relationships among erfinv family functions (erfinv, erfcinv, cdfnorminv).

erfcinv Family Functions Relationship |

11.2. oneMKL Domains 1781

oneAPI Specification, Release 1.1-rev-1

Argument Result Status code
+1 +0
+2 -∞ oneapi::mkl::vm::status::sing
-0 +∞ oneapi::mkl::vm::status::sing
+0 +∞ oneapi::mkl::vm::status::sing
a < -0 QNAN oneapi::mkl::vm::status::errdom
a > +2 QNAN oneapi::mkl::vm::status::errdom
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

11.2. oneMKL Domains 1782

oneAPI Specification, Release 1.1-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

erfinv

Computes inverse error function value of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event erfinv(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event erfinv(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

erfinv supports the following precisions.

T
float
double

11.2. oneMKL Domains 1783

oneAPI Specification, Release 1.1-rev-1

Description

The erfinv(a) function computes the inverse error function values for elements of the input vector a and writes them to
the output vector y.

𝑦𝑖 = erf−1(𝑎)

where erf(𝑥) is the error function defined as given by:

erf(𝑥) =
2√
𝜋

∫︁ 𝑥

0

𝑒−𝑡
2

d𝑡

Useful relations for these functions:

erfcinv(𝑥) = erfinv(1− 𝑥)

cdfnorminv(𝑥) =
√

2 erfinv(2𝑥− 1)

=
√

2 erfcinv(2− 2𝑥)

erf−1(𝑥) = erfc−1(1− 𝑥)

where erfc is the complementary error function.

Φ(𝑥) =
1

2

(︁
1 + erf

(︁
𝑥/
√

2
)︁)︁

where

Φ(𝑥) =
1√
2𝜋

∫︁ 𝑥

0

exp(−𝑡2/2) d𝑡

is the cumulative normal distribution function.

Φ−1(𝑥) =
√

2 erf−1(2𝑥− 1)

where Φ−1(𝑥) and erf−1(𝑥) are the inverses to Φ(𝑥) and erf(𝑥), respectively.

The following figure illustrates the relationships among erfinv family functions (erfinv, erfcinv, cdfnorminv).

erfinv Family Functions Relationship |

11.2. oneMKL Domains 1784

oneAPI Specification, Release 1.1-rev-1

Argument Result Status code
+0 +0
-0 -0
+1 +∞ oneapi::mkl::vm::status::sing
-1 -∞ oneapi::mkl::vm::status::sing
|a| > 1 QNAN oneapi::mkl::vm::status::errdom
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

11.2. oneMKL Domains 1785

oneAPI Specification, Release 1.1-rev-1

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

exp

Computes an exponential of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event exp(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event exp(
(continues on next page)

11.2. oneMKL Domains 1786

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

exp supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The exp(a) function computes an exponential of vector elements.

Data Type Threshold Limitations on Input Parameters
single precision a[i] < Log(FLT_MAX)
double precision a[i] < Log(DBL_MAX)

Argument Result Status code
+0 +1
-0 +1
a > overflow +∞ oneapi::mkl::vm::status::overflow
a < underflow +0 oneapi::mkl::vm::status::overflow
+∞ +∞
-∞ +0
QNAN QNAN
SNAN QNAN

+i·∞
+i·Y
+i·0
-i·0
-i·Y
-i·∞
+i·NAN

Notes:

11.2. oneMKL Domains 1787

oneAPI Specification, Release 1.1-rev-1

• The complex exp(z) function sets the VM status code to oneapi::mkl::vm::status::overflow in the
case of overflow, that is, when both RE(z) and IM(z) are finite non-zero numbers, but the real or imaginary
part of the exact result is so large that it does not meet the target precision.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

11.2. oneMKL Domains 1788

oneAPI Specification, Release 1.1-rev-1

exp10

Computes the base 10 exponential of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event exp10(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event exp10(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

exp10 supports the following precisions.

T
float
double

Description

The exp10(a) function computes the base 10 exponential of vector elements.

Data Type Threshold Limitations on Input Parameters
single precision ai < log10(FLT_MAX)
double precision ai < log10(DBL_MAX)

11.2. oneMKL Domains 1789

oneAPI Specification, Release 1.1-rev-1

Argument Result VM status code
+0 +1
-0 +1
a > overflow +∞ oneapi::mkl::vm::status::overflow
a < underflow +0 oneapi::mkl::vm::status::underflow
+∞ +∞
-∞ +0
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

11.2. oneMKL Domains 1790

oneAPI Specification, Release 1.1-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

exp2

Computes the base 2 exponential of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event exp2(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event exp2(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

exp2 supports the following precisions.

T
float
double

11.2. oneMKL Domains 1791

oneAPI Specification, Release 1.1-rev-1

Description

The exp2 function computes the base 2 exponential of vector elements.

Data Type Threshold Limitations on Input Parameters
single precision ai < log2(FLT_MAX)
double precision ai < log2(DBL_MAX)

Argument Result Status code
+0 +1
-0 +1
a > overflow +∞ oneapi::mkl::vm::status::overflow
a < underflow +0 oneapi::mkl::vm::status::underflow
+∞ +∞
-∞ +0
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

11.2. oneMKL Domains 1792

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

expint1

Computes the exponential integral of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event expint1(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event expint1(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1793

oneAPI Specification, Release 1.1-rev-1

expint1 supports the following precisions.

T
float
double

Description

The expint1(a) function computes the exponential integral of vector elements of the input vector a and writes them to
the output vector y.

For positive real values x, this can be written as:

𝐸1(𝑥) =

∫︁ ∞
𝑥

𝑒−𝑡

𝑡
d𝑡 =

∫︁ ∞
1

𝑒−𝑥𝑡

𝑡
d𝑡

For negative real values x, the result is defined as NAN.

Argument Result Status code
x < +0 QNAN oneapi::mkl::vm::status::errdom
+0 +∞ oneapi::mkl::vm::status::sing
-0 +∞ oneapi::mkl::vm::status::sing
+∞ +0
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

11.2. oneMKL Domains 1794

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

expm1

Computes an exponential of vector elements decreased by 1. exp(a[i]) - 1

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event expm1(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event expm1(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1795

oneAPI Specification, Release 1.1-rev-1

expm1 supports the following precisions.

T
float
double

Description

The expm1(a) function computes an exponential of vector elements decreased by 1.

Argument Result Status code
+0 +1
-0 +1
a > overflow +∞ oneapi::mkl::vm::status::overflow
+∞ +∞
-∞ -0
QNAN QNAN
SNAN QNAN

Data Type Threshold Limitations on Input Parameters
single precision a[i] < Log(FLT_MAX)
double precision a[i] < Log(DBL_MAX)

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

11.2. oneMKL Domains 1796

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

fdim

Returns vector containing the differences of the corresponding elements of the vector arguments if the first is larger
and +0 otherwise.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event fdim(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event fdim(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1797

oneAPI Specification, Release 1.1-rev-1

fdim supports the following precisions.

T
float
double

Description

The fdim(a, b) function returns a vector containing the differences of the corresponding elements of the first and second
vector arguments if the first element is larger, and +0 otherwise.

Argument 1 Argument 2 Result Status code
any QNAN QNAN
any SNAN QNAN
QNAN any QNAN
SNAN any QNAN

The fdim(a, b) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

b Pointer b to the 2nd input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1798

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

floor

Computes an integer value rounded towards minus infinity for each vector element.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event floor(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event floor(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

floor supports the following precisions.

11.2. oneMKL Domains 1799

oneAPI Specification, Release 1.1-rev-1

T
float
double

Description

The floor(a)function computes an integer value rounded towards minus infinity for each vector element.

𝑦𝑖 = ⌊𝑎𝑖⌋

Argument Result Status code
+0 +0
-0 -0
+∞ +∞
-∞ -∞
QNAN QNAN
SNAN QNAN

The floor function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1800

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

fmax

Returns the larger of each pair of elements of the two vector arguments.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event fmax(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event fmax(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1801

oneAPI Specification, Release 1.1-rev-1

fmax supports the following precisions.

T
float
double

Description

The fmax(a, b) function returns a vector with element values equal to the larger value from each pair of corresponding
elements of the two vectors a and b: if a < bfmax(a, b) returns b, otherwise fmax(a, b) returns a.

Argument 1 Argument 2 Result Status code
a not NAN NAN a
NAN b not NAN b
NAN NAN NAN

The fmax(a, b) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

b Pointer b to the 2nd input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1802

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

fmin

Returns the smaller of each pair of elements of the two vector arguments.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event fmin(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event fmin(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1803

oneAPI Specification, Release 1.1-rev-1

fmin supports the following precisions.

T
float
double

Description

The fmin(a, b) function returns a vector with element values equal to the smaller value from each pair of corresponding
elements of the two vectors a and b: if a > bfmin(a, b) returns b, otherwise fmin(a, b) returns a.

Argument 1 Argument 2 Result Status code
a not NAN NAN a
NAN b not NAN b
NAN NAN NAN

The fmin(a, b) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

b Pointer b to the 2nd input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1804

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

fmod

The fmod function performs element by element computation of the modulus function of vector awith respect to vector
b.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event fmod(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event fmod(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

(continues on next page)

11.2. oneMKL Domains 1805

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

fmod supports the following precisions.

T
float
double

Description

The fmod (a, b) function computes the modulus function of each element of vector a, with respect to the corresponding
elements of vector b:

ai - bi*trunc(ai/bi)

In general, the modulus function fmod (ai, bi) returns the value ai - n*bi for some integer n such that if bi is
nonzero, the result has the same sign as ai and a magnitude less than the magnitude of bi.

Argument 1 Argument 2 Result Status code
a not NAN ±0 NAN oneapi::mkl::vm::status::sing
±∞ b not NAN NAN oneapi::mkl::vm::status::sing
±0 b̸= 0, not NAN ±0
a finite ±∞ a
NAN b
a NAN NAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

b Pointer b to the 2nd input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

11.2. oneMKL Domains 1806

oneAPI Specification, Release 1.1-rev-1

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

frac

Computes a signed fractional part for each vector element.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event frac(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event frac(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,

(continues on next page)

11.2. oneMKL Domains 1807

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

frac supports the following precisions.

T
float
double

Description

The frac(a) function computes a signed fractional part for each vector element.

𝑦𝑖 =

{︃
𝑎𝑖 − ⌊𝑎𝑖⌋, 𝑎𝑖 ≥ 0

𝑎𝑖 − ⌈𝑎𝑖⌉, 𝑎𝑖 < 0

Argument Result Status code
+0 +0
-0 -0
+∞ +0
-∞ -0
QNAN QNAN
SNAN QNAN

The frac function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1808

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

hypot

Computes a square root of sum of two squared elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event hypot(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event hypot(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1809

oneAPI Specification, Release 1.1-rev-1

hypot supports the following precisions.

T
float
double

Description

The function hypot(a, b) computes a square root of sum of two squared elements.

Argument 1 Argument 2 Result Status code
+0 +0 +0
-0 -0 +0
+∞ any value +∞
any value +∞ +∞
SNAN any value QNAN INVALID
any value SNAN QNAN INVALID
QNAN any value QNAN
any value QNAN QNAN

Data Type Threshold Limitations on Input Parameters
single precision abs(a[i]) < sqrt(FLT_MAX)abs(b[i]) < sqrt(FLT_MAX)
double precision abs(a[i]) < sqrt(DBL_MAX)abs(b[i]) < sqrt(DBL_MAX)

The hypot(a, b) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

b Pointer b to the 2nd input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1810

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

inv

Performs element by element inversion of the vector.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event inv(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event inv(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1811

oneAPI Specification, Release 1.1-rev-1

inv supports the following precisions.

T
float
double

Description

The inv(a) function performs element by element inversion of the vector.

Argument Result VM status code
+0 +∞ oneapi::mkl::vm::status::sing
-0 -∞ oneapi::mkl::vm::status::sing
+∞ +0
-∞ -0
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

11.2. oneMKL Domains 1812

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

invcbrt

Computes an inverse cube root of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event invcbrt(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event invcbrt(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1813

oneAPI Specification, Release 1.1-rev-1

invcbrt supports the following precisions.

T
float
double

Description

The invcbrt(a)function computes an inverse cube root of vector elements.

Argument Result Status code
+0 +∞ oneapi::mkl::vm::status::sing
-0 -∞ oneapi::mkl::vm::status::sing
+∞ +0
-∞ -0
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

11.2. oneMKL Domains 1814

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

invsqrt

Computes an inverse square root of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event invsqrt(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event invsqrt(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1815

oneAPI Specification, Release 1.1-rev-1

invsqrt supports the following precisions.

T
float
double

Description

The invsqrt(a) function computes an inverse square root of vector elements.

Argument Result VM status code
a < +0 QNAN oneapi::mkl::vm::status::errdom
+0 +∞ oneapi::mkl::vm::status::sing
-0 -∞ oneapi::mkl::vm::status::sing
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +0
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

11.2. oneMKL Domains 1816

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

lgamma

Computes the natural logarithm of the absolute value of gamma function for vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event lgamma(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event lgamma(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1817

oneAPI Specification, Release 1.1-rev-1

lgamma supports the following precisions.

T
float
double

Description

The lgamma(a) function computes the natural logarithm of the absolute value of gamma function for elements of the
input vector a and writes them to the output vector y. Precision overflow thresholds for the lgamma function are beyond
the scope of this document. If the result does not meet the target precision, the function sets the VM status code to
oneapi::mkl::vm::status::overflow.

Argument Result VM status code
+1 +0
+2 +0
+0 +∞ oneapi::mkl::vm::status::sing
-0 +∞ oneapi::mkl::vm::status::sing
negative integer +∞ oneapi::mkl::vm::status::sing
-∞ +∞
+∞ +∞
a > overflow +∞ oneapi::mkl::vm::status::overflow
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

11.2. oneMKL Domains 1818

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

linearfrac

Performs linear fraction transformation of vectors a and b with scalar parameters.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event linearfrac(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
T scalea,
T shifta,
T scaleb,
T shiftb,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event linearfrac(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T scalea,
T shifta,

(continues on next page)

11.2. oneMKL Domains 1819

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

T scaleb,
T shiftb,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

linearfrac supports the following precisions.

T
float
double

Description

The linearfrac(a, b, scalea, shifta, scaleb, shiftb) function performs a linear fraction transformation of vector a by vector
b with scalar parameters: scaling multipliers scalea, scaleb and shifting addends shifta, shiftb:

y[i]=(scalea·a[i]+shifta)/(scaleb·b[i]+shiftb), i=1,2 . . . n

The linearfrac function is implemented in the EP accuracy mode only, therefore no special values
are defined for this function. If used in HA or LA mode, linearfrac sets the VM status code to
oneapi::mkl::vm::status::accuracy_warning. Correctness is guaranteed within the threshold limitations
defined for each input parameter (see the table below); otherwise, the behavior is unspecified.

Threshold Limitations on Input Parameters
2EMIN/2≤ |scalea| ≤ 2(EMAX-2)/2
2EMIN/2≤ |scaleb| ≤ 2(EMAX-2)/2
|shifta| ≤ 2EMAX-2
|shiftb| ≤ 2EMAX-2
2EMIN/2≤a[i] ≤ 2(EMAX-2)/2
2EMIN/2≤b[i] ≤ 2(EMAX-2)/2
a[i] ̸= - (shifta/scalea)*(1-𝛿1), |𝛿1| ≤ 21-(p-1)/2
b[i] ̸= - (shiftb/scaleb)*(1-𝛿2), |𝛿2| ≤ 21-(p-1)/2

EMINand EMAX are the minimum and maximum exponents and p is the number of significant bits (precision) for the
corresponding data type according to the ANSI/IEEE Standard 754-2008 ([Bibliography]):

• for single precisionEMIN = -126, EMAX = 127, p = 24

• for double precisionEMIN = -1022, EMAX = 1023, p = 53

The thresholds become less strict for common cases with scalea=0 and/or scaleb=0:

• ifscalea=0, there are no limitations for the values of a[i] and shifta.

• ifscaleb=0, there are no limitations for the values of b[i] and shiftb.

11.2. oneMKL Domains 1820

oneAPI Specification, Release 1.1-rev-1

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

scalea Constant value for scaling multipliers of vector a

shifta Constant value for shifting addend of vector a

scaleb Constant value for scaling multipliers of vector b

shiftb Constant value for shifting addend of vector b

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The pointer a to the 1st input vector of size n.

b The pointer b to the 2nd input vector of size n.

scalea Constant value for scaling multipliers of vector a

shifta Constant value for shifting addend of vector a

scaleb Constant value for scaling multipliers of vector b

shiftb Constant value for shifting addend of vector b

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

11.2. oneMKL Domains 1821

oneAPI Specification, Release 1.1-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

ln

Computes natural logarithm of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event ln(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event ln(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

ln supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

11.2. oneMKL Domains 1822

oneAPI Specification, Release 1.1-rev-1

Description

The ln(a)function computes natural logarithm of vector elements.

Argument Result Status code
+1 +0
a <+0 QNAN oneapi::mkl::vm::status::errdom
+0 -∞ oneapi::mkl::vm::status::sing
-0 -∞ oneapi::mkl::vm::status::sing
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +∞
QNAN QNAN
SNAN QNAN

RE(a)
i·IM(a)

-∞ -X -0 +0 +X +∞ NAN

+i·∞ +∞ + 𝑖 ·
3𝜋
4

+∞+i·𝜋/2 +∞+i·𝜋/2 +∞+i·𝜋/2 +∞+i·𝜋/2 +∞+i·𝜋/4 +∞+i·QNAN

+i·Y +∞-i·𝜋 +∞+i·0 QNAN+i·QNAN
+i·0 +∞-i·𝜋 -∞+i·𝜋 -∞-i·0 +∞+i·0 QNAN+i·QNAN
-i·0 +∞-i·𝜋 -∞+i·𝜋 -∞-i·0 +∞-i·0 QNAN+i·QNAN
-i·Y +∞-i·𝜋 +∞-i·0 QNAN+i·QNAN
-i·∞ +∞ − 𝑖 ·

3𝜋
4

+∞-i·𝜋/2 +∞-i·𝜋/2 +∞-i·𝜋/2 +∞-i·𝜋/2 +∞-i·𝜋/4 +∞+i·QNAN

+i·NAN +∞+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1823

oneAPI Specification, Release 1.1-rev-1

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

log10

Computes the base 10 logarithm of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event log10(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event log10(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

(continues on next page)

11.2. oneMKL Domains 1824

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

log10 supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The log10(a) function computes the base 10 logarithm of vector elements.

Argument Result Status code
+1 +0
a <+0 QNAN oneapi::mkl::vm::status::errdom
+0 -∞ oneapi::mkl::vm::status::sing
-0 -∞ oneapi::mkl::vm::status::sing
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +∞
QNAN QNAN
SNAN QNAN

RE(a)
i·IM(a)

-∞ -X -0 +0 +X +∞ NAN

+i·∞ +∞ +
𝑖 34

𝜋
ln 10

+∞ +
𝑖𝜋2

1
ln 10

+∞ +
𝑖𝜋2

1
ln 10

+∞ +
𝑖𝜋2

1
ln 10

+∞ +
𝑖𝜋2

1
ln 10

+∞ +
𝑖𝜋4

1
ln 10

+∞+i·QNAN

+i·Y +∞ +
𝑖 𝜋
ln 10

+∞+i·0 QNAN+i·QNAN

+i·0 +∞ +
𝑖 𝜋
ln 10

−∞+𝑖 𝜋
ln 10 -∞+i·0 +∞+i·0 QNAN+i·QNAN

-i·0 +∞ −
𝑖 𝜋
ln 10

−∞−𝑖 𝜋
ln 10 -∞-i·0 +∞-i·0 QNAN-

i·QNAN
-i·Y +∞ −

𝑖 𝜋
ln 10

+∞-i·0 QNAN+i·QNAN

-i·∞ +∞ +
𝑖 34

𝜋
ln 10

+∞ −
𝑖𝜋2

1
ln 10

+∞ −
𝑖𝜋2

1
ln 10

+∞ −
𝑖𝜋2

1
ln 10

+∞ −
𝑖𝜋2

1
ln 10

+∞ −
𝑖𝜋4

1
ln 10

+∞+i·QNAN

+i·NAN +∞+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN

11.2. oneMKL Domains 1825

oneAPI Specification, Release 1.1-rev-1

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

11.2. oneMKL Domains 1826

oneAPI Specification, Release 1.1-rev-1

log1p

Computes a natural logarithm of vector elements that are increased by 1. log(a[i] + 1)

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event log1p(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event log1p(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

log1p supports the following precisions.

T
float
double

Description

The log1p(a) function computes a natural logarithm of vector elements that are increased by 1.

11.2. oneMKL Domains 1827

oneAPI Specification, Release 1.1-rev-1

Argument Result VM status code
-1 -∞ oneapi::mkl::vm::status::sing
a <-1 QNAN oneapi::mkl::vm::status::errdom
+0 +0
-0 -0
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +∞
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

11.2. oneMKL Domains 1828

oneAPI Specification, Release 1.1-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

log2

Computes the base 2 logarithm of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event log2(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event log2(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

log2 supports the following precisions.

T
float
double

11.2. oneMKL Domains 1829

oneAPI Specification, Release 1.1-rev-1

Description

The log2(a) function computes the base 2 logarithm of vector elements.

Argument Result Status code
+1 +0
a < +0 QNAN oneapi::mkl::vm::status::errdom
+0 -∞ oneapi::mkl::vm::status::sing
-0 -∞ oneapi::mkl::vm::status::sing
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +∞
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

11.2. oneMKL Domains 1830

oneAPI Specification, Release 1.1-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

logb

Computes the exponents of the elements of input vector a.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event logb(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event logb(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

logb supports the following precisions.

T
float
double

11.2. oneMKL Domains 1831

oneAPI Specification, Release 1.1-rev-1

Description

The logb(a) function computes the exponents of the elements of the input vector a. For each element ai of vector a, this
is the integral part of log2|ai|. The returned value is exact and is independent of the current rounding direction mode.

Argument Result VM status code
+0 +∞ oneapi::mkl::vm::status::errdom
-0 -∞ oneapi::mkl::vm::status::errdom
-∞ +∞
+∞ +∞
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

11.2. oneMKL Domains 1832

oneAPI Specification, Release 1.1-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

maxmag

Returns the element with the larger magnitude between each pair of elements of the two vector arguments.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event maxmag(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event maxmag(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

maxmag supports the following precisions.

T
float
double

11.2. oneMKL Domains 1833

oneAPI Specification, Release 1.1-rev-1

Description

The maxmag(a, b) function returns a vector with element values equal to the element with the larger magnitude from
each pair of corresponding elements of the two vectors a and b:

• If |a| > |b| maxmag(a, b) returns a, otherwise maxmag(a, b) returns b.

• If |b| > |a| maxmag(a, b) returns b, otherwise maxmag(a, b) returns a.

• Otherwise maxmag(a, b) behaves like fmax.

Argument 1 Argument 2 Result Status code
a not NAN NAN a
NAN b not NAN b
NAN NAN NAN

The maxmag(a, b) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

b Pointer b to the 2nd input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

11.2. oneMKL Domains 1834

oneAPI Specification, Release 1.1-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

minmag

Returns the element with the smaller magnitude between each pair of elements of the two vector arguments.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event minmag(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event minmag(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

minmag supports the following precisions.

T
float
double

11.2. oneMKL Domains 1835

oneAPI Specification, Release 1.1-rev-1

Description

The minmag(a, b) function returns a vector with element values equal to the element with the smaller magnitude from
each pair of corresponding elements of the two vectors a and b:

• If |a| < |b| minmag(a, b) returns a, otherwise minmag(a, b) returns b.

• If |b| < |a| minmag(a, b) returns b, otherwise minmag(a, b) returns a.

• Otherwise minmag behaves like fmin.

Argument 1 Argument 2 Result Status code
a not NAN NAN a
NAN b not NAN b
NAN NAN NAN

The minmag(a, b) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

b Pointer b to the 2nd input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

11.2. oneMKL Domains 1836

oneAPI Specification, Release 1.1-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

modf

Computes a truncated integer value and the remaining fraction part for each vector element.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event modf(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
sycl::buffer<T,1>& z,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event modf(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
T* z,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

modf supports the following precisions.

T
float
double

11.2. oneMKL Domains 1837

oneAPI Specification, Release 1.1-rev-1

Description

The modf(a) function computes a truncated integer value and the remaining fraction part for each vector element.

𝑎𝑖 ≥ 0,

{︃
𝑦𝑖 = ⌊𝑎𝑖⌋
𝑧𝑖 = 𝑎𝑖 − ⌊𝑎𝑖⌋

𝑎𝑖 < 0,

{︃
𝑦𝑖 = ⌈𝑎𝑖⌉
𝑧𝑖 = 𝑎𝑖 − ⌈𝑎𝑖⌉

Argument Result 1 Result 2 Status code
+0 +0 +0
-0 -0 -0
+∞ +∞ +0
-∞ -∞ -0
SNAN QNAN QNAN
QNAN QNAN QNAN

The modf function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1838

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n for truncated integer values.

z The buffer z containing the output vector of size n for remaining fraction parts.

USM API:

y Pointer y to the output vector of size n for truncated integer values.

z Pointer z to the output vector of size n for remaining fraction parts.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

mul

Performs element by element multiplication of vector a and vector b.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event mul(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event mul(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,

(continues on next page)

11.2. oneMKL Domains 1839

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

mul supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The mul(a, b) function performs element by element multiplication of vector a and vector b.

Argument 1 Argument 2 Result Status code
+0 +0 +0
+0 -0 -0
-0 +0 -0
-0 -0 +0
+0 +∞ QNAN
+0 -∞ QNAN
-0 +∞ QNAN
-0 -∞ QNAN
+∞ +0 QNAN
+∞ -0 QNAN
-∞ +0 QNAN
-∞ -0 QNAN
+∞ +∞ +∞
+∞ -∞ -∞
-∞ +∞ -∞
-∞ -∞ +∞
SNAN any value QNAN
any value SNAN QNAN
QNAN non-SNAN QNAN
non-SNAN QNAN QNAN

Specifications for special values of the complex functions are defined according to the following formula

mul(x1+i*y1, x2+i*y2) = (x1*x2-y1*y2) + i*(x1*y2+y1*x2)

Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when all RE(x),
RE(y), IM(x), IM(y) arguments are finite numbers, but the real or imaginary part of the computed result
is so large that it does not fit the target precision. In this case, the function returns ∞ in that part of
the result, and sets the VM status code to oneapi::mkl::vm::status::overflow (overriding any possible
oneapi::mkl::vm::status::accuracy_warning status).

11.2. oneMKL Domains 1840

oneAPI Specification, Release 1.1-rev-1

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

b Pointer b to the 2nd input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

11.2. oneMKL Domains 1841

oneAPI Specification, Release 1.1-rev-1

mulbyconj

Performs element by element multiplication of vector a element and conjugated vector b element.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event mulbyconj(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event mulbyconj(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

mulbyconj supports the following precisions.

T
std::complex<float>
std::complex<double>

11.2. oneMKL Domains 1842

oneAPI Specification, Release 1.1-rev-1

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

b Pointer b to the 2nd input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

11.2. oneMKL Domains 1843

oneAPI Specification, Release 1.1-rev-1

nearbyint

Computes a rounded integer value in the current rounding mode for each vector element.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event nearbyint(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event nearbyint(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

nearbyint supports the following precisions.

T
float
double

Description

The nearbyint(a) function computes a rounded integer value in a current rounding mode for each vector element.

Argument Result Status code
+0 +0
-0 -0
+∞ +∞
-∞ -∞
QNAN QNAN
SNAN QNAN

The nearbyint function does not generate any errors.

11.2. oneMKL Domains 1844

oneAPI Specification, Release 1.1-rev-1

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

nextafter

Returns vector of elements containing the next representable floating-point values following the values from the ele-
ments of one vector in the direction of the corresponding elements of another vector.

11.2. oneMKL Domains 1845

oneAPI Specification, Release 1.1-rev-1

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event nextafter(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event nextafter(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

nextafter supports the following precisions.

T
float
double

Description

The nextafter(a, b) function returns a vector containing the next representable floating-point values following the first
vector argument elements in the direction of the second vector argument’s corresponding elements.

Arguments/Results Status code
Input vector argument element is finite and the corresponding result vector ele-
ment value is infinite

oneapi::mkl::vm::status::overflow

Result vector element value is subnormal or zero, and different from the corre-
sponding input vector argument element

oneapi::mkl::vm::status::underflow

Even though underflow or overflow can occur, the returned value is independent of the current rounding direction mode.

11.2. oneMKL Domains 1846

oneAPI Specification, Release 1.1-rev-1

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

b Pointer b to the 2nd input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

11.2. oneMKL Domains 1847

oneAPI Specification, Release 1.1-rev-1

pow

Computes a to the power b for elements of two vectors.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event pow(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event pow(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

pow supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

11.2. oneMKL Domains 1848

oneAPI Specification, Release 1.1-rev-1

Description

The pow(a, b) function computes a to the power b for elements of two vectors.

The real function pow has certain limitations on the input range of a and b parameters. Specifically, if a[i] is positive,
then b[i] may be arbitrary. For negative a[i], the value of b[i] must be an integer (either positive or negative).

The complex function pow has no input range limitations.

Argument 1 Argument 2 Result Status code
+0 neg. odd integer +∞ oneapi::mkl::vm::status::errdom
-0 neg. odd integer -∞ oneapi::mkl::vm::status::errdom
+0 neg. even integer +∞ oneapi::mkl::vm::status::errdom
-0 neg. even integer +∞ oneapi::mkl::vm::status::errdom
+0 neg. non-integer +∞ oneapi::mkl::vm::status::errdom
-0 neg. non-integer +∞ oneapi::mkl::vm::status::errdom
-0 pos. odd integer +0
-0 pos. odd integer -0
+0 pos. even integer +0
-0 pos. even integer +0
+0 pos. non-integer +0
-0 pos. non-integer +0
-1 +∞ +1
-1 -∞ +1
+1 any value +1
+1 +0 +1
+1 -0 +1
+1 +∞ +1
+1 -∞ +1
+1 QNAN +1
any value +0 +1
+0 +0 +1
-0 +0 +1
+∞ +0 +1
-∞ +0 +1
QNAN +0 +1
any value -0 +1
+0 -0 +1
-0 -0 +1
+∞ -0 +1
-∞ -0 +1
QNAN -0 +1
a < +0 non-integer QNAN oneapi::mkl::vm::status::errdom
|a| < 1 -∞ +∞
+0 -∞ +∞ oneapi::mkl::vm::status::errdom
-0 -∞ +∞ oneapi::mkl::vm::status::errdom
|a| > 1 -∞ +0
+∞ -∞ +0
-∞ -∞ +0
|a| < 1 +∞ +0
+0 +∞ +0
-0 +∞ +0

continues on next page

11.2. oneMKL Domains 1849

oneAPI Specification, Release 1.1-rev-1

Table 17 – continued from previous page
Argument 1 Argument 2 Result Status code
|a| > 1 +∞ +∞
+∞ +∞ +∞
-∞ +∞ +∞
-∞ neg. odd integer -0
-∞ neg. even integer +0
-∞ neg. non-integer +0
-∞ pos. odd integer -∞
-∞ pos. even integer +∞
-∞ pos. non-integer +∞
+∞ b < +0 +0
+∞ b > +0 +∞
Big finite value* Big finite value* +/-∞ oneapi::mkl::vm::status::overflow
QNAN QNAN QNAN
QNAN SNAN QNAN
SNAN QNAN QNAN
SNAN SNAN QNAN

* Overflow in a real function is supported only in the HA/LA accuracy modes. The overflow occurs when x and y are
finite numbers, but the result is too large to fit the target precision. In this case, the function:

1. Returns∞ in the result.

2. Sets the VM status code to oneapi::mkl::vm::status::overflow.

Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when all RE(x),
RE(y), IM(x), IM(y) arguments are finite numbers, but the real or imaginary part of the computed result
is so large that it does not fit the target precision. In this case, the function returns ∞ in that part of
the result, and sets the VM status code to oneapi::mkl::vm::status::overflow (overriding any possible
oneapi::mkl::vm::status::accuracy_warning status).

The complex double precision versions of this function are implemented in the EP accuracy mode only. If used in HA
or LA mode, the functions set the VM status code to oneapi::mkl::vm::status::accuracy_warning.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

11.2. oneMKL Domains 1850

oneAPI Specification, Release 1.1-rev-1

b Pointer b to the 2nd input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

pow2o3

Computes the cube root of the square of each vector element.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event pow2o3(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event pow2o3(
sycl::queue& exec_queue,

(continues on next page)

11.2. oneMKL Domains 1851

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

pow2o3 supports the following precisions.

T
float
double

Description

The pow2o3(a)function computes the cube root of the square of each vector element.

Argument Result Status code
+0 +0
-0 +0
+∞ +∞
-∞ +∞
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1852

oneAPI Specification, Release 1.1-rev-1

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

pow3o2

Computes the square root of the cube of each vector element.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event pow3o2(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event pow3o2(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

(continues on next page)

11.2. oneMKL Domains 1853

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

pow3o2 supports the following precisions.

T
float
double

Description

The pow3o2(a)function computes the square root of the cube of each vector element.

Data Type Threshold Limitations on Input Parameters
single precision |ai| < (FLT_MAX)2/3
double precision |ai| < (FLT_MAX)2/3

Argument Result VM status code
a < +0 QNAN oneapi::mkl::vm::status::errdom
+0 +0
-0 -0
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +∞
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

11.2. oneMKL Domains 1854

oneAPI Specification, Release 1.1-rev-1

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

powr

Computes a to the power b for elements of two vectors, where the elements of vector argument a are all non-negative.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event powr(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event powr(
sycl::queue& exec_queue,
std::int64_t n,

(continues on next page)

11.2. oneMKL Domains 1855

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

powr supports the following precisions.

T
float
double

Description

The powr(a, b) function raises each element of vector a by the corresponding element of vector b. The elements of a
are all nonnegative (ai≥ 0).

Data Type Threshold Limitations on Input Parameters
single precision ai < (FLT_MAX)1/``b`i`
double precision ai < (DBL_MAX)1/``b`i`

Special values and VM status code treatment for v?Powr function are the same as for pow, unless otherwise indicated
in this table:

Argument 1 Argument 2 Result Status code
a < 0 any value b NAN oneapi::mkl::vm::status::errdom
0 < a <∞ ±0 1
±0 -∞ < b < 0 +∞
±0 -∞ +∞
±0 b > 0 +0
1 -∞ < b <∞ 1
±0 ±0 NAN
+∞ ±0 NAN
1 +∞ NAN
a≥ 0 NAN NAN
NAN any value b NAN
0 < a <1 -∞ +∞
a > 1 -∞ +0
0 ≤a < 1 +∞ +0
a > 1 +∞ +∞
+∞ b < +0 +0
+∞ b > +0 +∞
QNAN QNAN QNAN oneapi::mkl::vm::status::errdom
QNAN SNAN QNAN oneapi::mkl::vm::status::errdom
SNAN QNAN QNAN oneapi::mkl::vm::status::errdom
SNAN SNAN QNAN oneapi::mkl::vm::status::errdom

11.2. oneMKL Domains 1856

oneAPI Specification, Release 1.1-rev-1

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

b Pointer b to the 2nd input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

11.2. oneMKL Domains 1857

oneAPI Specification, Release 1.1-rev-1

powx

Computes vector a to the scalar power b.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event powx(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
T b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event powx(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

powx supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

11.2. oneMKL Domains 1858

oneAPI Specification, Release 1.1-rev-1

Description

The powx function computes a to the power b for a vector a and a scalar b.

The real function powx has certain limitations on the input range of a and b parameters. Specifically, if a[i] is positive,
then b may be arbitrary. For negative a[i], the value of b must be an integer (either positive or negative).

The complex function powx has no input range limitations.

Special values and VM status code treatment are the same as for the pow function.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b Fixed value of power b.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

b Fixed value of power b.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

11.2. oneMKL Domains 1859

oneAPI Specification, Release 1.1-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

remainder

Performs element by element computation of the remainder function on the elements of vector a and the corresponding
elements of vector b.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event remainder(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event remainder(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
const T *b,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

remainder supports the following precisions.

T
float
double

11.2. oneMKL Domains 1860

oneAPI Specification, Release 1.1-rev-1

Description

The remainder(a) function computes the remainder of each element of vector a, with respect to the corresponding
elements of vector b: compute the values of n such that

n = ai - n*bi

where n is the integer nearest to the exact value of ai/bi. If two integers are equally close to ai/bi, n is the even one. If
n is zero, it has the same sign as ai.

Argument 1 Argument 2 Result VM status code
a not NAN ±0 NAN oneapi::mkl::vm::status::errdom
±∞ b not NAN NAN
±0 b̸= 0, not NAN ±0
a finite ±∞ a
NAN b NAN
a NAN NAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

b Pointer b to the 2nd input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

11.2. oneMKL Domains 1861

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

rint

Computes a rounded integer value in the current rounding mode.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event rint(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event rint(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

rint supports the following precisions.

11.2. oneMKL Domains 1862

oneAPI Specification, Release 1.1-rev-1

T
float
double

Description

The rint(a) function computes a rounded floating-point integer value using the current rounding mode for each vector
element.

The rounding mode affects the results computed for inputs that fall between consecutive integers. For example:

• f(0.5) = 0, for rounding modes set to round to nearest round toward zero or to minus infinity.

• f(0.5) = 1, for rounding modes set to plus infinity.

• f(-1.5) = -2, for rounding modes set to round to nearest or to minus infinity.

• f(-1.5) = -1, for rounding modes set to round toward zero or to plus infinity.

Argument Result Status code
+0 +0
-0 -0
+∞ +∞
-∞ -∞
QNAN QNAN
SNAN QNAN

The rint function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1863

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

round

Computes a value rounded to the nearest integer for each vector element.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event round(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event round(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

round supports the following precisions.

11.2. oneMKL Domains 1864

oneAPI Specification, Release 1.1-rev-1

T
float
double

Description

The round(a) function computes a value rounded to the nearest integer for each vector element. Input elements that are
halfway between two consecutive integers are always rounded away from zero regardless of the rounding mode.

Argument Result Status code
+0 +0
-0 -0
+∞ +∞
-∞ -∞
QNAN QNAN
SNAN QNAN

The round(a) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1865

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

sin

Computes sine of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event sin(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event sin(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1866

oneAPI Specification, Release 1.1-rev-1

sin supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The sin(a)function computes sine of vector elements.

Note that arguments abs(a[i]) ≤ 213 and abs(a[i]) ≤ 216 for single and double precisions respectively are
called fast computational path. These are trigonometric function arguments for which VM provides the best possible
performance. Avoid arguments that do not belong to the fast computational path in the VM High Accuracy (HA) and
Low Accuracy (LA) functions. Alternatively, you can use VM Enhanced Performance (EP) functions that are fast on
the entire function domain. However, these functions provide less accuracy.

Argument Result VM status code
+0 +0
-0 -0
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Specifications for special values of the complex functions are defined according to the following formula

Sin(z) = -i*Sinh(i*z).

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

11.2. oneMKL Domains 1867

oneAPI Specification, Release 1.1-rev-1

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

sincos

Computes sine and cosine of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event sincos(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
sycl::buffer<T,1>& z,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event sincos(
sycl::queue& exec_queue,
std::int64_t n,

(continues on next page)

11.2. oneMKL Domains 1868

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const T *a,
T* y,
T* z,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

sincos supports the following precisions.

T
float
double

Description

The sincos(a) function computes sine and cosine of vector elements.

Note that arguments abs(a[i]) ≤ 213and abs(a[i]) ≤ 216for single and double precisions respectively are
called fast computational path. These are trigonometric function arguments for which VM provides the best possi-
ble performance. Avoid arguments that do not belong to the fast computational path in the VM High Accuracy (HA)
and Low Accuracy (LA) functions. Alternatively, you can use VM Enhanced Performance (EP) functions that are fast
on the entire function domain. However, these functions provide less accuracy.

Argument Result 1 Result 2 Status code
+0 +0 +1
-0 -0 +1
+∞ QNAN QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN QNAN
SNAN QNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

11.2. oneMKL Domains 1869

oneAPI Specification, Release 1.1-rev-1

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output sine vector of size n.

z The buffer z containing the output cosine vector of size n.

USM API:

y Pointer y to the output sine vector of size n.

z The buffer z containing the output cosine vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

sind

Computes the sine of vector elements multiplied by 𝜋/180.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event sind(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

11.2. oneMKL Domains 1870

oneAPI Specification, Release 1.1-rev-1

namespace oneapi::mkl::vm {

sycl::event sind(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

sind supports the following precisions.

T
float
double

Description

The sind(a) function is a degree argument trigonometric function. It computes the sine of vector elements multiplied
by 𝜋/180. For an argument a, the function computes sin(𝜋*a/180).

Note that arguments abs(ai) ≤ 224 for single precision or abs(ai) ≤ 252 for double precision, they belong to the fast
computational path: trigonometric function arguments for which VM provides the best possible performance. Avoid
arguments with do not belong to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA)
functions. For arguments which do not belong to the fast computational path you can use VM Enhanced Performance
(EP) functions, which are fast on the entire function domain. However, these functions provide lower accuracy.

Argument Result Status code
+0 +0
-0 -0
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

11.2. oneMKL Domains 1871

oneAPI Specification, Release 1.1-rev-1

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

sinh

Computes hyperbolic sine of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event sinh(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

11.2. oneMKL Domains 1872

oneAPI Specification, Release 1.1-rev-1

namespace oneapi::mkl::vm {

sycl::event sinh(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

sinh supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The sinh(a) function computes hyperbolic sine of vector elements.

Data Type Threshold Limitations on Input Parameters
single precision -Log(FLT_MAX)-Log(2) <a[i] < Log(FLT_MAX)+Log(2)
double precision -Log(DBL_MAX)-Log(2) <a[i] < Log(DBL_MAX)+Log(2)

Argument Result Status code
+0 +0
-0 -0
a > overflow +∞ oneapi::mkl::vm::status::overflow
a < -overflow -∞ oneapi::mkl::vm::status::overflow
+∞ +∞
-∞ -∞
QNAN QNAN
SNAN QNAN

11.2. oneMKL Domains 1873

oneAPI Specification, Release 1.1-rev-1

+i·∞ -∞+i·QNAN QNAN+i·QNAN-
0+i·QNAN

+0+i·QNANQNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN

+i·Y -∞·Cos(Y)+
i·∞·Sin(Y)

+∞·CIS(Y) QNAN+i·QNAN

+i·0 -∞+i·0 -0+i·0 +0+i·0 +∞+i·0 QNAN+i·0
-i·0 -∞-i·0 -0-i·0 +0-i·0 +∞-i·0 QNAN-i·0
-i·Y -∞·Cos(Y)+

i·∞·Sin(Y)
+∞·CIS(Y) QNAN+i·QNAN

-i·∞ -∞+i·QNAN QNAN+i·QNAN-
0+i·QNAN

+0+i·QNANQNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN

+i·NAN -∞+i·QNAN QNAN+i·QNAN-
0+i·QNAN

+0+i·QNANQNAN+i·QNAN+∞+i·QNANQNAN+i·QNAN

Notes:

• The complex sinh(a) function sets the VM status code to oneapi::mkl::vm::status::overflow in the case of
overflow, that is, when RE(a), IM(a) are finite non-zero numbers, but the real or imaginary part of the
exact result is so large that it does not meet the target precision.

• sinh(CONJ(a))=CONJ(sinh(a))

• sinh(-a)=-sinh(a).

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

11.2. oneMKL Domains 1874

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

sinpi

Computes the sine of vector elements multiplied by 𝜋.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event sinpi(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event sinpi(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1875

oneAPI Specification, Release 1.1-rev-1

sinpi supports the following precisions.

T
float
double

Description

The sinpi(a) function computes the sine of vector elements multiplied by 𝜋. For an argument a, the function computes
sin(𝜋*a).

Argument Result Status code
+0 +0
-0 -0
+n, positive integer +0
-n, negative integer -0
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

If arguments abs(ai) ≤ 222 for single precision or abs(ai) ≤ 251 for double precision, they belong to the fast computa-
tional path: arguments for which VM provides the best possible performance. Avoid arguments which do not belong
to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA) functions. For arguments which do
not belong to the fast computational path you can use VM Enhanced Performance (EP) functions, which are fast on the
entire function domain. However, these functions provide lower accuracy.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1876

oneAPI Specification, Release 1.1-rev-1

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

sqr

Performs element by element squaring of the vector.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event sqr(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event sqr(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1877

oneAPI Specification, Release 1.1-rev-1

sqr supports the following precisions.

T
float
double

Description

The sqr() function performs element by element squaring of the vector.

Argument Result Status code
+0 +0
-0 +0
+∞ +∞
-∞ +∞
QNAN QNAN
SNAN QNAN

The sqr function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing the input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1878

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

sqrt

Computes a square root of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event sqrt(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event sqrt(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1879

oneAPI Specification, Release 1.1-rev-1

sqrt supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The sqrt function computes a square root of vector elements.

Argument Result VM status code
a< +0 QNAN oneapi::mkl::vm::status::errdom
+0 +0
-0 -0
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +∞
QNAN QNAN
SNAN QNAN

+i·∞ +∞+i·∞ +∞+i·∞ +∞+i·∞ +∞+i·∞ +∞+i·∞ +∞+i·∞ +∞+i·∞
+i·Y +0+i·∞ +∞+i·0
+i·0 +0+i·∞ +0+i·0 +0+i·0 +∞+i·0
-i·0 +0-i·∞ +0-i·0 +0-i·0 +∞-i·0
-i·Y +0-i·∞ +∞-i·0
-i·∞ +∞-i·∞ +∞-i·∞ +∞-i·∞ +∞-i·∞ +∞-i·∞ +∞-i·∞ +∞-i·∞
+i·NAN

Notes:

• Sqrt(CONJ(z))=CONJ(Sqrt(z)).

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

11.2. oneMKL Domains 1880

oneAPI Specification, Release 1.1-rev-1

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

sub

Performs element by element subtraction of vector b from vector a.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event sub(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& b,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

.. code-block:: cpp

11.2. oneMKL Domains 1881

oneAPI Specification, Release 1.1-rev-1

namespace oneapi::mkl::vm {

sycl::event sub(sycl::queue& exec_queue, std::int64_t n, const T a, const T *b, T y,
std::vector<sycl::event> const & depends = {}, oneapi::mkl::vm::mode mode =
oneapi::mkl::vm::mode::not_defined, oneapi::mkl::vm::error_handler<T> errhandler - {});

} // namespace oneapi::mkl::vm

sub supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The sub(a, b) function performs element by element subtraction of vector a and vector b.

Argument 1 Argument 2 Result Status code
+0 +0 +0
+0 -0 +0
-0 +0 +0
-0 -0 -0
+∞ +∞ QNAN
+∞ -∞ +∞
-∞ +∞ -∞
-∞ -∞ QNAN
SNAN any value QNAN
any value SNAN QNAN

Specifications for special values of the complex functions are defined according to the following formula

sub(x1+i*y1, x2+i*y2) = (x1-x2) + i*(y1-y2)

Overflow in a complex function occurs (supported in the HA/LA accuracy modes only) when all RE(x),
RE(y), IM(x), IM(y) arguments are finite numbers, but the real or imaginary part of the computed result
is so large that it does not fit the target precision. In this case, the function returns ∞ in that part of
the result, and sets the VM status code to oneapi::mkl::vm::status::overflow (overriding any possible
oneapi::mkl::vm::status::accuracy_warning status).

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing 1st input vector of size n.

b The buffer b containing 2nd input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1882

oneAPI Specification, Release 1.1-rev-1

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the 1st input vector of size n.

b Pointer b to the 2nd input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

tan

Computes tangent of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event tan(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

(continues on next page)

11.2. oneMKL Domains 1883

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event tan(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

tan supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

The tan(a) function computes tangent of vector elements.

Note that arguments abs(a[i]) ≤ 213and abs(a[i]) ≤ 216for single and double precisions respectively are
called fast computational path. These are trigonometric function arguments for which VM provides the best possi-
ble performance. Avoid arguments that do not belong to the fast computational path in the VM High Accuracy (HA)
and Low Accuracy (LA) functions. Alternatively, you can use VM Enhanced Performance (EP) functions that are fast
on the entire function domain. However, these functions provide less accuracy.

Argument Result Status code
+0 +0
-0 -0
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Specifications for special values of the complex functions are defined according to the following formula

Tan(z) = -i*Tanh(i*z).

11.2. oneMKL Domains 1884

oneAPI Specification, Release 1.1-rev-1

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

11.2. oneMKL Domains 1885

oneAPI Specification, Release 1.1-rev-1

tand

Computes the tangent of vector elements multiplied by 𝜋/180.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event tand(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event tand(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

tand supports the following precisions.

T
float
double

Description

The tand(a) function computes the tangent of vector elements multiplied by 𝜋/180. For an argument x, the function
computes tan(𝜋*x/180).

Note that arguments abs(ai) ≤ 238 for single precision or abs(ai) ≤ 267 for double precision, they belong to the fast
computational path: trigonometric function arguments for which VM provides the best possible performance. Avoid
arguments with do not belong to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA)
functions. For arguments which do not belong to the fast computational path you can use VM Enhanced Performance
(EP) functions, which are fast on the entire function domain. However, these functions provide lower accuracy.

11.2. oneMKL Domains 1886

oneAPI Specification, Release 1.1-rev-1

Argument Result Status code
+0 +1
-0 +1
±∞ QNAN oneapi::mkl::vm::status::errdom
±∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

11.2. oneMKL Domains 1887

oneAPI Specification, Release 1.1-rev-1

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

tanh

Computes hyperbolic tangent of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event tanh(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event tanh(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

tanh supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

11.2. oneMKL Domains 1888

oneAPI Specification, Release 1.1-rev-1

Description

The tanh(a) function computes hyperbolic tangent of vector elements.

Argument Result Erro Code
+0 +0
-0 -0
+∞ +1
-∞ -1
QNAN QNAN
SNAN QNAN

+i·∞ -1+i·0 QNAN+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNAN+1+i·0 QNAN+i·QNAN
+i·Y -

1+i·0·Tan(Y)
+1+i·0·Tan(Y)QNAN+i·QNAN

+i·0 -1+i·0 -0+i·0 +0+i·0 +1+i·0 QNAN+i·0
-i·0 -1-i·0 -0-i·0 +0-i·0 +1-i·0 QNAN-i·0
-i·Y -

1+i·0·Tan(Y)
+1+i·0·Tan(Y)QNAN+i·QNAN

-i·∞ -1-i·0 QNAN+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNAN+1-i·0 QNAN+i·QNAN
+i·NAN -1+i·0 QNAN+i·QNANQNAN+i·QNANQNAN+i·QNANQNAN+i·QNAN+1+i·0 QNAN+i·QNAN

Notes:

• tanh(CONJ(a))=CONJ(tanh(a))

• tanh(-a)=-tanh(a).

The tanh(a) function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1889

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

tanpi

Computes the tangent of vector elements multiplied by 𝜋.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event tanpi(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event tanpi(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1890

oneAPI Specification, Release 1.1-rev-1

tanpi supports the following precisions.

T
float
double

Description

The tanpi(a) function computes the tangent of vector elements multiplied by 𝜋. For an argument a, the function com-
putes tan(𝜋*a).

Argument Result Status code
+0 +0
-0 +0
n, even integer *copysign(0.0, n)
n, odd integer *copysign(0.0, -

n)
n + 0.5, for n even integer and n + 0.5 representable +∞
n + 0.5, for n odd integer and n + 0.5 representable -∞
+∞ QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
QNAN QNAN
SNAN QNAN

The copysign(x, y) function returns the first vector argument x with the sign changed to match that of the second
argument y.

If arguments abs(ai) ≤ 2 13 for single precision or abs(ai) ≤ 2 67 for double precision, they belong to the fast compu-
tational path: arguments for which VM provides the best possible performance. Avoid arguments with do not belong
to the fast computational path in VM High Accuracy (HA) or Low Accuracy (LA) functions. For arguments which do
not belong to the fast computational path you can use VM Enhanced Performance (EP) functions, which are fast on the
entire function domain. However, these functions provide lower accuracy.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

11.2. oneMKL Domains 1891

oneAPI Specification, Release 1.1-rev-1

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

tgamma

Computes the gamma function of vector elements.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event tgamma(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event tgamma(
sycl::queue& exec_queue,
std::int64_t n,

(continues on next page)

11.2. oneMKL Domains 1892

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const T *a,
T* y,
std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined,
oneapi::mkl::vm::error_handler<T> errhandler = {});

} // namespace oneapi::mkl::vm

tgamma supports the following precisions.

T
float
double

Description

The tgamma(a) function computes the gamma function for elements of the input vector a and writes them to the output
vector y. Precision overflow thresholds for the tgamma function are beyond the scope of this document. If the result
does not meet the target precision, the function raises sets the VM status code to oneapi::mkl::vm::status::sing.

Argument Result Status code
+0 +∞ oneapi::mkl::vm::status::sing
-0 -∞ oneapi::mkl::vm::status::sing
negative integer QNAN oneapi::mkl::vm::status::errdom
-∞ QNAN oneapi::mkl::vm::status::errdom
+∞ +∞
a > overflow +∞ oneapi::mkl::vm::status::sing
QNAN QNAN
SNAN QNAN

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

11.2. oneMKL Domains 1893

oneAPI Specification, Release 1.1-rev-1

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

errhandler Sets local error handling mode for this function call. See the create_error_handler function for arguments
and their descriptions. This is an optional parameter. The local error handler is disabled by default.

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

trunc

Computes an integer value rounded towards zero for each vector element.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

sycl::event trunc(
sycl::queue& exec_queue,
std::int64_t n,
sycl::buffer<T,1>& a,
sycl::buffer<T,1>& y,
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

sycl::event trunc(
sycl::queue& exec_queue,
std::int64_t n,
const T *a,
T* y,

(continues on next page)

11.2. oneMKL Domains 1894

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

std::vector<sycl::event> const & depends = {},
oneapi::mkl::vm::mode mode = oneapi::mkl::vm::mode::not_defined);

} // namespace oneapi::mkl::vm

trunc supports the following precisions.

T
float
double

Description

The trunc(a) function computes an integer value rounded towards zero for each vector element.

𝑦𝑖 =

{︃
⌊𝑎𝑖⌋, 𝑎𝑖 ≥ 0

⌈𝑎𝑖⌉, 𝑎𝑖 < 0

Argument Result Status code
+0 +0
-0 -0
+∞ +∞
-∞ -∞
QNAN QNAN
SNAN QNAN

The trunc function does not generate any errors.

Input Parameters

Buffer API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a The buffer a containing input vector of size n.

mode Overrides the global VM mode setting for this function call. See set_mode function for possible values and their
description. This is an optional parameter. The default value is oneapi::mkl::vm::mode::not_defined.

USM API:

exec_queue The queue where the routine should be executed.

n Specifies the number of elements to be calculated.

a Pointer a to the input vector of size n.

depends Vector of dependent events (to wait for input data to be ready).

mode Overrides the global VM mode setting for this function call. See the set_mode function for
possible values and their description. This is an optional parameter. The default value is
oneapi::mkl::vm::mode::not_defined.

11.2. oneMKL Domains 1895

oneAPI Specification, Release 1.1-rev-1

Output Parameters

Buffer API:

y The buffer y containing the output vector of size n.

USM API:

y Pointer y to the output vector of size n.

return value (event) Event, signifying availability of computed output and status code(s).

Exceptions

For list of generated exceptions please refer to Exceptions

Parent topic: VM Mathematical Functions

VM Service Functions

The VM Service functions enable you to set/get the accuracy mode and error code. These functions are available both
in the Fortran and C interfaces. The table below lists available VM Service functions and their short description.

Function Short Name Description
set_mode Sets the VM mode for given queue
get_mode Gets the VM mode for given queue
set_status Sets the VM status code for given queue
get_status Gets the VM status code for given queue
clear_status Clears the VM status code for given queue
create_error_handler Creates the local VM error handler for a function

Parent topic: Vector Math

set_mode

Sets a new mode for VM functions according to the mode parameter and returns the previous VM mode.

Syntax

namespace oneapi::mkl::vm {

oneapi::mkl::vm::mode set_mode(
sycl::queue& exec_queue,
oneapi::mkl::vm::mode new_mode);

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1896

oneAPI Specification, Release 1.1-rev-1

Description

The set_mode function sets a new mode for VM functions according to the new_mode parameter and returns the
previous VM mode. The mode change has a global effect on all the VM functions within a queue.

The mode parameter is designed to control accuracy for a given queue.

Value of mode Description
Accuracy Control
oneapi::mkl::vm::mode::ha High accuracy versions of VM functions.
oneapi::mkl::vm::mode::la Low accuracy versions of VM functions.
oneapi::mkl::vm::mode::ep Enhanced performance accuracy versions of VM functions.
oneapi::mkl::vm::mode::not_defined VM mode not defined. This has no effect.

The assumed value of the mode parameter for a new queue, if set_mode is not called is
oneapi::mkl::vm::mode::ha.

Input Parameters

exec_queue The queue where the routine should be executed.

new_mode Specifies the VM mode to be set.

Output Parameters

return value (old_mode) Specifies the former VM mode.

Parent topic: VM Service Functions

get_mode

Gets the VM mode.

Syntax

namespace oneapi::mkl::vm {

oneapi::mkl::vm::mode get_mode(
sycl::queue& exec_queue);

} // namespace oneapi::mkl::vm

11.2. oneMKL Domains 1897

oneAPI Specification, Release 1.1-rev-1

Description

The function get_mode function returns the global VM mode parameter that controls accuracy for a given queue.

Value of mode Description
Accuracy Control
oneapi::mkl::vm::mode::haHigh accuracy versions of VM functions.
oneapi::mkl::vm::mode::laLow accuracy versions of VM functions.
oneapi::mkl::vm::mode::epEnhanced performance accuracy versions of VM functions.
oneapi::mkl::vm::mode::not_definedVM mode not defined. It means that no special provisions for accuracy have been

made for this queue. See set_mode for details.

Input Parameters

exec_queue The queue where the routine should be executed.

Output Parameters

return value The current global VM mode for the queue exec_queue.

Parent topic: VM Service Functions

set_status

Sets the global VM status according to new value and returns the previous VM status.

Syntax

namespace oneapi::mkl::vm {

oneapi::mkl::vm::status set_status(
sycl::queue& exec_queue,
oneapi::mkl::vm::status new_status);

} // namespace oneapi::mkl::vm

Description

The set_status function sets the global VM status to new value and returns the previous VM status code for a given
queue.

The global VM status is a single value and it registers the bitwise-OR of status codes that happened inside VM functions
run on the specific queue. For performance reasons, it might be done in non-atomic manner. The possible status codes
are listed in the table below.

11.2. oneMKL Domains 1898

oneAPI Specification, Release 1.1-rev-1

Status Description
Successful Execution
oneapi::mkl::vm::status::successVM function execution completed successfully
oneapi::mkl::vm::status::not_definedVM status not defined
Warnings
oneapi::mkl::vm::status::accuracy_warningVM function execution completed successfully in a different accuracy mode
Computational status codes
oneapi::mkl::vm::status::errdomValues are out of a range of definition producing invalid (QNaN) result
oneapi::mkl::vm::status::sing Values cause divide-by-zero (singularity) computational errors and produce

and invalid (QNaN or Inf) result
oneapi::mkl::vm::status::overflowAn overflow happened during the calculation process
oneapi::mkl::vm::status::underflowAn underflow happened during the calculation process

Input Parameters

exec_queue The queue where the routine should be executed.

new_status Specifies the VM status to be set.

Output Parameters

return value (old_status) Specifies the former VM status.

Parent topic: VM Service Functions

get_status

Gets the VM status.

Syntax

namespace oneapi::mkl::vm {

oneapi::mkl::vm::status get_status(
sycl::queue& exec_queue);

} // namespace oneapi::mkl::vm

Description

The get_status function gets the VM status for a given queue.

The global VM status is a single value and it registers the bitwise-OR of status codes that happened inside VM functions
run on the specific queue. For performance reasons, it might be done in non-atomic manner. The possible status codes
are listed in the table below.

11.2. oneMKL Domains 1899

oneAPI Specification, Release 1.1-rev-1

Status Description
Successful Execution
oneapi::mkl::vm::status::successVM function execution completed successfully
oneapi::mkl::vm::status::not_definedVM status not defined
Warnings
oneapi::mkl::vm::status::accuracy_warningVM function execution completed successfully in a different accuracy mode
Computational status codes
oneapi::mkl::vm::status::errdomValues are out of a range of definition producing invalid (QNaN) result
oneapi::mkl::vm::status::sing Values cause divide-by-zero (singularity) computational errors and produce

and invalid (QNaN or Inf) result
oneapi::mkl::vm::status::overflowAn overflow happened during the calculation process
oneapi::mkl::vm::status::underflowAn underflow happened during the calculation process

Input Parameters

exec_queue The queue where the routine should be executed.

Output Parameters

return value (status) Specifies the VM status.

Parent topic: VM Service Functions

clear_status

Resets the global VM status to oneapi::mkl::vm::status::success and returns the previous VM status code.

Syntax

namespace oneapi::mkl::vm {

oneapi::mkl::vm::status clear_status(
sycl::queue& exec_queue);

} // namespace oneapi::mkl::vm

Description

The clear_status function sets the VM status code to oneapi::mkl::vm::status::success and returns the previous
VM status code for a given queue.

The global VM status is a single value and it registers the bitwise-OR of status codes that happened inside VM functions
run on the specific queue. For performance reasons, it might be done in non-atomic manner. The possible status codes
are listed in the table below.

11.2. oneMKL Domains 1900

oneAPI Specification, Release 1.1-rev-1

Status code Description
Successful Execution
oneapi::mkl::vm::status::successVM function execution completed successfully
oneapi::mkl::vm::status::not_definedVM status not defined
Warnings
oneapi::mkl::vm::status::accuracy_warningVM function execution completed successfully in a different accuracy mode
Computational status codes
oneapi::mkl::vm::status::errdomValues are out of a range of definition producing invalid (QNaN) result
oneapi::mkl::vm::status::sing Values cause divide-by-zero (singularity) computational errors and produce

and invalid (QNaN or Inf) result
oneapi::mkl::vm::status::overflowAn overflow happened during the calculation process
oneapi::mkl::vm::status::underflowAn underflow happened during the calculation process

Input Parameters

exec_queue The queue where the routine should be executed.

Output Parameters

return value (old_status) Specifies the VM status code before the call.

Parent topic: VM Service Functions

create_error_handler

Creates an error handler for VM functions that support computational error handling.

Syntax

Buffer API:

namespace oneapi::mkl::vm {

oneapi::mkl::vm::error_handler<T> create_error_handler(
sycl::buffer<oneapi::mkl::vm::status, 1> & status_array,
int64_t length = 1,
oneapi::mkl::vm::status status = oneapi::mkl::vm::status::not_defined,
T fixup = {},
bool copysign = false);

} // namespace oneapi::mkl::vm

USM API:

namespace oneapi::mkl::vm {

oneapi::mkl::vm::error_handler<T> create_error_handler(
oneapi::mkl::vm::status* status_array,
int64_t length = 1,
oneapi::mkl::vm::status status = oneapi::mkl::vm::status::not_defined,

(continues on next page)

11.2. oneMKL Domains 1901

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

T fixup = {},
bool copysign = false);

} // namespace oneapi::mkl::vm

create_error_handler supports the following precisions.

T
float
double
std::complex<float>
std::complex<double>

Description

create_error_handler creates an computational error handler to be passed to VM functions that support computational
error handling.

A VM computational error handler supports three modes:

• Single status mode: all computational errors that happened during the execution of a function are being written
into one single status variable.

After the execution, the single value is either un-changed if no errors happened or contains bitwise-OR of initial
value and non-success status codes occurred during computation.

To enable this mode, status_array must point to any status-type array or buffer of 1 or more elements and
length must be 1.

• Multiple status mode: each non-successful status code is saved in status_array at the same index as the
argument causing the non-success status code.

Success status codes are not written to status_array. This means the array needs to be allocated and initialized
before function execution.

To enable this mode, status_array must have at least the same length as the argument and result vectors, and
length must be set to this length.

• Fixup mode: for all arguments that caused a specific error status, results are overwritten by a user-defined value.

To enable this mode, the target status and fixup values must be set. The fixup value is written to results for
each argument for which calculation resulted in the status status code.

To fix multiple error status codes, status can be provided with bitwise-OR of status codes.

If copysign is set to true then the sign of fixup is set to the same sign as the argument that caused the status
code – a suitable option for symmetric math functions.

The following table lists the possible computational status code values.

11.2. oneMKL Domains 1902

oneAPI Specification, Release 1.1-rev-1

Status code Description
Successful Execution
oneapi::mkl::vm::status::successVM function execution completed successfully
oneapi::mkl::vm::status::not_definedVM status not defined
Warnings
oneapi::mkl::vm::status::accuracy_warningVM function execution completed successfully in a different accuracy mode
Computational Errors
oneapi::mkl::vm::status::errdomValues are out of a range of definition producing invalid (QNaN) result
oneapi::mkl::vm::status::sing Values cause divide-by-zero (singularity) computational errors and produce

and invalid (QNaN or Inf) result
oneapi::mkl::vm::status::overflowAn overflow happened during the calculation process
oneapi::mkl::vm::status::underflowAn underflow happened during the calculation process

Notes:

• status_array must be allocated and initialized before calling VM functions in multiple status error handling
mode.

The array should be large enough to contain n status codes, where n is the same as the input/output vector size
for the VM function.

• If no arguments are passed to create_error_handler, then an empty object is created with all three error
handling modes disabled.

In this case, the VM math functions set the global status code only.

Input Parameters

status_array Array to store status codes (should be a buffer for buffer API).

length Length of the errarray. This is an optional argument, default value is 1.

status_code Status code to match and fix the results. This is an optional argument, default value is
oneapi::mkl::vm::status::not_defined.

fixup Fixup value for results. This is an optional argument, default value is 0.0.

copysign Flag for setting the fixup value’s sign the same as the argument’s. This is an optional argument, default value
false.

Output Parameters

return value Specifies the error handler object to be created.

Parent topic: VM Service Functions

11.2. oneMKL Domains 1903

oneAPI Specification, Release 1.1-rev-1

Exceptions

All VM mathematical functions throw exceptions in exceptional cases. The following table summarizes the conditions.

exception when thrown
oneapi::mkl::invalid_argument buffer API: n < 0;

y.get_count() < n;
z.get_count() < n; // for sincos

USM API: n < 0;
any pointer argument is nullptr

oneapi::mkl::host_bad_alloc USM API: when internal copying to and from host
memory is used and corresponding allocation fails

oneapi::mkl::device_bad_alloc USM API: when internal copying to and from device
memory is used and corresponding allocation fails

Bibliography

For more information about the VM functionality, refer to the following publications:

• VM
[IEEE754] IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-2008.

11.3 oneMKL Appendix

11.3.1 Future considerations

The following items are being considered for future versions of this specification:

• Encapsulation of matrix and vector information in classes. Matrix storage information could also be encapsu-
lated.

• More human-readable names for linear algebra functionality, aligned with the P1673 C++ proposal.

• Broader support for row major layout.

• Alternative handling of computational failures.

11.3. oneMKL Appendix 1904

oneAPI Specification, Release 1.1-rev-1

11.3.2 Acknowledgment

The oneMKL Technical Advisory Board members provided valuable feedback to the specification and are thanked for
their contributions.

11.3. oneMKL Appendix 1905

https://github.com/oneapi-src/oneAPI-tab

CHAPTER

TWELVE

RAY TRACING

12.1 Overview

Ray Tracing defines a set of ray tracing and high-fidelity rendering and computation routines for use in a wide variety
of 3D graphics uses including, film and television photorealistic visual effects and animation rendering, scientific visu-
alization, high-performance computing computations, gaming, and more. Ray Tracing is designed to allow cooperative
execution on a wide variety of computational devices: CPUs, GPUs, FPGAs, and other accelerators, termed “XPU”
computation. The functionality is subdivided into several domains: geometric ray tracing computations, volumetric
computation and rendering, path guided ray tracing, image denoising, and an integrated rendering infrastructure and
API utilizing all the individual kernel capabilities integrated into a highly capable, easy to use rendering engine.

The individual components and their APIs are described. Other design considerations and related components that are
not necessarily part of the Ray Tracing specification but that are worth mentioning will be discussed in the appendix.

12.1.1 Component Libraries

There are 4 domains.

• Embree: Geometric Ray Tracing Kernel API

• Open VKL: Volumetric Ray Tracing Kernel API

• Open Image Denoise: High-Fidelity [AI] Image Denoising API

• OSPRay: Middleware Scalable Ray Tracing and Rendering API

Embree

Embree is a collection of high-performance ray tracing kernels. The Embree target users are graphics application
engineers who want to improve the performance of their photo-realistic rendering application by leveraging Embree’s
performance-optimized ray tracing kernels. Embree supports runtime code selection to choose the traversal and build
algorithms that best matches the instruction set of your CPU.

Embree supports applications written with the Intel® SPMD Program Compiler (ISPC, https://ispc.github.io/) by also
providing an ISPC interface to the core ray tracing algorithms. This makes it possible to write a renderer in ISPC that
automatically vectorizes and leverages SSE, AVX, AVX2, and AVX-512 instructions. ISPC also supports runtime code
selection, thus ISPC will select the best code path for your application.

Embree contains algorithms optimized for incoherent workloads (e.g. Monte Carlo ray tracing algorithms) and coherent
workloads (e.g. primary visibility and hard shadow rays).

The single-ray traversal kernels of Embree provide high performance for incoherent workloads and are very easy to
integrate into existing rendering applications. Using the stream kernels, even higher performance for incoherent rays

1906

https://ispc.github.io/

oneAPI Specification, Release 1.1-rev-1

is possible, but integration might require significant code changes to the application to use the stream paradigm. In
general for coherent workloads, the stream mode with coherent flag set gives the best performance.

Embree also supports dynamic scenes by implementing high-performance two-level spatial index structure construction
algorithms.

Introduction

The Embree API is a low-level C99 ray tracing API which can be used to construct 3D scenes and perform ray queries
of different types inside these scenes. All API calls carry the prefix rtc (or RTC for types) which stands for ray tracing
core.

The API also exists in an ISPC version, which is almost identical but contains additional functions that operate on ray
packets with a size of the native SIMD width used by ISPC. For simplicity this document refers to the C99 version of the
API functions. For changes when upgrading from the Embree 2 to the current Embree 3 API see Section [Upgrading
from Embree 2 to Embree 3].

The API supports scenes consisting of different geometry types such as triangle meshes, quad meshes (triangle pairs),
grid meshes, flat curves, round curves, oriented curves, subdivision meshes, instances, and user-defined geometries.
See Section Scene Object for more information.

Finding the closest hit of a ray segment with the scene (rtcIntersect-type functions), and determining whether any
hit between a ray segment and the scene exists (rtcOccluded-type functions) are both supported. The API supports
queries for single rays, ray packets, and ray streams. See Section Ray Queries for more information.

The API is designed in an object-oriented manner, e.g. it contains device objects (RTCDevice type), scene objects
(RTCScene type), geometry objects (RTCGeometry type), buffer objects (RTCBuffer type), and BVH objects (RTCBVH
type). All objects are reference counted, and handles can be released by calling the appropriate release function
(e.g. rtcReleaseDevice) or retained by incrementing the reference count (e.g. rtcRetainDevice). In general, API
calls that access the same object are not thread-safe, unless specified differently. However, attaching geometries to the
same scene and performing ray queries in a scene is thread-safe.

Device Object

Embree supports a device concept, which allows different components of the application to use the Embree API without
interfering with each other. An application typically first creates a device using the rtcNewDevice function. This device
can then be used to construct further objects, such as scenes and geometries. Before the application exits, it should
release all devices by invoking rtcReleaseDevice. An application typically creates only a single device. If required
differently, it should only use a small number of devices at any given time.

Each user thread has its own error flag per device. If an error occurs when invoking an API function, this flag is set
to an error code (if it isn’t already set by a previous error). See Section rtcGetDeviceError for information on how to
read the error code and Section rtcSetDeviceErrorFunction on how to register a callback that is invoked for each error
encountered. It is recommended to always set a error callback function, to detect all errors.

12.1. Overview 1907

oneAPI Specification, Release 1.1-rev-1

Scene Object

A scene is a container for a set of geometries, and contains a spatial acceleration structure which can be used to perform
different types of ray queries.

A scene is created using the rtcNewScene function call, and released using the rtcReleaseScene function call. To
populate a scene with geometries use the rtcAttachGeometry call, and to detach them use the rtcDetachGeometry
call. Once all scene geometries are attached, an rtcCommitScene call (or rtcJoinCommitScene call) will finish the
scene description and trigger building of internal data structures. After the scene got committed, it is safe to perform
ray queries (see Section Ray Queries) or to query the scene bounding box (see rtcGetSceneBounds and rtcGetScene-
LinearBounds).

If scene geometries get modified or attached or detached, the rtcCommitScene call must be invoked before performing
any further ray queries for the scene; otherwise the effect of the ray query is undefined. The modification of a geometry,
committing the scene, and tracing of rays must always happen sequentially, and never at the same time. Any API call
that sets a property of the scene or geometries contained in the scene count as scene modification, e.g. including setting
of intersection filter functions.

Scene flags can be used to configure a scene to use less memory (RTC_SCENE_FLAG_COMPACT), use more robust traver-
sal algorithms (RTC_SCENE_FLAG_ROBUST), and to optimize for dynamic content. See Section rtcSetSceneFlags for
more details.

A build quality can be specified for a scene to balance between acceleration structure build performance and ray query
performance. See Section rtcSetSceneBuildQuality for more details on build quality.

Geometry Object

A new geometry is created using the rtcNewGeometry function. Depending on the geometry type, different buffers
must be bound (e.g. using rtcSetSharedGeometryBuffer) to set up the geometry data. In most cases, binding of a
vertex and index buffer is required. The number of primitives and vertices of that geometry is typically inferred from
the size of these bound buffers.

Changes to the geometry always must be committed using the rtcCommitGeometry call before using the geome-
try. After committing, a geometry is not included in any scene. A geometry can be added to a scene by using the
rtcAttachGeometry function (to automatically assign a geometry ID) or using the rtcAttachGeometryById func-
tion (to specify the geometry ID manually). A geometry can get attached to multiple scenes.

All geometry types support multi-segment motion blur with an arbitrary number of equidistant time steps (in the range
of 2 to 129) inside a user specified time range. Each geometry can have a different number of time steps and a dif-
ferent time range. The motion blur geometry is defined by linearly interpolating the geometries of neighboring time
steps. To construct a motion blur geometry, first the number of time steps of the geometry must be specified using the
rtcSetGeometryTimeStepCount function, and then a vertex buffer for each time step must be bound, e.g. using the
rtcSetSharedGeometryBuffer function. Optionally, a time range defining the start (and end time) of the first (and
last) time step can be set using the rtcSetGeometryTimeRange function. This feature will also allow geometries to
appear and disappear during the camera shutter time if the time range is a sub range of [0,1].

The API supports per-geometry filter callback functions (see rtcSetGeometryIntersectFilterFunction
and rtcSetGeometryOccludedFilterFunction) that are invoked for each intersection found during the
rtcIntersect-type or rtcOccluded-type calls. The former ones are called geometry intersection filter functions,
the latter ones geometry occlusion filter functions. These filter functions are designed to be used to ignore intersections
outside of a user-defined silhouette of a primitive, e.g. to model tree leaves using transparency textures.

12.1. Overview 1908

oneAPI Specification, Release 1.1-rev-1

Ray Queries

The API supports finding the closest hit of a ray segment with the scene (rtcIntersect-type functions), and deter-
mining whether any hit between a ray segment and the scene exists (rtcOccluded-type functions).

Supported are single ray queries (rtcIntersect1 and rtcOccluded1) as well as ray packet queries for ray packets
of size 4 (rtcIntersect4 and rtcOccluded4), ray packets of size 8 (rtcIntersect8 and rtcOccluded8), and ray
packets of size 16 (rtcIntersect16 and rtcOccluded16).

Ray streams in a variety of layouts are supported as well, such as streams of single rays (rtcIntersect1M
and rtcOccluded1M), streams of pointers to single rays (rtcIntersect1p and rtcOccluded1p), streams of
ray packets (rtcIntersectNM and rtcOccludedNM), and large packet-like streams in structure of pointer layout
(rtcIntersectNp and rtcOccludedNp).

See Sections rtcIntersect1 and rtcOccluded1 for a detailed description of how to set up and trace a ray.

See tutorial Triangle Geometry for a complete example of how to trace single rays and ray packets. Also have a look
at the tutorial Stream Viewer for an example of how to trace ray streams.

Point Queries

The API supports traversal of the BVH using a point query object that specifies a location and a query radius. For all
primitives intersecting the according domain, a user defined callback function is called which allows queries such as
finding the closest point on the surface geometries of the scene (see Tutorial Closest Point) or nearest neighbour queries
(see Tutorial Voronoi).

See Section rtcPointQuery for a detailed description of how to set up point queries.

Collision Detection

The Embree API also supports collision detection queries between two scenes consisting only of user geometries.
Embree only performs broadphase collision detection, the narrow phase detection can be performed through a callback
function.

See Section rtcCollide for a detailed description of how to set up collision detection.

Seen tutorial Collision Detection for a complete example of collision detection being used on a simple cloth solver.

Miscellaneous

A context filter function, which can be set per ray query is supported (see rtcInitIntersectContext). This filter
function is designed to change the semantics of the ray query, e.g. to accumulate opacity for transparent shadows, count
the number of surfaces along a ray, collect all hits along a ray, etc.

The internal algorithms to build a BVH are exposed through the RTCBVH object and rtcBuildBVH call. This call
makes it possible to build a BVH in a user-specified format over user-specified primitives. See the documentation of
the rtcBuildBVH call for more details.

For getting the most performance out of Embree, see the Section [Performance Recommendations].

12.1. Overview 1909

tutorials.html#triangle-geometry
tutorials.html#stream-viewer
tutorials.html#closest-point
tutorials.html#voronoi

oneAPI Specification, Release 1.1-rev-1

Embree API

rtcNewDevice

NAME

rtcNewDevice - creates a new device

SYNOPSIS

#include <embree3/rtcore.h>

RTCDevice rtcNewDevice(const char* config);

DESCRIPTION

This function creates a new device and returns a handle to this device. The device object is reference counted with an
initial reference count of 1. The handle can be released using the rtcReleaseDevice API call.

The device object acts as a class factory for all other object types. All objects created from the device (like scenes,
geometries, etc.) hold a reference to the device, thus the device will not be destroyed unless these objects are destroyed
first.

Objects are only compatible if they belong to the same device, e.g it is not allowed to create a geometry in one device
and attach it to a scene created with a different device.

A configuration string (config argument) can be passed to the device construction. This configuration string can be
NULL to use the default configuration.

The following configuration is supported:

• threads=[int]: Specifies a number of build threads to use. A value of 0 enables all detected hardware threads.
By default all hardware threads are used.

• user_threads=[int]: Sets the number of user threads that can be used to join and participate in a scene commit
using rtcJoinCommitScene. The tasking system will only use threads-user_threads many worker threads, thus
if the app wants to solely use its threads to commit scenes, just set threads equal to user_threads. This option
only has effect with the Intel(R) Threading Building Blocks (TBB) tasking system.

• set_affinity=[0/1]: When enabled, build threads are affinitized to hardware threads. This option is disabled
by default on standard CPUs, and enabled by default on Xeon Phi Processors.

• start_threads=[0/1]: When enabled, the build threads are started upfront. This can be useful for bench-
marking to exclude thread creation time. This option is disabled by default.

• isa=[sse2,sse4.2,avx,avx2,avx512]: Use specified ISA. By default the ISA is selected automatically.

• max_isa=[sse2,sse4.2,avx,avx2,avx512]: Configures the automated ISA selection to use maximally the
specified ISA.

• hugepages=[0/1]: Enables or disables usage of huge pages. Under Linux huge pages are used by default but
under Windows and macOS they are disabled by default.

• enable_selockmemoryprivilege=[0/1]: When set to 1, this enables the SeLockMemoryPrivilege privi-
lege with is required to use huge pages on Windows. This option has an effect only under Windows and is ignored
on other platforms. See Section [Huge Page Support] for more details.

12.1. Overview 1910

oneAPI Specification, Release 1.1-rev-1

• verbose=[0,1,2,3]: Sets the verbosity of the output. When set to 0, no output is printed by Embree, when
set to a higher level more output is printed. By default Embree does not print anything on the console.

• frequency_level=[simd128,simd256,simd512]: Specifies the frequency level the application want to run
on, which can be either:

a) simd128 to run at highest frequency

b) simd256 to run at AVX2-heavy frequency level

c) simd512 to run at heavy AVX512 frequency level. When some frequency level is specified, Embree will
avoid doing optimizations that may reduce the frequency level below the level specified. E.g. if your app
does not use AVX instructions setting “frequency_level=simd128” will cause some CPUs to run at highest
frequency, which may result in higher application performance if you do much shading. If you application
heavily uses AVX code, you should best set the frequency level to simd256. Per default Embree tries to
avoid reducing the frequency of the CPU by setting the simd256 level only when the CPU has no significant
down clocking.

Different configuration options should be separated by commas, e.g.:

rtcNewDevice("threads=1,isa=avx");

EXIT STATUS

On success returns a handle of the created device. On failure returns NULL as device and sets a per-thread error code
that can be queried using rtcGetDeviceError(NULL).

SEE ALSO

rtcRetainDevice, rtcReleaseDevice

12.1. Overview 1911

oneAPI Specification, Release 1.1-rev-1

rtcRetainDevice

NAME

rtcRetainDevice - increments the device reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcRetainDevice(RTCDevice device);

DESCRIPTION

Device objects are reference counted. The rtcRetainDevice function increments the reference count of the passed
device object (device argument). This function together with rtcReleaseDevice allows to use the internal reference
counting in a C++ wrapper class to manage the ownership of the object.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewDevice, rtcReleaseDevice

12.1. Overview 1912

oneAPI Specification, Release 1.1-rev-1

rtcReleaseDevice

NAME

rtcReleaseDevice - decrements the device reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcReleaseDevice(RTCDevice device);

DESCRIPTION

Device objects are reference counted. The rtcReleaseDevice function decrements the reference count of the passed
device object (device argument). When the reference count falls to 0, the device gets destroyed.

All objects created from the device (like scenes, geometries, etc.) hold a reference to the device, thus the device will
not get destroyed unless these objects are destroyed first.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewDevice, rtcRetainDevice

12.1. Overview 1913

oneAPI Specification, Release 1.1-rev-1

rtcGetDeviceProperty

NAME

rtcGetDeviceProperty - queries properties of the device

SYNOPSIS

#include <embree3/rtcore.h>

ssize_t rtcGetDeviceProperty(
RTCDevice device,
enum RTCDeviceProperty prop

);

DESCRIPTION

The rtcGetDeviceProperty function can be used to query properties (prop argument) of a device object (device
argument). The returned property is an integer of type ssize_t.

Possible properties to query are:

• RTC_DEVICE_PROPERTY_VERSION: Queries the combined version number (MAJOR.MINOR.PATCH) with two
decimal digits per component. E.g. for Embree 2.8.3 the integer 208003 is returned.

• RTC_DEVICE_PROPERTY_VERSION_MAJOR: Queries the major version number of Embree.

• RTC_DEVICE_PROPERTY_VERSION_MINOR: Queries the minor version number of Embree.

• RTC_DEVICE_PROPERTY_VERSION_PATCH: Queries the patch version number of Embree.

• RTC_DEVICE_PROPERTY_NATIVE_RAY4_SUPPORTED: Queries whether the rtcIntersect4 and
rtcOccluded4 functions preserve packet size and ray order when invoking callback functions. This is
only the case if Embree is compiled with EMBREE_RAY_PACKETS and SSE2 (or SSE4.2) enabled, and if the
machine it is running on supports SSE2 (or SSE4.2).

• RTC_DEVICE_PROPERTY_NATIVE_RAY8_SUPPORTED: Queries whether the rtcIntersect8 and
rtcOccluded8 functions preserve packet size and ray order when invoking callback functions. This is
only the case if Embree is compiled with EMBREE_RAY_PACKETS and AVX (or AVX2) enabled, and if the machine
it is running on supports AVX (or AVX2).

• RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED: Queries whether the rtcIntersect16 and
rtcOccluded16 functions preserve packet size and ray order when invoking callback functions. This is
only the case if Embree is compiled with EMBREE_RAY_PACKETS and AVX512 enabled, and if the machine it is
running on supports AVX512.

• RTC_DEVICE_PROPERTY_RAY_STREAM_SUPPORTED: Queries whether rtcIntersect1M, rtcIntersect1Mp,
rtcIntersectNM, rtcIntersectNp, rtcOccluded1M, rtcOccluded1Mp, rtcOccludedNM, and
rtcOccludedNp are supported. This is only the case if Embree is compiled with EMBREE_RAY_PACKETS
enabled.

• RTC_DEVICE_PROPERTY_RAY_MASK_SUPPORTED: Queries whether ray masks are supported. This is only the
case if Embree is compiled with EMBREE_RAY_MASK enabled.

12.1. Overview 1914

oneAPI Specification, Release 1.1-rev-1

• RTC_DEVICE_PROPERTY_BACKFACE_CULLING_ENABLED: Queries whether back face culling is enabled. This
is only the case if Embree is compiled with EMBREE_BACKFACE_CULLING enabled.

• RTC_DEVICE_PROPERTY_COMPACT_POLYS_ENABLED: Queries whether compact polys is enabled. This is only
the case if Embree is compiled with EMBREE_COMPACT_POLYS enabled.

• RTC_DEVICE_PROPERTY_FILTER_FUNCTION_SUPPORTED: Queries whether filter functions are supported,
which is the case if Embree is compiled with EMBREE_FILTER_FUNCTION enabled.

• RTC_DEVICE_PROPERTY_IGNORE_INVALID_RAYS_ENABLED: Queries whether invalid rays are ignored, which
is the case if Embree is compiled with EMBREE_IGNORE_INVALID_RAYS enabled.

• RTC_DEVICE_PROPERTY_TRIANGLE_GEOMETRY_SUPPORTED: Queries whether triangles are supported, which
is the case if Embree is compiled with EMBREE_GEOMETRY_TRIANGLE enabled.

• RTC_DEVICE_PROPERTY_QUAD_GEOMETRY_SUPPORTED: Queries whether quads are supported, which is the
case if Embree is compiled with EMBREE_GEOMETRY_QUAD enabled.

• RTC_DEVICE_PROPERTY_SUBDIVISION_GEOMETRY_SUPPORTED: Queries whether subdivision meshes are sup-
ported, which is the case if Embree is compiled with EMBREE_GEOMETRY_SUBDIVISION enabled.

• RTC_DEVICE_PROPERTY_CURVE_GEOMETRY_SUPPORTED: Queries whether curves are supported, which is the
case if Embree is compiled with EMBREE_GEOMETRY_CURVE enabled.

• RTC_DEVICE_PROPERTY_POINT_GEOMETRY_SUPPORTED: Queries whether points are supported, which is the
case if Embree is compiled with EMBREE_GEOMETRY_POINT enabled.

• RTC_DEVICE_PROPERTY_USER_GEOMETRY_SUPPORTED: Queries whether user geometries are supported, which
is the case if Embree is compiled with EMBREE_GEOMETRY_USER enabled.

• RTC_DEVICE_PROPERTY_TASKING_SYSTEM: Queries the tasking system Embree is compiled with. Possible
return values are:

0. internal tasking system

1. Intel Threading Building Blocks (TBB)

2. Parallel Patterns Library (PPL)

• RTC_DEVICE_PROPERTY_JOIN_COMMIT_SUPPORTED: Queries whether rtcJoinCommitScene is supported.
This is not the case when Embree is compiled with PPL or older versions of TBB.

• RTC_DEVICE_PROPERTY_PARALLEL_COMMIT_SUPPORTED: Queries whether rtcCommitScene can get invoked
from multiple TBB worker threads concurrently. This feature is only supported starting with TBB 2019 Update
9.

EXIT STATUS

On success returns the value of the queried property. For properties returning a boolean value, the return value 0
denotes false and 1 denotes true.

On failure zero is returned and an error code is set that can be queried using rtcGetDeviceError.

12.1. Overview 1915

oneAPI Specification, Release 1.1-rev-1

rtcGetDeviceError

NAME

rtcGetDeviceError - returns the error code of the device

SYNOPSIS

#include <embree3/rtcore.h>

RTCError rtcGetDeviceError(RTCDevice device);

DESCRIPTION

Each thread has its own error code per device. If an error occurs when calling an API function, this error code is set
to the occurred error if it stores no previous error. The rtcGetDeviceError function reads and returns the currently
stored error and clears the error code. This assures that the returned error code is always the first error occurred since
the last invocation of rtcGetDeviceError.

Possible error codes returned by rtcGetDeviceError are:

• RTC_ERROR_NONE: No error occurred.

• RTC_ERROR_UNKNOWN: An unknown error has occurred.

• RTC_ERROR_INVALID_ARGUMENT: An invalid argument was specified.

• RTC_ERROR_INVALID_OPERATION: The operation is not allowed for the specified object.

• RTC_ERROR_OUT_OF_MEMORY: There is not enough memory left to complete the operation.

• RTC_ERROR_UNSUPPORTED_CPU: The CPU is not supported as it does not support the lowest ISA Embree is
compiled for.

• RTC_ERROR_CANCELLED: The operation got canceled by a memory monitor callback or progress monitor call-
back function.

When the device construction fails, rtcNewDevice returns NULL as device. To detect the error code of a such a
failed device construction, pass NULL as device to the rtcGetDeviceError function. For all other invocations of
rtcGetDeviceError, a proper device pointer must be specified.

EXIT STATUS

Returns the error code for the device.

12.1. Overview 1916

oneAPI Specification, Release 1.1-rev-1

SEE ALSO

rtcSetDeviceErrorFunction

12.1. Overview 1917

oneAPI Specification, Release 1.1-rev-1

rtcSetDeviceErrorFunction

NAME

rtcSetDeviceErrorFunction - sets an error callback function for the device

SYNOPSIS

#include <embree3/rtcore.h>

typedef void (*RTCErrorFunction)(
void* userPtr,
RTCError code,
const char* str

);

void rtcSetDeviceErrorFunction(
RTCDevice device,
RTCErrorFunction error,
void* userPtr

);

DESCRIPTION

Using the rtcSetDeviceErrorFunction call, it is possible to set a callback function (error argument) with payload
(userPtr argument), which is called whenever an error occurs for the specified device (device argument).

Only a single callback function can be registered per device, and further invocations overwrite the previously set call-
back function. Passing NULL as function pointer disables the registered callback function.

When the registered callback function is invoked, it gets passed the user-defined payload (userPtr argument as speci-
fied at registration time), the error code (code argument) of the occurred error, as well as a string (str argument) that
further describes the error.

The error code is also set if an error callback function is registered.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

12.1. Overview 1918

oneAPI Specification, Release 1.1-rev-1

SEE ALSO

rtcGetDeviceError

12.1. Overview 1919

oneAPI Specification, Release 1.1-rev-1

rtcSetDeviceMemoryMonitorFunction

NAME

rtcSetDeviceMemoryMonitorFunction - registers a callback function
to track memory consumption

SYNOPSIS

#include <embree3/rtcore.h>

typedef bool (*RTCMemoryMonitorFunction)(
void* userPtr,
ssize_t bytes,
bool post

);

void rtcSetDeviceMemoryMonitorFunction(
RTCDevice device,
RTCMemoryMonitorFunction memoryMonitor,
void* userPtr

);

DESCRIPTION

Using the rtcSetDeviceMemoryMonitorFunction call, it is possible to register a callback function
(memoryMonitor argument) with payload (userPtr argument) for a device (device argument), which is called
whenever internal memory is allocated or deallocated by objects of that device. Using this memory monitor callback
mechanism, the application can track the memory consumption of an Embree device, and optionally terminate API
calls that consume too much memory.

Only a single callback function can be registered per device, and further invocations overwrite the previously set call-
back function. Passing NULL as function pointer disables the registered callback function.

Once registered, the Embree device will invoke the memory monitor callback function before or after it allocates or frees
important memory blocks. The callback function gets passed the payload as specified at registration time (userPtr
argument), the number of bytes allocated or deallocated (bytes argument), and whether the callback is invoked after
the allocation or deallocation took place (post argument). The callback function might get called from multiple threads
concurrently.

The application can track the current memory usage of the Embree device by atomically accumulating the bytes input
parameter provided to the callback function. This parameter will be >0 for allocations and <0 for deallocations.

Embree will continue its operation normally when returning true from the callback function. If false is returned,
Embree will cancel the current operation with the RTC_ERROR_OUT_OF_MEMORY error code. Issuing multiple cancel
requests from different threads is allowed. Canceling will only happen when the callback was called for allocations
(bytes > 0), otherwise the cancel request will be ignored.

If a callback to cancel was invoked before the allocation happens (post == false), then the bytes parameter should
not be accumulated, as the allocation will never happen. If the callback to cancel was invoked after the allocation
happened (post == true), then the bytes parameter should be accumulated, as the allocation properly happened
and a deallocation will later free that data block.

12.1. Overview 1920

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewDevice

12.1. Overview 1921

oneAPI Specification, Release 1.1-rev-1

rtcNewScene

NAME

rtcNewScene - creates a new scene

SYNOPSIS

#include <embree3/rtcore.h>

RTCScene rtcNewScene(RTCDevice device);

DESCRIPTION

This function creates a new scene bound to the specified device (device argument), and returns a handle to this scene.
The scene object is reference counted with an initial reference count of 1. The scene handle can be released using the
rtcReleaseScene API call.

EXIT STATUS

On success a scene handle is returned. On failure NULL is returned and an error code is set that can be queried using
rtcGetDeviceError.

SEE ALSO

rtcRetainScene, rtcReleaseScene

12.1. Overview 1922

oneAPI Specification, Release 1.1-rev-1

rtcGetSceneDevice

NAME

rtcGetSceneDevice - returns the device the scene got created in

SYNOPSIS

#include <embree3/rtcore.h>

RTCDevice rtcGetSceneDevice(RTCScene scene);

DESCRIPTION

This function returns the device object the scene got created in. The returned handle own one additional reference to
the device object, thus you should need to call rtcReleaseDevice when the returned handle is no longer required.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcReleaseDevice

12.1. Overview 1923

oneAPI Specification, Release 1.1-rev-1

rtcRetainScene

NAME

rtcRetainScene - increments the scene reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcRetainScene(RTCScene scene);

DESCRIPTION

Scene objects are reference counted. The rtcRetainScene function increments the reference count of the passed
scene object (scene argument). This function together with rtcReleaseScene allows to use the internal reference
counting in a C++ wrapper class to handle the ownership of the object.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewScene, rtcReleaseScene

12.1. Overview 1924

oneAPI Specification, Release 1.1-rev-1

rtcReleaseScene

NAME

rtcReleaseScene - decrements the scene reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcReleaseScene(RTCScene scene);

DESCRIPTION

Scene objects are reference counted. The rtcReleaseScene function decrements the reference count of the passed
scene object (scene argument). When the reference count falls to 0, the scene gets destroyed.

The scene holds a reference to all attached geometries, thus if the scene gets destroyed, all geometries get detached and
their reference count decremented.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewScene, rtcRetainScene

12.1. Overview 1925

oneAPI Specification, Release 1.1-rev-1

rtcAttachGeometry

NAME

rtcAttachGeometry - attaches a geometry to the scene

SYNOPSIS

#include <embree3/rtcore.h>

unsigned int rtcAttachGeometry(
RTCScene scene,
RTCGeometry geometry

);

DESCRIPTION

The rtcAttachGeometry function attaches a geometry (geometry argument) to a scene (scene argument) and as-
signs a geometry ID to that geometry. All geometries attached to a scene are defined to be included inside the scene.
A geometry can get attached to multiplee scene. The geometry ID is unique for the scene, and is used to identify the
geometry when hit by a ray during ray queries.

This function is thread-safe, thus multiple threads can attach geometries to a scene in parallel.

The geometry IDs are assigned sequentially, starting from 0, as long as no geometry got detached. If geometries got
detached, the implementation will reuse IDs in an implementation dependent way. Consequently sequential assignment
is no longer guaranteed, but a compact range of IDs.

These rules allow the application to manage a dynamic array to efficiently map from geometry IDs to its own geometry
representation. Alternatively, the application can also use per-geometry user data to map to its geometry representation.
See rtcSetGeometryUserData and rtcGetGeometryUserData for more information.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryUserData, rtcGetGeometryUserData

12.1. Overview 1926

oneAPI Specification, Release 1.1-rev-1

rtcAttachGeometryByID

NAME

rtcAttachGeometryByID - attaches a geometry to the scene
using a specified geometry ID

SYNOPSIS

#include <embree3/rtcore.h>

void rtcAttachGeometryByID(
RTCScene scene,
RTCGeometry geometry,
unsigned int geomID

);

DESCRIPTION

The rtcAttachGeometryByID function attaches a geometry (geometry argument) to a scene (scene argument) and
assigns a user provided geometry ID (geomID argument) to that geometry. All geometries attached to a scene are
defined to be included inside the scene. A geometry can get attached to multiple scenes. The passed user-defined
geometry ID is used to identify the geometry when hit by a ray during ray queries. Using this function, it is possible to
share the same IDs to refer to geometries inside the application and Embree.

This function is thread-safe, thus multiple threads can attach geometries to a scene in parallel.

The user-provided geometry ID must be unused in the scene, otherwise the creation of the geometry will fail. Further,
the user-provided geometry IDs should be compact, as Embree internally creates a vector which size is equal to the
largest geometry ID used. Creating very large geometry IDs for small scenes would thus cause a memory consumption
and performance overhead.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcAttachGeometry

12.1. Overview 1927

oneAPI Specification, Release 1.1-rev-1

rtcDetachGeometry

NAME

rtcDetachGeometry - detaches a geometry from the scene

SYNOPSIS

#include <embree3/rtcore.h>

void rtcDetachGeometry(RTCScene scene, unsigned int geomID);

DESCRIPTION

This function detaches a geometry identified by its geometry ID (geomID argument) from a scene (scene argument).
When detached, the geometry is no longer contained in the scene.

This function is thread-safe, thus multiple threads can detach geometries from a scene at the same time.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcAttachGeometry, rtcAttachGeometryByID

12.1. Overview 1928

oneAPI Specification, Release 1.1-rev-1

rtcGetGeometry

NAME

rtcGetGeometry - returns the geometry bound to
the specified geometry ID

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry rtcGetGeometry(RTCScene scene, unsigned int geomID);

DESCRIPTION

The rtcGetGeometry function returns the geometry that is bound to the specified geometry ID (geomID argument)
for the specified scene (scene argument). This function just looks up the handle and does not increment the reference
count. If you want to get ownership of the handle, you need to additionally call rtcRetainGeometry.

This function is not thread safe and thus can be used during rendering. However, it is generally recommended to
store the geometry handle inside the application’s geometry representation and look up the geometry handle from that
representation directly.

If you need a thread safe version of this function please use rtcGetGeometryThreadSafe.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcAttachGeometry, rtcAttachGeometryByID, rtcGetGeometryThreadSafe

12.1. Overview 1929

oneAPI Specification, Release 1.1-rev-1

rtcGetGeometryThreadSafe

NAME

rtcGetGeometryThreadSafe - returns the geometry bound to
the specified geometry ID

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry rtcGetGeometryThreadSafe(RTCScene scene, unsigned int geomID);

DESCRIPTION

The rtcGetGeometryThreadSafe function returns the geometry that is bound to the specified geometry ID (geomID
argument) for the specified scene (scene argument). This function just looks up the handle and does not increment the
reference count. If you want to get ownership of the handle, you need to additionally call rtcRetainGeometry.

This function is thread safe and should NOT get used during rendering. If you need a fast non-thread safe version
during rendering please use the rtcGetGeometry function.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcAttachGeometry, rtcAttachGeometryByID, rtcGetGeometry

12.1. Overview 1930

oneAPI Specification, Release 1.1-rev-1

rtcCommitScene

NAME

rtcCommitScene - commits scene changes

SYNOPSIS

#include <embree3/rtcore.h>

void rtcCommitScene(RTCScene scene);

DESCRIPTION

The rtcCommitScene function commits all changes for the specified scene (scene argument). This internally triggers
building of a spatial acceleration structure for the scene using all available worker threads. Ray queries can be performed
only after committing all scene changes.

If the application uses TBB 2019 Update 9 or later for parallelization of rendering, lazy scene construction during
rendering is supported by rtcCommitScene. Therefore rtcCommitScene can get called from multiple TBB worker
threads concurrently for the same scene. The rtcCommitScene function will then internally isolate the scene con-
struction using a tbb::isolated_task_group. The alternative approach of using rtcJoinCommitScene which uses an
tbb:task_arena internally, is not recommended due to it’s high runtime overhead.

If scene geometries get modified or attached or detached, the rtcCommitScene call must be invoked before performing
any further ray queries for the scene; otherwise the effect of the ray query is undefined. The modification of a geometry,
committing the scene, and tracing of rays must always happen sequentially, and never at the same time. Any API call
that sets a property of the scene or geometries contained in the scene count as scene modification, e.g. including setting
of intersection filter functions.

The kind of acceleration structure built can be influenced using scene flags (see rtcSetSceneFlags), and the quality
can be specified using the rtcSetSceneBuildQuality function.

Embree silently ignores primitives during spatial acceleration structure construction that would cause numerical issues,
e.g. primitives containing NaNs, INFs, or values greater than 1.844E18f (as no reasonable calculations can be performed
with such values without causing overflows).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

12.1. Overview 1931

oneAPI Specification, Release 1.1-rev-1

SEE ALSO

rtcJoinCommitScene

12.1. Overview 1932

oneAPI Specification, Release 1.1-rev-1

rtcJoinCommitScene

NAME

rtcJoinCommitScene - commits the scene from multiple threads

SYNOPSIS

#include <embree3/rtcore.h>

void rtcJoinCommitScene(RTCScene scene);

DESCRIPTION

The rtcJoinCommitScene function commits all changes for the specified scene (scene argument). The scene commit
internally triggers building of a spatial acceleration structure for the scene. Ray queries can be performed after scene
changes got properly committed.

The rtcJoinCommitScene function can get called from multiple user threads which will all cooperate in the build
operation. All threads calling into this function will return from rtcJoinCommitScene after the scene commit is
finished. All threads must consistently call rtcJoinCommitScene and not rtcCommitScene.

In contrast to the rtcCommitScene function, the rtcJoinCommitScene function can be called from multiple user
threads, while the rtcCommitScene can only get called from multiple TBB worker threads when used concurrently.
For optimal performance we strongly recommend using TBB inside the application together with the rtcCommitScene
function and to avoid using the rtcJoinCommitScene function.

The rtcJoinCommitScene feature allows a flexible way to lazily create hierarchies during rendering. A thread
reaching a not-yet-constructed sub-scene of a two-level scene can generate the sub-scene geometry and call
rtcJoinCommitScene on that just generated scene. During construction, further threads reaching the not-yet-built
scene can join the build operation by also invoking rtcJoinCommitScene. A thread that calls rtcJoinCommitScene
after the build finishes will directly return from the rtcJoinCommitScene call.

Multiple scene commit operations on different scenes can be running at the same time, hence it is possible to commit
many small scenes in parallel, distributing the commits to many threads.

When using Embree with the Intel® Threading Building Blocks (which is the default), threads that call
rtcJoinCommitScene will join the build operation, but other TBB worker threads might also participate in the build.
To avoid thread oversubscription, we recommend using TBB also inside the application. Further, the join mode only
works properly starting with TBB v4.4 Update 1. For earlier TBB versions, threads that call rtcJoinCommitScene
to join a running build will just trigger the build and wait for the build to finish. Further, old TBB versions with
TBB_INTERFACE_VERSION_MAJOR < 8 do not support rtcJoinCommitScene, and invoking this function will result
in an error.

When using Embree with the internal tasking system, only threads that call rtcJoinCommitScene will perform the
build operation, and no additional worker threads will be scheduled.

When using Embree with the Parallel Patterns Library (PPL), rtcJoinCommitScene is not supported and calling that
function will result in an error.

To detect whether rtcJoinCommitScene is supported, use the rtcGetDeviceProperty function.

12.1. Overview 1933

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcCommitScene, rtcGetDeviceProperty

12.1. Overview 1934

oneAPI Specification, Release 1.1-rev-1

rtcSetSceneProgressMonitorFunction

NAME

rtcSetSceneProgressMonitorFunction - registers a callback
to track build progress

SYNOPSIS

#include <embree3/rtcore.h>

typedef bool (*RTCProgressMonitorFunction)(
void* ptr,
double n

);

void rtcSetSceneProgressMonitorFunction(
RTCScene scene,
RTCProgressMonitorFunction progress,
void* userPtr

);

DESCRIPTION

Embree supports a progress monitor callback mechanism that can be used to report progress of hierarchy build opera-
tions and to cancel build operations.

The rtcSetSceneProgressMonitorFunction registers a progress monitor callback function (progress argument)
with payload (userPtr argument) for the specified scene (scene argument).

Only a single callback function can be registered per scene, and further invocations overwrite the previously set callback
function. Passing NULL as function pointer disables the registered callback function.

Once registered, Embree will invoke the callback function multiple times during hierarchy build operations of the scene,
by passing the payload as set at registration time (userPtr argument), and a double in the range [0, 1] which estimates
the progress of the operation (n argument). The callback function might be called from multiple threads concurrently.

When returning true from the callback function, Embree will continue the build operation normally. When returning
false, Embree will cancel the build operation with the RTC_ERROR_CANCELLED error code. Issuing multiple cancel
requests for the same build operation is allowed.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

12.1. Overview 1935

oneAPI Specification, Release 1.1-rev-1

SEE ALSO

rtcNewScene

12.1. Overview 1936

oneAPI Specification, Release 1.1-rev-1

rtcSetSceneBuildQuality

NAME

rtcSetSceneBuildQuality - sets the build quality for
the scene

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetSceneBuildQuality(
RTCScene scene,
enum RTCBuildQuality quality

);

DESCRIPTION

The rtcSetSceneBuildQuality function sets the build quality (quality argument) for the specified scene (scene
argument). Possible values for the build quality are:

• RTC_BUILD_QUALITY_LOW: Create lower quality data structures, e.g. for dynamic scenes. A two-level spatial
index structure is built when enabling this mode, which supports fast partial scene updates, and allows for setting
a per-geometry build quality through the rtcSetGeometryBuildQuality function.

• RTC_BUILD_QUALITY_MEDIUM: Default build quality for most usages. Gives a good compromise between build
and render performance.

• RTC_BUILD_QUALITY_HIGH: Create higher quality data structures for final-frame rendering. For certain geom-
etry types this enables a spatial split BVH.

Selecting a higher build quality results in better rendering performance but slower scene commit times. The default
build quality for a scene is RTC_BUILD_QUALITY_MEDIUM.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryBuildQuality

12.1. Overview 1937

oneAPI Specification, Release 1.1-rev-1

rtcSetSceneFlags

NAME

rtcSetSceneFlags - sets the flags for the scene

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetSceneFlags(RTCScene scene, enum RTCSceneFlags flags);

DESCRIPTION

The rtcSetSceneFlags function sets the scene flags (flags argument) for the specified scene (scene argument).
Possible scene flags are:

• RTC_SCENE_FLAG_NONE: No flags set.

• RTC_SCENE_FLAG_DYNAMIC: Provides better build performance for dynamic scenes (but also higher memory
consumption).

• RTC_SCENE_FLAG_COMPACT: Uses compact acceleration structures and avoids algorithms that consume much
memory.

• RTC_SCENE_FLAG_ROBUST: Uses acceleration structures that allow for robust traversal, and avoids optimizations
that reduce arithmetic accuracy. This mode is typically used for avoiding artifacts caused by rays shooting through
edges of neighboring primitives.

• RTC_SCENE_FLAG_CONTEXT_FILTER_FUNCTION: Enables support for a filter function inside the intersection
context for this scene. See Section rtcInitIntersectContext for more details.

Multiple flags can be enabled using an or operation, e.g. RTC_SCENE_FLAG_COMPACT | RTC_SCENE_FLAG_ROBUST.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetSceneFlags

12.1. Overview 1938

oneAPI Specification, Release 1.1-rev-1

rtcGetSceneFlags

NAME

rtcGetSceneFlags - returns the flags of the scene

SYNOPSIS

#include <embree3/rtcore.h>

enum RTCSceneFlags rtcGetSceneFlags(RTCScene scene);

DESCRIPTION

Queries the flags of a scene. This function can be useful when setting individual flags, e.g. to just set the robust mode
without changing other flags the following way:

RTCSceneFlags flags = rtcGetSceneFlags(scene);
rtcSetSceneFlags(scene, RTC_SCENE_FLAG_ROBUST | flags);

EXIT STATUS

On failure RTC_SCENE_FLAG_NONE is returned and an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetSceneFlags

12.1. Overview 1939

oneAPI Specification, Release 1.1-rev-1

rtcGetSceneBounds

NAME

rtcGetSceneBounds - returns the axis-aligned bounding box of the scene

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCORE_ALIGN(16) RTCBounds
{
float lower_x, lower_y, lower_z, align0;
float upper_x, upper_y, upper_z, align1;

};

void rtcGetSceneBounds(
RTCScene scene,
struct RTCBounds* bounds_o

);

DESCRIPTION

The rtcGetSceneBounds function queries the axis-aligned bounding box of the specified scene (scene argument) and
stores that bounding box to the provided destination pointer (bounds_o argument). The stored bounding box consists
of lower and upper bounds for the x, y, and z dimensions as specified by the RTCBounds structure.

The provided destination pointer must be aligned to 16 bytes. The function may be invoked only after committing the
scene; otherwise the result is undefined.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetSceneLinearBounds, rtcCommitScene, rtcJoinCommitScene

12.1. Overview 1940

oneAPI Specification, Release 1.1-rev-1

rtcGetSceneLinearBounds

NAME

rtcGetSceneLinearBounds - returns the linear bounds of the scene

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCORE_ALIGN(16) RTCLinearBounds
{
RTCBounds bounds0;
RTCBounds bounds1;

};

void rtcGetSceneLinearBounds(
RTCScene scene,
struct RTCLinearBounds* bounds_o

);

DESCRIPTION

The rtcGetSceneLinearBounds function queries the linear bounds of the specified scene (scene argument) and
stores them to the provided destination pointer (bounds_o argument). The stored linear bounds consist of bounding
boxes for time 0 (bounds0 member) and time 1 (bounds1 member) as specified by the RTCLinearBounds structure.
Linearly interpolating these bounds to a specific time t yields bounds for the geometry at that time.

The provided destination pointer must be aligned to 16 bytes. The function may be called only after committing the
scene, otherwise the result is undefined.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetSceneBounds, rtcCommitScene, rtcJoinCommitScene

12.1. Overview 1941

oneAPI Specification, Release 1.1-rev-1

rtcNewGeometry

NAME

rtcNewGeometry - creates a new geometry object

SYNOPSIS

#include <embree3/rtcore.h>

enum RTCGeometryType
{
RTC_GEOMETRY_TYPE_TRIANGLE,
RTC_GEOMETRY_TYPE_QUAD,
RTC_GEOMETRY_TYPE_SUBDIVISION,
RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE,
RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE,
RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE,
RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE,
RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE,
RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE,
RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE,
RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE,
RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE,
RTC_GEOMETRY_TYPE_GRID,
RTC_GEOMETRY_TYPE_SPHERE_POINT,
RTC_GEOMETRY_TYPE_DISC_POINT,
RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT,
RTC_GEOMETRY_TYPE_USER,
RTC_GEOMETRY_TYPE_INSTANCE
};

RTCGeometry rtcNewGeometry(
RTCDevice device,
enum RTCGeometryType type

);

12.1. Overview 1942

oneAPI Specification, Release 1.1-rev-1

DESCRIPTION

Geometries are objects that represent an array of primitives of the same type. The rtcNewGeometry function creates
a new geometry of specified type (type argument) bound to the specified device (device argument) and returns a
handle to this geometry. The geometry object is reference counted with an initial reference count of 1. The geometry
handle can be released using the rtcReleaseGeometry API call.

Supported geometry types are triangle meshes (RTC_GEOMETRY_TYPE_TRIANGLE type), quad meshes (triangle pairs)
(RTC_GEOMETRY_TYPE_QUAD type), Catmull-Clark subdivision surfaces (RTC_GEOMETRY_TYPE_SUBDIVISION
type), curve geometries with different bases (RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE,
RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE, RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE,
RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE, RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE,
RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE, RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE, RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE,
RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE types) grid meshes (RTC_GEOMETRY_TYPE_GRID), point
geometries (RTC_GEOMETRY_TYPE_SPHERE_POINT, RTC_GEOMETRY_TYPE_DISC_POINT,
RTC_TYPE_ORIENTED_DISC_POINT), user-defined geometries (RTC_GEOMETRY_TYPE_USER), and instances
(RTC_GEOMETRY_TYPE_INSTANCE).

The types RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE, RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE, and
RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE will treat the curve as a sweep surface of a varying-
radius circle swept tangentially along the curve. The types RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE,
RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE, and RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE use ray-
facing ribbons as a faster-to-intersect approximation.

After construction, geometries are enabled by default and not attached to any scene. Geometries can be dis-
abled (rtcDisableGeometry call), and enabled again (rtcEnableGeometry call). A geometry can be attached
to multiple scenes using the rtcAttachGeometry call (or rtcAttachGeometryByID call), and detached using the
rtcDetachGeometry call. During attachment, a geometry ID is assigned to the geometry (or assigned by the user when
using the rtcAttachGeometryByID call), which uniquely identifies the geometry inside that scene. This identifier is
returned when primitives of the geometry are hit in later ray queries for the scene.

Geometries can also be modified, including their vertex and index buffers. After modifying a buffer,
rtcUpdateGeometryBuffer must be called to notify that the buffer got modified.

The application can use the rtcSetGeometryUserData function to set a user data pointer to its own geometry repre-
sentation, and later read out this pointer using the rtcGetGeometryUserData function.

After setting up the geometry or modifying it, rtcCommitGeometry must be called to finish the geometry
setup. After committing the geometry, vertex data interpolation can be performed using the rtcInterpolate and
rtcInterpolateN functions.

A build quality can be specified for a geometry using the rtcSetGeometryBuildQuality function, to balance be-
tween acceleration structure build performance and ray query performance. The build quality per geometry will be
used if a two-level acceleration structure is built internally, which is the case if the RTC_BUILD_QUALITY_LOW is set
as the scene build quality. See Section rtcSetSceneBuildQuality for more details.

12.1. Overview 1943

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcEnableGeometry, rtcDisableGeometry, rtcAttachGeometry, rtcAttachGeometryByID, rtcUpdateGeome-
tryBuffer, rtcSetGeometryUserData, rtcGetGeometryUserData, rtcCommitGeometry, rtcInterpolate, rtcIn-
terpolateN , rtcSetGeometryBuildQuality, rtcSetSceneBuildQuality, RTC_GEOMETRY_TYPE_TRIANGLE,
RTC_GEOMETRY_TYPE_QUAD, RTC_GEOMETRY_TYPE_SUBDIVISION , RTC_GEOMETRY_TYPE_CURVE,
RTC_GEOMETRY_TYPE_GRID, RTC_GEOMETRY_TYPE_POINT , RTC_GEOMETRY_TYPE_USER,
RTC_GEOMETRY_TYPE_INSTANCE

12.1. Overview 1944

oneAPI Specification, Release 1.1-rev-1

RTC_GEOMETRY_TYPE_TRIANGLE

NAME

RTC_GEOMETRY_TYPE_TRIANGLE - triangle geometry type

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_TRIANGLE);

DESCRIPTION

Triangle meshes are created by passing RTC_GEOMETRY_TYPE_TRIANGLE to the rtcNewGeometry function call.
The triangle indices can be specified by setting an index buffer (RTC_BUFFER_TYPE_INDEX type) and the tri-
angle vertices by setting a vertex buffer (RTC_BUFFER_TYPE_VERTEX type). See rtcSetGeometryBuffer and
rtcSetSharedGeometryBuffer for more details on how to set buffers. The index buffer must contain an array
of three 32-bit indices per triangle (RTC_FORMAT_UINT3 format) and the number of primitives is inferred from the
size of that buffer. The vertex buffer must contain an array of single precision x, y, z floating point coordinates
(RTC_FORMAT_FLOAT3 format), and the number of vertices are inferred from the size of that buffer. The vertex buffer
can be at most 16 GB large.

The parameterization of a triangle uses the first vertex p0 as base point, the vector p1 - p0 as u-direction and the vector
p2 - p0 as v-direction. Thus vertex attributes t0,t1,t2 can be linearly interpolated over the triangle the following
way:

t_uv = (1-u-v)*t0 + u*t1 + v*t2
= t0 + u*(t1-t0) + v*(t2-t0)

A triangle whose vertices are laid out counter-clockwise has its geometry normal pointing upwards outside the front
face, like illustrated in the following picture:

12.1. Overview 1945

oneAPI Specification, Release 1.1-rev-1

For multi-segment motion blur, the number of time steps must be first specified using the
rtcSetGeometryTimeStepCount call. Then a vertex buffer for each time step can be set using different buffer slots,
and all these buffers have to have the same stride and size.

Also see tutorial Triangle Geometry for an example of how to create triangle meshes.

EXIT STATUS

On failure NULL is returned and an error code is set that be get queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry

12.1. Overview 1946

tutorials.html#triangle-geometry

oneAPI Specification, Release 1.1-rev-1

RTC_GEOMETRY_TYPE_QUAD

NAME

RTC_GEOMETRY_TYPE_QUAD - quad geometry type

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_QUAD);

DESCRIPTION

Quad meshes are created by passing RTC_GEOMETRY_TYPE_QUAD to the rtcNewGeometry function call. The quad in-
dices can be specified by setting an index buffer (RTC_BUFFER_TYPE_INDEX type) and the quad vertices by setting a ver-
tex buffer (RTC_BUFFER_TYPE_VERTEX type). See rtcSetGeometryBuffer and rtcSetSharedGeometryBuffer
for more details on how to set buffers. The index buffer contains an array of four 32-bit indices per quad
(RTC_FORMAT_UINT4 format), and the number of primitives is inferred from the size of that buffer. The vertex buffer
contains an array of single precision x, y, z floating point coordinates (RTC_FORMAT_FLOAT3 format), and the number
of vertices is inferred from the size of that buffer. The vertex buffer can be at most 16 GB large.

A quad is internally handled as a pair of two triangles v0,v1,v3 and v2,v3,v1, with the u'/v' coordinates of the
second triangle corrected by u = 1-u' and v = 1-v' to produce a quad parameterization where u and v are in the
range 0 to 1. Thus the parameterization of a quad uses the first vertex p0 as base point, and the vector p1 - p0 as
u-direction, and p3 - p0 as v-direction. Thus vertex attributes t0,t1,t2,t3 can be bilinearly interpolated over the
quadrilateral the following way:

t_uv = (1-v)((1-u)*t0 + u*t1) + v*((1-u)*t3 + u*t2)

Mixed triangle/quad meshes are supported by encoding a triangle as a quad, which can be achieved by replicating the
last triangle vertex (v0,v1,v2 -> v0,v1,v2,v2). This way the second triangle is a line (which can never get hit), and
the parameterization of the first triangle is compatible with the standard triangle parameterization.

A quad whose vertices are laid out counter-clockwise has its geometry normal pointing upwards outside the front face,
like illustrated in the following picture.

12.1. Overview 1947

oneAPI Specification, Release 1.1-rev-1

For multi-segment motion blur, the number of time steps must be first specified using the
rtcSetGeometryTimeStepCount call. Then a vertex buffer for each time step can be set using different buffer slots,
and all these buffers must have the same stride and size.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry

12.1. Overview 1948

oneAPI Specification, Release 1.1-rev-1

RTC_GEOMETRY_TYPE_GRID

NAME

RTC_GEOMETRY_TYPE_GRID - grid geometry type

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_GRID);

DESCRIPTION

Grid meshes are created by passing RTC_GEOMETRY_TYPE_GRID to the rtcNewGeometry function call, and contain an
array of grid primitives. This array of grids can be specified by setting up a grid buffer (with RTC_BUFFER_TYPE_GRID
type and RTC_FORMAT_GRID format) and the grid mesh vertices by setting a vertex buffer (RTC_BUFFER_TYPE_VERTEX
type). See rtcSetGeometryBuffer and rtcSetSharedGeometryBuffer for more details on how to set buffers. The
number of grid primitives in the grid mesh is inferred from the size of the grid buffer.

The vertex buffer contains an array of single precision x, y, z floating point coordinates (RTC_FORMAT_FLOAT3 format),
and the number of vertices is inferred from the size of that buffer.

Each grid in the grid buffer is of the type RTCGrid:

struct RTCGrid
{
unsigned int startVertexID;
unsigned int stride;
unsigned short width,height;

};

The RTCGrid structure describes a 2D grid of vertices (with respect to the vertex buffer of the grid mesh). The width
and height members specify the number of vertices in u and v direction, e.g. setting both width and height to 3 sets
up a 3×3 vertex grid. The maximum allowed width and height is 32767. The startVertexID specifies the ID of
the top-left vertex in the vertex grid, while the stride parameter specifies a stride (in number of vertices) used to step
to the next row.

A vertex grid of dimensions width and height is treated as a (width-1) x (height-1) grid of quads (triangle-
pairs), with the same shared edge handling as for regular quad meshes. However, the u/v coordinates have the uniform
range [0..1] for an entire vertex grid. The u direction follows the width of the grid while the v direction the height.

For multi-segment motion blur, the number of time steps must be first specified using the
rtcSetGeometryTimeStepCount call. Then a vertex buffer for each time step can be set using different buffer slots,
and all these buffers must have the same stride and size.

12.1. Overview 1949

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry

12.1. Overview 1950

oneAPI Specification, Release 1.1-rev-1

RTC_GEOMETRY_TYPE_SUBDIVISION

NAME

RTC_GEOMETRY_TYPE_SUBDIVISION - subdivision geometry type

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_SUBDIVISION);

DESCRIPTION

Catmull-Clark subdivision meshes are supported, including support for edge creases, vertex creases, holes, non-
manifold geometry, and face-varying interpolation. The number of vertices per face can be in the range of 3 to 15
vertices (triangles, quadrilateral, pentagons, etc).

Subdivision meshes are created by passing RTC_GEOMETRY_TYPE_SUBDIVISION to the rtcNewGeometry function.
Various buffers need to be set by the application to set up the subdivision mesh. See rtcSetGeometryBuffer and
rtcSetSharedGeometryBuffer for more details on how to set buffers. The face buffer (RTC_BUFFER_TYPE_FACE
type and RTC_FORMAT_UINT format) contains the number of edges/indices of each face (3 to 15), and the number of
faces is inferred from the size of this buffer. The index buffer (RTC_BUFFER_TYPE_INDEX type) contains multiple (3 to
15) 32-bit vertex indices (RTC_FORMAT_UINT format) for each face, and the number of edges is inferred from the size
of this buffer. The vertex buffer (RTC_BUFFER_TYPE_VERTEX type) stores an array of single precision x, y, z floating
point coordinates (RTC_FORMAT_FLOAT3 format), and the number of vertices is inferred from the size of this buffer.

Optionally, the application may set additional index buffers using different buffer slots if multiple topologies are required
for face-varying interpolation. The standard vertex buffers (RTC_BUFFER_TYPE_VERTEX) are always bound to the
geometry topology (topology 0) thus use RTC_BUFFER_TYPE_INDEX with buffer slot 0. User vertex data interpolation
may use different topologies as described later.

Optionally, the application can set up the hole buffer (RTC_BUFFER_TYPE_HOLE) which contains an array of 32-bit
indices (RTC_FORMAT_UINT format) of faces that should be considered non-existing in all topologies. The number of
holes is inferred from the size of this buffer.

Optionally, the application can fill the level buffer (RTC_BUFFER_TYPE_LEVEL) with a tessellation rate for each of
the edges of each face. This buffer must have the same size as the index buffer. The tessellation level is a positive
floating point value (RTC_FORMAT_FLOAT format) that specifies how many quads along the edge should be generated
during tessellation. If no level buffer is specified, a level of 1 is used. The maximally supported edge level is 4096,
and larger levels are clamped to that value. Note that edges may be shared between (typically 2) faces. To guarantee
a watertight tessellation, the level of these shared edges should be identical. A uniform tessellation rate for an entire
subdivision mesh can be set by using the rtcSetGeometryTessellationRate function. The existence of a level
buffer has precedence over the uniform tessellation rate.

Optionally, the application can fill the sparse edge crease buffers to make edges appear sharper. The edge
crease index buffer (RTC_BUFFER_TYPE_EDGE_CREASE_INDEX) contains an array of pairs of 32-bit vertex indices
(RTC_FORMAT_UINT2 format) that specify unoriented edges in the geometry topology. The edge crease weight buffer
(RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT) stores for each of these crease edges a positive floating point weight
(RTC_FORMAT_FLOAT format). The number of edge creases is inferred from the size of these buffers, which has to be
identical. The larger a weight, the sharper the edge. Specifying a weight of infinity is supported and marks an edge

12.1. Overview 1951

oneAPI Specification, Release 1.1-rev-1

as infinitely sharp. Storing an edge multiple times with the same crease weight is allowed, but has lower performance.
Storing an edge multiple times with different crease weights results in undefined behavior. For a stored edge (i,j), the
reverse direction edges (j,i) do not have to be stored, as both are considered the same unoriented edge. Edge crease
features are shared between all topologies.

Optionally, the application can fill the sparse vertex crease buffers to make vertices appear sharper. The ver-
tex crease index buffer (RTC_BUFFER_TYPE_VERTEX_CREASE_INDEX), contains an array of 32-bit vertex indices
(RTC_FORMAT_UINT format) to specify a set of vertices from the geometry topology. The vertex crease weight buffer
(RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT) specifies for each of these vertices a positive floating point weight
(RTC_FORMAT_FLOAT format). The number of vertex creases is inferred from the size of these buffers, and has to be
identical. The larger a weight, the sharper the vertex. Specifying a weight of infinity is supported and makes the vertex
infinitely sharp. Storing a vertex multiple times with the same crease weight is allowed, but has lower performance.
Storing a vertex multiple times with different crease weights results in undefined behavior. Vertex crease features are
shared between all topologies.

Subdivision modes can be used to force linear interpolation for parts of the subdivision mesh; see
rtcSetGeometrySubdivisionMode for more details.

For multi-segment motion blur, the number of time steps must be first specified using the
rtcSetGeometryTimeStepCount call. Then a vertex buffer for each time step can be set using different buffer slots,
and all these buffers have to have the same stride and size.

Also see tutorial Subdivision Geometry for an example of how to create subdivision surfaces.

Parameterization

The parameterization for subdivision faces is different for quadrilaterals and non-quadrilateral faces.

The parameterization of a quadrilateral face uses the first vertex p0 as base point, and the vector p1 - p0 as u-direction
and p3 - p0 as v-direction.

The parameterization for all other face types (with number of vertices not equal 4), have a special parameterization
where the subpatch ID n (of the n-th quadrilateral that would be obtained by a single subdivision step) and the local
hit location inside this quadrilateral are encoded in the UV coordinates. The following code extracts the sub-patch ID
i and local UVs of this subpatch:

unsigned int l = floorf(0.5f*U);
unsigned int h = floorf(0.5f*V);
unsigned int i = 4*h+l;
float u = 2.0f*fracf(0.5f*U)-0.5f;
float v = 2.0f*fracf(0.5f*V)-0.5f;

This encoding allows local subpatch UVs to be in the range [-0.5,1.5[thus negative subpatch UVs can be passed to
rtcInterpolate to sample subpatches slightly out of bounds. This can be useful to calculate derivatives using finite
differences if required. The encoding further has the property that one can just move the value u (or v) on a subpatch
by adding du (or dv) to the special UV encoding as long as it does not fall out of the [-0.5,1.5[range.

To smoothly interpolate vertex attributes over the subdivision surface we recommend using the rtcInterpolate
function, which will apply the standard subdivision rules for interpolation and automatically takes care of the special
UV encoding for non-quadrilaterals.

12.1. Overview 1952

tutorials.html#subdivision-geometry

oneAPI Specification, Release 1.1-rev-1

Face-Varying Data

Face-varying interpolation is supported through multiple topologies per subdivision mesh and binding such topologies
to vertex attribute buffers to interpolate. This way, texture coordinates may use a different topology with additional
boundaries to construct separate UV regions inside one subdivision mesh.

Each such topology i has a separate index buffer (specified using RTC_BUFFER_TYPE_INDEX with buffer slot i)
and separate subdivision mode that can be set using rtcSetGeometrySubdivisionMode. A vertex attribute buffer
RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE bound to a buffer slot j can be assigned to use a topology for interpolation
using the rtcSetGeometryVertexAttributeTopology call.

The face buffer (RTC_BUFFER_TYPE_FACE type) is shared between all topologies, which means that the n-th primitive
always has the same number of vertices (e.g. being a triangle or a quad) for each topology. However, the indices of the
topologies themselves may be different.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry

12.1. Overview 1953

oneAPI Specification, Release 1.1-rev-1

RTC_GEOMETRY_TYPE_CURVE

NAME

RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE -
flat curve geometry with linear basis

RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE -
flat curve geometry with cubic Bézier basis

RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE -
flat curve geometry with cubic B-spline basis

RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE -
flat curve geometry with cubic Hermite basis

RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE -
flat curve geometry with Catmull-Rom basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE -
flat normal oriented curve geometry with cubic Bézier basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE -
flat normal oriented curve geometry with cubic B-spline basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE -
flat normal oriented curve geometry with cubic Hermite basis

RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE -
flat normal oriented curve geometry with Catmull-Rom basis

RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE -
capped cone curve geometry with linear basis - discontinous at edge boundaries

RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE -
capped cone curve geometry with linear basis and spherical ending

RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE -
swept surface curve geometry with cubic Bézier basis

RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE -
swept surface curve geometry with cubic B-spline basis

RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE -
swept surface curve geometry with cubic Hermite basis

RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE -
swept surface curve geometry with Catmull-Rom basis

12.1. Overview 1954

oneAPI Specification, Release 1.1-rev-1

SYNOPSIS

#include <embree3/rtcore.h>

rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BEZIER_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_BSPLINE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_HERMITE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_CATMULL_ROM_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE);

DESCRIPTION

Curves with per vertex radii are supported with linear, cubic Bézier, cubic B-spline, and cubic Her-
mite bases. Such curve geometries are created by passing RTC_GEOMETRY_TYPE_FLAT_LINEAR_CURVE,
RTC_GEOMETRY_TYPE_FLAT_BEZIER_CURVE, RTC_GEOMETRY_TYPE_FLAT_BSPLINE_CURVE,
RTC_GEOMETRY_TYPE_FLAT_HERMITE_CURVE, RTC_GEOMETRY_TYPE_FLAT_CATMULL_ROM_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_FLAT_BEZIER_CURVE, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_FLAT_BSPLINE_CURVE,
RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_FLAT_HERMITE_CURVE, RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_FLAT_CATMULL_ROM_CURVE,
RTC_GEOMETRY_TYPE_CONE_LINEAR_CURVE, RTC_GEOMETRY_TYPE_ROUND_LINEAR_CURVE,
RTC_GEOMETRY_TYPE_ROUND_BEZIER_CURVE, RTC_GEOMETRY_TYPE_ROUND_BSPLINE_CURVE,
RTC_GEOMETRY_TYPE_ROUND_HERMITE_CURVE, or RTC_GEOMETRY_TYPE_ROUND_CATMULL_ROM_CURVE to the
rtcNewGeometry function. The curve indices can be specified through an index buffer (RTC_BUFFER_TYPE_INDEX)
and the curve vertices through a vertex buffer (RTC_BUFFER_TYPE_VERTEX). For the Hermite basis a tangent buffer
(RTC_BUFFER_TYPE_TANGENT), normal oriented curves a normal buffer (RTC_BUFFER_TYPE_NORMAL), and for
normal oriented Hermite curves a normal derivative buffer (RTC_BUFFER_TYPE_NORMAL_DERIVATIVE) has to get
specified additionally. See rtcSetGeometryBuffer and rtcSetSharedGeometryBuffer for more details on how
to set buffers.

The index buffer contains an array of 32-bit indices (RTC_FORMAT_UINT format), each pointing to the first control
vertex in the vertex buffer, but also to the first tangent in the tangent buffer, and first normal in the normal buffer if these
buffers are present.

The vertex buffer stores each control vertex in the form of a single precision position and radius stored in (x, y, z, r)
order in memory (RTC_FORMAT_FLOAT4 format). The number of vertices is inferred from the size of this buffer. The
radii may be smaller than zero but the interpolated radii should always be greater or equal to zero. Similarly, the tangent
buffer stores the derivative of each control vertex (x, y, z, r order and RTC_FORMAT_FLOAT4 format) and the normal
buffer stores a single precision normal per control vertex (x, y, z order and RTC_FORMAT_FLOAT3 format).

12.1. Overview 1955

oneAPI Specification, Release 1.1-rev-1

Linear Basis

For the linear basis the indices point to the first of 2 consecutive control points in the vertex buffer. The first control
point is the start and the second control point the end of the line segment. When constructing hair strands in this basis,
the end-point can be shared with the start of the next line segment.

For the linear basis the user optionally can provide a flags buffer of type RTC_BUFFER_TYPE_FLAGS which contains
bytes that encode if the left neighbor segment (RTC_CURVE_FLAG_NEIGHBOR_LEFT flag) and/or right neighbor segment
(RTC_CURVE_FLAG_NEIGHBOR_RIGHT flags) exist (see RTCCurveFlags). If this buffer is not set, than the left/right
neighbor bits are automatically calculated base on the index buffer (left segment exists if segment(id-1)+1 == seg-
ment(id) and right segment exists if segment(id+1)-1 == segment(id)).

A left neighbor segment is assumed to end at the start vertex of the current segment, and to start at the previous vertex
in the vertex buffer. Similarly, the right neighbor segment is assumed to start at the end vertex of the current segment,
and to end at the next vertex in the vertex buffer.

Only when the left and right bits are properly specified the current segment can properly attach to the left and/or right
neighbor, otherwise the touching area may not get rendered properly.

Bézier Basis

For the cubic Bézier basis the indices point to the first of 4 consecutive control points in the vertex buffer. These control
points use the cubic Bézier basis, where the first control point represents the start point of the curve, and the 4th control
point the end point of the curve. The Bézier basis is interpolating, thus the curve does go exactly through the first and
fourth control vertex.

B-spline Basis

For the cubic B-spline basis the indices point to the first of 4 consecutive control points in the vertex buffer. These
control points make up a cardinal cubic B-spline (implicit equidistant knot vector). This basis is not interpolating, thus
the curve does in general not go through any of the control points directly. A big advantage of this basis is that 3 control
points can be shared for two continuous neighboring curve segments, e.g. the curves (p0,p1,p2,p3) and (p1,p2,p3,p4)
are C1 continuous. This feature make this basis a good choice to construct continuous multi-segment curves, as memory
consumption can be kept minimal.

Hermite Basis

For the cubic Hermite basis the indices point to the first of 2 consecutive points in the vertex buffer, and the first of 2
consecutive tangents in the tangent buffer. These two points and two tangents make up a cubic Hermite curve. This
basis is interpolating, thus does exactly go through the first and second control point, and the first order derivative at the
begin and end matches exactly the value specified in the tangent buffer. When connecting two segments continuously,
the end point and tangent of the previous segment can be shared. Different versions of Catmull-Rom splines can be
easily constructed using the Hermite basis, by calculating a proper tangent buffer from the control points.

12.1. Overview 1956

oneAPI Specification, Release 1.1-rev-1

Catmull-Rom Basis

For the Catmull-Rom basis the indices point to the first of 4 consecutive control points in the vertex buffer. This basis
goes through p1 and p2, with tangents (p2-p0)/2 and (p3-p1)/2.

Flat Curves

The RTC_GEOMETRY_TYPE_FLAT_* flat mode is a fast mode designed to render distant hair. In this mode the curve
is rendered as a connected sequence of ray facing quads. Individual quads are considered to have subpixel size, and
zooming onto the curve might show geometric artifacts. The number of quads to subdivide into can be specified through
the rtcSetGeometryTessellationRate function. By default the tessellation rate is 4.

Normal Oriented Curves

The RTC_GEOMETRY_TYPE_NORMAL_ORIENTED_* mode is a mode designed to render blades of grass. In this mode a
vertex spline has to get specified as for the previous modes, but additionally a normal spline is required. If the Hermite
basis is used, the RTC_BUFFER_TYPE_NORMAL and RTC_BUFFER_TYPE_NORMAL_DERIVATIVE buffers have both to be
set.

The curve is rendered as a flat band whose center approximately follows the provided vertex spline, whose half width
approximately follows the provided radius spline, and whose normal orientation approximately follows the provided
normal spline.

To intersect the normal oriented curve, we perform a newton-raphson style intersection of a ray with a tensor product
surface of a linear basis (perpendicular to the curve) and cubic Bézier basis (along the curve). We use a guide curve
and its derivatives to construct the control points of that surface. The guide curve is defined by a sweep surface defined
by sweeping a line centered at the vertex spline location along the curve. At each parameter value the half width of
the line matches the radius spline, and the direction matches the cross product of the normal from the normal spline
and tangent of the vertex spline. Note that this construction does not work when the provided normals are parallel to
the curve direction. For this reason the provided normals should best be kept as perpendicular to the curve direction as
possible.

Round Curves

In the RTC_GEOMETRY_TYPE_ROUND_* round mode, a real geometric surface is rendered for the curve, which is more
expensive but allows closeup views.

For the linear basis the round mode renders a cone that tangentially touches a start-sphere and end-sphere. The start
sphere is rendered when no previous segments is indicated by the neighbor bits. The end sphere is always rendered but
parts that lie inside the next segment are clipped away (if that next segment exists). This way a curve is closed on both
ends and the interiour will render properly as long as only neighboring segments penetrate into a segment. For this to
work properly it is important that the flags buffer is properly populated with neighbor information.

For the cubic polynomial bases, the round mode renders a sweep surface by sweeping a varying radius circle tangential
along the curve. As a limitation, the radius of the curve has to be smaller than the curvature radius of the curve at each
location on the curve.

The intersection with the curve segment stores the parametric hit location along the curve segment as u-coordinate
(range 0 to +1).

For flat curves, the v-coordinate is set to the normalized distance in the range -1 to +1. For normal oriented curves the
v-coordinate is in the range 0 to 1. For the linear basis and in round mode the v-coordinate is set to zero.

12.1. Overview 1957

oneAPI Specification, Release 1.1-rev-1

In flat mode, the geometry normal Ng is set to the tangent of the curve at the hit location. In round mode and for normal
oriented curves, the geometry normal Ng is set to the non-normalized geometric normal of the surface.

For multi-segment motion blur, the number of time steps must be first specified using the
rtcSetGeometryTimeStepCount call. Then a vertex buffer for each time step can be set using different buffer slots,
and all these buffers must have the same stride and size. For the Hermite basis also a tangent buffer has to be set for
each time step and for normal oriented curves a normal buffer has to get specified for each time step.

Also see tutorials Hair and Curves for examples of how to create and use curve geometries.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, RTCCurveFlags

12.1. Overview 1958

tutorials.html#hair
tutorials.html#b�zier-curves

oneAPI Specification, Release 1.1-rev-1

RTC_GEOMETRY_TYPE_POINT

NAME

RTC_GEOMETRY_TYPE_SPHERE_POINT -
point geometry spheres

RTC_GEOMETRY_TYPE_DISC_POINT -
point geometry with ray-oriented discs

RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT -
point geometry with normal-oriented discs

SYNOPSIS

#include <embree3/rtcore.h>

rtcNewGeometry(device, RTC_GEOMETRY_TYPE_SPHERE_POINT);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_DISC_POINT);
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT);

DESCRIPTION

Points with per vertex radii are supported with sphere, ray-oriented discs, and normal-oriented discs geo-
metric representations. Such point geometries are created by passing RTC_GEOMETRY_TYPE_SPHERE_POINT,
RTC_GEOMETRY_TYPE_DISC_POINT, or RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT to the rtcNewGeometry
function. The point vertices can be specified t through a vertex buffer (RTC_BUFFER_TYPE_VERTEX). For the
normal oriented discs a normal buffer (RTC_BUFFER_TYPE_NORMAL) has to get specified additionally. See
rtcSetGeometryBuffer and rtcSetSharedGeometryBuffer for more details on how to set buffers.

The vertex buffer stores each control vertex in the form of a single precision position and radius stored in (x, y, z,
r) order in memory (RTC_FORMAT_FLOAT4 format). The number of vertices is inferred from the size of this buffer.
Similarly, the normal buffer stores a single precision normal per control vertex (x, y, z order and RTC_FORMAT_FLOAT3
format).

In the RTC_GEOMETRY_TYPE_SPHERE_POINT mode, a real geometric surface is rendered for the curve, which is more
expensive but allows closeup views.

The RTC_GEOMETRY_TYPE_DISC_POINT flat mode is a fast mode designed to render distant points. In this mode the
point is rendered as a ray facing disc.

The RTC_GEOMETRY_TYPE_ORIENTED_DISC_POINT mode is a mode designed as a midpoint geometrically between
ray facing discs and spheres. In this mode the point is rendered as a normal oriented disc.

For all point types, only the hit distance and geometry normal is returned as hit information, u and v are set to zero.

For multi-segment motion blur, the number of time steps must be first specified using the
rtcSetGeometryTimeStepCount call. Then a vertex buffer for each time step can be set using different buffer slots,
and all these buffers must have the same stride and size.

Also see tutorial [Points] for an example of how to create and use point geometries.

12.1. Overview 1959

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry

12.1. Overview 1960

oneAPI Specification, Release 1.1-rev-1

RTC_GEOMETRY_TYPE_USER

NAME

RTC_GEOMETRY_TYPE_USER - user geometry type

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_USER);

DESCRIPTION

User-defined geometries contain a number of user-defined primitives, just like triangle meshes contain multiple trian-
gles. The shape of the user-defined primitives is specified through registered callback functions, which enable extending
Embree with arbitrary types of primitives.

User-defined geometries are created by passing RTC_GEOMETRY_TYPE_USER to the rtcNewGeometry func-
tion call. One has to set the number of primitives (see rtcSetGeometryUserPrimitiveCount), a user data
pointer (see rtcSetGeometryUserData), a bounding function closure (see rtcSetGeometryBoundsFunction),
as well as user-defined intersect (see rtcSetGeometryIntersectFunction) and occluded (see
rtcSetGeometryOccludedFunction) callback functions. The bounding function is used to query the bounds
of all time steps of a user primitive, while the intersect and occluded callback functions are called to intersect the
primitive with a ray. The user data pointer is passed to each callback invocation and can be used to point to the
application’s representation of the user geometry.

The creation of a user geometry typically looks the following:

RTCGeometry geometry = rtcNewGeometry(device, RTC_GEOMETRY_TYPE_USER);
rtcSetGeometryUserPrimitiveCount(geometry, numPrimitives);
rtcSetGeometryUserData(geometry, userGeometryRepresentation);
rtcSetGeometryBoundsFunction(geometry, boundsFunction);
rtcSetGeometryIntersectFunction(geometry, intersectFunction);
rtcSetGeometryOccludedFunction(geometry, occludedFunction);

Please have a look at the rtcSetGeometryBoundsFunction, rtcSetGeometryIntersectFunction, and
rtcSetGeometryOccludedFunction functions on the implementation of the callback functions.

Primitives of a user geometry are ignored during rendering when their bounds are empty, thus bounds have lower>upper
in at least one dimension.

See tutorial User Geometry for an example of how to use the user-defined geometries.

12.1. Overview 1961

tutorials.html#user-geometry

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcSetGeometryUserPrimitiveCount, rtcSetGeometryUserData, rtcSetGeometryBoundsFunction,
rtcSetGeometryIntersectFunction, rtcSetGeometryOccludedFunction

12.1. Overview 1962

oneAPI Specification, Release 1.1-rev-1

RTC_GEOMETRY_TYPE_INSTANCE

NAME

RTC_GEOMETRY_TYPE_INSTANCE - instance geometry type

SYNOPSIS

#include <embree3/rtcore.h>

RTCGeometry geometry =
rtcNewGeometry(device, RTC_GEOMETRY_TYPE_INSTANCE);

DESCRIPTION

Embree supports instancing of scenes using affine transformations (3×3 matrix plus translation). As the instanced scene
is stored only a single time, even if instanced to multiple locations, this feature can be used to create very complex scenes
with small memory footprint.

Embree supports both single-level instancing and multi-level instancing. The maximum instance nest-
ing depth is RTC_MAX_INSTANCE_LEVEL_COUNT; it can be configured at compile-time using the constant
EMBREE_MAX_INSTANCE_LEVEL_COUNT. Users should adapt this constant to their needs: instances nested any deeper
are silently ignored in release mode, and cause assertions in debug mode.

Instances are created by passing RTC_GEOMETRY_TYPE_INSTANCE to the rtcNewGeometry function call. The in-
stanced scene can be set using the rtcSetGeometryInstancedScene call, and the affine transformation can be set
using the rtcSetGeometryTransform function.

Please note that rtcCommitScene on the instanced scene should be called first, followed by rtcCommitGeometry on
the instance, followed by rtcCommitScene for the top-level scene containing the instance.

If a ray hits the instance, the geomID and primID members of the hit are set to the geometry ID and primitive ID of
the hit primitive in the instanced scene, and the instID member of the hit is set to the geometry ID of the instance in
the top-level scene.

The instancing scheme can also be implemented using user geometries. To achieve this, the user geometry code should
set the instID member of the intersection context to the geometry ID of the instance, then trace the transformed ray,
and finally set the instID field of the intersection context again to -1. The instID field is copied automatically by
each primitive intersector into the instID field of the hit structure when the primitive is hit. See the User Geometry
tutorial for an example.

For multi-segment motion blur, the number of time steps must be first specified using the
rtcSetGeometryTimeStepCount function. Then a transformation for each time step can be specified using
the rtcSetGeometryTransform function.

See tutorials Instanced Geometry and Multi Level Instancing for examples of how to use instances.

12.1. Overview 1963

tutorials.html#user-geometry
tutorials.html#instanced-geometry
tutorials.html#multi-level-instancing

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcSetGeometryInstancedScene, rtcSetGeometryTransform

12.1. Overview 1964

oneAPI Specification, Release 1.1-rev-1

RTCCurveFlags

NAME

RTCCurveFlags - per segment flags for curve geometry

SYNOPSIS

#include <embree3/rtcore.h>

enum RTCCurveFlags { RTC_CURVE_FLAG_NEIGHBOR_LEFT = (1 << 0),
RTC_CURVE_FLAG_NEIGHBOR_RIGHT = (1 << 1) };

DESCRIPTION

The RTCCurveFlags type is used for linear curves to determine if the left and/or right neighbor segment exist. Therefore
one attaches a buffer of type RTC_BUFFER_TYPE_FLAGS to the curve geometry which stores an individual byte per
curve segment.

If the RTC_CURVE_FLAG_NEIGHBOR_LEFT flag in that byte is enabled for a curve segment, then the left segment
exists (which starts one vertex before the start vertex of the current curve) and the current segment is rendered to
properly attach to that segment.

If the RTC_CURVE_FLAG_NEIGHBOR_RIGHT flag in that byte is enabled for a curve segment, then the right
segment exists (which ends one vertex after the end vertex of the current curve) and the current segment is rendered to
properly attach to that segment.

When not properly specifying left and right flags for linear curves, the rendering at the ending of these curves may not
look correct, in particular when round linear curves are viewed from the inside.

EXIT STATUS

SEE ALSO

RTC_GEOMETRY_TYPE_CURVE

12.1. Overview 1965

oneAPI Specification, Release 1.1-rev-1

rtcRetainGeometry

NAME

rtcRetainGeometry - increments the geometry reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcRetainGeometry(RTCGeometry geometry);

DESCRIPTION

Geometry objects are reference counted. The rtcRetainGeometry function increments the reference count of the
passed geometry object (geometry argument). This function together with rtcReleaseGeometry allows to use the
internal reference counting in a C++ wrapper class to handle the ownership of the object.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcReleaseGeometry

12.1. Overview 1966

oneAPI Specification, Release 1.1-rev-1

rtcReleaseGeometry

NAME

rtcReleaseGeometry - decrements the geometry reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcReleaseGeometry(RTCGeometry geometry);

DESCRIPTION

Geometry objects are reference counted. The rtcReleaseGeometry function decrements the reference count of the
passed geometry object (geometry argument). When the reference count falls to 0, the geometry gets destroyed.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcRetainGeometry

12.1. Overview 1967

oneAPI Specification, Release 1.1-rev-1

rtcCommitGeometry

NAME

rtcCommitGeometry - commits geometry changes

SYNOPSIS

#include <embree3/rtcore.h>

void rtcCommitGeometry(RTCGeometry geometry);

DESCRIPTION

The rtcCommitGeometry function is used to commit all geometry changes performed to a geometry (geometry
parameter). After a geometry gets modified, this function must be called to properly update the internal state of
the geometry to perform interpolations using rtcInterpolate or to commit a scene containing the geometry using
rtcCommitScene.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcInterpolate, rtcCommitScene

12.1. Overview 1968

oneAPI Specification, Release 1.1-rev-1

rtcEnableGeometry

NAME

rtcEnableGeometry - enables the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcEnableGeometry(RTCGeometry geometry);

DESCRIPTION

The rtcEnableGeometry function enables the specified geometry (geometry argument). Only enabled geometries
are rendered. Each geometry is enabled by default at construction time.

After enabling a geometry, the scene containing that geometry must be committed using rtcCommitScene for the
change to have effect.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcDisableGeometry, rtcCommitScene

12.1. Overview 1969

oneAPI Specification, Release 1.1-rev-1

rtcDisableGeometry

NAME

rtcDisableGeometry - disables the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcDisableGeometry(RTCGeometry geometry);

DESCRIPTION

The rtcDisableGeometry function disables the specified geometry (geometry argument). A disabled geometry is
not rendered. Each geometry is enabled by default at construction time.

After disabling a geometry, the scene containing that geometry must be committed using rtcCommitScene for the
change to have effect.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcEnableGeometry, rtcCommitScene

12.1. Overview 1970

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryTimeStepCount

NAME

rtcSetGeometryTimeStepCount - sets the number of time steps of the
geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryTimeStepCount(
RTCGeometry geometry,
unsigned int timeStepCount

);

DESCRIPTION

The rtcSetGeometryTimeStepCount function sets the number of time steps for multi-segment motion blur
(timeStepCount parameter) of the specified geometry (geometry parameter).

For triangle meshes (RTC_GEOMETRY_TYPE_TRIANGLE), quad meshes (RTC_GEOMETRY_TYPE_QUAD),
curves (RTC_GEOMETRY_TYPE_CURVE), points (RTC_GEOMETRY_TYPE_POINT), and subdivision geometries
(RTC_GEOMETRY_TYPE_SUBDIVISION), the number of time steps directly corresponds to the number of vertex
buffer slots available (RTC_BUFFER_TYPE_VERTEX buffer type). For these geometries, one vertex buffer per time step
must be specified when creating multi-segment motion blur geometries.

For instance geometries (RTC_GEOMETRY_TYPE_INSTANCE), a transformation must be specified for each time step (see
rtcSetGeometryTransform).

For user geometries, the registered bounding callback function must provide a bounding box per primitive and time
step, and the intersection and occlusion callback functions should properly intersect the motion-blurred geometry at
the ray time.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcSetGeometryTimeRange

12.1. Overview 1971

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryTimeRange

NAME

rtcSetGeometryTimeRange - sets the time range for a motion blur geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryTimeRange(
RTCGeometry geometry,
float startTime,
float endTime

);

DESCRIPTION

The rtcSetGeometryTimeRange function sets a time range which defines the start (and end time) of the first (and last)
time step of a motion blur geometry. The time range is defined relative to the camera shutter interval [0,1] but it can be
arbitrary. Thus the startTime can be smaller, equal, or larger 0, indicating a geometry whose animation definition start
before, at, or after the camera shutter opens. Similar the endTime can be smaller, equal, or larger than 1, indicating a
geometry whose animation definition ends after, at, or before the camera shutter closes. The startTime has to be smaller
or equal to the endTime.

The default time range when this function is not called is the entire camera shutter [0,1]. For best performance at most
one time segment of the piece wise linear definition of the motion should fall outside the shutter window to the left and
to the right. Thus do not set the startTime or endTime too far outside the [0,1] interval for best performance.

This time range feature will also allow geometries to appear and disappear during the camera shutter time if the specified
time range is a sub range of [0,1].

Please also have a look at the rtcSetGeometryTimeStepCount function to see how to define the time steps for the
specified time range.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryTimeStepCount

12.1. Overview 1972

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryVertexAttributeCount

NAME

rtcSetGeometryVertexAttributeCount - sets the number of vertex
attributes of the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryVertexAttributeCount(
RTCGeometry geometry,
unsigned int vertexAttributeCount

);

DESCRIPTION

The rtcSetGeometryVertexAttributeCount function sets the number of slots (vertexAttributeCount param-
eter) for vertex attribute buffers (RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) that can be used for the specified geometry
(geometry parameter).

This function is supported only for triangle meshes (RTC_GEOMETRY_TYPE_TRIANGLE), quad meshes
(RTC_GEOMETRY_TYPE_QUAD), curves (RTC_GEOMETRY_TYPE_CURVE), points (RTC_GEOMETRY_TYPE_POINT),
and subdivision geometries (RTC_GEOMETRY_TYPE_SUBDIVISION).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, RTCBufferType

12.1. Overview 1973

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryMask

NAME

rtcSetGeometryMask - sets the geometry mask

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryMask(
RTCGeometry geometry,
unsigned int mask

);

DESCRIPTION

The rtcSetGeometryMask function sets a 32-bit geometry mask (mask argument) for the specified geometry
(geometry argument).

This geometry mask is used together with the ray mask stored inside the mask field of the ray. The primitives of the
geometry are hit by the ray only if the bitwise and operation of the geometry mask with the ray mask is not 0. This
feature can be used to disable selected geometries for specifically tagged rays, e.g. to disable shadow casting for certain
geometries.

Ray masks are disabled in Embree by default at compile time, and can be enabled through the
EMBREE_RAY_MASK parameter in CMake. One can query whether ray masks are enabled by querying the
RTC_DEVICE_PROPERTY_RAY_MASK_SUPPORTED device property using rtcGetDeviceProperty.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

RTCRay, rtcGetDeviceProperty

12.1. Overview 1974

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryBuildQuality

NAME

rtcSetGeometryBuildQuality - sets the build quality for the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryBuildQuality(
RTCGeometry geometry,
enum RTCBuildQuality quality

);

DESCRIPTION

The rtcSetGeometryBuildQuality function sets the build quality (quality argument) for the specified geometry
(geometry argument). The per-geometry build quality is only a hint and may be ignored. Embree currently uses the
per-geometry build quality when the scene build quality is set to RTC_BUILD_QUALITY_LOW. In this mode a two-level
acceleration structure is build, and geometries build a separate acceleration structure using the geometry build quality.
The per-geometry build quality can be one of:

• RTC_BUILD_QUALITY_LOW: Creates lower quality data structures, e.g. for dynamic scenes.

• RTC_BUILD_QUALITY_MEDIUM: Default build quality for most usages. Gives a good compromise between build
and render performance.

• RTC_BUILD_QUALITY_HIGH: Creates higher quality data structures for final-frame rendering. Enables a spatial
split builder for certain primitive types.

• RTC_BUILD_QUALITY_REFIT: Uses a BVH refitting approach when changing only the vertex buffer.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetSceneBuildQuality

12.1. Overview 1975

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryBuffer

NAME

rtcSetGeometryBuffer - assigns a view of a buffer to the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryBuffer(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot,
enum RTCFormat format,
RTCBuffer buffer,
size_t byteOffset,
size_t byteStride,
size_t itemCount

);

DESCRIPTION

The rtcSetGeometryBuffer function binds a view of a buffer object (buffer argument) to a geometry buffer type
and slot (type and slot argument) of the specified geometry (geometry argument).

One can specify the start of the first buffer element in bytes (byteOffset argument), the byte stride between individual
buffer elements (byteStride argument), the format of the buffer elements (format argument), and the number of
elements to bind (itemCount).

The start address (byteOffset argument) and stride (byteStride argument) must be both aligned to 4 bytes, other-
wise the rtcSetGeometryBuffer function will fail.

After successful completion of this function, the geometry will hold a reference to the buffer object.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetSharedGeometryBuffer, rtcSetNewGeometryBuffer

12.1. Overview 1976

oneAPI Specification, Release 1.1-rev-1

rtcSetSharedGeometryBuffer

NAME

rtcSetSharedGeometryBuffer - assigns a view of a shared data buffer
to a geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetSharedGeometryBuffer(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot,
enum RTCFormat format,
const void* ptr,
size_t byteOffset,
size_t byteStride,
size_t itemCount

);

DESCRIPTION

The rtcSetSharedGeometryBuffer function binds a view of a shared user-managed data buffer (ptr argument) to
a geometry buffer type and slot (type and slot argument) of the specified geometry (geometry argument).

One can specify the start of the first buffer element in bytes (byteOffset argument), the byte stride between individual
buffer elements (byteStride argument), the format of the buffer elements (format argument), and the number of
elements to bind (itemCount).

The start address (byteOffset argument) and stride (byteStride argument) must be both aligned to 4 bytes; other-
wise the rtcSetGeometryBuffer function will fail.

When the buffer will be used as a vertex buffer (RTC_BUFFER_TYPE_VERTEX and
RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE), the last buffer element must be readable using 16-byte SSE load in-
structions, thus padding the last element is required for certain layouts. E.g. a standard float3 vertex buffer layout
should add storage for at least one more float to the end of the buffer.

The buffer data must remain valid for as long as the buffer may be used, and the user is responsible for freeing the buffer
data when no longer required.

Sharing buffers can significantly reduce the memory required by the application, thus we recommend using this feature.
When enabling the RTC_SCENE_FLAG_COMPACT scene flag, the spatial index structures index into the vertex buffer,
resulting in even higher memory savings.

12.1. Overview 1977

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryBuffer, rtcSetNewGeometryBuffer

12.1. Overview 1978

oneAPI Specification, Release 1.1-rev-1

rtcSetNewGeometryBuffer

NAME

rtcSetNewGeometryBuffer - creates and assigns a new data buffer to
the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void* rtcSetNewGeometryBuffer(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot,
enum RTCFormat format,
size_t byteStride,
size_t itemCount

);

DESCRIPTION

The rtcSetNewGeometryBuffer function creates a new data buffer of specified format (format argument), byte
stride (byteStride argument), and number of items (itemCount argument), and assigns it to a geometry buffer slot
(type and slot argument) of the specified geometry (geometry argument). The buffer data is managed internally and
automatically freed when the geometry is destroyed.

The byte stride (byteStride argument) must be aligned to 4 bytes; otherwise the rtcSetNewGeometryBuffer func-
tion will fail.

The allocated buffer will be automatically over-allocated slightly when used as a vertex buffer, where a requirement is
that each buffer element should be readable using 16-byte SSE load instructions.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryBuffer, rtcSetSharedGeometryBuffer

12.1. Overview 1979

oneAPI Specification, Release 1.1-rev-1

RTCFormat

NAME

RTCFormat - specifies format of data in buffers

SYNOPSIS

#include <embree3/rtcore_ray.h>

enum RTCFormat
{
RTC_FORMAT_UINT,
RTC_FORMAT_UINT2,
RTC_FORMAT_UINT3,
RTC_FORMAT_UINT4,

RTC_FORMAT_FLOAT,
RTC_FORMAT_FLOAT2,
RTC_FORMAT_FLOAT3,
RTC_FORMAT_FLOAT4,
RTC_FORMAT_FLOAT5,
RTC_FORMAT_FLOAT6,
RTC_FORMAT_FLOAT7,
RTC_FORMAT_FLOAT8,
RTC_FORMAT_FLOAT9,
RTC_FORMAT_FLOAT10,
RTC_FORMAT_FLOAT11,
RTC_FORMAT_FLOAT12,
RTC_FORMAT_FLOAT13,
RTC_FORMAT_FLOAT14,
RTC_FORMAT_FLOAT15,
RTC_FORMAT_FLOAT16,

RTC_FORMAT_FLOAT3X4_ROW_MAJOR,
RTC_FORMAT_FLOAT4X4_ROW_MAJOR,

RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR,
RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR,

RTC_FORMAT_GRID,

};

12.1. Overview 1980

oneAPI Specification, Release 1.1-rev-1

DESCRIPTION

The RTFormat structure defines the data format stored in data buffers provided to Embree using the rtcSetGeometry-
Buffer, rtcSetSharedGeometryBuffer, and rtcSetNewGeometryBuffer API calls.

The RTC_FORMAT_UINT/2/3/4 format are used to specify that data buffers store unsigned integers, or unsigned integer
vectors of size 2,3 or 4. This format has typically to get used when specifying index buffers, e.g. RTC_FORMAT_UINT3
for triangle meshes.

The RTC_FORMAT_FLOAT/2/3/4... format are used to specify that data buffers store single precision floating point
values, or vectors there of (size 2,3,4, etc.). This format is typically used to specify to format of vertex buffers, e.g. the
RTC_FORMAT_FLOAT3 type for vertex buffers of triangle meshes.

The RTC_FORMAT_FLOAT3X4_ROW_MAJOR and RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR formats, specify a 3x4 float-
ing point matrix layed out either row major or column major. The RTC_FORMAT_FLOAT4X4_ROW_MAJOR and
RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR formats, specify a 4x4 floating point matrix layed out either row major or
column major. These matrix formats are used in the rtcSetGeometryTransform function in order to set a transformation
matrix for geometries.

The RTC_FORMAT_GRID is a special data format used to specify grid primitives of layout RTCGrid when creating grid
geometries (see RTC_GEOMETRY_TYPE_GRID).

EXIT STATUS

SEE ALSO

rtcSetGeometryBuffer, rtcSetSharedGeometryBuffer, rtcSetNewGeometryBuffer, rtcSetGeometryTransform

12.1. Overview 1981

oneAPI Specification, Release 1.1-rev-1

RTCBufferType

NAME

RTCFormat - specifies format of data in buffers

SYNOPSIS

#include <embree3/rtcore_ray.h>

enum RTCBufferType
{
RTC_BUFFER_TYPE_INDEX = 0,
RTC_BUFFER_TYPE_VERTEX = 1,
RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE = 2,
RTC_BUFFER_TYPE_NORMAL = 3,
RTC_BUFFER_TYPE_TANGENT = 4,
RTC_BUFFER_TYPE_NORMAL_DERIVATIVE = 5,

RTC_BUFFER_TYPE_GRID = 8,

RTC_BUFFER_TYPE_FACE = 16,
RTC_BUFFER_TYPE_LEVEL = 17,
RTC_BUFFER_TYPE_EDGE_CREASE_INDEX = 18,
RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT = 19,
RTC_BUFFER_TYPE_VERTEX_CREASE_INDEX = 20,
RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT = 21,
RTC_BUFFER_TYPE_HOLE = 22,

RTC_BUFFER_TYPE_FLAGS = 32
};

DESCRIPTION

The RTBufferType structure defines slots to assign data buffers to using the rtcSetGeometryBuffer, rtcSetSharedGe-
ometryBuffer, and rtcSetNewGeometryBuffer API calls.

For most geometry types the RTC_BUFFER_TYPE_INDEX slot is used to assign an index buffer, while the
RTC_BUFFER_TYPE_VERTEX is used to assign the corresponding vertex buffer.

The RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE slot can get used to assign arbitrary additional vertex data which can
get interpolated using the rtcInterpolate API call.

The RTC_BUFFER_TYPE_NORMAL, RTC_BUFFER_TYPE_TANGENT, and RTC_BUFFER_TYPE_NORMAL_DERIVATIVE are
special buffers required to assign per vertex normals, tangents, and normal derivatives for some curve types.

The RTC_BUFFER_TYPE_GRID buffer is used to assign the grid primitive buffer for grid geometries (see
RTC_GEOMETRY_TYPE_GRID).

The RTC_BUFFER_TYPE_FACE, RTC_BUFFER_TYPE_LEVEL, RTC_BUFFER_TYPE_EDGE_CREASE_INDEX,
RTC_BUFFER_TYPE_EDGE_CREASE_WEIGHT, RTC_BUFFER_TYPE_VERTEX_CREASE_INDEX,

12.1. Overview 1982

oneAPI Specification, Release 1.1-rev-1

RTC_BUFFER_TYPE_VERTEX_CREASE_WEIGHT, and RTC_BUFFER_TYPE_HOLE are special buffers required to
create subdivision meshes (see RTC_GEOMETRY_TYPE_SUBDIVISION).

The RTC_BUFFER_TYPE_FLAGS can get used to add additional flag per primitive of a geometry, and is currently only
used for linear curves.

EXIT STATUS

SEE ALSO

rtcSetGeometryBuffer, rtcSetSharedGeometryBuffer, rtcSetNewGeometryBuffer

12.1. Overview 1983

oneAPI Specification, Release 1.1-rev-1

rtcGetGeometryBufferData

NAME

rtcGetGeometryBufferData - gets pointer to
the first buffer view element

SYNOPSIS

#include <embree3/rtcore.h>

void* rtcGetGeometryBufferData(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot

);

DESCRIPTION

The rtcGetGeometryBufferData function returns a pointer to the first element of the buffer view attached to the
specified buffer type and slot (type and slot argument) of the geometry (geometry argument).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryBuffer, rtcSetSharedGeometryBuffer, rtcSetNewGeometryBuffer

12.1. Overview 1984

oneAPI Specification, Release 1.1-rev-1

rtcUpdateGeometryBuffer

NAME

rtcUpdateGeometryBuffer - marks a buffer view bound to the geometry
as modified

SYNOPSIS

#include <embree3/rtcore.h>

void rtcUpdateGeometryBuffer(
RTCGeometry geometry,
enum RTCBufferType type,
unsigned int slot

);

DESCRIPTION

The rtcUpdateGeometryBuffer function marks the buffer view bound to the specified buffer type and slot (type
and slot argument) of a geometry (geometry argument) as modified.

If a data buffer is changed by the application, the rtcUpdateGeometryBuffer call must be invoked for that buffer.
Each buffer view assigned to a buffer slot is initially marked as modified, thus this function needs to be called only
when doing buffer modifications after the first rtcCommitScene.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewGeometry, rtcCommitScene

12.1. Overview 1985

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryIntersectFilterFunction

NAME

rtcSetGeometryIntersectFilterFunction - sets the intersection filter
for the geometry

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCFilterFunctionNArguments
{
int* valid;
void* geometryUserPtr;
const struct RTCIntersectContext* context;
struct RTCRayN* ray;
struct RTCHitN* hit;
unsigned int N;

};

typedef void (*RTCFilterFunctionN)(
const struct RTCFilterFunctionNArguments* args

);

void rtcSetGeometryIntersectFilterFunction(
RTCGeometry geometry,
RTCFilterFunctionN filter

);

DESCRIPTION

The rtcSetGeometryIntersectFilterFunction function registers an intersection filter callback function (filter
argument) for the specified geometry (geometry argument).

Only a single callback function can be registered per geometry, and further invocations overwrite the previously set
callback function. Passing NULL as function pointer disables the registered callback function.

The registered intersection filter function is invoked for every hit encountered during the rtcIntersect-type ray
queries and can accept or reject that hit. The feature can be used to define a silhouette for a primitive and reject hits
that are outside the silhouette. E.g. a tree leaf could be modeled with an alpha texture that decides whether hit points
lie inside or outside the leaf.

If the RTC_BUILD_QUALITY_HIGH mode is set, the filter functions may be called multiple times for the same primitive
hit. Further, rays hitting exactly the edge might also report two hits for the same surface. For certain use cases, the
application may have to work around this limitation by collecting already reported hits (geomID/primID pairs) and
ignoring duplicates.

The filter function callback of type RTCFilterFunctionN gets passed a number of arguments through the
RTCFilterFunctionNArguments structure. The valid parameter of that structure points to an integer valid mask
(0 means invalid and -1 means valid). The geometryUserPtr member is a user pointer optionally set per geometry
through the rtcSetGeometryUserData function. The context member points to the intersection context passed to

12.1. Overview 1986

oneAPI Specification, Release 1.1-rev-1

the ray query function. The ray parameter points to N rays in SOA layout. The hit parameter points to N hits in SOA
layout to test. The N parameter is the number of rays and hits in ray and hit. The hit distance is provided as the tfar
value of the ray. If the hit geometry is instanced, the instID member of the ray is valid, and the ray and the potential
hit are in object space.

The filter callback function has the task to check for each valid ray whether it wants to accept or reject the corresponding
hit. To reject a hit, the filter callback function just has to write 0 to the integer valid mask of the corresponding ray. To
accept the hit, it just has to leave the valid mask set to -1. The filter function is further allowed to change the hit and
decrease the tfar value of the ray but it should not modify other ray data nor any inactive components of the ray or
hit.

When performing ray queries using rtcIntersect1, it is guaranteed that the packet size is 1 when the callback is
invoked. When performing ray queries using the rtcIntersect4/8/16 functions, it is not generally guaranteed
that the ray packet size (and order of rays inside the packet) passed to the callback matches the initial ray packet.
However, under some circumstances these properties are guaranteed, and whether this is the case can be queried
using rtcGetDeviceProperty. When performing ray queries using the stream API such as rtcIntersect1M,
rtcIntersect1Mp, rtcIntersectNM, or rtcIntersectNp the order of rays and ray packet size of the callback
function might change to either 1, 4, 8, or 16.

For many usage scenarios, repacking and re-ordering of rays does not cause difficulties in implementing the callback
function. However, algorithms that need to extend the ray with additional data must use the rayID component of the
ray to identify the original ray to access the per-ray data.

The implementation of the filter function can choose to implement a single code path that uses the ray access helper
functions RTCRay_XXX and hit access helper functions RTCHit_XXX to access ray and hit data. Alternatively the code
can branch to optimized implementations for specific sizes of N and cast the ray and hit inputs to the proper packet
types.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryOccludedFilterFunction

12.1. Overview 1987

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryOccludedFilterFunction

NAME

rtcSetGeometryOccludedFilterFunction - sets the occlusion filter
for the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryOccludedFilterFunction(
RTCGeometry geometry,
RTCFilterFunctionN filter

);

DESCRIPTION

The rtcSetGeometryOccludedFilterFunction function registers an occlusion filter callback function (filter
argument) for the specified geometry (geometry argument).

Only a single callback function can be registered per geometry, and further invocations overwrite the previously set
callback function. Passing NULL as function pointer disables the registered callback function.

The registered intersection filter function is invoked for every hit encountered during the rtcOccluded-type ray queries
and can accept or reject that hit. The feature can be used to define a silhouette for a primitive and reject hits that are
outside the silhouette. E.g. a tree leaf could be modeled with an alpha texture that decides whether hit points lie inside
or outside the leaf.

Please see the description of the rtcSetGeometryIntersectFilterFunction for a description of the filter callback
function.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryIntersectFilterFunction

12.1. Overview 1988

oneAPI Specification, Release 1.1-rev-1

rtcFilterIntersection

NAME

rtcFilterIntersection - invokes the intersection filter function

SYNOPSIS

#include <embree3/rtcore.h>

void rtcFilterIntersection(
const struct RTCIntersectFunctionNArguments* args,
const struct RTCFilterFunctionNArguments* filterArgs

);

DESCRIPTION

The rtcFilterIntersection function can be called inside an RTCIntersectFunctionN callback func-
tion to invoke the intersection filter registered to the geometry and stored inside the context. For this an
RTCFilterFunctionNArguments structure must be created (see rtcSetGeometryIntersectFilterFunction)
which basically consists of a valid mask, a hit packet to filter, the corresponding ray packet, and the packet size. After
the invocation of rtcFilterIntersection, only rays that are still valid (valid mask set to -1) should update a hit.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will not set any error flags on failure.

SEE ALSO

rtcFilterOcclusion, rtcSetGeometryIntersectFunction

12.1. Overview 1989

oneAPI Specification, Release 1.1-rev-1

rtcFilterOcclusion

NAME

rtcFilterOcclusion - invokes the occlusion filter function

SYNOPSIS

#include <embree3/rtcore.h>

void rtcFilterOcclusion(
const struct RTCOccludedFunctionNArguments* args,
const struct RTCFilterFunctionNArguments* filterArgs

);

DESCRIPTION

The rtcFilterOcclusion function can be called inside an RTCOccludedFunctionN callback function to invoke the
occlusion filter registered to the geometry and stored inside the context. For this an RTCFilterFunctionNArguments
structure must be created (see rtcSetGeometryIntersectFilterFunction) which basically consists of a
valid mask, a hit packet to filter, the corresponding ray packet, and the packet size. After the invocation of
rtcFilterOcclusion only rays that are still valid (valid mask set to -1) should signal an occlusion.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will not set any error flags on failure.

SEE ALSO

rtcFilterIntersection, rtcSetGeometryOccludedFunction

12.1. Overview 1990

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryUserData

NAME

rtcSetGeometryUserData - sets the user-defined data pointer of the
geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryUserData(RTCGeometry geometry, void* userPtr);

DESCRIPTION

The rtcSetGeometryUserData function sets the user-defined data pointer (userPtr argument) for a geometry
(geometry argument). This user data pointer is intended to be pointing to the application’s representation of the ge-
ometry, and is passed to various callback functions. The application can use this pointer inside the callback functions
to access its geometry representation.

The rtcGetGeometryUserData function can be used to query an already set user data pointer of a geometry.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetGeometryUserData

12.1. Overview 1991

oneAPI Specification, Release 1.1-rev-1

rtcGetGeometryUserData

NAME

rtcGetGeometryUserData - returns the user data pointer
of the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void* rtcGetGeometryUserData(RTCGeometry geometry);

DESCRIPTION

The rtcGetGeometryUserData function queries the user data pointer previously set with
rtcSetGeometryUserData. When rtcSetGeometryUserData was not called yet, NULL is returned.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryUserData

12.1. Overview 1992

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryUserPrimitiveCount

NAME

rtcSetGeometryUserPrimitiveCount - sets the number of primitives
of a user-defined geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryUserPrimitiveCount(
RTCGeometry geometry,
unsigned int userPrimitiveCount

);

DESCRIPTION

The rtcSetGeometryUserPrimitiveCount function sets the number of user-defined primitives
(userPrimitiveCount parameter) of the specified user-defined geometry (geometry parameter).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

RTC_GEOMETRY_TYPE_USER

12.1. Overview 1993

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryBoundsFunction

NAME

rtcSetGeometryBoundsFunction - sets a callback to query the
bounding box of user-defined primitives

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCBoundsFunctionArguments
{
void* geometryUserPtr;
unsigned int primID;
unsigned int timeStep;
struct RTCBounds* bounds_o;

};

typedef void (*RTCBoundsFunction)(
const struct RTCBoundsFunctionArguments* args

);

void rtcSetGeometryBoundsFunction(
RTCGeometry geometry,
RTCBoundsFunction bounds,
void* userPtr

);

DESCRIPTION

The rtcSetGeometryBoundsFunction function registers a bounding box callback function (bounds argument) with
payload (userPtr argument) for the specified user geometry (geometry argument).

Only a single callback function can be registered per geometry, and further invocations overwrite the previously set
callback function. Passing NULL as function pointer disables the registered callback function.

The registered bounding box callback function is invoked to calculate axis-aligned bounding boxes of the primi-
tives of the user-defined geometry during spatial acceleration structure construction. The bounding box callback of
RTCBoundsFunction type is invoked with a pointer to a structure of type RTCBoundsFunctionArguments which
contains various arguments, such as: the user data of the geometry (geometryUserPtr member), the ID of the primi-
tive to calculate the bounds for (primID member), the time step at which to calculate the bounds (timeStep member),
and a memory location to write the calculated bound to (bounds_o member).

In a typical usage scenario one would store a pointer to the internal representation of the user geometry object using
rtcSetGeometryUserData. The callback function can then read that pointer from the geometryUserPtr field and
calculate the proper bounding box for the requested primitive and time, and store that bounding box to the destination
structure (bounds_o member).

12.1. Overview 1994

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

RTC_GEOMETRY_TYPE_USER

12.1. Overview 1995

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryIntersectFunction

NAME

rtcSetGeometryIntersectFunction - sets the callback function to
intersect a user geometry

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCIntersectFunctionNArguments
{
int* valid;
void* geometryUserPtr;
unsigned int primID;
struct RTCIntersectContext* context;
struct RTCRayHitN* rayhit;
unsigned int N;
unsigned int geomID;

};

typedef void (*RTCIntersectFunctionN)(
const struct RTCIntersectFunctionNArguments* args

);

void rtcSetGeometryIntersectFunction(
RTCGeometry geometry,
RTCIntersectFunctionN intersect

);

DESCRIPTION

The rtcSetGeometryIntersectFunction function registers a ray/primitive intersection callback function
(intersect argument) for the specified user geometry (geometry argument).

Only a single callback function can be registered per geometry and further invocations overwrite the previously set
callback function. Passing NULL as function pointer disables the registered callback function.

The registered callback function is invoked by rtcIntersect-type ray queries to calculate the intersection of a ray
packet of variable size with one user-defined primitive. The callback function of type RTCIntersectFunctionN gets
passed a number of arguments through the RTCIntersectFunctionNArguments structure. The value N specifies the
ray packet size, valid points to an array of integers that specify whether the corresponding ray is valid (-1) or invalid (0),
the geometryUserPtr member points to the geometry user data previously set through rtcSetGeometryUserData,
the context member points to the intersection context passed to the ray query, the rayhit member points to a ray and
hit packet of variable size N, and the geomID and primID member identifies the geometry ID and primitive ID of the
primitive to intersect.

The ray component of the rayhit structure contains valid data, in particular the tfar value is the current closest hit
distance found. All data inside the hit component of the rayhit structure are undefined and should not be read by
the function.

12.1. Overview 1996

oneAPI Specification, Release 1.1-rev-1

The task of the callback function is to intersect each active ray from the ray packet with the specified user primitive.
If the user-defined primitive is missed by a ray of the ray packet, the function should return without modifying the ray
or hit. If an intersection of the user-defined primitive with the ray was found in the valid range (from tnear to tfar),
it should update the hit distance of the ray (tfar member) and the hit (u, v, Ng, instID, geomID, primID members).
In particular, the currently intersected instance is stored in the instID field of the intersection context, which must be
deep copied into the instID member of the hit.

As a primitive might have multiple intersections with a ray, the intersection filter function needs to be invoked by the
user geometry intersection callback for each encountered intersection, if filtering of intersections is desired. This can
be achieved through the rtcFilterIntersection call.

Within the user geometry intersect function, it is safe to trace new rays and create new scenes and geometries.

When performing ray queries using rtcIntersect1, it is guaranteed that the packet size is 1 when the callback is
invoked. When performing ray queries using the rtcIntersect4/8/16 functions, it is not generally guaranteed
that the ray packet size (and order of rays inside the packet) passed to the callback matches the initial ray packet.
However, under some circumstances these properties are guaranteed, and whether this is the case can be queried
using rtcGetDeviceProperty. When performing ray queries using the stream API such as rtcIntersect1M,
rtcIntersect1Mp, rtcIntersectNM, or rtcIntersectNp the order of rays and ray packet size of the callback
function might change to either 1, 4, 8, or 16.

For many usage scenarios, repacking and re-ordering of rays does not cause difficulties in implementing the callback
function. However, algorithms that need to extend the ray with additional data must use the rayID component of the
ray to identify the original ray to access the per-ray data.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryOccludedFunction, rtcSetGeometryUserData, rtcFilterIntersection

12.1. Overview 1997

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryOccludedFunction

NAME

rtcSetGeometryOccludedFunction - sets the callback function to
test a user geometry for occlusion

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCOccludedFunctionNArguments
{
int* valid;
void* geometryUserPtr;
unsigned int primID;
struct RTCIntersectContext* context;
struct RTCRayN* ray;
unsigned int N;
unsigned int geomID;

};

typedef void (*RTCOccludedFunctionN)(
const struct RTCOccludedFunctionNArguments* args

);

void rtcSetGeometryOccludedFunction(
RTCGeometry geometry,
RTCOccludedFunctionN filter

);

DESCRIPTION

The rtcSetGeometryOccludedFunction function registers a ray/primitive occlusion callback function (filter
argument) for the specified user geometry (geometry argument).

Only a single callback function can be registered per geometry, and further invocations overwrite the previously set
callback function. Passing NULL as function pointer disables the registered callback function.

The registered callback function is invoked by rtcOccluded-type ray queries to test whether the rays of a packet of vari-
able size are occluded by a user-defined primitive. The callback function of type RTCOccludedFunctionN gets passed
a number of arguments through the RTCOccludedFunctionNArguments structure. The value N specifies the ray
packet size, valid points to an array of integers which specify whether the corresponding ray is valid (-1) or invalid (0),
the geometryUserPtr member points to the geometry user data previously set through rtcSetGeometryUserData,
the context member points to the intersection context passed to the ray query, the ray member points to a ray packet
of variable size N, and the geomID and primID member identifies the geometry ID and primitive ID of the primitive
to intersect.

The task of the callback function is to intersect each active ray from the ray packet with the specified user primitive. If
the user-defined primitive is missed by a ray of the ray packet, the function should return without modifying the ray. If

12.1. Overview 1998

oneAPI Specification, Release 1.1-rev-1

an intersection of the user-defined primitive with the ray was found in the valid range (from tnear to tfar), it should
set the tfar member of the ray to -inf.

As a primitive might have multiple intersections with a ray, the occlusion filter function needs to be invoked by the
user geometry occlusion callback for each encountered intersection, if filtering of intersections is desired. This can be
achieved through the rtcFilterOcclusion call.

Within the user geometry occlusion function, it is safe to trace new rays and create new scenes and geometries.

When performing ray queries using rtcOccluded1, it is guaranteed that the packet size is 1 when the callback is
invoked. When performing ray queries using the rtcOccluded4/8/16 functions, it is not generally guaranteed
that the ray packet size (and order of rays inside the packet) passed to the callback matches the initial ray packet.
However, under some circumstances these properties are guaranteed, and whether this is the case can be queried
using rtcGetDeviceProperty. When performing ray queries using the stream API such as rtcOccluded1M,
rtcOccluded1Mp, rtcOccludedNM, or rtcOccludedNp the order of rays and ray packet size of the callback function
might change to either 1, 4, 8, or 16.

For many usage scenarios, repacking and re-ordering of rays does not cause difficulties in implementing the callback
function. However, algorithms that need to extend the ray with additional data must use the rayID component of the
ray to identify the original ray to access the per-ray data.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometryIntersectFunction, rtcSetGeometryUserData, rtcFilterOcclusion

12.1. Overview 1999

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryPointQueryFunction

NAME

rtcSetGeometryPointQueryFunction - sets the point query callback function
for a geometry

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCPointQueryFunctionArguments
{
// the (world space) query object that was passed as an argument of rtcPointQuery.
struct RTCPointQuery* query;

// used for user input/output data. Will not be read or modified internally.
void* userPtr;

// primitive and geometry ID of primitive
unsigned int primID;
unsigned int geomID;

// the context with transformation and instance ID stack
struct RTCPointQueryContext* context;

// scaling factor indicating whether the current instance transformation
// is a similarity transformation.
float similarityScale;

};

typedef bool (*RTCPointQueryFunction)(
struct RTCPointQueryFunctionArguments* args

);

void rtcSetGeometryPointQueryFunction(
RTCGeometry geometry,
RTCPointQueryFunction queryFunc

);

DESCRIPTION

The rtcSetGeometryPointQueryFunction function registers a point query callback function (queryFunc argu-
ment) for the specified geometry (geometry argument).

Only a single callback function can be registered per geometry and further invocations overwrite the previously set
callback function. Passing NULL as function pointer disables the registered callback function.

The registered callback function is invoked by rtcPointQuery for every primitive of the geometry that intersects the
corresponding point query domain. The callback function of type RTCPointQueryFunction gets passed a number of
arguments through the RTCPointQueryFunctionArguments structure. The query object is the original point query

12.1. Overview 2000

oneAPI Specification, Release 1.1-rev-1

object passed into rtcPointQuery, usrPtr is an arbitrary pointer to pass input into and store results of the callback
function. The primID, geomID and context (see rtcInitPointQueryContext for details) can be used to identify the
geometry data of the primitive.

A RTCPointQueryFunction can also be passed directly as an argument to rtcPointQuery. In this case the callback is
invoked for all primitives in the scene that intersect the query domain. If a callback function is passed as an argument
to rtcPointQuery and (a potentially different) callback function is set for a geometry with rtcSetGeometryPointQuery-
Function both callback functions are invoked and the callback function passed to rtcPointQuery will be called before
the geometry specific callback function.

If instancing is used, the parameter simliarityScale indicates whether the current instance transform (top element
of the stack in context) is a similarity transformation or not. Similarity transformations are composed of translation,
rotation and uniform scaling and if a matrix M defines a similarity transformation, there is a scaling factor D such
that for all x,y: dist(Mx, My) = D * dist(x, y). In this case the parameter scalingFactor is this scaling factor D
and otherwise it is 0. A valid similarity scale (similarityScale > 0) allows to compute distance information in
instance space and scale the distances into world space (for example, to update the query radius, see below) by dividing
the instance space distance with the similarity scale. If the current instance transform is not a similarity transform
(similarityScale is 0), the distance computation has to be performed in world space to ensure correctness. In this
case the instance to world transformations given with the context should be used to transform the primitive data into
world space. Otherwise, the query location can be transformed into instance space which can be more efficient. If there
is no instance transform, the similarity scale is 1.

The callback function will potentially be called for primitives outside the query domain for two reasons: First, the
callback is invoked for all primitives inside a BVH leaf node since no geometry data of primitives is determined inter-
nally and therefore individual primitives are not culled (only their (aggregated) bounding boxes). Second, in case non
similarity transformations are used, the resulting ellipsoidal query domain (in instance space) is approximated by its
axis aligned bounding box internally and therefore inner nodes that do not intersect the original domain might intersect
the approximative bounding box which results in unnecessary callbacks. In any case, the callbacks are conservative,
i.e. if a primitive is inside the query domain a callback will be invoked but the reverse is not necessarily true.

For efficiency, the radius of the query object can be decreased (in world space) inside the callback function to improve
culling of geometry during BVH traversal. If the query radius was updated, the callback function should return true
to issue an update of internal traversal information. Increasing the radius or modifying the time or position of the query
results in undefined behaviour.

Within the callback function, it is safe to call rtcPointQuery again, for example when implementing instancing manually.
In this case the instance transformation should be pushed onto the stack in context. Embree will internally compute
the point query information in instance space using the top element of the stack in context when rtcPointQuery is
called.

For a reference implementation of a closest point traversal of triangle meshes using instancing and user defined instanc-
ing see the tutorial [ClosestPoint].

SEE ALSO

rtcPointQuery, rtcInitPointQueryContext

12.1. Overview 2001

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryInstancedScene

NAME

rtcSetGeometryInstancedScene - sets the instanced scene of
an instance geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryInstancedScene(
RTCGeometry geometry,
RTCScene scene

);

DESCRIPTION

The rtcSetGeometryInstancedScene function sets the instanced scene (scene argument) of the specified instance
geometry (geometry argument).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

RTC_GEOMETRY_TYPE_INSTANCE, rtcSetGeometryTransform

12.1. Overview 2002

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryTransform

NAME

rtcSetGeometryTransform - sets the transformation for a particular
time step of an instance geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryTransform(
RTCGeometry geometry,
unsigned int timeStep,
enum RTCFormat format,
const float* xfm

);

DESCRIPTION

The rtcSetGeometryTransform function sets the local-to-world affine transformation (xfm parameter) of an instance
geometry (geometry parameter) for a particular time step (timeStep parameter). The transformation is specified as
a 3×4 matrix (3×3 linear transformation plus translation), for which the following formats (format parameter) are
supported:

• RTC_FORMAT_FLOAT3X4_ROW_MAJOR: The 3×4 float matrix is laid out in row-major form.

• RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR: The 3×4 float matrix is laid out in column-major form.

• RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR: The 3×4 float matrix is laid out in column-major form as a 4×4 ho-
mogeneous matrix with the last row being equal to (0, 0, 0, 1).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

RTC_GEOMETRY_TYPE_INSTANCE

12.1. Overview 2003

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryTransformQuaternion

NAME

rtcSetGeometryTransformQuaternion - sets the transformation for a particular
time step of an instance geometry as a decomposition of the
transformation matrix using quaternions to represent the rotation.

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryTransformQuaternion(
RTCGeometry geometry,
unsigned int timeStep,
const struct RTCQuaternionDecomposition* qd

);

DESCRIPTION

The rtcSetGeometryTransformQuaternion function sets the local-to-world affine transformation (qd parameter)
of an instance geometry (geometry parameter) for a particular time step (timeStep parameter). The transformation is
specified as a RTCQuaternionDecomposition, which is a decomposition of an affine transformation that represents the
rotational component of an affine transformation as a quaternion. This allows interpolating rotational transformations
exactly using spherical linear interpolation (such as a turning wheel).

For more information about the decomposition see RTCQuaternionDecomposition. The quaternion given in the
RTCQuaternionDecomposition struct will be normalized internally.

For correct results, the transformation matrices for all time steps must be set either using rtcSetGeometryTransform
or rtcSetGeometryTransformQuaternion. Mixing both representations is not allowed. Spherical linear interpola-
tion will be used, iff the transformation matrices are set with rtcSetGeometryTransformQuaternion.

For an example of this feature see the tutorial Quaternion Motion Blur.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcInitQuaternionDecomposition, rtcSetGeometryTransform

12.1. Overview 2004

tutorials.html#quaternion-motion-blur

oneAPI Specification, Release 1.1-rev-1

rtcGetGeometryTransform

NAME

rtcGetGeometryTransform - returns the interpolated instance
transformation for the specified time

SYNOPSIS

#include <embree3/rtcore.h>

void rtcGetGeometryTransform(
RTCGeometry geometry,
float time,
enum RTCFormat format,
void* xfm

);

DESCRIPTION

The rtcGetGeometryTransform function returns the interpolated local to world transformation (xfm parameter) of
an instance geometry (geometry parameter) for a particular time (time parameter in range [0, 1]) in the specified
format (format parameter).

Possible formats for the returned matrix are:

• RTC_FORMAT_FLOAT3X4_ROW_MAJOR: The 3×4 float matrix is laid out in row-major form.

• RTC_FORMAT_FLOAT3X4_COLUMN_MAJOR: The 3×4 float matrix is laid out in column-major form.

• RTC_FORMAT_FLOAT4X4_COLUMN_MAJOR: The 3×4 float matrix is laid out in column-major form as a 4×4 ho-
mogeneous matrix with last row equal to (0, 0, 0, 1).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

RTC_GEOMETRY_TYPE_INSTANCE, rtcSetGeometryTransform

12.1. Overview 2005

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryTessellationRate

NAME

rtcSetGeometryTessellationRate - sets the tessellation rate of the
geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryTessellationRate(
RTCGeometry geometry,
float tessellationRate

);

DESCRIPTION

The rtcSetGeometryTessellationRate function sets the tessellation rate (tessellationRate argument) for the
specified geometry (geometry argument). The tessellation rate can only be set for flat curves and subdivision geome-
tries. For curves, the tessellation rate specifies the number of ray-facing quads per curve segment. For subdivision
surfaces, the tessellation rate specifies the number of quads along each edge.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

RTC_GEOMETRY_TYPE_CURVE, RTC_GEOMETRY_TYPE_SUBDIVISION

12.1. Overview 2006

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryTopologyCount

NAME

rtcSetGeometryTopologyCount - sets the number of topologies of
a subdivision geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryTopologyCount(
RTCGeometry geometry,
unsigned int topologyCount

);

DESCRIPTION

The rtcSetGeometryTopologyCount function sets the number of topologies (topologyCount parameter) for the
specified subdivision geometry (geometry parameter). The number of topologies of a subdivision geometry must be
greater or equal to 1.

To use multiple topologies, first the number of topologies must be specified, then the individual topologies can be
configured using rtcSetGeometrySubdivisionMode and by setting an index buffer (RTC_BUFFER_TYPE_INDEX)
using the topology ID as the buffer slot.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

RTC_GEOMETRY_TYPE_SUBDIVISION , rtcSetGeometrySubdivisionMode

12.1. Overview 2007

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometrySubdivisionMode

NAME

rtcSetGeometrySubdivisionMode - sets the subdivision mode
of a subdivision geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometrySubdivisionMode(
RTCGeometry geometry,
unsigned int topologyID,
enum RTCSubdivisionMode mode

);

DESCRIPTION

The rtcSetGeometrySubdivisionMode function sets the subdivision mode (mode parameter) for the topology
(topologyID parameter) of the specified subdivision geometry (geometry parameter).

The subdivision modes can be used to force linear interpolation for certain parts of the subdivision mesh:

• RTC_SUBDIVISION_MODE_NO_BOUNDARY: Boundary patches are ignored. This way each rendered patch has a
full set of control vertices.

• RTC_SUBDIVISION_MODE_SMOOTH_BOUNDARY: The sequence of boundary control points are used to generate a
smooth B-spline boundary curve (default mode).

• RTC_SUBDIVISION_MODE_PIN_CORNERS: Corner vertices are pinned to their location during subdivision.

• RTC_SUBDIVISION_MODE_PIN_BOUNDARY: All vertices at the border are pinned to their location during sub-
division. This way the boundary is interpolated linearly. This mode is typically used for texturing to also map
texels at the border of the texture to the mesh.

• RTC_SUBDIVISION_MODE_PIN_ALL: All vertices at the border are pinned to their location during subdivision.
This way all patches are linearly interpolated.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

12.1. Overview 2008

oneAPI Specification, Release 1.1-rev-1

SEE ALSO

RTC_GEOMETRY_TYPE_SUBDIVISION

12.1. Overview 2009

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryVertexAttributeTopology

NAME

rtcSetGeometryVertexAttributeTopology - binds a vertex
attribute to a topology of the geometry

SYNOPSIS

#include <embree3/rtcore.h>

void rtcSetGeometryVertexAttributeTopology(
RTCGeometry geometry,
unsigned int vertexAttributeID,
unsigned int topologyID

);

DESCRIPTION

The rtcSetGeometryVertexAttributeTopology function binds a vertex attribute buffer slot
(vertexAttributeID argument) to a topology (topologyID argument) for the specified subdivision geome-
try (geometry argument). Standard vertex buffers are always bound to the default topology (topology 0) and cannot be
bound differently. A vertex attribute buffer always uses the topology it is bound to when used in the rtcInterpolate
and rtcInterpolateN calls.

A topology with ID i consists of a subdivision mode set through rtcSetGeometrySubdivisionMode and the index
buffer bound to the index buffer slot i. This index buffer can assign indices for each face of the subdivision geometry that
are different to the indices of the default topology. These new indices can for example be used to introduce additional
borders into the subdivision mesh to map multiple textures onto one subdivision geometry.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcSetGeometrySubdivisionMode, rtcInterpolate, rtcInterpolateN

12.1. Overview 2010

oneAPI Specification, Release 1.1-rev-1

rtcSetGeometryDisplacementFunction

NAME

rtcSetGeometryDisplacementFunction - sets the displacement function
for a subdivision geometry

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCDisplacementFunctionNArguments
{
void* geometryUserPtr;
RTCGeometry geometry;
unsigned int primID;
unsigned int timeStep;
const float* u;
const float* v;
const float* Ng_x;
const float* Ng_y;
const float* Ng_z;
float* P_x;
float* P_y;
float* P_z;
unsigned int N;

};

typedef void (*RTCDisplacementFunctionN)(
const struct RTCDisplacementFunctionNArguments* args

);

void rtcSetGeometryDisplacementFunction(
RTCGeometry geometry,
RTCDisplacementFunctionN displacement

);

DESCRIPTION

The rtcSetGeometryDisplacementFunction function registers a displacement callback function (displacement
argument) for the specified subdivision geometry (geometry argument).

Only a single callback function can be registered per geometry, and further invocations overwrite the previously set
callback function. Passing NULL as function pointer disables the registered callback function.

The registered displacement callback function is invoked to displace points on the subdivision geometry during spatial
acceleration structure construction, during the rtcCommitScene call.

The callback function of type RTCDisplacementFunctionN is invoked with a number of arguments stored in-
side the RTCDisplacementFunctionNArguments structure. The provided user data pointer of the geometry
(geometryUserPtr member) can be used to point to the application’s representation of the subdivision mesh. A

12.1. Overview 2011

oneAPI Specification, Release 1.1-rev-1

number N of points to displace are specified in a structure of array layout. For each point to displace, the local patch
UV coordinates (u and v arrays), the normalized geometry normal (Ng_x, Ng_y, and Ng_z arrays), and the position
(P_x, P_y, and P_z arrays) are provided. The task of the displacement function is to use this information and change
the position data.

The geometry handle (geometry member) and primitive ID (primID member) of the patch to displace are additionally
provided as well as the time step timeStep, which can be important if the displacement is time-dependent and motion
blur is used.

All passed arrays must be aligned to 64 bytes and properly padded to make wide vector processing inside the displace-
ment function easily possible.

Also see tutorial Displacement Geometry for an example of how to use the displacement mapping functions.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

RTC_GEOMETRY_TYPE_SUBDIVISION

12.1. Overview 2012

tutorials.html#displacement-geometry

oneAPI Specification, Release 1.1-rev-1

rtcGetGeometryFirstHalfEdge

NAME

rtcGetGeometryFirstHalfEdge - returns the first half edge of a face

SYNOPSIS

#include <embree3/rtcore.h>

unsigned int rtcGetGeometryFirstHalfEdge(
RTCGeometry geometry,
unsigned int faceID

);

DESCRIPTION

The rtcGetGeometryFirstHalfEdge function returns the ID of the first half edge belonging to the specified face
(faceID argument). For instance in the following example the first half edge of face f1 is e4.

This function can only be used for subdivision geometries. As all topologies of a subdivision geometry share the same
face buffer the function does not depend on the topology ID.

Here f0 to f7 are 8 quadrilateral faces with 4 vertices each. The edges e0 to e23 of these faces are shown with their
orientation. For each face the ID of the edges corresponds to the slots the face occupies in the index array of the

12.1. Overview 2013

oneAPI Specification, Release 1.1-rev-1

geometry. E.g. as the indices of face f1 start at location 4 of the index array, the first edge is edge e4, the next edge e5,
etc.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetGeometryFirstHalfEdge, rtcGetGeometryFace, rtcGetGeometryOppositeHalfEdge, rtcGetGeometryNex-
tHalfEdge, rtcGetGeometryPreviousHalfEdge

12.1. Overview 2014

oneAPI Specification, Release 1.1-rev-1

rtcGetGeometryFace

NAME

rtcGetGeometryFace - returns the face of some half edge

SYNOPSIS

#include <embree3/rtcore.h>

unsigned int rtcGetGeometryFace(
RTCGeometry geometry,
unsigned int edgeID

);

DESCRIPTION

The rtcGetGeometryFace function returns the ID of the face the specified half edge (edgeID argument) belongs to.
For instance in the following example the face f1 is returned for edges e4, e5, e6, and e7.

This function can only be used for subdivision geometries. As all topologies of a subdivision geometry share the same
face buffer the function does not depend on the topology ID.

12.1. Overview 2015

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetGeometryFirstHalfEdge, rtcGetGeometryFace, rtcGetGeometryOppositeHalfEdge, rtcGetGeometryNex-
tHalfEdge, rtcGetGeometryPreviousHalfEdge

12.1. Overview 2016

oneAPI Specification, Release 1.1-rev-1

rtcGetGeometryNextHalfEdge

NAME

rtcGetGeometryNextHalfEdge - returns the next half edge

SYNOPSIS

#include <embree3/rtcore.h>

unsigned int rtcGetGeometryNextHalfEdge(
RTCGeometry geometry,
unsigned int edgeID

);

DESCRIPTION

The rtcGetGeometryNextHalfEdge function returns the ID of the next half edge of the specified half edge (edgeID
argument). For instance in the following example the next half edge of e10 is e11.

This function can only be used for subdivision geometries. As all topologies of a subdivision geometry share the same
face buffer the function does not depend on the topology ID.

12.1. Overview 2017

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetGeometryFirstHalfEdge, rtcGetGeometryFace, rtcGetGeometryOppositeHalfEdge, rtcGetGeometryNex-
tHalfEdge, rtcGetGeometryPreviousHalfEdge

12.1. Overview 2018

oneAPI Specification, Release 1.1-rev-1

rtcGetGeometryPreviousHalfEdge

NAME

rtcGetGeometryPreviousHalfEdge - returns the previous half edge

SYNOPSIS

#include <embree3/rtcore.h>

unsigned int rtcGetGeometryPreviousHalfEdge(
RTCGeometry geometry,
unsigned int edgeID

);

DESCRIPTION

The rtcGetGeometryPreviousHalfEdge function returns the ID of the previous half edge of the specified half edge
(edgeID argument). For instance in the following example the previous half edge of e6 is e5.

This function can only be used for subdivision geometries. As all topologies of a subdivision geometry share the same
face buffer the function does not depend on the topology ID.

12.1. Overview 2019

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetGeometryFirstHalfEdge, rtcGetGeometryFace, rtcGetGeometryOppositeHalfEdge, rtcGetGeometryNex-
tHalfEdge, rtcGetGeometryPreviousHalfEdge

12.1. Overview 2020

oneAPI Specification, Release 1.1-rev-1

rtcGetGeometryOppositeHalfEdge

NAME

rtcGetGeometryOppositeHalfEdge - returns the opposite half edge

SYNOPSIS

#include <embree3/rtcore.h>

unsigned int rtcGetGeometryOppositeHalfEdge(
RTCGeometry geometry,
unsigned int topologyID,
unsigned int edgeID

);

DESCRIPTION

The rtcGetGeometryOppositeHalfEdge function returns the ID of the opposite half edge of the specified half edge
(edgeID argument) in the specified topology (topologyID argument). For instance in the following example the
opposite half edge of e6 is e16.

An opposite half edge does not exist if the specified half edge has either no neighboring face, or more than 2 neighboring
faces. In these cases the function just returns the same edge edgeID again.

12.1. Overview 2021

oneAPI Specification, Release 1.1-rev-1

This function can only be used for subdivision geometries. The function depends on the topology as the topologies of
a subdivision geometry have different index buffers assigned.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcGetGeometryFirstHalfEdge, rtcGetGeometryFace, rtcGetGeometryOppositeHalfEdge, rtcGetGeometryNex-
tHalfEdge, rtcGetGeometryPreviousHalfEdge

12.1. Overview 2022

oneAPI Specification, Release 1.1-rev-1

rtcInterpolate

NAME

rtcInterpolate - interpolates vertex attributes

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCInterpolateArguments
{
RTCGeometry geometry;
unsigned int primID;
float u;
float v;
enum RTCBufferType bufferType;
unsigned int bufferSlot;
float* P;
float* dPdu;
float* dPdv;
float* ddPdudu;
float* ddPdvdv;
float* ddPdudv;
unsigned int valueCount;

};

void rtcInterpolate(
const struct RTCInterpolateArguments* args

);

DESCRIPTION

The rtcInterpolate function smoothly interpolates per-vertex data over the geometry. This interpolation is sup-
ported for triangle meshes, quad meshes, curve geometries, and subdivision geometries. Apart from interpolating the
vertex attribute itself, it is also possible to get the first and second order derivatives of that value. This interpolation
ignores displacements of subdivision surfaces and always interpolates the underlying base surface.

The rtcInterpolate call gets passed a number of arguments inside a structure of type RTCInterpolateArguments.
For some geometry (geometry parameter) this function smoothly interpolates the per-vertex data stored inside the
specified geometry buffer (bufferType and bufferSlot parameters) to the u/v location (u and v parameters) of
the primitive (primID parameter). The number of floating point values to interpolate and store to the destination
arrays can be specified using the valueCount parameter. As interpolation buffer, one can specify vertex buffers
(RTC_BUFFER_TYPE_VERTEX) and vertex attribute buffers (RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE) as well.

The rtcInterpolate call stores valueCount number of interpolated floating point values to the memory location
pointed to by P. One can avoid storing the interpolated value by setting P to NULL.

The first order derivative of the interpolation by u and v are stored at the dPdu and dPdv memory locations. One can
avoid storing first order derivatives by setting both dPdu and dPdv to NULL.

12.1. Overview 2023

oneAPI Specification, Release 1.1-rev-1

The second order derivatives are stored at the ddPdudu, ddPdvdv, and ddPdudv memory locations. One can avoid
storing second order derivatives by setting these three pointers to NULL.

To use rtcInterpolate for a geometry, all changes to that geometry must be properly committed using
rtcCommitGeometry.

All input buffers and output arrays must be padded to 16 bytes, as the implementation uses 16-byte SSE instructions to
read and write into these buffers.

See tutorial Interpolation for an example of using the rtcInterpolate function.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will not set any error flags on failure.

SEE ALSO

rtcInterpolateN

12.1. Overview 2024

tutorials.html#interpolation

oneAPI Specification, Release 1.1-rev-1

rtcInterpolateN

NAME

rtcInterpolateN - performs N interpolations of vertex attribute data

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCInterpolateNArguments
{
RTCGeometry geometry;
const void* valid;
const unsigned int* primIDs;
const float* u;
const float* v;
unsigned int N;
enum RTCBufferType bufferType;
unsigned int bufferSlot;
float* P;
float* dPdu;
float* dPdv;
float* ddPdudu;
float* ddPdvdv;
float* ddPdudv;
unsigned int valueCount;

};

void rtcInterpolateN(
const struct RTCInterpolateNArguments* args

);

DESCRIPTION

The rtcInterpolateN is similar to rtcInterpolate, but performs N many interpolations at once. It additionally
gets an array of u/v coordinates and a valid mask (valid parameter) that specifies which of these coordinates are valid.
The valid mask points to N integers, and a value of -1 denotes valid and 0 invalid. If the valid pointer is NULL all
elements are considers valid. The destination arrays are filled in structure of array (SOA) layout. The value N must be
divisible by 4.

To use rtcInterpolateN for a geometry, all changes to that geometry must be properly committed using
rtcCommitGeometry.

12.1. Overview 2025

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

For performance reasons this function does not do any error checks, thus will not set any error flags on failure.

SEE ALSO

rtcInterpolate

12.1. Overview 2026

oneAPI Specification, Release 1.1-rev-1

rtcNewBuffer

NAME

rtcNewBuffer - creates a new data buffer

SYNOPSIS

#include <embree3/rtcore.h>

RTCBuffer rtcNewBuffer(
RTCDevice device,
size_t byteSize

);

DESCRIPTION

The rtcNewBuffer function creates a new data buffer object of specified size in bytes (byteSize argument) that is
bound to the specified device (device argument). The buffer object is reference counted with an initial reference count
of 1. The returned buffer object can be released using the rtcReleaseBuffer API call. The specified number of bytes
are allocated at buffer construction time and deallocated when the buffer is destroyed.

When the buffer will be used as a vertex buffer (RTC_BUFFER_TYPE_VERTEX and
RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE), the last buffer element must be readable using 16-byte SSE load in-
structions, thus padding the last element is required for certain layouts. E.g. a standard float3 vertex buffer layout
should add storage for at least one more float to the end of the buffer.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcRetainBuffer, rtcReleaseBuffer

12.1. Overview 2027

oneAPI Specification, Release 1.1-rev-1

rtcNewSharedBuffer

NAME

rtcNewSharedBuffer - creates a new shared data buffer

SYNOPSIS

#include <embree3/rtcore.h>

RTCBuffer rtcNewSharedBuffer(
RTCDevice device,
void* ptr,
size_t byteSize

);

DESCRIPTION

The rtcNewSharedBuffer function creates a new shared data buffer object bound to the specified device (device
argument). The buffer object is reference counted with an initial reference count of 1. The buffer can be released using
the rtcReleaseBuffer function.

At construction time, the pointer to the user-managed buffer data (ptr argument) including its size in bytes (byteSize
argument) is provided to create the buffer. At buffer construction time no buffer data is allocated, but the buffer data
provided by the application is used. The buffer data must remain valid for as long as the buffer may be used, and the
user is responsible to free the buffer data when no longer required.

When the buffer will be used as a vertex buffer (RTC_BUFFER_TYPE_VERTEX and
RTC_BUFFER_TYPE_VERTEX_ATTRIBUTE), the last buffer element must be readable using 16-byte SSE load in-
structions, thus padding the last element is required for certain layouts. E.g. a standard float3 vertex buffer layout
should add storage for at least one more float to the end of the buffer.

The data pointer (ptr argument) must be aligned to 4 bytes; otherwise the rtcNewSharedBuffer function will fail.

EXIT STATUS

On failure NULL is returned and an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcRetainBuffer, rtcReleaseBuffer

12.1. Overview 2028

oneAPI Specification, Release 1.1-rev-1

rtcRetainBuffer

NAME

rtcRetainBuffer - increments the buffer reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcRetainBuffer(RTCBuffer buffer);

DESCRIPTION

Buffer objects are reference counted. The rtcRetainBuffer function increments the reference count of the passed
buffer object (buffer argument). This function together with rtcReleaseBuffer allows to use the internal reference
counting in a C++ wrapper class to handle the ownership of the object.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewBuffer, rtcReleaseBuffer

12.1. Overview 2029

oneAPI Specification, Release 1.1-rev-1

rtcReleaseBuffer

NAME

rtcReleaseBuffer - decrements the buffer reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcReleaseBuffer(RTCBuffer buffer);

DESCRIPTION

Buffer objects are reference counted. The rtcReleaseBuffer function decrements the reference count of the passed
buffer object (buffer argument). When the reference count falls to 0, the buffer gets destroyed.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewBuffer, rtcRetainBuffer

12.1. Overview 2030

oneAPI Specification, Release 1.1-rev-1

rtcGetBufferData

NAME

rtcGetBufferData - gets a pointer to the buffer data

SYNOPSIS

#include <embree3/rtcore.h>

void* rtcGetBufferData(RTCBuffer buffer);

DESCRIPTION

The rtcGetBufferData function returns a pointer to the buffer data of the specified buffer object (buffer argument).

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewBuffer

12.1. Overview 2031

oneAPI Specification, Release 1.1-rev-1

RTCRay

NAME

RTCRay - single ray structure

SYNOPSIS

#include <embree3/rtcore_ray.h>

struct RTC_ALIGN(16) RTCRay
{
float org_x; // x coordinate of ray origin
float org_y; // y coordinate of ray origin
float org_z; // z coordinate of ray origin
float tnear; // start of ray segment

float dir_x; // x coordinate of ray direction
float dir_y; // y coordinate of ray direction
float dir_z; // z coordinate of ray direction
float time; // time of this ray for motion blur

float tfar; // end of ray segment (set to hit distance)
unsigned int mask; // ray mask
unsigned int id; // ray ID
unsigned int flags; // ray flags

};

DESCRIPTION

The RTCRay structure defines the ray layout for a single ray. The ray contains the origin (org_x, org_y, org_z mem-
bers), direction vector (dir_x, dir_y, dir_z members), and ray segment (tnear and tfar members). The ray direc-
tion does not have to be normalized, and only the parameter range specified by the tnear/tfar interval is considered
valid.

The ray segment must be in the range [0,∞], thus ranges that start behind the ray origin are not allowed, but ranges can
reach to infinity. For rays inside a ray stream, tfar < tnear identifies an inactive ray.

The ray further contains a motion blur time in the range [0, 1] (time member), a ray mask (mask member), a ray ID
(id member), and ray flags (flags member). The ray mask can be used to mask out some geometries for some rays
(see rtcSetGeometryMask for more details). The ray ID can be used to identify a ray inside a callback function, even
if the order of rays inside a ray packet or stream has changed. The ray flags are reserved.

The embree3/rtcore_ray.h header additionally defines the same ray structure in structure of array (SOA) layout for
API functions accepting ray packets of size 4 (RTCRay4 type), size 8 (RTCRay8 type), and size 16 (RTCRay16 type).
The header additionally defines an RTCRayNt template for ray packets of an arbitrary compile-time size.

12.1. Overview 2032

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

SEE ALSO

RTCHit

12.1. Overview 2033

oneAPI Specification, Release 1.1-rev-1

RTCHit

NAME

RTCHit - single hit structure

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCHit
{
float Ng_x; // x coordinate of geometry normal
float Ng_y; // y coordinate of geometry normal
float Ng_z; // z coordinate of geometry normal

float u; // barycentric u coordinate of hit
float v; // barycentric v coordinate of hit

unsigned int primID; // geometry ID
unsigned int geomID; // primitive ID
unsigned int instID[RTC_MAX_INSTANCE_LEVEL_COUNT]; // instance ID

};

DESCRIPTION

The RTCHit type defines the type of a ray/primitive intersection result. The hit contains the unnormalized geometric
normal in object space at the hit location (Ng_x, Ng_y, Ng_z members), the barycentric u/v coordinates of the hit (u
and v members), as well as the primitive ID (primID member), geometry ID (geomID member), and instance ID stack
(instID member) of the hit. The parametric intersection distance is not stored inside the hit, but stored inside the tfar
member of the ray.

The embree3/rtcore_ray.h header additionally defines the same hit structure in structure of array (SOA) layout for
hit packets of size 4 (RTCHit4 type), size 8 (RTCHit8 type), and size 16 (RTCHit16 type). The header additionally
defines an RTCHitNt template for hit packets of an arbitrary compile-time size.

EXIT STATUS

SEE ALSO

RTCRay, [Multi-Level Instancing]

12.1. Overview 2034

oneAPI Specification, Release 1.1-rev-1

RTCRayHit

NAME

RTCRayHit - combined single ray/hit structure

SYNOPSIS

#include <embree3/rtcore_ray.h>

struct RTCORE_ALIGN(16) RTCRayHit
{
struct RTCRay ray;
struct RTCHit hit;

};

DESCRIPTION

The RTCRayHit structure is used as input for the rtcIntersect-type functions and stores the ray to intersect and
some hit fields that hold the intersection result afterwards.

The embree3/rtcore_ray.h header additionally defines the same ray/hit structure in structure of array (SOA) lay-
out for API functions accepting ray packets of size 4 (RTCRayHit4 type), size 8 (RTCRayHit8 type), and size 16
(RTCRayHit16 type). The header additionally defines an RTCRayHitNt template to generate ray/hit packets of an
arbitrary compile-time size.

EXIT STATUS

SEE ALSO

RTCRay, RTCHit

12.1. Overview 2035

oneAPI Specification, Release 1.1-rev-1

RTCRayN

NAME

RTCRayN - ray packet of runtime size

SYNOPSIS

#include <embree3/rtcore_ray.h>

struct RTCRayN;

float& RTCRayN_org_x(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_org_y(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_org_z(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_tnear(RTCRayN* ray, unsigned int N, unsigned int i);

float& RTCRayN_dir_x(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_dir_y(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_dir_z(RTCRayN* ray, unsigned int N, unsigned int i);
float& RTCRayN_time (RTCRayN* ray, unsigned int N, unsigned int i);

float& RTCRayN_tfar (RTCRayN* ray, unsigned int N, unsigned int i);
unsigned int& RTCRayN_mask (RTCRayN* ray, unsigned int N, unsigned int i);
unsigned int& RTCRayN_id (RTCRayN* ray, unsigned int N, unsigned int i);
unsigned int& RTCRayN_flags(RTCRayN* ray, unsigned int N, unsigned int i);

DESCRIPTION

When the ray packet size is not known at compile time (e.g. when Embree returns a ray packet in the RTCFilterFuncN
callback function), Embree uses the RTCRayN type for ray packets. These ray packets can only have sizes of 1, 4, 8, or
16. No other packet size will be used.

You can either implement different special code paths for each of these possible packet sizes and cast the ray to the
appropriate ray packet type, or implement one general code path that uses the RTCRayN_XXX helper functions to access
the ray packet components.

These helper functions get a pointer to the ray packet (ray argument), the packet size (N argument), and returns a
reference to a component (e.g. x-component of origin) of the the i-th ray of the packet (i argument).

EXIT STATUS

SEE ALSO

RTCHitN

12.1. Overview 2036

oneAPI Specification, Release 1.1-rev-1

RTCHitN

NAME

RTCHitN - hit packet of runtime size

SYNOPSIS

#include <embree3/rtcore.h>

struct HitN;

float& RTCHitN_Ng_x(RTCHitN* hit, unsigned int N, unsigned int i);
float& RTCHitN_Ng_y(RTCHitN* hit, unsigned int N, unsigned int i);
float& RTCHitN_Ng_z(RTCHitN* hit, unsigned int N, unsigned int i);

float& RTCHitN_u(RTCHitN* hit, unsigned int N, unsigned int i);
float& RTCHitN_v(RTCHitN* hit, unsigned int N, unsigned int i);

unsigned& RTCHitN_primID(RTCHitN* hit, unsigned int N, unsigned int i);
unsigned& RTCHitN_geomID(RTCHitN* hit, unsigned int N, unsigned int i);
unsigned& RTCHitN_instID(RTCHitN* hit, unsigned int N, unsigned int i, unsigned int␣
→˓level);

DESCRIPTION

When the hit packet size is not known at compile time (e.g. when Embree returns a hit packet in the RTCFilterFuncN
callback function), Embree uses the RTCHitN type for hit packets. These hit packets can only have sizes of 1, 4, 8, or
16. No other packet size will be used.

You can either implement different special code paths for each of these possible packet sizes and cast the hit to the
appropriate hit packet type, or implement one general code path that uses the RTCHitN_XXX helper functions to access
hit packet components.

These helper functions get a pointer to the hit packet (hit argument), the packet size (N argument), and returns a
reference to a component (e.g. x component of Ng) of the the i-th hit of the packet (i argument).

EXIT STATUS

SEE ALSO

RTCRayN

12.1. Overview 2037

oneAPI Specification, Release 1.1-rev-1

RTCRayHitN

NAME

RTCRayHitN - combined ray/hit packet of runtime size

SYNOPSIS

#include <embree3/rtcore_ray.h>

struct RTCRayHitN;

struct RTCRayN* RTCRayHitN_RayN(struct RTCRayHitN* rayhit, unsigned int N);
struct RTCHitN* RTCRayHitN_HitN(struct RTCRayHitN* rayhit, unsigned int N);

DESCRIPTION

When the packet size of a ray/hit structure is not known at compile time (e.g. when Embree returns a ray/hit packet in
the RTCIntersectFunctionN callback function), Embree uses the RTCRayHitN type for ray packets. These ray/hit
packets can only have sizes of 1, 4, 8, or 16. No other packet size will be used.

You can either implement different special code paths for each of these possible packet sizes and cast the ray/hit to
the appropriate ray/hit packet type, or extract the RTCRayN and RTCHitN components using the rtcGetRayN and
rtcGetHitN helper functions and use the RTCRayN_XXX and RTCHitN_XXX functions to access the ray and hit parts
of the structure.

EXIT STATUS

SEE ALSO

RTCHitN

12.1. Overview 2038

oneAPI Specification, Release 1.1-rev-1

rtcInitIntersectContext

NAME

rtcInitIntersectContext - initializes the intersection context

SYNOPSIS

#include <embree3/rtcore.h>

enum RTCIntersectContextFlags
{
RTC_INTERSECT_CONTEXT_FLAG_NONE,
RTC_INTERSECT_CONTEXT_FLAG_INCOHERENT,
RTC_INTERSECT_CONTEXT_FLAG_COHERENT,

};

struct RTCIntersectContext
{
enum RTCIntersectContextFlags flags;
RTCFilterFunctionN filter;

#if RTC_MAX_INSTANCE_LEVEL_COUNT > 1
unsigned int instStackSize;

#endif

unsigned int instID[RTC_MAX_INSTANCE_LEVEL_COUNT];

#if RTC_MIN_WIDTH
float minWidthDistanceFactor;

#endif
};

void rtcInitIntersectContext(
struct RTCIntersectContext* context

);

DESCRIPTION

A per ray-query intersection context (RTCIntersectContext type) is supported that can be used to configure inter-
section flags (flags member), specify a filter callback function (filter member), specify the chain of IDs of the
current instance (instID and instStackSize members), and to attach arbitrary data to the query (e.g. per ray data).

The rtcInitIntersectContext function initializes the context to default values and should be called to initialize
every intersection context. This function gets inlined, which minimizes overhead and allows for compiler optimizations.

The intersection context flag can be used to tune the behavior of the traversal algorithm. Using the
RTC_INTERSECT_CONTEXT_FLAG_INCOHERENT flags uses an optimized traversal algorithm for incoherent rays (de-
fault), while RTC_INTERSECT_CONTEXT_FLAG_COHERENT uses an optimized traversal algorithm for coherent rays
(e.g. primary camera rays).

12.1. Overview 2039

oneAPI Specification, Release 1.1-rev-1

Best primary ray performance can be obtained by using the ray stream API and setting the intersect con-
text flag to RTC_INTERSECT_CONTEXT_FLAG_COHERENT. For secondary rays, it is typically better to use the
RTC_INTERSECT_CONTEXT_FLAG_INCOHERENT flag, unless the rays are known to be very coherent too (e.g. for pri-
mary transparency rays).

A filter function can be specified inside the context. This filter function is invoked as a second filter stage after the
per-geometry intersect or occluded filter function is invoked. Only rays that passed the first filter stage are valid in this
second filter stage. Having such a per ray-query filter function can be useful to implement modifications of the behavior
of the query, such as collecting all hits or accumulating transparencies. The support for the context filter function must
be enabled for a scene by using the RTC_SCENE_FLAG_CONTEXT_FILTER_FUNCTION scene flag. In case of instancing
this feature has to get enabled also for each instantiated scene.

The minWidthDistanceFactor value controls the target size of the curve radii when the min-width feature is enabled.
Please see the [rtcSetGeometryMaxRadiusScale] function for more details on the min-width feature.

It is guaranteed that the pointer to the intersection context passed to a ray query is directly passed to the registered
callback functions. This way it is possible to attach arbitrary data to the end of the intersection context, such as a
per-ray payload.

Please note that the ray pointer is not guaranteed to be passed to the callback functions, thus reading additional data
from the ray pointer passed to callbacks is not possible.

EXIT STATUS

No error code is set by this function.

SEE ALSO

rtcIntersect1, rtcOccluded1

12.1. Overview 2040

oneAPI Specification, Release 1.1-rev-1

rtcIntersect1

NAME

rtcIntersect1 - finds the closest hit for a single ray

SYNOPSIS

#include <embree3/rtcore.h>

void rtcIntersect1(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHit* rayhit

);

DESCRIPTION

The rtcIntersect1 function finds the closest hit of a single ray with the scene (scene argument). The provided
ray/hit structure (rayhit argument) contains the ray to intersect and some hit output fields that are filled when a hit is
found.

The user has to initialize the ray origin (org ray member), ray direction (dir ray member), ray segment (tnear, tfar
ray members), and set the ray flags to 0 (flags ray member). If the scene contains motion blur geometries, also the
ray time (time ray member) must be initialized to a value in the range [0, 1]. If ray masks are enabled at compile time,
the ray mask (mask ray member) must be initialized as well. The ray segment has to be in the range [0,∞], thus ranges
that start behind the ray origin are not valid, but ranges can reach to infinity. See Section RTCRay for the ray layout
description.

The geometry ID (geomID hit member) of the hit data must be initialized to RTC_INVALID_GEOMETRY_ID (-1).

Further, an intersection context for the ray query function must be created and initialized (see
rtcInitIntersectContext).

When no intersection is found, the ray/hit data is not updated. When an intersection is found, the hit distance is written
into the tfar member of the ray and all hit data is set, such as unnormalized geometry normal in object space (Ng hit
member), local hit coordinates (u, v hit member), instance ID stack (instID hit member), geometry ID (geomID hit
member), and primitive ID (primID hit member). See Section RTCHit for the hit layout description.

If the instance ID stack has a prefix of values not equal to RTC_INVALID_GEOMETRY_ID, the instance ID on each level
corresponds to the geometry ID of the hit instance of the higher-level scene, the geometry ID corresponds to the hit
geometry inside the hit instanced scene, and the primitive ID corresponds to the n-th primitive of that geometry.

If level 0 of the instance ID stack is equal to RTC_INVALID_GEOMETRY_ID, the geometry ID corresponds to the hit
geometry inside the top-level scene, and the primitive ID corresponds to the n-th primitive of that geometry.

The implementation makes no guarantees that primitives whose hit distance is exactly at (or very close to) tnear or
tfar are hit or missed. If you want to exclude intersections at tnear just pass a slightly enlarged tnear, and if you
want to include intersections at tfar pass a slightly enlarged tfar.

The intersection context (context argument) can specify flags to optimize traversal and a filter callback function to be
invoked for every intersection. Further, the pointer to the intersection context is propagated to callback functions in-
voked during traversal and can thus be used to extend the ray with additional data. See Section RTCIntersectContext
for more information.

12.1. Overview 2041

oneAPI Specification, Release 1.1-rev-1

The ray pointer passed to callback functions is not guaranteed to be identical to the original ray provided. To extend
the ray with additional data to be accessed in callback functions, use the intersection context.

The ray/hit structure must be aligned to 16 bytes.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will not set any error flags on failure.

SEE ALSO

rtcOccluded1, RTCRayHit, RTCRay, RTCHit

12.1. Overview 2042

oneAPI Specification, Release 1.1-rev-1

rtcOccluded1

NAME

rtcOccluded1 - finds any hit for a single ray

SYNOPSIS

#include <embree3/rtcore.h>

void rtcOccluded1(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRay* ray

);

DESCRIPTION

The rtcOccluded1 function checks for a single ray (ray argument) whether there is any hit with the scene (scene
argument).

The user must initialize the ray origin (org ray member), ray direction (dir ray member), ray segment (tnear, tfar
ray members), and must set the ray flags to 0 (flags ray member). If the scene contains motion blur geometries, also
the ray time (time ray member) must be initialized to a value in the range [0, 1]. If ray masks are enabled at compile
time, the ray mask (mask ray member) must be initialized as well. The ray segment must be in the range [0,∞], thus
ranges that start behind the ray origin are not valid, but ranges can reach to infinity. See Section RTCRay for the ray
layout description.

When no intersection is found, the ray data is not updated. In case a hit was found, the tfar component of the ray is
set to -inf.

The implementation makes no guarantees that primitives whose hit distance is exactly at (or very close to) tnear or
tfar are hit or missed. If you want to exclude intersections at tnear just pass a slightly enlarged tnear, and if you
want to include intersections at tfar pass a slightly enlarged tfar.

The intersection context (context argument) can specify flags to optimize traversal and a filter callback function to be
invoked for every intersection. Further, the pointer to the intersection context is propagated to callback functions in-
voked during traversal and can thus be used to extend the ray with additional data. See Section RTCIntersectContext
for more information.

The ray pointer passed to callback functions is not guaranteed to be identical to the original ray provided. To extend
the ray with additional data to be accessed in callback functions, use the intersection context.

The ray must be aligned to 16 bytes.

12.1. Overview 2043

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

For performance reasons this function does not do any error checks, thus will not set any error flags on failure.

SEE ALSO

rtcOccluded1, RTCRay

12.1. Overview 2044

oneAPI Specification, Release 1.1-rev-1

rtcIntersect4/8/16

NAME

rtcIntersect4/8/16 - finds the closest hits for a ray packet

SYNOPSIS

#include <embree3/rtcore.h>

void rtcIntersect4(
const int* valid,
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHit4* rayhit

);

void rtcIntersect8(
const int* valid,
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHit8* rayhit

);

void rtcIntersect16(
const int* valid,
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHit16* rayhit

);

DESCRIPTION

The rtcIntersect4/8/16 functions finds the closest hits for a ray packet of size 4, 8, or 16 (rayhit argument) with
the scene (scene argument). The ray/hit input contains a ray packet and hit packet. See Section rtcIntersect1 for a
description of how to set up and trace rays.

A ray valid mask must be provided (valid argument) which stores one 32-bit integer (-1 means valid and 0 invalid)
per ray in the packet. Only active rays are processed, and hit data of inactive rays is not changed.

The intersection context (context argument) can specify flags to optimize traversal and a filter callback function to be
invoked for every intersection. Further, the pointer to the intersection context is propagated to callback functions in-
voked during traversal and can thus be used to extend the ray with additional data. See Section RTCIntersectContext
for more information.

The ray pointer passed to callback functions is not guaranteed to be identical to the original ray provided. To extend
the ray with additional data to be accessed in callback functions, use the intersection context.

The implementation of these functions is guaranteed to invoke callback functions always with the same ray packet size
and ordering of rays as specified initially.

12.1. Overview 2045

oneAPI Specification, Release 1.1-rev-1

For rtcIntersect4 the ray packet must be aligned to 16 bytes, for rtcIntersect8 the alignment must be 32 bytes,
and for rtcIntersect16 the alignment must be 64 bytes.

The rtcIntersect4, rtcIntersect8 and rtcIntersect16 functions may change the ray packet size
and ray order when calling back into intersect filter functions or user geometry callbacks. Under
some conditions the application can assume packets to stay intact, which can determined by query-
ing the RTC_DEVICE_PROPERTY_NATIVE_RAY4_SUPPORTED, RTC_DEVICE_PROPERTY_NATIVE_RAY8_SUPPORTED,
RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED properties through the rtcGetDeviceProperty function.
See rtcGetDeviceProperty for more information.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will not set any error flags on failure.

SEE ALSO

rtcOccluded4/8/16

12.1. Overview 2046

oneAPI Specification, Release 1.1-rev-1

rtcOccluded4/8/16

NAME

rtcOccluded4/8/16 - finds any hits for a ray packet

SYNOPSIS

#include <embree3/rtcore.h>

void rtcOccluded4(
const int* valid,
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRay4* ray

);

void rtcOccluded8(
const int* valid,
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRay8* ray

);

void rtcOccluded16(
const int* valid,
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRay16* ray

);

DESCRIPTION

The rtcOccluded4/8/16 functions checks for each active ray of the ray packet of size 4, 8, or 16 (ray argument)
whether there is any hit with the scene (scene argument). See Section rtcOccluded1 for a description of how to set up
and trace occlusion rays.

A ray valid mask must be provided (valid argument) which stores one 32-bit integer (-1 means valid and 0 invalid)
per ray in the packet. Only active rays are processed, and hit data of inactive rays is not changed.

The intersection context (context argument) can specify flags to optimize traversal and a filter callback function to be
invoked for every intersection. Further, the pointer to the intersection context is propagated to callback functions in-
voked during traversal and can thus be used to extend the ray with additional data. See Section RTCIntersectContext
for more information.

The ray pointer passed to callback functions is not guaranteed to be identical to the original ray provided. To extend
the ray with additional data to be accessed in callback functions, use the intersection context.

The implementation of these functions is guaranteed to invoke callback functions always with the same ray packet size
and ordering of rays as specified initially.

12.1. Overview 2047

oneAPI Specification, Release 1.1-rev-1

For rtcOccluded4 the ray packet must be aligned to 16 bytes, for rtcOccluded8 the alignment must be 32 bytes,
and for rtcOccluded16 the alignment must be 64 bytes.

The rtcOccluded4, rtcOccluded8 and rtcOccluded16 functions may change the ray packet size
and ray order when calling back into intersect filter functions or user geometry callbacks. Under some
conditions the application can assume packets to stay intakt, which can determined by querying the
RTC_DEVICE_PROPERTY_NATIVE_RAY4_SUPPORTED, RTC_DEVICE_PROPERTY_NATIVE_RAY8_SUPPORTED,
RTC_DEVICE_PROPERTY_NATIVE_RAY16_SUPPORTED properties through the rtcGetDeviceProperty func-
tion. See rtcGetDeviceProperty for more information.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will not set any error flags on failure.

SEE ALSO

rtcOccluded4/8/16

12.1. Overview 2048

oneAPI Specification, Release 1.1-rev-1

rtcIntersect1M

NAME

rtcIntersect1M - finds the closest hits for a stream of M single
rays

SYNOPSIS

#include <embree3/rtcore.h>

void rtcIntersect1M(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHit* rayhit,
unsigned int M,
size_t byteStride

);

DESCRIPTION

The rtcIntersect1M function finds the closest hits for a stream of M single rays (rayhit argument) with the scene
(scene argument). The rayhit argument points to an array of ray and hit data with specified byte stride (byteStride
argument) between the ray/hit structures. See Section rtcIntersect1 for a description of how to set up and trace rays.

The intersection context (context argument) can specify flags to optimize traversal and a filter callback function to be
invoked for every intersection. Further, the pointer to the intersection context is propagated to callback functions in-
voked during traversal and can thus be used to extend the ray with additional data. See Section RTCIntersectContext
for more information.

The implementation of the stream ray query functions may re-order rays arbitrarily and re-pack rays into ray packets
of different size. For this reason, callback functions may be invoked with an arbitrary packet size (of size 1, 4, 8, or
16) and different ordering as specified initially. For this reason, one may have to use the rayID component of the ray
to identify the original ray, e.g. to access a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than its tfar value.

The stream size M can be an arbitrary positive integer including 0. Each ray must be aligned to 16 bytes.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will not set any error flags on failure.

12.1. Overview 2049

oneAPI Specification, Release 1.1-rev-1

SEE ALSO

rtcOccluded1M

12.1. Overview 2050

oneAPI Specification, Release 1.1-rev-1

rtcOccluded1M

NAME

rtcOccluded1M - finds any hits for a stream of M single rays

SYNOPSIS

#include <embree3/rtcore.h>

void rtcOccluded1M(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRay* ray,
unsigned int M,
size_t byteStride

);

DESCRIPTION

The rtcOccluded1M function checks whether there are any hits for a stream of M single rays (ray argument) with
the scene (scene argument). The ray argument points to an array of rays with specified byte stride (byteStride
argument) between the rays. See Section rtcOccluded1 for a description of how to set up and trace occlusion rays.

The intersection context (context argument) can specify flags to optimize traversal and a filter callback function to be
invoked for every intersection. Further, the pointer to the intersection context is propagated to callback functions in-
voked during traversal and can thus be used to extend the ray with additional data. See Section RTCIntersectContext
for more information.

The implementation of the stream ray query functions may re-order rays arbitrarily and re-pack rays into ray packets
of different size. For this reason, callback functions may be invoked with an arbitrary packet size (of size 1, 4, 8, or
16) and different ordering as specified initially. For this reason, one may have to use the rayID component of the ray
to identify the original ray, e.g. to access a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than its tfar value.

The stream size M can be an arbitrary positive integer including 0. Each ray must be aligned to 16 bytes.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will not set any error flags on failure.

12.1. Overview 2051

oneAPI Specification, Release 1.1-rev-1

SEE ALSO

rtcIntersect1M

12.1. Overview 2052

oneAPI Specification, Release 1.1-rev-1

rtcIntersect1Mp

NAME

rtcIntersect1Mp - finds the closest hits for a stream of M pointers
to single rays

SYNOPSIS

#include <embree3/rtcore.h>

void rtcIntersect1Mp(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHit** rayhit,
unsigned int M

);

DESCRIPTION

The rtcIntersect1Mp function finds the closest hits for a stream of M single rays (rayhit argument) with the scene
(scene argument). The rayhit argument points to an array of pointers to the individual ray/hit structures. See Section
rtcIntersect1 for a description of how to set up and trace a ray.

The intersection context (context argument) can specify flags to optimize traversal and a filter callback function to be
invoked for every intersection. Further, the pointer to the intersection context is propagated to callback functions in-
voked during traversal and can thus be used to extend the ray with additional data. See Section RTCIntersectContext
for more information.

The implementation of the stream ray query functions may re-order rays arbitrarily and re-pack rays into ray packets
of different size. For this reason, callback functions may be invoked with an arbitrary packet size (of size 1, 4, 8, or
16) and different ordering as specified initially. For this reason, one may have to use the rayID component of the ray
to identify the original ray, e.g. to access a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than its tfar value.

The stream size M can be an arbitrary positive integer including 0. Each ray must be aligned to 16 bytes.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will not set any error flags on failure.

12.1. Overview 2053

oneAPI Specification, Release 1.1-rev-1

SEE ALSO

rtcOccluded1Mp

12.1. Overview 2054

oneAPI Specification, Release 1.1-rev-1

rtcOccluded1Mp

NAME

rtcOccluded1Mp - find any hits for a stream of M pointers to
single rays

SYNOPSIS

#include <embree3/rtcore.h>

void rtcOccluded1M(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRay** ray,
unsigned int M

);

DESCRIPTION

The rtcOccluded1Mp function checks whether there are any hits for a stream of M single rays (ray argument) with
the scene (scene argument). The ray argument points to an array of pointers to rays. Section rtcOccluded1 for a
description of how to set up and trace a occlusion rays.

The intersection context (context argument) can specify flags to optimize traversal and a filter callback function to be
invoked for every intersection. Further, the pointer to the intersection context is propagated to callback functions in-
voked during traversal and can thus be used to extend the ray with additional data. See Section RTCIntersectContext
for more information.

The implementation of the stream ray query functions may re-order rays arbitrarily and re-pack rays into ray packets
of different size. For this reason, callback functions may be invoked with an arbitrary packet size (of size 1, 4, 8, or
16) and different ordering as specified initially. For this reason, one may have to use the rayID component of the ray
to identify the original ray, e.g. to access a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than its tfar value.

The stream size M can be an arbitrary positive integer including 0. Each ray must be aligned to 16 bytes.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will not set any error flags on failure.

12.1. Overview 2055

oneAPI Specification, Release 1.1-rev-1

SEE ALSO

rtcIntersect1Mp

12.1. Overview 2056

oneAPI Specification, Release 1.1-rev-1

rtcIntersectNM

NAME

rtcIntersectNM - finds the closest hits for a stream of M
ray packets of size N

SYNOPSIS

#include <embree3/rtcore.h>

void rtcIntersectNM(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHitN* rayhit,
unsigned int N,
unsigned int M,
size_t byteStride

);

DESCRIPTION

The rtcIntersectNM function finds the closest hits for a stream of M ray packets (rayhit argument) of size N with
the scene (scene argument). The rays argument points to an array of ray and hit packets with specified byte stride
(byteStride argument) between the ray/hit packets. See Section rtcIntersect1 for a description of how to set up and
trace rays.

The intersection context (context argument) can specify flags to optimize traversal and a filter callback function to be
invoked for every intersection. Further, the pointer to the intersection context is propagated to callback functions in-
voked during traversal and can thus be used to extend the ray with additional data. See Section RTCIntersectContext
for more information.

The implementation of the stream ray query functions may re-order rays arbitrarily and re-pack rays into ray packets
of different size. For this reason, callback functions may be invoked with an arbitrary packet size (of size 1, 4, 8, or
16) and different ordering as specified initially. For this reason, one may have to use the rayID component of the ray
to identify the original ray, e.g. to access a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than its tfar value.

The packet size N must be larger than 0, and the stream size M can be an arbitrary positive integer including 0. Each ray
must be aligned to 16 bytes.

12.1. Overview 2057

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

For performance reasons this function does not do any error checks, thus will not set any error flags on failure.

SEE ALSO

rtcOccludedNM

12.1. Overview 2058

oneAPI Specification, Release 1.1-rev-1

rtcOccludedNM

NAME

rtcOccludedNM - finds any hits for a stream of M ray packets of
size N

SYNOPSIS

#include <embree3/rtcore.h>

void rtcOccludedNM(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayN* ray,
unsigned int N,
unsigned int M,
size_t byteStride

);

DESCRIPTION

The rtcOccludedNM function checks whether there are any hits for a stream of M ray packets (ray argument) of size
N with the scene (scene argument). The ray argument points to an array of ray packets with specified byte stride
(byteStride argument) between the ray packets. See Section rtcOccluded1 for a description of how to set up and
trace occlusion rays.

The intersection context (context argument) can specify flags to optimize traversal and a filter callback function to be
invoked for every intersection. Further, the pointer to the intersection context is propagated to callback functions in-
voked during traversal and can thus be used to extend the ray with additional data. See Section RTCIntersectContext
for more information.

The implementation of the stream ray query functions may re-order rays arbitrarily and re-pack rays into ray packets
of different size. For this reason, callback functions may be invoked with an arbitrary packet size (of size 1, 4, 8, or
16) and different ordering as specified initially. For this reason, one may have to use the rayID component of the ray
to identify the original ray, e.g. to access a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than its tfar value.

The packet size N must be larger than 0, and the stream size M can be an arbitrary positive integer including 0. Each ray
must be aligned to 16 bytes.

12.1. Overview 2059

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

For performance reasons this function does not do any error checks, thus will not set any error flags on failure.

SEE ALSO

rtcIntersectNM

12.1. Overview 2060

oneAPI Specification, Release 1.1-rev-1

rtcIntersectNp

NAME

rtcIntersectNp - finds the closest hits for a SOA ray stream of
size N

SYNOPSIS

#include <embree3/rtcore.h>

void rtcIntersectNp(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayHitNp* rayhit,
unsigned int N

);

DESCRIPTION

The rtcIntersectNp function finds the closest hits for a SOA ray stream (rays argument) of size N (basically a large
ray packet) with the scene (scene argument). The rayhit argument points to two structures of pointers with one
pointer for each ray and hit component. Each of these pointers points to an array with the ray or hit component data
for each ray or hit. This way the individual components of the SOA ray stream do not need to be stored sequentially in
memory, which makes it possible to have large varying size ray packets in SOA layout. See Section rtcIntersect1 for a
description of how to set up and trace rays.

The intersection context (context argument) can specify flags to optimize traversal and a filter callback function to be
invoked for every intersection. Further, the pointer to the intersection context is propagated to callback functions in-
voked during traversal and can thus be used to extend the ray with additional data. See Section RTCIntersectContext
for more information.

The implementation of the stream ray query functions may re-order rays arbitrarily and re-pack rays into ray packets
of different size. For this reason, callback functions may be invoked with an arbitrary packet size (of size 1, 4, 8, or
16) and different ordering as specified initially. For this reason, one may have to use the rayID component of the ray
to identify the original ray, e.g. to access a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than its tfar value.

The stream size N can be an arbitrary positive integer including 0. Each ray component array must be aligned to 16
bytes.

12.1. Overview 2061

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

For performance reasons this function does not do any error checks, thus will not set any error flags on failure.

SEE ALSO

rtcOccludedNp

12.1. Overview 2062

oneAPI Specification, Release 1.1-rev-1

rtcOccludedNp

NAME

rtcOccludedNp - finds any hits for a SOA ray stream of size N

SYNOPSIS

#include <embree3/rtcore.h>

void rtcOccludedNp(
RTCScene scene,
struct RTCIntersectContext* context,
struct RTCRayNp* ray,
unsigned int N

);

DESCRIPTION

The rtcOccludedNp function checks whether there are any hits for a SOA ray stream (ray argument) of size N (ba-
sically a large ray packet) with the scene (scene argument). The ray argument points to a structure of pointers with
one pointer for each ray component. Each of these pointers points to an array with the ray component data for each ray.
This way the individual components of the SOA ray stream do not need to be stored sequentially in memory, which
makes it possible to have large varying size ray packets in SOA layout. See Section rtcOccluded1 for a description of
how to set up and trace occlusion rays.

The intersection context (context argument) can specify flags to optimize traversal and a filter callback function to be
invoked for every intersection. Further, the pointer to the intersection context is propagated to callback functions in-
voked during traversal and can thus be used to extend the ray with additional data. See Section RTCIntersectContext
for more information.

The implementation of the stream ray query functions may re-order rays arbitrarily and re-pack rays into ray packets
of different size. For this reason, callback functions may be invoked with an arbitrary packet size (of size 1, 4, 8, or
16) and different ordering as specified initially. For this reason, one may have to use the rayID component of the ray
to identify the original ray, e.g. to access a per-ray payload.

A ray in a ray stream is considered inactive if its tnear value is larger than its tfar value.

The stream size N can be an arbitrary positive integer including 0. Each ray component array must be aligned to 16
bytes.

EXIT STATUS

For performance reasons this function does not do any error checks, thus will not set any error flags on failure.

12.1. Overview 2063

oneAPI Specification, Release 1.1-rev-1

SEE ALSO

rtcIntersectNp

12.1. Overview 2064

oneAPI Specification, Release 1.1-rev-1

rtcInitPointQueryContext

NAME

rtcInitPointQueryContext - initializes the context information (e.g.
stack of (multilevel-)instance transformations) for point queries

SYNOPSIS

#include <embree3/rtcore.h>

struct RTC_ALIGN(16) RTCPointQueryContext
{
// accumulated 4x4 column major matrices from world to instance space.
float world2inst[RTC_MAX_INSTANCE_LEVEL_COUNT][16];

// accumulated 4x4 column major matrices from instance to world space.
float inst2world[RTC_MAX_INSTANCE_LEVEL_COUNT][16];

// instance ids.
unsigned int instID[RTC_MAX_INSTANCE_LEVEL_COUNT];

// number of instances currently on the stack.
unsigned int instStackSize;

};

void rtcInitPointQueryContext(
struct RTCPointQueryContext* context

);

DESCRIPTION

A stack (RTCPointQueryContext type) which stores the IDs and instance transformations during a BVH traversal for
a point query. The transformations are assumed to be affine transformations (3×3 matrix plus translation) and therefore
the last column is ignored (see RTC_GEOMETRY_TYPE_INSTANCE for details).

The rtcInitPointContext function initializes the context to default values and should be called for initialization.

The context will be passed as an argument to the point query callback function (see rtcSetGeometryPointQueryFunc-
tion) and should be used to pass instance information down the instancing chain for user defined instancing (see tutorial
[ClosestPoint] for a reference implementation of point queries with user defined instancing).

The context is an necessary argument to rtcPointQuery and Embree internally uses the topmost instance transformation
of the stack to transform the point query into instance space.

12.1. Overview 2065

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

No error code is set by this function.

SEE ALSO

rtcPointQuery, rtcSetGeometryPointQueryFunction

12.1. Overview 2066

oneAPI Specification, Release 1.1-rev-1

rtcPointQuery

NAME

rtcPointQuery - traverses the BVH with a point query object

SYNOPSIS

#include <embree3/rtcore.h>

struct RTC_ALIGN(16) RTCPointQuery
{
// location of the query
float x;
float y;
float z;

// radius and time of the query
float radius;
float time;

};

void rtcPointQuery(
RTCScene scene,
struct RTCPointQuery* query,
struct RTCPointQueryContext* context,
struct RTCPointQueryFunction* queryFunc,
void* userPtr

);

DESCRIPTION

The rtcPointQuery function traverses the BVH using a RTCPointQuery object (query argument) and calls a user
defined callback function (e.g queryFunc argument) for each primitive of the scene (scene argument) that intersects
the query domain.

The user has to initialize the query location (x, y and z member) and query radius in the range [0,∞]. If the scene
contains motion blur geometries, also the query time (time member) must be initialized to a value in the range [0, 1].

Further, a RTCPointQueryContext (context argument) must be created and initialized. It contains ID and trans-
formation information of the instancing hierarchy if (multilevel-)instancing is used. See rtcInitPointQueryContext for
further information.

For every primitive that intersects the query domain, the callback function (queryFunc argument) is called, in which
distance computations to the primitive can be implemented. The user will be provided with the primID and geomID of
the according primitive, however, the geometry information (e.g. triangle index and vertex data) has to be determined
manually. The userPtr argument can be used to input geometry data of the scene or output results of the point query
(e.g. closest point currently found on surface geometry (see tutorial [ClosestPoint])).

The parameter queryFunc is optional and can be NULL, in which case the callback function is not invoked. However,
a callback function can still get attached to a specific RTCGeometry object using rtcSetGeometryPointQueryFunction.

12.1. Overview 2067

oneAPI Specification, Release 1.1-rev-1

If a callback function is attached to a geometry and (a potentially different) callback function is passed as an argument
to rtcPointQuery, both functions are called for the primitives of the according geometries.

The query radius can be decreased inside the callback function, which allows to efficiently cull parts of the scene
during BVH traversal. Increasing the query radius and modifying time or location of the query will result in undefined
behaviour.

The callback function will be called for all primitives in a leaf node of the BVH even if the primitive is outside the
query domain, since Embree does not gather geometry information of primitives internally.

Point queries can be used with (multilevel)-instancing. However, care has to be taken when the instance transformation
contains anisotropic scaling or sheering. In these cases distance computations have to be performed in world space
to ensure correctness and the ellipsoidal query domain (in instance space) will be approximated with its axis aligned
bounding box internally. Therefore, the callback function might be invoked even for primitives in inner BVH nodes
that do not intersect the query domain. See rtcSetGeometryPointQueryFunction for details.

The point query structure must be aligned to 16 bytes.

SUPPORTED PRIMITIVES

Currently, all primitive types are supported by the point query API except of points (see
RTC_GEOMETRY_TYPE_POINT), curves (see RTC_GEOMETRY_TYPE_CURVE) and sudivision surfaces
(see [RTC_GEOMETRY_SUBDIVISION]).

EXIT STATUS

For performance reasons this function does not do any error checks, thus will not set any error flags on failure.

SEE ALSO

rtcSetGeometryPointQueryFunction, rtcInitPointQueryContext

12.1. Overview 2068

oneAPI Specification, Release 1.1-rev-1

rtcCollide

NAME

rtcCollide - intersects one BVH with another

SYNOPSIS

#include <embree3/rtcore.h>

struct RTCCollision {
unsigned int geomID0, primID0;
unsigned int geomID1, primID1;

};

typedef void (*RTCCollideFunc) (
void* userPtr,
RTCCollision* collisions,
size_t num_collisions);

void rtcCollide (
RTCScene hscene0,
RTCScene hscene1,
RTCCollideFunc callback,
void* userPtr

);

DESCRIPTION

The rtcCollide function intersects the BVH of hscene0 with the BVH of scene hscene1 and calls a user defined
callback function (e.g callback argument) for each pair of intersecting primitives between the two scenes. A user
defined data pointer (userPtr argument) can also be passed in.

For every pair of primitives that may intersect each other, the callback function (callback argument) is called. The user
will be provided with the primID’s and geomID’s of multiple potentially intersecting primitive pairs. Currently, only
scene entirely composed of user geometries are supported, thus the user is expected to implement a primitive/primitive
intersection to filter out false positives in the callback function. The userPtr argument can be used to input geometry
data of the scene or output results of the intersection query.

SUPPORTED PRIMITIVES

Currently, the only supported type is the user geometry type (see RTC_GEOMETRY_TYPE_USER).

12.1. Overview 2069

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

12.1. Overview 2070

oneAPI Specification, Release 1.1-rev-1

rtcNewBVH

NAME

rtcNewBVH - creates a new BVH object

SYNOPSIS

#include <embree3/rtcore.h>

RTCBVH rtcNewBVH(RTCDevice device);

DESCRIPTION

This function creates a new BVH object and returns a handle to this BVH. The BVH object is reference counted with
an initial reference count of 1. The handle can be released using the rtcReleaseBVH API call.

The BVH object can be used to build a BVH in a user-specified format over user-specified primitives. See the docu-
mentation of the rtcBuildBVH call for more details.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcRetainBVH, rtcReleaseBVH, rtcBuildBVH

12.1. Overview 2071

oneAPI Specification, Release 1.1-rev-1

rtcRetainBVH

NAME

rtcRetainBVH - increments the BVH reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcRetainBVH(RTCBVH bvh);

DESCRIPTION

BVH objects are reference counted. The rtcRetainBVH function increments the reference count of the passed BVH
object (bvh argument). This function together with rtcReleaseBVH allows to use the internal reference counting in a
C++ wrapper class to handle the ownership of the object.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewBVH, rtcReleaseBVH

12.1. Overview 2072

oneAPI Specification, Release 1.1-rev-1

rtcReleaseBVH

NAME

rtcReleaseBVH - decrements the BVH reference count

SYNOPSIS

#include <embree3/rtcore.h>

void rtcReleaseBVH(RTCBVH bvh);

DESCRIPTION

BVH objects are reference counted. The rtcReleaseBVH function decrements the reference count of the passed BVH
object (bvh argument). When the reference count falls to 0, the BVH gets destroyed.

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewBVH, rtcRetainBVH

12.1. Overview 2073

oneAPI Specification, Release 1.1-rev-1

rtcBuildBVH

NAME

rtcBuildBVH - builds a BVH

SYNOPSIS

#include <embree3/rtcore.h>

struct RTC_ALIGN(32) RTCBuildPrimitive
{
float lower_x, lower_y, lower_z;
unsigned int geomID;
float upper_x, upper_y, upper_z;
unsigned int primID;

};

typedef void* (*RTCCreateNodeFunction) (
RTCThreadLocalAllocator allocator,
unsigned int childCount,
void* userPtr

);

typedef void (*RTCSetNodeChildrenFunction) (
void* nodePtr,
void** children,
unsigned int childCount,
void* userPtr

);

typedef void (*RTCSetNodeBoundsFunction) (
void* nodePtr,
const struct RTCBounds** bounds,
unsigned int childCount,
void* userPtr

);

typedef void* (*RTCCreateLeafFunction) (
RTCThreadLocalAllocator allocator,
const struct RTCBuildPrimitive* primitives,
size_t primitiveCount,
void* userPtr

);

typedef void (*RTCSplitPrimitiveFunction) (
const struct RTCBuildPrimitive* primitive,
unsigned int dimension,
float position,
struct RTCBounds* leftBounds,

(continues on next page)

12.1. Overview 2074

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

struct RTCBounds* rightBounds,
void* userPtr

);

typedef bool (*RTCProgressMonitorFunction)(
void* userPtr, double n

);

enum RTCBuildFlags
{
RTC_BUILD_FLAG_NONE,
RTC_BUILD_FLAG_DYNAMIC

};

struct RTCBuildArguments
{
size_t byteSize;

enum RTCBuildQuality buildQuality;
enum RTCBuildFlags buildFlags;
unsigned int maxBranchingFactor;
unsigned int maxDepth;
unsigned int sahBlockSize;
unsigned int minLeafSize;
unsigned int maxLeafSize;
float traversalCost;
float intersectionCost;

RTCBVH bvh;
struct RTCBuildPrimitive* primitives;
size_t primitiveCount;
size_t primitiveArrayCapacity;

RTCCreateNodeFunction createNode;
RTCSetNodeChildrenFunction setNodeChildren;
RTCSetNodeBoundsFunction setNodeBounds;
RTCCreateLeafFunction createLeaf;
RTCSplitPrimitiveFunction splitPrimitive;
RTCProgressMonitorFunction buildProgress;
void* userPtr;

};

struct RTCBuildArguments rtcDefaultBuildArguments();

void* rtcBuildBVH(
const struct RTCBuildArguments* args

);

12.1. Overview 2075

oneAPI Specification, Release 1.1-rev-1

DESCRIPTION

The rtcBuildBVH function can be used to build a BVH in a user-defined format over arbitrary primitives. All arguments
to the function are provided through the RTCBuildArguments structure. The first member of that structure must be
set to the size of the structure in bytes (bytesSize member) which allows future extensions of the structure. It is
recommended to initialize the build arguments structure using the rtcDefaultBuildArguments function.

The rtcBuildBVH function gets passed the BVH to build (bvh member), the array of primitives (primitives mem-
ber), the capacity of that array (primitiveArrayCapacity member), the number of primitives stored inside the array
(primitiveCount member), callback function pointers, and a user-defined pointer (userPtr member) that is passed
to all callback functions when invoked. The primitives array can be freed by the application after the BVH is built.
All callback functions are typically called from multiple threads, thus their implementation must be thread-safe.

Four callback functions must be registered, which are invoked during build to create BVH nodes (createNode
member), to set the pointers to all children (setNodeChildren member), to set the bounding boxes of all children
(setNodeBounds member), and to create a leaf node (createLeaf member).

The function pointer to the primitive split function (splitPrimitive member) may be NULL, however, then no spatial
splitting in high quality mode is possible. The function pointer used to report the build progress (buildProgress
member) is optional and may also be NULL.

Further, some build settings are passed to configure the BVH build. Using the build quality settings (buildQuality
member), one can select between a faster, low quality build which is good for dynamic scenes, and a standard quality
build for static scenes. One can also specify the desired maximum branching factor of the BVH (maxBranchingFactor
member), the maximum depth the BVH should have (maxDepth member), the block size for the SAH heuristic
(sahBlockSize member), the minimum and maximum leaf size (minLeafSize and maxLeafSize member), and
the estimated costs of one traversal step and one primitive intersection (traversalCost and intersectionCost
members). When enabling the RTC_BUILD_FLAG_DYNAMIC build flags (buildFlags member), re-build performance
for dynamic scenes is improved at the cost of higher memory requirements.

To spatially split primitives in high quality mode, the builder needs extra space at the end of the build primitive array to
store splitted primitives. The total capacity of the build primitive array is passed using the primitiveArrayCapacity
member, and should be about twice the number of primitives when using spatial splits.

The RTCCreateNodeFunc and RTCCreateLeafFunc callbacks are passed a thread local allocator object that should be
used for fast allocation of nodes using the rtcThreadLocalAlloc function. We strongly recommend using this allo-
cation mechanism, as alternative approaches like standard malloc can be over 10× slower. The allocator object passed
to the create callbacks may be used only inside the current thread. Memory allocated using rtcThreadLocalAlloc
is automatically freed when the RTCBVH object is deleted. If you use your own memory allocation scheme you have to
free the memory yourself when the RTCBVH object is no longer used.

The RTCCreateNodeFunc callback additionally gets the number of children for this node in the range from 2 to
maxBranchingFactor (childCount argument).

The RTCSetNodeChildFunc callback function gets a pointer to the node as input (nodePtr argument), an array of
pointers to the children (childPtrs argument), and the size of this array (childCount argument).

The RTCSetNodeBoundsFunc callback function gets a pointer to the node as input (nodePtr argument), an array of
pointers to the bounding boxes of the children (bounds argument), and the size of this array (childCount argument).

The RTCCreateLeafFunc callback additionally gets an array of primitives as input (primitives argument), and the
size of this array (primitiveCount argument). The callback should read the geomID and primID members from the
passed primitives to construct the leaf.

The RTCSplitPrimitiveFunc callback is invoked in high quality mode to split a primitive (primitive argument)
at the specified position (position argument) and dimension (dimension argument). The callback should return
bounds of the clipped left and right parts of the primitive (leftBounds and rightBounds arguments).

The RTCProgressMonitorFunction callback function is called with the estimated completion rate n in the range
[0, 1]. Returning true from the callback lets the build continue; returning false cancels the build.

12.1. Overview 2076

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

On failure an error code is set that can be queried using rtcGetDeviceError.

SEE ALSO

rtcNewBVH

12.1. Overview 2077

oneAPI Specification, Release 1.1-rev-1

RTCQuaternionDecomposition

NAME

RTCQuaternionDecomposition - structure that represents a quaternion
decomposition of an affine transformation

SYNOPSIS

struct RTCQuaternionDecomposition
{
float scale_x, scale_y, scale_z;
float skew_xy, skew_xz, skew_yz;
float shift_x, shift_y, shift_z;
float quaternion_r, quaternion_i, quaternion_j, quaternion_k;
float translation_x, translation_y, translation_z;

};

DESCRIPTION

The struct RTCQuaternionDecomposition represents an affine transformation decomposed into three parts. An upper
triangular scaling/skew/shift matrix

𝑆 =

⎛⎜⎜⎝
𝑠𝑐𝑎𝑙𝑒𝑥 𝑠𝑘𝑒𝑤𝑥𝑦 𝑠𝑘𝑒𝑤𝑥𝑧 𝑠ℎ𝑖𝑓𝑡𝑥

0 𝑠𝑐𝑎𝑙𝑒𝑦 𝑠𝑘𝑒𝑤𝑦𝑧 𝑠ℎ𝑖𝑓𝑡𝑦
0 0 𝑠𝑐𝑎𝑙𝑒𝑧 𝑠ℎ𝑖𝑓𝑡𝑧
0 0 0 1

⎞⎟⎟⎠ ,

a translation matrix

𝑇 =

⎛⎜⎜⎝
1 0 0 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑥

0 1 0 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑦

0 0 1 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑧

0 0 0 1

⎞⎟⎟⎠ ,

and a rotation matrix 𝑅, represented as a quaternion

𝑞𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛𝑟 + 𝑞𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛𝑖 i + 𝑞𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛𝑗 i + 𝑞𝑢𝑎𝑡𝑒𝑟𝑛𝑖𝑜𝑛𝑘 k

where i, j k are the imaginary quaternion units. The passed quaternion will be normalized internally.

The affine transformation matrix corresponding to a RTCQuaternionDecomposition is 𝑇𝑅𝑆 and a point 𝑝 =
(𝑝𝑥, 𝑝𝑦, 𝑝𝑧, 1)𝑇 will be transformed as

𝑝′ = 𝑇 𝑅 𝑆 𝑝.

The functions rtcInitQuaternionDecomposition, rtcQuaternionDecompositionSetQuaternion,
rtcQuaternionDecompositionSetScale, rtcQuaternionDecompositionSetSkew,
rtcQuaternionDecompositionSetShift, and rtcQuaternionDecompositionSetTranslation allow to
set the fields of the structure more conveniently.

12.1. Overview 2078

oneAPI Specification, Release 1.1-rev-1

EXIT STATUS

No error code is set by this function.

SEE ALSO

rtcSetGeometryTransformQuaternion, rtcInitQuaternionDecomposition

12.1. Overview 2079

oneAPI Specification, Release 1.1-rev-1

rtcInitQuaternionDecomposition

NAME

rtcInitQuaternionDecomposition - initializes quaternion decomposition

SYNOPSIS

void rtcInitQuaternionDecomposition(
struct RTCQuaternionDecomposition* qd

);

DESCRIPTION

The rtcInitQuaternionDecomposition function initializes a RTCQuaternionDecomposition structure to rep-
resent an identity transformation.

EXIT STATUS

No error code is set by this function.

SEE ALSO

rtcSetGeometryTransformQuaternion, RTCQuaternionDecomposition

12.1. Overview 2080

oneAPI Specification, Release 1.1-rev-1

Open VKL

Open Volume Kernel Library (Open VKL) is a collection of high-performance volume computation kernels.

Introduction

Open Volume Kernel Library (Open VKL) is a collection of high-performance volume computation kernels. The target
users of Open VKL are graphics application engineers who want to improve the performance of their volume rendering
applications by leveraging Open VKL’s performance-optimized kernels, which include volume traversal and sampling
functionality for a variety of volumetric data formats.

Open VKL provides a C API, and also supports applications written with the Intel® SPMD Program Compiler (ISPC)
by also providing an ISPC interface to the core volume algorithms. This makes it possible to write a renderer in ISPC
that automatically vectorizes and leverages SSE, AVX, AVX2, and AVX-512 instructions. ISPC also supports runtime
code selection, thus ISPC will select the best code path for your application.

Open VKL API

To access the Open VKL API you first need to include the Open VKL header. For C99 or C++:

#include <openvkl/openvkl.h>

For the Intel® Implicit SPMD Program Compiler (Intel® ISPC):

#include <openvkl/openvkl.isph>

This documentation will discuss the C99/C++ API. The ISPC version has the same functionality and flavor. Looking
at the headers, the vklTutorialISPC example, and this documentation should be enough to figure it out.

Device initialization and shutdown

To use the API, one of the implemented backends must be loaded. Currently the only one that exists is the CPU device.
To load the module that implements the CPU device:

vklLoadModule("cpu_device");

The device then needs to be instantiated:

VKLDevice device = vklNewDevice("cpu");

By default, the CPU device selects the maximum supported SIMD width (and associated ISA) for the system. Option-
ally, a specific width may be requested using the cpu_4, cpu_8, or cpu_16 device names. Note that the system must
support the given width (SSE4.1 for 4-wide, AVX for 8-wide, and AVX512 for 16-wide).

Once a device is created, you can call

void vklDeviceSetInt(VKLDevice, const char *name, int val);
void vklDeviceSetString(VKLDevice, const char *name, const char *val);

to set parameters on the device. The following parameters are understood by all devices:

12.1. Overview 2081

oneAPI Specification, Release 1.1-rev-1

Table 1: Parameters shared by all devices.
Type Name Description
int logLevel logging level; valid values are VKL_LOG_DEBUG, VKL_LOG_INFO, VKL_LOG_WARNING,

VKL_LOG_ERROR and VKL_LOG_NONE
string logOut-

put
convenience for setting where log messages go; valid values are cout, cerr and none

string erro-
rOutput

convenience for setting where error messages go; valid values are cout, cerr and none

int numThreadsnumber of threads which Open VKL can use
int flushDe-

normals
sets the Flush to Zero and Denormals are Zero mode of the MXCSR control and status
register (default: 1); see Performance Recommendations section for details

Once parameters are set, the device must be committed with

vklCommitDevice(device);

The newly committed device is then ready to use. Users may change parameters on a device after initialization. In this
case the device would need to be re-committed.

All Open VKL objects are associated with a device. A device handle must be explicitly provided when creating vol-
ume and data objects, via vklNewVolume() and vklNewData() respectively. Other object types are automatically
associated with a device via transitive dependency on a volume.

Open VKL provides vector-wide versions for several APIs. To determine the native vector width for a given device,
call:

int width = vklGetNativeSIMDWidth(VKLDevice device);

When the application is finished with an Open VKL device or shutting down, release the device via:

vklReleaseDevice(VKLDevice device);

Environment variables

The generic device parameters can be overridden via environment variables for easy changes to Open VKL’s behavior
without needing to change the application (variables are prefixed by convention with “OPENVKL_”):

Table 2: Environment variables understood by all devices.
Variable Description
OPEN-
VKL_LOG_LEVEL

logging level; valid values are debug, info, warning, error and none

OPEN-
VKL_LOG_OUTPUT

convenience for setting where log messages go; valid values are cout, cerr and none

OPEN-
VKL_ERROR_OUTPUT

convenience for setting where error messages go; valid values are cout, cerr and none

OPEN-
VKL_THREADS

number of threads which Open VKL can use

OPEN-
VKL_FLUSH_DENORMALS

sets the Flush to Zero and Denormals are Zero mode of the MXCSR control and sta-
tus register (default: 1); see Performance Recommendations section for details

Note that these environment variables take precedence over values set through the vklDeviceSet*() functions.

12.1. Overview 2082

oneAPI Specification, Release 1.1-rev-1

Additionally, the CPU device’s default SIMD width can be overriden at run time with the
OPENVKL_CPU_DEVICE_DEFAULT_WIDTH environment variable. Legal values are 4, 8, or 16. This setting is
only applicable when the generic cpu device is instantiated; if a specific width is requested via the cpu_[4,8,16]
device names then the environment variable is ignored.

Error handling and log messages

The following errors are currently used by Open VKL:

Table 3: Possible error codes, i.e., valid named constants of type
VKLError.

Name Description
VKL_NO_ERROR no error occurred
VKL_UNKNOWN_ERROR an unknown error occurred
VKL_INVALID_ARGUMENT an invalid argument was specified
VKL_INVALID_OPERATION the operation is not allowed for the specified object
VKL_OUT_OF_MEMORY there is not enough memory to execute the command
VKL_UNSUPPORTED_CPU the CPU is not supported (minimum ISA is SSE4.1)

These error codes are either directly returned by some API functions, or are recorded to be later queried by the appli-
cation via

VKLError vklDeviceGetLastErrorCode(VKLDevice);

A more descriptive error message can be queried by calling

const char* vklDeviceGetLastErrorMsg(VKLDevice);

Alternatively, the application can also register a callback function of type

typedef void (*VKLErrorCallback)(void *, VKLError, const char* message);

via

void vklDeviceSetErrorCallback(VKLDevice, VKLErrorFunc, void *);

to get notified when errors occur. Applications may be interested in messages which Open VKL emits, whether for
debugging or logging events. Applications can register a callback function of type

typedef void (*VKLLogCallback)(void *, const char* message);

via

void vklDeviceSetLogCallback(VKLDevice, VKLLogCallback, void *);

which Open VKL will use to emit log messages. Applications can clear either callback by passing nullptr instead of
an actual function pointer. By default, Open VKL uses cout and cerr to emit log and error messages, respectively.
The last parameter to vklDeviceSetErrorCallback and vklDeviceSetLogCallback is a user data pointer. Open
VKL passes this pointer to the callback functions as the first parameter. Note that in addition to setting the above
callbacks, this behavior can be changed via the device parameters and environment variables described previously.

12.1. Overview 2083

oneAPI Specification, Release 1.1-rev-1

Basic data types

Open VKL defines 3-component vectors of integer and vector types:

typedef struct
{
int x, y, z;

} vkl_vec3i;

typedef struct
{
float x, y, z;

} vkl_vec3f;

Vector versions of these are also defined in structure-of-array format for 4, 8, and 16 wide types.

typedef struct
{
float x[WIDTH];
float y[WIDTH];
float z[WIDTH];

} vkl_vvec3f##WIDTH;

typedef struct
{
float lower[WIDTH], upper[WIDTH];

} vkl_vrange1f##WIDTH;

1-D range and 3-D ranges are defined as ranges and boxes, with no vector versions:

typedef struct
{
float lower, upper;

} vkl_range1f;

typedef struct
{
vkl_vec3f lower, upper;

} vkl_box3f;

Object model

Objects in Open VKL are exposed to the APIs as handles with internal reference counting for lifetime determination.
Objects are created with particular type’s vklNew...API entry point. For example, vklNewData and vklNewVolume.

In general, modifiable parameters to objects are modified using vklSet... functions based on the type of the parameter
being set. The parameter name is passed as a string. Below are all variants of vklSet....

void vklSetBool(VKLObject object, const char *name, int b);
void vklSetFloat(VKLObject object, const char *name, float x);
void vklSetVec3f(VKLObject object, const char *name, float x, float y, float z);
void vklSetInt(VKLObject object, const char *name, int x);
void vklSetVec3i(VKLObject object, const char *name, int x, int y, int z);

(continues on next page)

12.1. Overview 2084

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

void vklSetData(VKLObject object, const char *name, VKLData data);
void vklSetString(VKLObject object, const char *name, const char *s);
void vklSetVoidPtr(VKLObject object, const char *name, void *v);

After parameters have been set, vklCommit must be called on the object to make them take effect.

Open VKL uses reference counting to manage the lifetime of all objects. Therefore one cannot explicitly “delete” any
object. Instead, one can indicate the application does not need or will not access the given object anymore by calling

void vklRelease(VKLObject);

This decreases the object’s reference count. If the count reaches 0 the object will automatically be deleted.

Managed data

Large data is passed to Open VKL via a VKLData handle created with vklNewData:

VKLData vklNewData(VKLDevice device,
size_t numItems,
VKLDataType dataType,
const void *source,
VKLDataCreationFlags dataCreationFlags,
size_t byteStride);

Data objects can be created as Open VKL owned (dataCreationFlags = VKL_DATA_DEFAULT), in which the library
will make a copy of the data for its use, or shared (dataCreationFlags = VKL_DATA_SHARED_BUFFER), which will
try to use the passed pointer for usage. The library is allowed to copy data when a volume is committed.

The distance between consecutive elements in source is given in bytes with byteStride. If the provided byteStride
is zero, then it will be determined automatically as sizeof(type). Open VKL owned data will be compacted into a
naturally-strided array on copy, regardless of the original byteStride.

As with other object types, when data objects are no longer needed they should be released via vklRelease.

The enum type VKLDataType describes the different element types that can be represented in Open VKL. The types
accepted vary per volume; see the volume section for specifics. Valid constants are listed in the table below.

12.1. Overview 2085

oneAPI Specification, Release 1.1-rev-1

Table 4: Valid named constants for VKLDataType.
Type/Name Description
VKL_DEVICE API device object reference
VKL_DATA data reference
VKL_OBJECT generic object reference
VKL_VOLUME volume object reference
VKL_STRING C-style zero-terminated character string
VKL_CHAR,
VKL_VEC[234]C

8 bit signed character scalar and [234]-element vector

VKL_UCHAR,
VKL_VEC[234]UC

8 bit unsigned character scalar and [234]-element vector

VKL_SHORT,
VKL_VEC[234]S

16 bit unsigned integer scalar and [234]-element vector

VKL_USHORT,
VKL_VEC[234]US

16 bit unsigned integer scalar and [234]-element vector

VKL_INT, VKL_VEC[234]I 32 bit signed integer scalar and [234]-element vector
VKL_UINT, VKL_VEC[234]UI 32 bit unsigned integer scalar and [234]-element vector
VKL_LONG, VKL_VEC[234]L 64 bit signed integer scalar and [234]-element vector
VKL_ULONG,
VKL_VEC[234]UL

64 bit unsigned integer scalar and [234]-element vector

VKL_HALF, VKL_VEC[234]H 16 bit half precision floating-point scalar and [234]-element vector (IEEE 754
binary16)

VKL_FLOAT,
VKL_VEC[234]F

32 bit single precision floating-point scalar and [234]-element vector

VKL_DOUBLE,
VKL_VEC[234]D

64 bit double precision floating-point scalar and [234]-element vector

VKL_BOX[1234]I 32 bit integer box (lower + upper bounds)
VKL_BOX[1234]F 32 bit single precision floating-point box (lower + upper bounds)
VKL_LINEAR[23]F 32 bit single precision floating-point linear transform ([23] vectors)
VKL_AFFINE[23]F 32 bit single precision floating-point affine transform (linear transform plus

translation)
VKL_VOID_PTR raw memory address

Observers

Volumes and samplers in Open VKL may provide observers to communicate data back to the application. Observers
may be created with

VKLObserver vklNewSamplerObserver(VKLSampler sampler,
const char *type);

VKLObserver vklNewVolumeObserver(VKLVolume volume,
const char *type);

The object passed to vklNew*Observermust already be committed. Valid observer type strings are defined by volume
implementations (see section ‘Volume types’ below).

vklNew*Observer returns NULL on failure.

To access the underlying data, an observer must first be mapped using

12.1. Overview 2086

oneAPI Specification, Release 1.1-rev-1

const void * vklMapObserver(VKLObserver observer);

If this fails, the function returns NULL. vklMapObserver may fail on observers that are already mapped. On success,
the application may query the underlying type, element size in bytes, and the number of elements in the buffer using

VKLDataType vklGetObserverElementType(VKLObserver observer);
size_t vklGetObserverElementSize(VKLObserver observer);
size_t vklGetObserverNumElements(VKLObserver observer);

On failure, these functions return VKL_UNKNOWN and 0, respectively. Possible data types are defined by the volume that
provides the observer , as are the semantics of the observation. See section ‘Volume types’ for details.

The pointer returned by vklMapObserver may be cast to the type corresponding to the value returned by
vklGetObserverElementType to access the observation. For example, if vklGetObserverElementType re-
turns VKL_FLOAT, then the pointer returned by vklMapObserver may be cast to const float * to access up to
vklGetObserverNumElements consecutive values of type float.

Once the application has finished processing the observation, it should unmap the observer using

void vklUnmapObserver(VKLObserver observer);

so that the observer may be mapped again.

When an observer is no longer needed, it should be released using vklRelease.

The observer API is not thread safe, and these functions should not be called concurrently on the same object.

Volume types

Open VKL currently supports structured volumes on regular and spherical grids; unstructured volumes with tetrahedral,
wedge, pyramid, and hexaderal primitive types; adaptive mesh refinement (AMR) volumes; sparse VDB volumes; and
particle volumes. Volumes are created with vklNewVolume with a device and appropriate type string:

VKLVolume vklNewVolume(VKLDevice device, const char *type);

In addition to the usual vklSet...() and vklCommit() APIs, the volume bounding box can be queried:

vkl_box3f vklGetBoundingBox(VKLVolume volume);

The number of attributes in a volume can also be queried:

unsigned int vklGetNumAttributes(VKLVolume volume);

Finally, the value range of the volume for a given attribute can be queried:

vkl_range1f vklGetValueRange(VKLVolume volume, unsigned int attributeIndex);

12.1. Overview 2087

oneAPI Specification, Release 1.1-rev-1

Structured Volumes

Structured volumes only need to store the values of the samples, because their addresses in memory can be easily
computed from a 3D position. The dimensions for all structured volume types are in units of vertices, not cells. For
example, a volume with dimensions (𝑥, 𝑦, 𝑧) will have (𝑥−1, 𝑦−1, 𝑧−1) cells in each dimension. Voxel data provided
is assumed vertex-centered, so 𝑥 * 𝑦 * 𝑧 values must be provided.

Structured Regular Volumes

A common type of structured volumes are regular grids, which are created by passing a type string of
"structuredRegular" to vklNewVolume. The parameters understood by structured regular volumes are summa-
rized in the table below.

Table 5: Configuration parameters for structured regular
("structuredRegular") volumes.

Type Name Default Description
vec3i dimen-

sions
number of voxels in each dimension (𝑥, 𝑦, 𝑧)

VKL-
Data
VKL-
Data[]

data VKLData object(s) of voxel data, supported types are:

VKL_UCHAR
VKL_SHORT
VKL_USHORT
VKL_HALF
VKL_FLOAT
VKL_DOUBLE
Multiple attributes are supported through passing an array of VKLData ob-
jects.

vec3f gridOrigin (0, 0, 0) origin of the grid in object space
vec3f gridSpac-

ing
(1, 1, 1) size of the grid cells in object space

uint32 temporal-
Format

VKL_TEMPORAL_FORMAT_CONSTANTThe temporal format for this volume. Use
VKLTemporalFormat for named constants. Structured reg-
ular volumes support VKL_TEMPORAL_FORMAT_CONSTANT,
VKL_TEMPORAL_FORMAT_STRUCTURED, and
VKL_TEMPORAL_FORMAT_UNSTRUCTURED.

int tempo-
rallyStruc-
turedNum-
Timesteps

For temporally structured variation, number of timesteps per voxel. Only
valid if temporalFormat is VKL_TEMPORAL_FORMAT_STRUCTURED.

uint32[]
uint64[]

temporal-
lyUnstruc-
turedIndices

For temporally unstructured variation, indices to data time se-
ries beginning per voxel. Only valid if temporalFormat is
VKL_TEMPORAL_FORMAT_UNSTRUCTURED.

float[] tempo-
rallyUn-
structured-
Times

For temporally unstructured variation, time values correspond-
ing to values in data. Only valid if temporalFormat is
VKL_TEMPORAL_FORMAT_UNSTRUCTURED.

float[] back-
ground

VKL_BACKGROUND_UNDEFINEDFor each attribute, the value that is returned when sampling an undefined
region outside the volume domain.

12.1. Overview 2088

oneAPI Specification, Release 1.1-rev-1

Structured regular volumes support temporally structured and temporally unstructured temporal variation. See section
‘Temporal Variation’ for more detail.

The following additional parameters can be set both on "structuredRegular" volumes and their sampler objects.
Sampler object parameters default to volume parameters.

Table 6: Configuration parameters for structured regular
("structuredRegular") volumes and their sampler objects.

Type Name Default Description
int filter VKL_FILTER_TRILINEARThe filter used for reconstructing the field. Use VKLFilter for named con-

stants.
int gradient-

Filter
filter The filter used for reconstructing the field during gradient computations.

Use VKLFilter for named constants.

Reconstruction filters

Structured regular volumes support the filter types VKL_FILTER_NEAREST, VKL_FILTER_TRILINEAR, and
VKL_FILTER_TRICUBIC for both filter and gradientFilter.

Note that when gradientFilter is set to VKL_FILTER_NEAREST, gradients are always (0, 0, 0).

Structured Spherical Volumes

Structured spherical volumes are also supported, which are created by passing a type string of
"structuredSpherical" to vklNewVolume. The grid dimensions and parameters are defined in terms of ra-
dial distance (𝑟), inclination angle (𝜃), and azimuthal angle (𝜑), conforming with the ISO convention for spherical
coordinate systems. The coordinate system and parameters understood by structured spherical volumes are summarized
below.

Table 7: Configuration parameters for structured spherical
("structuredSpherical") volumes.

Type Name Default Description
vec3i dimen-

sions
number of voxels in each dimension (𝑟, 𝜃, 𝜑)

VKLData
VKLData[]

data VKLData object(s) of voxel data, supported types are:

VKL_UCHAR
VKL_SHORT
VKL_USHORT
VKL_HALF
VKL_FLOAT
VKL_DOUBLE
Multiple attributes are supported through passing an array of
VKLData objects.

vec3f gridO-
rigin

(0, 0, 0) origin of the grid in units of (𝑟, 𝜃, 𝜑); angles in degrees

vec3f gridSpac-
ing

(1, 1, 1) size of the grid cells in units of (𝑟, 𝜃, 𝜑); angles in degrees

float[] back-
ground

VKL_BACKGROUND_UNDEFINEDFor each attribute, the value that is returned when sampling an
undefined region outside the volume domain.

12.1. Overview 2089

oneAPI Specification, Release 1.1-rev-1

Fig. 1: Structured spherical volume coordinate system: radial distance (𝑟), inclination angle (𝜃), and azimuthal angle
(𝜑).

12.1. Overview 2090

oneAPI Specification, Release 1.1-rev-1

These grid parameters support flexible specification of spheres, hemispheres, spherical shells, spherical wedges, and
so forth. The grid extents (computed as [𝑔𝑟𝑖𝑑𝑂𝑟𝑖𝑔𝑖𝑛, 𝑔𝑟𝑖𝑑𝑂𝑟𝑖𝑔𝑖𝑛 + (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 − 1) * 𝑔𝑟𝑖𝑑𝑆𝑝𝑎𝑐𝑖𝑛𝑔]) however
must be constrained such that:

• 𝑟 ≥ 0

• 0 ≤ 𝜃 ≤ 180

• 0 ≤ 𝜑 ≤ 360

The following additional parameters can be set both on "structuredSpherical" volumes and their sampler objects.
Sampler object parameters default to volume parameters.

Table 8: Configuration parameters for structured spherical
("structuredSpherical") volumes and their sampler objects.

Type Name Default Description
int filter VKL_FILTER_TRILINEARThe filter used for reconstructing the field. Use VKLFilter for named con-

stants.
int gradient-

Filter
filter The filter used for reconstructing the field during gradient computations.

Use VKLFilter for named constants.

Adaptive Mesh Refinement (AMR) Volumes

Open VKL currently supports block-structured (Berger-Colella) AMR volumes. Volumes are specified as a list of
blocks, which exist at levels of refinement in potentially overlapping regions. Blocks exist in a tree structure, with
coarser refinement level blocks containing finer blocks. The cell width is equal for all blocks at the same refinement
level, though blocks at a coarser level have a larger cell width than finer levels.

There can be any number of refinement levels and any number of blocks at any level of refinement.

Blocks are defined by three parameters: their bounds, the refinement level in which they reside, and the scalar data
contained within each block.

Note that cell widths are defined per refinement level, not per block.

AMR volumes are created by passing the type string "amr" to vklNewVolume, and have the following parameters:

Table 9: Configuration parameters for AMR ("amr") volumes.
Type Name Default Description
float[] cell-

Width
[data] array of each level’s cell width

box3i[] block.bounds [data] array of each block’s bounds (in voxels)
int[] block.level [data] array of each block’s refinement level
VKL-
Data[]

block.data [data] array of each block’s VKLData object containing the actual scalar
voxel data. Currently only VKL_FLOAT data is supported.

vec3f gridO-
rigin

(0, 0, 0) origin of the grid in object space

vec3f gridSpac-
ing

(1, 1, 1) size of the grid cells in object space

float back-
ground

VKL_BACKGROUND_UNDEFINEDThe value that is returned when sampling an undefined region outside the
volume domain.

Note that the gridOrigin and gridSpacing parameters act just like the structured volume equivalent, but they only
modify the root (coarsest level) of refinement.

12.1. Overview 2091

oneAPI Specification, Release 1.1-rev-1

The following additional parameters can be set both on "amr" volumes and their sampler objects. Sampler object
parameters default to volume parameters.

Table 10: Configuration parameters for AMR ("AMR") volumes and their
sampler objects.

Type Name Default Description
VKLAMRMethod method VKL_AMR_CURRENT VKLAMRMethod sampling method. Supported methods are:

VKL_AMR_CURRENT
VKL_AMR_FINEST
VKL_AMR_OCTANT

Open VKL’s AMR implementation was designed to cover Berger-Colella [1] and Chombo [2] AMR data. The method
parameter above determines the interpolation method used when sampling the volume.

• VKL_AMR_CURRENT finds the finest refinement level at that cell and interpolates through this “current” level

• VKL_AMR_FINESTwill interpolate at the closest existing cell in the volume-wide finest refinement level regardless
of the sample cell’s level

• VKL_AMR_OCTANT interpolates through all available refinement levels at that cell. This method avoids disconti-
nuities at refinement level boundaries at the cost of performance

Gradients are computed using finite differences, using the method defined on the sampler.

Details and more information can be found in the publication for the implementation [3].

1. M. J. Berger, and P. Colella. “Local adaptive mesh refinement for shock hydrodynamics.” Journal of Com-
putational Physics 82.1 (1989): 64-84. DOI: 10.1016/0021-9991(89)90035-1

2. M. Adams, P. Colella, D. T. Graves, J.N. Johnson, N.D. Keen, T. J. Ligocki. D. F. Martin. P.W. McCorquodale,
D. Modiano. P.O. Schwartz, T.D. Sternberg and B. Van Straalen, Chombo Software Package for AMR
Applications - Design Document, Lawrence Berkeley National Laboratory Technical Report LBNL-6616E.

3. I. Wald, C. Brownlee, W. Usher, and A. Knoll. CPU volume rendering of adaptive mesh refinement data. SIG-
GRAPH Asia 2017 Symposium on Visualization on - SA ’17, 18(8), 1–8. DOI: 10.1145/3139295.3139305

Unstructured Volumes

Unstructured volumes can have their topology and geometry freely defined. Geometry can be composed of tetrahedral,
hexahedral, wedge or pyramid cell types. The data format used is compatible with VTK and consists of multiple arrays:
vertex positions and values, vertex indices, cell start indices, cell types, and cell values.

Sampled cell values can be specified either per-vertex (vertex.data) or per-cell (cell.data). If both arrays are set,
cell.data takes precedence.

Similar to a mesh, each cell is formed by a group of indices into the vertices. For each vertex, the corresponding (by
array index) data value will be used for sampling when rendering, if specified. The index order for a tetrahedron is the
same as VTK_TETRA: bottom triangle counterclockwise, then the top vertex.

For hexahedral cells, each hexahedron is formed by a group of eight indices into the vertices and data values. Vertex
ordering is the same as VTK_HEXAHEDRON: four bottom vertices counterclockwise, then top four counterclockwise.

For wedge cells, each wedge is formed by a group of six indices into the vertices and data values. Vertex ordering is
the same as VTK_WEDGE: three bottom vertices counterclockwise, then top three counterclockwise.

For pyramid cells, each cell is formed by a group of five indices into the vertices and data values. Vertex ordering is
the same as VTK_PYRAMID: four bottom vertices counterclockwise, then the top vertex.

12.1. Overview 2092

oneAPI Specification, Release 1.1-rev-1

To maintain VTK data compatibility, the index array may be specified with cell sizes interleaved with vertex indices
in the following format: 𝑛, 𝑖𝑑1, ..., 𝑖𝑑𝑛,𝑚, 𝑖𝑑1, ..., 𝑖𝑑𝑚. This alternative index array layout can be enabled through the
indexPrefixed flag (in which case, the cell.type parameter should be omitted).

Gradients are computed using finite differences.

Unstructured volumes are created by passing the type string "unstructured" to vklNewVolume, and have the fol-
lowing parameters:

Table 11: Configuration parameters for unstructured ("unstructured")
volumes.

Type Name Default Description
vec3f[] ver-

tex.position
[data] array of vertex positions

float[] ver-
tex.data

[data] array of vertex data values to be sampled

uint32[]
/
uint64[]

index [data] array of indices (into the vertex array(s)) that form cells

bool indexPre-
fixed

false indicates that the index array is provided in a VTK-compatible format,
where the indices of each cell are prefixed with the number of vertices

uint32[]
/
uint64[]

cell.index [data] array of locations (into the index array), specifying the first index
of each cell

float[] cell.data [data] array of cell data values to be sampled
uint8[] cell.type [data] array of cell types (VTK compatible). Supported types are:

VKL_TETRAHEDRON
VKL_HEXAHEDRON
VKL_WEDGE
VKL_PYRAMID

bool hexItera-
tive

false hexahedron interpolation method, defaults to fast non-iterative version
which could have rendering inaccuracies may appear if hex is not paral-
lelepiped

bool precom-
putedNor-
mals

false whether to accelerate by precomputing, at a cost of 12 bytes/face

float back-
ground

VKL_BACKGROUND_UNDEFINEDThe value that is returned when sampling an undefined region outside
the volume domain.

VDB Volumes

VDB volumes implement a data structure that is very similar to the data structure outlined in Museth [1].

The data structure is a hierarchical regular grid at its core: Nodes are regular grids, and each grid cell may either store
a constant value (this is called a tile), or child pointers.

Nodes in VDB trees are wide: Nodes on the first level have a resolution of 32^3 voxels by default, on the next level
16^3, and on the leaf level 8^3 voxels. All nodes on a given level have the same resolution. This makes it easy to find
the node containing a coordinate using shift operations (cp. [1]).

VDB leaf nodes are implicit in Open VKL: they are stored as pointers to user-provided data.

VDB volumes interpret input data as constant cells (which are then potentially filtered). This is in contrast to
structuredRegular volumes, which have a vertex-centered interpretation.

12.1. Overview 2093

oneAPI Specification, Release 1.1-rev-1

Fig. 2: Structure of "vdb" volumes in the default configuration

The VDB implementation in Open VKL follows the following goals:

• Efficient data structure traversal on vector architectures.

• Enable the use of industry-standard .vdb files created through the OpenVDB library.

• Compatibility with OpenVDB on a leaf data level, so that .vdb files may be loaded with minimal overhead.

VDB volumes are created by passing the type string "vdb" to vklNewVolume, and have the following parameters:

12.1. Overview 2094

oneAPI Specification, Release 1.1-rev-1

Table 12: Configuration parameters for VDB ("vdb") volumes.
Type Name De-

fault
Description

float[] index-
ToOb-
ject

1, 0,
0, 0,
1, 0,
0, 0,
1, 0,
0, 0

An array of 12 values of type float that define the transformation from index space to
object space. In index space, the grid is an axis-aligned regular grid, and leaf voxels have
size (1,1,1). The first 9 values are interpreted as a row-major linear transformation matrix.
The last 3 values are the translation of the grid origin.

uint32[]node.format For each input node, the data format. Currently supported are VKL_FORMAT_TILE for
tiles, and VKL_FORMAT_DENSE_ZYX for nodes that are dense regular grids.

uint32[]node.level For each input node, the level on which this node exists. Tiles may exist
on levels [1, VKL_VDB_NUM_LEVELS-1], all other nodes may only exist on level
VKL_VDB_NUM_LEVELS-1.

vec3i[]node.origin For each input node, the node origin index.
VKL-
Data[]

node.data For each input node, the attribute data. Single-attribute volumes may have one array
provided per node, while multi-attribute volumes require an array per attribute for each
node. Nodes with format VKL_FORMAT_TILE are expected to have single-entry arrays per
attribute. Nodes with format VKL_FORMAT_DENSE_ZYX are expected to have arrays with
vklVdbLevelNumVoxels(level[i]) entries per attribute. VKL_HALF and VKL_FLOAT
data is currently supported; all nodes for a given attribute must be the same data type.

uint32[]node.temporalFormatVKL_TEMPORAL_FORMAT_CONSTANTThe temporal format for this volume. Use VKLTemporalFormat for named
constants. VDB volumes support VKL_TEMPORAL_FORMAT_CONSTANT,
VKL_TEMPORAL_FORMAT_STRUCTURED, and VKL_TEMPORAL_FORMAT_UNSTRUCTURED.

int[] node.temporallyStructuredNumTimestepsFor temporally structured variation, number of timesteps per voxel. Only valid if
temporalFormat is VKL_TEMPORAL_FORMAT_STRUCTURED.

VKL-
Data[]

node.temporallyUnstructuredIndicesFor temporally unstructured variation, beginning per voxel. Supported data types
for each node are VKL_UINT and VKL_ULONG. Only valid if temporalFormat is
VKL_TEMPORAL_FORMAT_UNSTRUCTURED.

VKL-
Data[]

node.temporallyUnstructuredTimesFor temporally unstructured variation, time values corresponding to values in node.
data. For each node, the data must be of type VKL_FLOAT. Only valid if
temporalFormat is VKL_TEMPORAL_FORMAT_UNSTRUCTURED.

float[] back-
ground

VKL_BACKGROUND_UNDEFINEDFor each attribute, the value that is returned when sampling an undefined region outside
the volume domain.

The level, origin, format, and data parameters must have the same size, and there must be at least one valid node or
commit() will fail.

VDB volumes support temporally structured and temporally unstructured temporal variation. See section ‘Temporal
Variation’ for more detail.

The following additional parameters can be set both on vdb volumes and their sampler objects (sampler object param-
eters default to volume parameters).

Table 13: Configuration parameters for VDB ("vdb") volumes and their
sampler objects.

Type Name Default Description
int filter VKL_FILTER_TRILINEARThe filter used for reconstructing the field. Use VKLFilter for named

constants.
int gradientFil-

ter
filter The filter used for reconstructing the field during gradient computations.

Use VKLFilter for named constants.
int maxSam-

plingDepth
VKL_VDB_NUM_LEVELS-
1

Do not descend further than to this depth during sampling.

12.1. Overview 2095

oneAPI Specification, Release 1.1-rev-1

VDB volume objects support the following observers:

Table 14: Observers supported by VDB ("vdb") volumes.
NameBuffer

Type
Description

In-
nerN-
ode

float[] Return an array of bounding boxes along with value ranges, of inner nodes in the data struc-
ture. The bounding box is given in object space. For a volume with M attributes, the entries in
this array are (6+2*M)-tuples (minX, minY, minZ, maxX, maxY, maxZ, lower_0, upper_0,
lower_1, upper_1, ...). This is in effect a low resolution representation of the volume. The In-
nerNode observer can be parameterized using int maxDepth to control the depth at which inner
nodes are returned. Note that the observer will also return leaf nodes or tiles at lower levels if they
exist.

VDB sampler objects support the following observers:

Table 15: Observers supported by sampler objects created on VDB
("vdb") volumes.

Name Buffer
Type

Description

LeafN-
odeAc-
cess

uint32[]This observer returns an array with as many entries as input nodes were passed. If the input node
i was accessed during traversal, then the ith entry in this array has a nonzero value. This can be
used for on-demand loading of leaf nodes.

Reconstruction filters

VDB volumes support the filter types VKL_FILTER_NEAREST, VKL_FILTER_TRILINEAR, and
VKL_FILTER_TRICUBIC for both filter and gradientFilter.

Note that when gradientFilter is set to VKL_FILTER_NEAREST, gradients are always (0, 0, 0).

Major differences to OpenVDB

• Open VKL implements sampling in ISPC, and can exploit wide SIMD architectures.

• VDB volumes in Open VKL are read-only once committed, and designed for rendering only. Authoring or
manipulating datasets is not in the scope of this implementation.

• The only supported field types are VKL_HALF and VKL_FLOAT at this point. Other field types may be supported
in the future. Note that multi-attribute volumes may be used to represent multi-component (e.g. vector) fields.

• The root level in Open VKL has a single node with resolution 64^3 (cp. [1]. OpenVDB uses a hash map, instead).

• Open VKL supports four-level vdb volumes. The resolution of each level can be configured at compile time
using CMake variables.

– VKL_VDB_LOG_RESOLUTION_0 sets the base 2 logarithm of the root level resolution. This variable defaults
to 6, which means that the root level has a resolution of (26)3 = 643.

– VKL_VDB_LOG_RESOLUTION_1 and VKL_VDB_LOG_RESOLUTION_2 default to 5 and 4, respectively. This
matches the default Open VDB resolution for inner levels.

– VKL_VDB_LOG_RESOLUTION_3 set the base 2 logarithm of the leaf level resolution, and defaults to 3. There-
fore, leaf nodes have a resolution of 83 voxels. Again, this matches the Open VDB default. The default
settings lead to a domain resolution of 2183 = 2621443 voxels.

12.1. Overview 2096

oneAPI Specification, Release 1.1-rev-1

Loading OpenVDB .vdb files

Files generated with OpenVDB can be loaded easily since Open VKL vdb volumes implement the same leaf data
layout. This means that OpenVDB leaf data pointers can be passed to Open VKL using shared data buffers, avoiding
copy operations.

An example of this can be found in utility/vdb/include/openvkl/utility/vdb/OpenVdbGrid.h, where
the class OpenVdbFloatGrid encapsulates the necessary operations. This class is also accessible through the
vklExamples application using the -file and -field command line arguments.

To use this example feature, compile Open VKL with OpenVDB_ROOT pointing to the OpenVDB prefix.

1. Museth, K. VDB: High-Resolution Sparse Volumes with Dynamic Topology. ACM Transactions on Graphics
32(3), 2013. DOI: 10.1145/2487228.2487235

Particle Volumes

Particle volumes consist of a set of points in space. Each point has a position, a radius, and a weight typically associated
with an attribute. A radial basis function defines the contribution of that particle. Currently, we use the Gaussian radial
basis function,

phi(P) = w * exp(-0.5 * ((P - p) / r)^2)

where P is the particle position, p is the sample position, r is the radius and w is the weight.

At each sample, the scalar field value is then computed as the sum of each radial basis function phi, for each particle
that overlaps it. Gradients are similarly computed, based on the summed analytical contributions of each contributing
particle.

The Open VKL implementation is similar to direct evaluation of samples in Reda et al.[2]. It uses an Embree-built
BVH with a custom traversal, similar to the method in [1].

Particle volumes are created by passing the type string "particle" to vklNewVolume, and have the following param-
eters:

12.1. Overview 2097

oneAPI Specification, Release 1.1-rev-1

Table 16: Configuration parameters for particle ("particle") volumes.
Type Name De-

fault
Description

vec3f[]parti-
cle.position

[data] array of particle positions

float[] parti-
cle.radius

[data] array of particle radii

float[] parti-
cle.weight

null [data] (optional) array of particle weights, specifying the height of the kernel.

float ra-
dius-
Sup-
port-
Fac-
tor

3.0 The multipler of the particle radius required for support. Larger radii ensure smooth results
at the cost of performance. In the Gaussian kernel, the the radius is one standard deviation
(sigma), so a radiusSupportFactor of 3 corresponds to 3*sigma.

float clamp-
Max-
Cu-
mula-
tive-
Value

0 The maximum cumulative value possible, set by user. All cumulative values will be clamped
to this, and further traversal (RBF summation) of particle contributions will halt when this
value is reached. A value of zero or less turns this off.

bool esti-
mate-
Val-
ueRanges

true Enable heuristic estimation of value ranges which are used in internal acceleration structures
for interval and hit iterators, as well as for determining the volume’s overall value range.
When set to false, the user must specify clampMaxCumulativeValue, and all value ranges
will be assumed [0, clampMaxCumulativeValue]. Disabling this may improve volume
commit time, but will make interval and hit iteration less efficient.

1. Knoll, A., Wald, I., Navratil, P., Bowen, A., Reda, K., Papka, M.E. and Gaither, K. (2014), RBF Volume Ray
Casting on Multicore and Manycore CPUs. Computer Graphics Forum, 33: 71-80. doi:10.1111/cgf.12363

2. K. Reda, A. Knoll, K. Nomura, M. E. Papka, A. E. Johnson and J. Leigh, “Visualizing large-scale atom-
istic simulations in ultra-resolution immersive environments,” 2013 IEEE Symposium on Large-Scale Data
Analysis and Visualization (LDAV), Atlanta, GA, 2013, pp. 59-65.

Temporal Variation

Open VKL supports two types of temporal variation: temporally structured and temporally unstructured. When one of
these modes is enabled, the volume can be sampled at different times. In both modes, time is assumed to vary between
zero and one. This can be useful for implementing renderers with motion blur, for example.

Temporal variation is generally configured through a parameter temporalFormat, which accepts constants from the
VKLTemporalFormat enum, though not all modes may be supported by all volumes. On volumes that expect multi-
ple input nodes, the parameter is an array node.temporalFormat, and must provide one value per node. Multiple
attributes in a voxel share the same temporal configuration. Please refer to the individual volume sections above to find
out supported for each volume type.

temporalFormat defaults to VKL_TEMPORAL_FORMAT_CONSTANT for all volume types. This means that no temporal
variation is present in the data.

Temporally structured variation is configured by setting temporalFormat to VKL_TEMPORAL_FORMAT_STRUCTURED.
In this mode, the volume expects an additional parameter [node.]temporallyStructuredNumTimesteps, which
specifies how many time steps are provided for all voxels, and must be at least 2. A volume, or node, with 𝑁 voxels
expects 𝑁 * 𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑙𝑦𝑆𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑𝑁𝑢𝑚𝑇𝑖𝑚𝑒𝑠𝑡𝑒𝑝𝑠 values for each attribute. The values are assumed evenly spaced
over times [0, 1]: {0, 1/(𝑁 − 1), ..., 1}

12.1. Overview 2098

oneAPI Specification, Release 1.1-rev-1

Temporally unstructured variation supports differing time step counts and sample times per voxel. For 𝑁
input voxels, temporallyUnstructuredIndices is an array of 𝑁 + 1 indices. Voxel 𝑖 has 𝑁𝑖 =
[𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑙𝑦𝑈𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑𝐼𝑛𝑑𝑖𝑐𝑒𝑠[𝑖+1]−𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑙𝑦𝑈𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑𝐼𝑛𝑑𝑖𝑐𝑒𝑠[𝑖]) temporal samples starting at index
𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙𝑙𝑦𝑈𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒𝑑𝐼𝑛𝑑𝑖𝑐𝑒𝑠[𝑖]. temporallyUnstructuredTimes specifies the times corresponding to the
sample values; the time values for each voxel must be between zero and one and strictly increasing: 𝑡0 < 𝑡1 < ... < 𝑡𝑁 .
To return a value at sample time t, 𝑡0 <= 𝑡 <= 𝑡𝑁 , Open VKL will interpolate linearly from the two nearest time
steps. Time values outside this range are clamped to [𝑡0, 𝑡𝑁].

Sampler Objects

Computing the value of a volume at an object space coordinate is done using the sampling API, and sampler objects.
Sampler objects can be created using

VKLSampler vklNewSampler(VKLVolume volume);

Sampler objects may then be parametrized with traversal parameters. Available parameters are defined by volumes,
and are a subset of the volume parameters. As an example, filter can be set on both vdb volumes and their sampler
objects. The volume parameter is used as the default for sampler objects. The sampler object parameter provides an
override per ray. More detail on parameters can be found in the sections on volumes. Use vklCommit() to commit
parameters to the sampler object.

Sampling

The scalar API takes a volume and coordinate, and returns a float value. The volume’s background value (by default
VKL_BACKGROUND_UNDEFINED) is returned for probe points outside the volume. The attribute index selects the scalar
attribute of interest; not all volumes support multiple attributes. The time value, which must be between 0 and 1,
specifies the sampling time. For temporally constant volumes, this value has no effect.

float vklComputeSample(VKLSampler sampler,
const vkl_vec3f *objectCoordinates,
unsigned int attributeIndex,
float time);

Vector versions allow sampling at 4, 8, or 16 positions at once. Depending on the machine type and Open VKL device
implementation, these can give greater performance. An active lane mask valid is passed in as an array of integers;
set 0 for lanes to be ignored, -1 for active lanes. An array of time values corresponding to each object coordinate may
be provided; a NULL value indicates all times are zero.

void vklComputeSample4(const int *valid,
VKLSampler sampler,
const vkl_vvec3f4 *objectCoordinates,
float *samples,
unsigned int attributeIndex,
const float *times);

void vklComputeSample8(const int *valid,
VKLSampler sampler,
const vkl_vvec3f8 *objectCoordinates,
float *samples,
unsigned int attributeIndex,
const float *times);

(continues on next page)

12.1. Overview 2099

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

void vklComputeSample16(const int *valid,
VKLSampler sampler,
const vkl_vvec3f16 *objectCoordinates,
float *samples,
unsigned int attributeIndex,
const float *times);

A stream version allows sampling an arbitrary number of positions at once. While the vector version requires co-
ordinates to be provided in a structure-of-arrays layout, the stream version allows coordinates to be provided in an
array-of-structures layout. Thus, the stream API can be used to avoid reformatting of data by the application. As with
the vector versions, the stream API can give greater performance than the scalar API.

void vklComputeSampleN(VKLSampler sampler,
unsigned int N,
const vkl_vec3f *objectCoordinates,
float *samples,
unsigned int attributeIndex,
const float *times);

All of the above sampling APIs can be used, regardless of the device’s native SIMD width.

Sampling Multiple Attributes

Open VKL provides additional APIs for sampling multiple scalar attributes in a single call through the
vklComputeSampleM*() interfaces. Beyond convenience, these can give improved performance relative to the single
attribute sampling APIs. As with the single attribute APIs, sampling time values may be specified; note that these are
provided per object coordinate only (rather than separately per attribute).

A scalar API supports sampling M attributes specified by attributeIndices on a single object space coordinate:

void vklComputeSampleM(VKLSampler sampler,
const vkl_vec3f *objectCoordinates,
float *samples,
unsigned int M,
const unsigned int *attributeIndices,
float time);

Vector versions allow sampling at 4, 8, or 16 positions at once across the M attributes:

void vklComputeSampleM4(const int *valid,
VKLSampler sampler,
const vkl_vvec3f4 *objectCoordinates,
float *samples,
unsigned int M,
const unsigned int *attributeIndices,
const float *times);

void vklComputeSampleM8(const int *valid,
VKLSampler sampler,
const vkl_vvec3f8 *objectCoordinates,
float *samples,
unsigned int M,

(continues on next page)

12.1. Overview 2100

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

const unsigned int *attributeIndices,
const float *times);

void vklComputeSampleM16(const int *valid,
VKLSampler sampler,
const vkl_vvec3f16 *objectCoordinates,
float *samples,
unsigned int M,
const unsigned int *attributeIndices,
const float *times);

The [4, 8, 16] * M sampled values are populated in the samples array in a structure-of-arrays layout, with all
values for each attribute provided in sequence. That is, sample values s_m,n for the mth attribute and nth object
coordinate will be populated as

samples = [s_0,0, s_0,1, ..., s_0,N-1,
s_1,0, s_1,1, ..., s_1,N-1,
...,
s_M-1,0, s_M-1,1, ..., s_M-1,N-1]

A stream version allows sampling an arbitrary number of positions at once across the M attributes. As with single
attribute stream sampling, the N coordinates are provided in an array-of-structures layout.

void vklComputeSampleMN(VKLSampler sampler,
unsigned int N,
const vkl_vec3f *objectCoordinates,
float *samples,
unsigned int M,
const unsigned int *attributeIndices,
const float *times);

The M * N sampled values are populated in the samples array in an array-of-structures layout, with all attribute values
for each coordinate provided in sequence as

samples = [s_0,0, s_1,0, ..., s_M-1,0,
s_0,1, s_1,1, ..., s_M-1,1,
...,
s_0,N-1, s_1,N-1, ..., s_M-1,N-1]

All of the above sampling APIs can be used, regardless of the device’s native SIMD width.

Gradients

In a very similar API to vklComputeSample, vklComputeGradient queries the value gradient at an object space
coordinate. Again, a scalar API, now returning a vec3f instead of a float. NaN values are returned for points outside
the volume. The time value, which must be between 0 and 1, specifies the sampling time. For temporally constant
volumes, this value has no effect.

vkl_vec3f vklComputeGradient(VKLSampler sampler,
const vkl_vec3f *objectCoordinates,
unsigned int attributeIndex,
float time);

12.1. Overview 2101

oneAPI Specification, Release 1.1-rev-1

Vector versions are also provided:

void vklComputeGradient4(const int *valid,
VKLSampler sampler,
const vkl_vvec3f4 *objectCoordinates,
vkl_vvec3f4 *gradients,
unsigned int attributeIndex,
const float *times);

void vklComputeGradient8(const int *valid,
VKLSampler sampler,
const vkl_vvec3f8 *objectCoordinates,
vkl_vvec3f8 *gradients,
unsigned int attributeIndex,
const float *times);

void vklComputeGradient16(const int *valid,
VKLSampler sampler,
const vkl_vvec3f16 *objectCoordinates,
vkl_vvec3f16 *gradients,
unsigned int attributeIndex,
const float *times);

Finally, a stream version is provided:

void vklComputeGradientN(VKLSampler sampler,
unsigned int N,
const vkl_vec3f *objectCoordinates,
vkl_vec3f *gradients,
unsigned int attributeIndex,
const float *times);

All of the above gradient APIs can be used, regardless of the device’s native SIMD width.

Iterators

Open VKL has APIs to search for particular volume values along a ray. Queries can be for ranges of volume values
(vklIterateInterval) or for particular values (vklIterateHit).

Interval iterators require a context object to define the sampler and parameters related to iteration behavior. An interval
iterator context is created via

VKLIntervalIteratorContext vklNewIntervalIteratorContext(VKLSampler sampler);

The parameters understood by interval iterator contexts are defined in the table below.

12.1. Overview 2102

oneAPI Specification, Release 1.1-rev-1

Table 17: Configuration parameters for interval iterator contexts.
Type Name De-

fault
Description

int at-
tributeIn-
dex

0 Defines the volume attribute of interest.

vkl_range1f[]val-
ueRanges

[-
inf,
inf]

Defines the value ranges of interest. Intervals not containing any of these values ranges
may be skipped during iteration.

float inter-
val-
Reso-
lution-
Hint

0.5 A value in the range [0, 1] affecting the resolution (size) of returned intervals. A value
of 0 yields the lowest resolution (largest) intervals while 1 gives the highest resolution
(smallest) intervals. This value is only a hint; it may not impact behavior for all volume
types.

Most volume types support the intervalResolutionHint parameter that can impact the size of intervals returned
duration iteration. These include amr, particle, structuredRegular, unstructured, and vdb volumes. In all
cases a value of 1.0 yields the highest resolution (smallest) intervals possible, while a value of 0.0 gives the lowest
resolution (largest) intervals. In general, smaller intervals will have tighter bounds on value ranges, and more efficient
space skipping behavior than larger intervals, which can be beneficial for some rendering methods.

For structuredRegular, unstructured, and vdb volumes, a value of 1.0 will enable elementary cell iteration, such
that each interval spans an individual voxel / cell intersection. Note that interval iteration can be significantly slower in
this case.

As with other objects, the interval iterator context must be committed before being used.

To query an interval, a VKLIntervalIterator of scalar or vector width must be initialized with
vklInitIntervalIterator. Time value(s) may be provided to specify the sampling time. These values
must be between 0 and 1; for the vector versions, a NULL value indicates all times are zero. For temporally constant
volumes, the time values have no effect.

VKLIntervalIterator vklInitIntervalIterator(VKLIntervalIteratorContext context,
const vkl_vec3f *origin,
const vkl_vec3f *direction,
const vkl_range1f *tRange,
float time,
void *buffer);

VKLIntervalIterator4 vklInitIntervalIterator4(const int *valid,
VKLIntervalIteratorContext context,
const vkl_vvec3f4 *origin,
const vkl_vvec3f4 *direction,
const vkl_vrange1f4 *tRange,
const float *times,
void *buffer);

VKLIntervalIterator8 vklInitIntervalIterator8(const int *valid,
VKLIntervalIteratorContext context,
const vkl_vvec3f8 *origin,
const vkl_vvec3f8 *direction,
const vkl_vrange1f8 *tRange,
const float *times,
void *buffer);

(continues on next page)

12.1. Overview 2103

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

VKLIntervalIterator16 vklInitIntervalIterator16(const int *valid,
VKLIntervalIteratorContext context,
const vkl_vvec3f16 *origin,
const vkl_vvec3f16 *direction,
const vkl_vrange1f16 *tRange,
const float *times,
void *buffer);

Open VKL places the iterator struct into a user-provided buffer, and the returned handle is essentially a pointer into this
buffer. This means that the iterator handle must not be used after the buffer ceases to exist. Copying iterator buffers is
currently not supported.

The required size, in bytes, of the buffer can be queried with

size_t vklGetIntervalIteratorSize(VKLIntervalIteratorContext context);

size_t vklGetIntervalIteratorSize4(VKLIntervalIteratorContext context);

size_t vklGetIntervalIteratorSize8(VKLIntervalIteratorContext context);

size_t vklGetIntervalIteratorSize16(VKLIntervalIteratorContext context);

The values these functions return may change depending on the parameters set on sampler.

Open VKL also provides a conservative maximum size over all volume types as a preprocessor definition
(VKL_MAX_INTERVAL_ITERATOR_SIZE). For ISPC use cases, Open VKL will attempt to detect the native vector width
using TARGET_WIDTH, which is defined in recent versions of ISPC, to provide a less conservative size.

Intervals can then be processed by calling vklIterateInterval as long as the returned lane masks indicates that the
iterator is still within the volume:

int vklIterateInterval(VKLIntervalIterator iterator,
VKLInterval *interval);

void vklIterateInterval4(const int *valid,
VKLIntervalIterator4 iterator,
VKLInterval4 *interval,
int *result);

void vklIterateInterval8(const int *valid,
VKLIntervalIterator8 iterator,
VKLInterval8 *interval,
int *result);

void vklIterateInterval16(const int *valid,
VKLIntervalIterator16 iterator,
VKLInterval16 *interval,
int *result);

The intervals returned have a t-value range, a value range, and a nominalDeltaT which is approximately the step size
(in units of ray direction) that should be used to walk through the interval, if desired. The number and length of intervals
returned is volume type implementation dependent. There is currently no way of requesting a particular splitting.

12.1. Overview 2104

oneAPI Specification, Release 1.1-rev-1

typedef struct
{
vkl_range1f tRange;
vkl_range1f valueRange;
float nominalDeltaT;

} VKLInterval;

typedef struct
{
vkl_vrange1f4 tRange;
vkl_vrange1f4 valueRange;
float nominalDeltaT[4];

} VKLInterval4;

typedef struct
{
vkl_vrange1f8 tRange;
vkl_vrange1f8 valueRange;
float nominalDeltaT[8];

} VKLInterval8;

typedef struct
{
vkl_vrange1f16 tRange;
vkl_vrange1f16 valueRange;
float nominalDeltaT[16];

} VKLInterval16;

Querying for particular values is done using a VKLHitIterator in much the same fashion. This API could be used,
for example, to find isosurfaces. As with interval iterators, time value(s) may be provided to specify the sampling time.
These values must be between 0 and 1; for the vector versions, a NULL value indicates all times are zero. For temporally
constant volumes, the time values have no effect.

Hit iterators similarly require a context object to define the sampler and other iteration parameters. A hit iterator context
is created via

VKLHitIteratorContext vklNewHitIteratorContext(VKLSampler sampler);

The parameters understood by hit iterator contexts are defined in the table below.

Table 18: Configuration parameters for hit iterator contexts.
Type Name Default Description
int attributeIndex 0 Defines the volume attribute of interest.
float[] values Defines the value(s) of interest.

The hit iterator context must be committed before being used.

Again, a user allocated buffer must be provided, and a VKLHitIterator of the desired width must be initialized:

VKLHitIterator vklInitHitIterator(VKLHitIteratorContext context,
const vkl_vec3f *origin,
const vkl_vec3f *direction,
const vkl_range1f *tRange,

(continues on next page)

12.1. Overview 2105

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

float time,
void *buffer);

VKLHitIterator4 vklInitHitIterator4(const int *valid,
VKLHitIteratorContext context,
const vkl_vvec3f4 *origin,
const vkl_vvec3f4 *direction,
const vkl_vrange1f4 *tRange,
const float *times,
void *buffer);

VKLHitIterator8 vklInitHitIterator8(const int *valid,
VKLHitIteratorContext context,
const vkl_vvec3f8 *origin,
const vkl_vvec3f8 *direction,
const vkl_vrange1f8 *tRange,
const float *times,
void *buffer);

VKLHitIterator16 vklInitHitIterator16(const int *valid,
VKLHitIteratorContext context,
const vkl_vvec3f16 *origin,
const vkl_vvec3f16 *direction,
const vkl_vrange1f16 *tRange,
const float *times,
void *buffer);

Buffer size can be queried with

size_t vklGetHitIteratorSize(VKLHitIteratorContext context);

size_t vklGetHitIteratorSize4(VKLHitIteratorContext context);

size_t vklGetHitIteratorSize8(VKLHitIteratorContext context);

size_t vklGetHitIteratorSize16(VKLHitIteratorContext context);

Open VKL also provides the macro VKL_MAX_HIT_ITERATOR_SIZE as a conservative estimate.

Hits are then queried by looping a call to vklIterateHit as long as the returned lane mask indicates that the iterator
is still within the volume.

int vklIterateHit(VKLHitIterator iterator, VKLHit *hit);

void vklIterateHit4(const int *valid,
VKLHitIterator4 iterator,
VKLHit4 *hit,
int *result);

void vklIterateHit8(const int *valid,
VKLHitIterator8 iterator,
VKLHit8 *hit,
int *result);

(continues on next page)

12.1. Overview 2106

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

void vklIterateHit16(const int *valid,
VKLHitIterator16 iterator,
VKLHit16 *hit,
int *result);

Returned hits consist of a t-value, a volume value (equal to one of the requested values specified in the context), and
an (object space) epsilon value estimating the error of the intersection:

typedef struct
{
float t;
float sample;
float epsilon;

} VKLHit;

typedef struct
{
float t[4];
float sample[4];
float epsilon[4];

} VKLHit4;

typedef struct
{
float t[8];
float sample[8];
float epsilon[8];

} VKLHit8;

typedef struct
{
float t[16];
float sample[16];
float epsilon[16];

} VKLHit16;

For both interval and hit iterators, only the vector-wide API for the native SIMD width (determined via
vklGetNativeSIMDWidth can be called. The scalar versions are always valid. This restriction will likely be lifted in
the future.

Performance Recommendations

MXCSR control and status register

It is strongly recommended to have the Flush to Zero and Denormals are Zero mode of the MXCSR control
and status register enabled for each thread before calling the sampling, gradient, or interval API functions. Oth-
erwise, under some circumstances special handling of denormalized floating point numbers can significantly re-
duce application and Open VKL performance. The device parameter flushDenormals or environment variable
OPENVKL_FLUSH_DENORMALS can be used to toggle this mode; by default it is enabled. Alternatively, when using
Open VKL together with the Intel® Threading Building Blocks, it is sufficient to execute the following code at the
beginning of the application main thread (before the creation of the tbb::task_scheduler_init object):

12.1. Overview 2107

oneAPI Specification, Release 1.1-rev-1

#include <xmmintrin.h>
#include <pmmintrin.h>
...
_MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
_MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);

If using a different tasking system, make sure each thread calling into Open VKL has the proper mode set.

Iterator Allocation

vklInitIntervalIterator and vklInitHitIterator expect a user allocated buffer. While this buffer can be
allocated by any means, we expect iterators to be used in inner loops and advise against heap allocation in that case.
Applications may provide high performance memory pools, but as a preferred alternative we recommend stack allocated
buffers.

In C99, variable length arrays provide an easy way to achieve this:

const size_t bufferSize = vklGetIntervalIteratorSize(sampler);
char buffer[bufferSize];

Note that the call to vklGetIntervalIteratorSize or vklGetHitIteratorSize should not appear in an inner
loop as it is relatively costly. The return value depends on the volume type, target architecture, and parameters to
sampler.

In C++, variable length arrays are not part of the standard. Here, users may rely on alloca and similar functions:

#include <alloca.h>
const size_t bufferSize = vklGetIntervalIteratorSize(sampler);
void *buffer = alloca(bufferSize);

Similarly for ISPC, variable length arrays are not supported, but alloca may be used:

const uniform size_t bufferSize = vklGetIntervalIteratorSizeV(sampler);
void *uniform buffer = alloca(bufferSize);

Users should understand the implications of alloca. In particular, alloca does check available stack space and may
result in stack overflow. buffer also becomes invalid at the end of the scope. As one consequence, it cannot be returned
from a function. On Windows, _malloca is a safer option that performs additional error checking, but requires the use
of _freea.

Applications may instead rely on the VKL_MAX_INTERVAL_ITERATOR_SIZE and VKL_MAX_HIT_ITERATOR_SIZE
macros. For example, in ISPC:

uniform unsigned int8 buffer[VKL_MAX_INTERVAL_ITERATOR_SIZE];

These values are majorants over all devices and volume types. Note that Open VKL attempts to detect the target SIMD
width using TARGET_WIDTH, returning smaller buffer sizes for narrow architectures. However, Open VKL may fall
back to the largest buffer size over all targets.

12.1. Overview 2108

oneAPI Specification, Release 1.1-rev-1

Multi-attribute Volume Data Layout

Open VKL provides flexible managed data APIs that allow applications to specify input data in various formats and
layouts. When shared buffers are used (dataCreationFlags = VKL_DATA_SHARED_BUFFER), Open VKL will use
the application-owned memory directly, respecting the input data layout. Shared buffers therefore allow applications
to strategically select the best layout for multi-attribute volume data and expected sampling behavior.

For volume attributes that are sampled individually (e.g. using vklComputeSample[4,8,16,N]()), it is recom-
mended to use a structure-of-arrays layout. That is, each attribute’s data should be compact in contiguous memory. This
can be accomplished by simply using Open VKL owned data objects (dataCreationFlags = VKL_DATA_DEFAULT),
or by using a natural byteStride for shared buffers.

For volume attributes that are sampled simultaneously (e.g. using vklComputeSampleM[4,8,16,N]()), it is rec-
ommended to use an array-of-structures layout. That is, data for these attributes should be provided per voxel in a
contiguous layout. This is accomplished using shared buffers for each attribute with appropriate byte strides. For
example, for a three attribute structured volume representing a velocity field, the data can be provided as:

// used in Open VKL shared buffers, so must not be freed by application
std::vector<vkl_vec3f> velocities(numVoxels);

for (auto &v : velocities) {
v.x = ...;
v.y = ...;
v.z = ...;

}

std::vector<VKLData> attributes;

attributes.push_back(vklNewData(device,
velocities.size(),
VKL_FLOAT,
&velocities[0].x,
VKL_DATA_SHARED_BUFFER,
sizeof(vkl_vec3f)));

attributes.push_back(vklNewData(device,
velocities.size(),
VKL_FLOAT,
&velocities[0].y,
VKL_DATA_SHARED_BUFFER,
sizeof(vkl_vec3f)));

attributes.push_back(vklNewData(device,
velocities.size(),
VKL_FLOAT,
&velocities[0].z,
VKL_DATA_SHARED_BUFFER,
sizeof(vkl_vec3f)));

VKLData attributesData =
vklNewData(device, attributes.size(), VKL_DATA, attributes.data());

for (auto &attribute : attributes)
vklRelease(attribute);

(continues on next page)

12.1. Overview 2109

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

VKLVolume volume = vklNewVolume(device, "structuredRegular");

vklSetData(volume, "data", attributesData);
vklRelease(attributesData);

// set other volume parameters...

vklCommit(volume);

These are general recommendations for common scenarios; it is still recommended to evaluate performance of different
volume data layouts for your application’s particular use case.

Open Image Denoise

Open Image Denoise is an open, high-quality, efficient, and easy-to-use denoising library that allows one to significantly
reduce rendering times in ray tracing based rendering applications.

Introduction

Open Image Denoise is an open, high-quality, efficient, and easy-to-use denoising library that allows one to significantly
reduce rendering times in ray tracing based rendering applications. It filters out the Monte Carlo noise inherent to
stochastic ray tracing methods like path tracing, reducing the amount of necessary samples per pixel by even multiple
orders of magnitude (depending on the desired closeness to the ground truth). A simple but flexible C/C++ API ensures
that the library can be easily integrated into most existing or new rendering solutions.

At the heart of the Open Image Denoise library is a collection of efficient deep learning based denoising filters, which
were trained to handle a wide range of samples per pixel (spp), from 1 spp to almost fully converged. Thus it is
suitable for both preview and final-frame rendering. The filters can denoise images either using only the noisy color
(beauty) buffer, or, to preserve as much detail as possible, can optionally utilize auxiliary feature buffers as well (e.g.
albedo, normal). Such buffers are supported by most renderers as arbitrary output variables (AOVs) or can be usually
implemented with little effort.

Although the library ships with a set of pre-trained filter models, it is not mandatory to use these. To optimize a filter for
a specific renderer, sample count, content type, scene, etc., it is possible to train the model using the included training
toolkit and user-provided image datasets.

Open Image Denoise API

Open Image Denoise provides a C99 API (also compatible with C++) and a C++11 wrapper API as well. For simplicity,
this document mostly refers to the C99 version of the API.

The API is designed in an object-oriented manner, e.g. it contains device objects (OIDNDevice type), buffer objects
(OIDNBuffer type), and filter objects (OIDNFilter type). All objects are reference-counted, and handles can be re-
leased by calling the appropriate release function (e.g. oidnReleaseDevice) or retained by incrementing the reference
count (e.g. oidnRetainDevice).

An important aspect of objects is that setting their parameters do not have an immediate effect (with a few exceptions).
Instead, objects with updated parameters are in an unusable state until the parameters get explicitly committed to a
given object. The commit semantic allows for batching up multiple small changes, and specifies exactly when changes
to objects will occur.

12.1. Overview 2110

oneAPI Specification, Release 1.1-rev-1

All API calls are thread-safe, but operations that use the same device will be serialized, so the amount of API calls
from different threads should be minimized.

Examples

To have a quick overview of the C99 and C++11 APIs, see the following simple example code snippets.

Basic denoising (C99 API)

#include <OpenImageDenoise/oidn.h>
...
// Create an Intel Open Image Denoise device
OIDNDevice device = oidnNewDevice(OIDN_DEVICE_TYPE_DEFAULT);
oidnCommitDevice(device);

// Create a filter for denoising a beauty (color) image using optional auxiliary images␣
→˓too
OIDNFilter filter = oidnNewFilter(device, "RT"); // generic ray tracing filter
oidnSetSharedFilterImage(filter, "color", colorPtr,

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0); // beauty
oidnSetSharedFilterImage(filter, "albedo", albedoPtr,

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0); // auxiliary
oidnSetSharedFilterImage(filter, "normal", normalPtr,

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0); // auxiliary
oidnSetSharedFilterImage(filter, "output", outputPtr,

OIDN_FORMAT_FLOAT3, width, height, 0, 0, 0); // denoised beauty
oidnSetFilter1b(filter, "hdr", true); // beauty image is HDR
oidnCommitFilter(filter);

// Filter the image
oidnExecuteFilter(filter);

// Check for errors
const char* errorMessage;
if (oidnGetDeviceError(device, &errorMessage) != OIDN_ERROR_NONE)

printf("Error: %s\n", errorMessage);

// Cleanup
oidnReleaseFilter(filter);
oidnReleaseDevice(device);

12.1. Overview 2111

oneAPI Specification, Release 1.1-rev-1

Basic denoising (C++11 API)

#include <OpenImageDenoise/oidn.hpp>
...
// Create an Intel Open Image Denoise device
oidn::DeviceRef device = oidn::newDevice();
device.commit();

// Create a filter for denoising a beauty (color) image using optional auxiliary images␣
→˓too
oidn::FilterRef filter = device.newFilter("RT"); // generic ray tracing filter
filter.setImage("color", colorPtr, oidn::Format::Float3, width, height); // beauty
filter.setImage("albedo", albedoPtr, oidn::Format::Float3, width, height); // auxiliary
filter.setImage("normal", normalPtr, oidn::Format::Float3, width, height); // auxiliary
filter.setImage("output", outputPtr, oidn::Format::Float3, width, height); // denoised␣
→˓beauty
filter.set("hdr", true); // beauty image is HDR
filter.commit();

// Filter the image
filter.execute();

// Check for errors
const char* errorMessage;
if (device.getError(errorMessage) != oidn::Error::None)
std::cout << "Error: " << errorMessage << std::endl;

Denoising with prefiltering (C++11 API)

// Create a filter for denoising a beauty (color) image using prefiltered auxiliary␣
→˓images too
oidn::FilterRef filter = device.newFilter("RT"); // generic ray tracing filter
filter.setImage("color", colorPtr, oidn::Format::Float3, width, height); // beauty
filter.setImage("albedo", albedoPtr, oidn::Format::Float3, width, height); // auxiliary
filter.setImage("normal", normalPtr, oidn::Format::Float3, width, height); // auxiliary
filter.setImage("output", outputPtr, oidn::Format::Float3, width, height); // denoised␣
→˓beauty
filter.set("hdr", true); // beauty image is HDR
filter.set("cleanAux", true); // auxiliary images will be prefiltered
filter.commit();

// Create a separate filter for denoising an auxiliary albedo image (in-place)
oidn::FilterRef albedoFilter = device.newFilter("RT"); // same filter type as for beauty
albedoFilter.setImage("albedo", albedoPtr, oidn::Format::Float3, width, height);
albedoFilter.setImage("output", albedoPtr, oidn::Format::Float3, width, height);
albedoFilter.commit();

// Create a separate filter for denoising an auxiliary normal image (in-place)
oidn::FilterRef normalFilter = device.newFilter("RT"); // same filter type as for beauty
normalFilter.setImage("normal", normalPtr, oidn::Format::Float3, width, height);
normalFilter.setImage("output", normalPtr, oidn::Format::Float3, width, height);

(continues on next page)

12.1. Overview 2112

oneAPI Specification, Release 1.1-rev-1

(continued from previous page)

normalFilter.commit();

// Prefilter the auxiliary images
albedoFilter.execute();
normalFilter.execute();

// Filter the beauty image
filter.execute();

Device

Intel Open Image Denoise supports a device concept, which allows different components of the application to use the
Open Image Denoise API without interfering with each other. An application first needs to create a device with

OIDNDevice oidnNewDevice(OIDNDeviceType type);

where the type enumeration maps to a specific device implementation, which can be one of the following:

Table 19: Supported device types, i.e., valid constants of type
OIDNDeviceType.

Name Description
OIDN_DEVICE_TYPE_DEFAULT select the approximately fastest device
OIDN_DEVICE_TYPE_CPU CPU device (requires SSE4.1 support or Apple Silicon)

Once a device is created, you can call

void oidnSetDevice1b(OIDNDevice device, const char* name, bool value);
void oidnSetDevice1i(OIDNDevice device, const char* name, int value);
bool oidnGetDevice1b(OIDNDevice device, const char* name);
int oidnGetDevice1i(OIDNDevice device, const char* name);

to set and get parameter values on the device. Note that some parameters are constants, thus trying to set them is an
error. See the tables below for the parameters supported by devices.

Table 20: Parameters supported by all devices.
Type Name De-

fault
Description

const
int

version combined version number (major.minor.patch) with two decimal digits per compo-
nent

const
int

versionMajor major version number

const
int

versionMinor minor version number

const
int

versionPatch patch version number

int verbose 0 verbosity level of the console output between 0–4; when set to 0, no output is
printed, when set to a higher level more output is printed

12.1. Overview 2113

oneAPI Specification, Release 1.1-rev-1

Table 21: Additional parameters supported only by CPU devices.
Type Name De-

fault
Description

int numThreads0 maximum number of threads which the library should use; 0 will set it automatically
to get the best performance

bool setAffinitytrue enables thread affinitization (pinning software threads to hardware threads) if it is nec-
essary for achieving optimal performance

Note that the CPU device heavily relies on setting the thread affinities to achieve optimal performance, so it is
highly recommended to leave this option enabled. However, this may interfere with the application if that also
sets the thread affinities, potentially causing performance degradation. In such cases, the recommended solution
is to either disable setting the affinities in the application or in Intel Open Image Denoise, or to always set/reset
the affinities before/after each parallel region in the application (e.g., if using TBB, with tbb::task_arena and
tbb::task_scheduler_observer).

Once parameters are set on the created device, the device must be committed with

void oidnCommitDevice(OIDNDevice device);

This device can then be used to construct further objects, such as buffers and filters. Note that a device can be committed
only once during its lifetime. Before the application exits, it should release all devices by invoking

void oidnReleaseDevice(OIDNDevice device);

Note that Intel Open Image Denoise uses reference counting for all object types, so this function decreases the reference
count of the device, and if the count reaches 0 the device will automatically get deleted. It is also possible to increase
the reference count by calling

void oidnRetainDevice(OIDNDevice device);

An application typically creates only a single device. If required differently, it should only use a small number of
devices at any given time.

Error Handling

Each user thread has its own error code per device. If an error occurs when calling an API function, this error code is
set to the occurred error if it stores no previous error. The currently stored error can be queried by the application via

OIDNError oidnGetDeviceError(OIDNDevice device, const char** outMessage);

where outMessage can be a pointer to a C string which will be set to a more descriptive error message, or it can
be NULL. This function also clears the error code, which assures that the returned error code is always the first error
occurred since the last invocation of oidnGetDeviceError on the current thread. Note that the optionally returned
error message string is valid only until the next invocation of the function.

Alternatively, the application can also register a callback function of type

typedef void (*OIDNErrorFunction)(void* userPtr, OIDNError code, const char* message);

via

void oidnSetDeviceErrorFunction(OIDNDevice device, OIDNErrorFunction func, void*␣
→˓userPtr);

12.1. Overview 2114

oneAPI Specification, Release 1.1-rev-1

to get notified when errors occur. Only a single callback function can be registered per device, and further invocations
overwrite the previously set callback function, which do not require also calling the oidnCommitDevice function.
Passing NULL as function pointer disables the registered callback function. When the registered callback function is
invoked, it gets passed the user-defined payload (userPtr argument as specified at registration time), the error code
(code argument) of the occurred error, as well as a string (message argument) that further describes the error. The
error code is always set even if an error callback function is registered. It is recommended to always set a error callback
function, to detect all errors.

When the device construction fails, oidnNewDevice returns NULL as device. To detect the error code of a such
failed device construction, pass NULL as device to the oidnGetDeviceError function. For all other invocations of
oidnGetDeviceError, a proper device handle must be specified.

The following errors are currently used by Intel Open Image Denoise:

Table 22: Possible error codes, i.e., valid constants of type OIDNError.
Name Description
OIDN_ERROR_NONE no error occurred
OIDN_ERROR_UNKNOWN an unknown error occurred
OIDN_ERROR_INVALID_ARGUMENT an invalid argument was specified
OIDN_ERROR_INVALID_OPERATION the operation is not allowed
OIDN_ERROR_OUT_OF_MEMORY not enough memory to execute the operation
OIDN_ERROR_UNSUPPORTED_HARDWARE the hardware (e.g., CPU) is not supported
OIDN_ERROR_CANCELLED the operation was cancelled by the user

Buffer

Large data like images can be passed to Intel Open Image Denoise either via pointers to memory allocated and managed
by the user (this is the recommended, often easier and more efficient approach, if supported by the device) or by creating
buffer objects (supported by all devices). To create a new data buffer with memory allocated and owned by the device,
holding byteSize number of bytes, use

OIDNBuffer oidnNewBuffer(OIDNDevice device, size_t byteSize);

The created buffer is bound to the specified device (device argument). The specified number of bytes are allocated at
buffer construction time and deallocated when the buffer is destroyed.

It is also possible to create a “shared” data buffer with memory allocated and managed by the user with

OIDNBuffer oidnNewSharedBuffer(OIDNDevice device, void* ptr, size_t byteSize);

where ptr points to the user-managed memory and byteSize is its size in bytes. At buffer construction time no buffer
data is allocated, but the buffer data provided by the user is used. The buffer data must remain valid for as long as the
buffer may be used, and the user is responsible to free the buffer data when no longer required.

Similar to device objects, buffer objects are also reference-counted and can be retained and released by calling the
following functions:

void oidnRetainBuffer(OIDNBuffer buffer);
void oidnReleaseBuffer(OIDNBuffer buffer);

The size of the buffer in bytes can be queried using

size_t oidnGetBufferSize(OIDNBuffer buffer);

Accessing the data stored in a buffer object is possible by mapping it into the address space of the application using

12.1. Overview 2115

oneAPI Specification, Release 1.1-rev-1

void* oidnMapBuffer(OIDNBuffer buffer, OIDNAccess access, size_t byteOffset, size_t␣
→˓byteSize)

where access is the desired access mode of the mapped memory, byteOffset is the offset to the beginning of the
mapped memory region in bytes, and byteSize is the number of bytes to map. The function returns a pointer to the
mapped buffer data. If the specified byteSize is 0, the maximum available amount of memory will be mapped. The
access argument must be one of the access modes in the following table:

Table 23: Access modes for memory regions mapped with
oidnMapBuffer, i.e., valid constants of type OIDNAccess.

Name Description
OIDN_ACCESS_READ read-only access
OIDN_ACCESS_WRITE write-only access
OIDN_ACCESS_READ_WRITE read and write access
OIDN_ACCESS_WRITE_DISCARD write-only access but the previous contents will be discarded

After accessing the mapped data in the buffer, the memory region must be unmapped with

void oidnUnmapBuffer(OIDNBuffer buffer, void* mappedPtr);

where mappedPtr must be a pointer returned by a call to oidnMapBuffer for the specified buffer. Any change to the
mapped data is guaranteed to take effect only after unmapping the memory region.

It is also possible to get a pointer directly to the buffer data but this might be valid only on the device the buffer was
created on:

void* oidnGetBufferData(OIDNBuffer buffer);

Data Format

Buffers store opaque data and thus have no information about the type and format of the data. Other objects, e.g. filters,
typically require specifying the format of the data stored in buffers or shared via pointers. This can be done using the
OIDNFormat enumeration type:

Table 24: Supported data formats, i.e., valid constants of type
OIDNFormat.

Name Description
OIDN_FORMAT_UNDEFINED undefined format
OIDN_FORMAT_FLOAT 32-bit floating-point scalar
OIDN_FORMAT_FLOAT[234] 32-bit floating-point [234]-element vector
OIDN_FORMAT_HALF 16-bit floating-point scalar
OIDN_FORMAT_HALF[234] 16-bit floating-point [234]-element vector

12.1. Overview 2116

oneAPI Specification, Release 1.1-rev-1

Filter

Filters are the main objects in Intel Open Image Denoise that are responsible for the actual denoising. The library ships
with a collection of filters which are optimized for different types of images and use cases. To create a filter object, call

OIDNFilter oidnNewFilter(OIDNDevice device, const char* type);

where type is the name of the filter type to create. The supported filter types are documented later in this section.
Once created, filter objects can be retained and released with

void oidnRetainFilter(OIDNFilter filter);
void oidnReleaseFilter(OIDNFilter filter);

After creating a filter, it needs to be set up by specifying the input and output images, and potentially setting other
parameter values as well.

To bind images to the filter, you can use one of the following functions:

void oidnSetFilterImage(OIDNFilter filter, const char* name,
OIDNBuffer buffer, OIDNFormat format,
size_t width, size_t height,
size_t byteOffset,
size_t bytePixelStride, size_t byteRowStride);

void oidnSetSharedFilterImage(OIDNFilter filter, const char* name,
void* ptr, OIDNFormat format,
size_t width, size_t height,
size_t byteOffset,
size_t bytePixelStride, size_t byteRowStride);

It is possible to specify either a data buffer object (buffer argument) with the oidnSetFilterImage function, or
directly a pointer to shared user-managed data (ptr argument) with the oidnSetSharedFilterImage function.

In both cases, you must also specify the name of the image parameter to set (name argument, e.g. "color", "output"),
the pixel format (format argument), the width and height of the image in number of pixels (width and height argu-
ments), the starting offset of the image data (byteOffset argument), the pixel stride (bytePixelStride argument)
and the row stride (byteRowStride argument), in number of bytes.

The row stride must be an integer multiple of the pixel stride. If the pixels and/or rows are stored contiguously (tightly
packed without any gaps), you can set bytePixelStride and/or byteRowStride to 0 to let the library compute the
actual strides automatically, as a convenience.

Images support only the OIDN_FORMAT_FLOAT3 and OIDN_FORMAT_HALF3 pixel formats. Custom image layouts with
extra channels (e.g. alpha channel) or other data are supported as well by specifying a non-zero pixel stride. This way,
expensive image layout conversion and copying can be avoided but the extra data will be ignored by the filter.

To unbind a previously set image from the filter, call

void oidnRemoveFilterImage(OIDNFilter filter, const char* name);

Some special data used by filters are opaque/untyped (e.g. trained model weights blobs), which can be specified with
the oidnSetSharedFilterData function:

void oidnSetSharedFilterData(OIDNFilter filter, const char* name,
void* ptr, size_t byteSize);

12.1. Overview 2117

oneAPI Specification, Release 1.1-rev-1

Modifying the contents of an opaque data parameter after binding it to a filter is allowed but the filter needs to be
notified that the data has been updated by calling

void oidnUpdateFilterData(OIDNFilter filter, const char* name);

Unbinding opaque data from the filter can be performed with

void oidnRemoveFilterData(OIDNFilter filter, const char* name);

Filters may have parameters other than buffers as well, which you can set and get using the following functions:

void oidnSetFilter1b(OIDNFilter filter, const char* name, bool value);
void oidnSetFilter1i(OIDNFilter filter, const char* name, int value);
void oidnSetFilter1f(OIDNFilter filter, const char* name, float value);
bool oidnGetFilter1b(OIDNFilter filter, const char* name);
int oidnGetFilter1i(OIDNFilter filter, const char* name);
float oidnGetFilter1f(OIDNFilter filter, const char* name);

Filters support a progress monitor callback mechanism that can be used to report progress of filter operations and
to cancel them as well. Calling oidnSetFilterProgressMonitorFunction registers a progress monitor callback
function (func argument) with payload (userPtr argument) for the specified filter (filter argument):

typedef bool (*OIDNProgressMonitorFunction)(void* userPtr, double n);

void oidnSetFilterProgressMonitorFunction(OIDNFilter filter,
OIDNProgressMonitorFunction func,
void* userPtr);

Only a single callback function can be registered per filter, and further invocations overwrite the previously set callback
function. Passing NULL as function pointer disables the registered callback function. Once registered, Intel Open Im-
age Denoise will invoke the callback function multiple times during filter operations, by passing the payload as set at
registration time (userPtr argument), and a double in the range [0, 1] which estimates the progress of the operation
(n argument). When returning true from the callback function, Intel Open Image Denoise will continue the filter op-
eration normally. When returning false, the library will cancel the filter operation with the OIDN_ERROR_CANCELLED
error code.

After setting all necessary parameters for the filter, the changes must be commmitted by calling

void oidnCommitFilter(OIDNFilter filter);

The parameters can be updated after committing the filter, but it must be re-committed for any new changes to take
effect. Committing major changes to the filter (e.g. setting new image parameters, changing the image resolution) can
be expensive, and thus should not be done frequently (e.g. per frame).

Finally, an image can be filtered by executing the filter with

void oidnExecuteFilter(OIDNFilter filter);

which will read the input image data from the specified buffers and produce the denoised output image.

In the following we describe the different filters that are currently implemented in Intel Open Image Denoise.

12.1. Overview 2118

oneAPI Specification, Release 1.1-rev-1

RT

The RT (ray tracing) filter is a generic ray tracing denoising filter which is suitable for denoising images rendered with
Monte Carlo ray tracing methods like unidirectional and bidirectional path tracing. It supports depth of field and motion
blur as well, but it is not temporally stable. The filter is based on a convolutional neural network (CNN), and it aims
to provide a good balance between denoising performance and quality. The filter comes with a set of pre-trained CNN
models that work well with a wide range of ray tracing based renderers and noise levels.

[Example noisy beauty image rendered using unidirectional path tracing (4 samples per pixel). Scene by Evermo-
tion.][imgMazdaColor]

[Example output beauty image denoised using prefiltered auxiliary feature images (albedo and normal)
too.][imgMazdaDenoised]

For denoising beauty images, it accepts either a low dynamic range (LDR) or high dynamic range (HDR) image (color)
as the main input image. In addition to this, it also accepts auxiliary feature images, albedo and normal, which are
optional inputs that usually improve the denoising quality significantly, preserving more details.

It is possible to denoise auxiliary images as well, in which case only the respective auxiliary image has to be specified as
input, instead of the beauty image. This can be done as a prefiltering step to further improve the quality of the denoised
beauty image.

The RT filter has certain limitations regarding the supported input images. Most notably, it cannot denoise images
that were not rendered with ray tracing. Another important limitation is related to anti-aliasing filters. Most renderers
use a high-quality pixel reconstruction filter instead of a trivial box filter to minimize aliasing artifacts (e.g. Gaussian,
Blackman-Harris). The RT filter does support such pixel filters but only if implemented with importance sampling.
Weighted pixel sampling (sometimes called splatting) introduces correlation between neighboring pixels, which causes
the denoising to fail (the noise will not be filtered), thus it is not supported.

The filter can be created by passing "RT" to the oidnNewFilter function as the filter type. The filter supports the
parameters listed in the table below. All specified images must have the same dimensions. The output image can be
one of the input images (i.e. in-place denoising is supported). See section Examples for simple code snippets that
demonstrate the usage of the filter.

12.1. Overview 2119

oneAPI Specification, Release 1.1-rev-1

Table 25: Parameters supported by the RT filter.
Type NameDe-

fault
Description

Imagecolorop-
tional

input beauty image (3 channels, LDR values in [0, 1] or HDR values in [0, +∞), values being
interpreted such that, after scaling with the inputScale parameter, a value of 1 corresponds
to a luminance level of 100 cd/m2)

Imagealbedoop-
tional

input auxiliary image containing the albedo per pixel (3 channels, values in [0, 1])

Imagenormalop-
tional

input auxiliary image containing the shading normal per pixel (3 channels, world-space or view-
space vectors with arbitrary length, values in [-1, 1])

Imageoutput output image (3 channels); can be one of the input images
bool hdr false whether the main input image is HDR
bool srgb false whether the main input image is encoded with the sRGB (or 2.2 gamma) curve (LDR only) or

is linear; the output will be encoded with the same curve
floatinputScaleNaN scales values in the main input image before filtering, without scaling the output too, which can

be used to map color or auxiliary feature values to the expected range, e.g. for mapping HDR
values to physical units (which affects the quality of the output but not the range of the output
values); if set to NaN, the scale is computed implicitly for HDR images or set to 1 otherwise

bool cleanAuxfalse whether the auxiliary feature (albedo, normal) images are noise-free; recommended for highest
quality but should not be enabled for noisy auxiliary images to avoid residual noise

Data weightsop-
tional

trained model weights blob

int maxMemoryMB3000 approximate maximum scratch memory to use in megabytes (actual memory usage may be
higher); limiting memory usage may cause slower denoising due to internally splitting the im-
age into overlapping tiles

const
int

alignment when manually denoising in tiles, the tile size and offsets should be multiples of this amount
of pixels to avoid artifacts; when denoising HDR images inputScale must be set by the user
to avoid seam artifacts

const
int

overlap when manually denoising in tiles, the tiles should overlap by this amount of pixels

Using auxiliary feature images like albedo and normal helps preserving fine details and textures in the image thus can
significantly improve denoising quality. These images should typically contain feature values for the first hit (i.e. the
surface which is directly visible) per pixel. This works well for most surfaces but does not provide any benefits for
reflections and objects visible through transparent surfaces (compared to just using the color as input). However, this
issue can be usually fixed by storing feature values for a subsequent hit (i.e. the reflection and/or refraction) instead of
the first hit. For example, it usually works well to follow perfect specular (delta) paths and store features for the first
diffuse or glossy surface hit instead (e.g. for perfect specular dielectrics and mirrors). This can greatly improve the
quality of reflections and transmission. We will describe this approach in more detail in the following subsections.

The auxiliary feature images should be as noise-free as possible. It is not a strict requirement but too much noise in the
feature images may cause residual noise in the output. Ideally, these should be completely noise-free. If this is the case,
this should be hinted to the filter using the cleanAux parameter to ensure the highest possible image quality. But this
parameter should be used with care: if enabled, any noise present in the auxiliary images will end up in the denoised
image as well, as residual noise. Thus, cleanAux should be enabled only if the auxiliary images are guaranteed to be
noise-free.

Usually it is difficult to provide clean feature images, and some residual noise might be present in the output even with
cleanAux being disabled. To eliminate this noise and to even improve the sharpness of texture details, the auxiliary
images should be first denoised in a prefiltering step, as mentioned earlier. Then, these denoised auxiliary images could
be used for denoising the beauty image. Since these are now noise-free, the cleanAux parameter should be enabled.
See section Denoising with prefiltering (C++11 API) for a simple code example. Prefiltering makes denoising much
more expensive but if there are multiple color AOVs to denoise, the prefiltered auxiliary images can be reused for

12.1. Overview 2120

oneAPI Specification, Release 1.1-rev-1

denoising multiple AOVs, amortizing the cost of the prefiltering step.

Thus, for final frame denoising, where the best possible image quality is required, it is recommended to prefilter the
auxiliary features if they are noisy and enable the cleanAux parameter. Denoising with noisy auxiliary features should
be reserved for previews and interactive rendering.

All auxiliary images should use the same pixel reconstruction filter as the beauty image. Using a properly anti-aliased
beauty image but aliased albedo or normal images will likely introduce artifacts around edges.

Albedo

The albedo image is the feature image that usually provides the biggest quality improvement. It should contain the
approximate color of the surfaces independent of illumination and viewing angle.

[Example albedo image obtained using the first hit. Note that the albedos of all transparent surfaces are 1.][imgMaz-
daAlbedoFirstHit]

[Example albedo image obtained using the first diffuse or glossy (non-delta) hit. Note that the albedos of per-
fect specular (delta) transparent surfaces are computed as the Fresnel blend of the reflected and transmitted albe-
dos.][imgMazdaAlbedoNonDeltaHit]

For simple matte surfaces this means using the diffuse color/texture as the albedo. For other, more complex surfaces it
is not always obvious what is the best way to compute the albedo, but the denoising filter is flexible to a certain extent
and works well with differently computed albedos. Thus it is not necessary to compute the strict, exact albedo values
but must be always between 0 and 1.

For metallic surfaces the albedo should be either the reflectivity at normal incidence (e.g. from the artist friendly
metallic Fresnel model) or the average reflectivity; or if these are constant (not textured) or unknown, the albedo can
be simply 1 as well.

The albedo for dielectric surfaces (e.g. glass) should be either 1 or, if the surface is perfect specular (i.e. has a delta
BSDF), the Fresnel blend of the reflected and transmitted albedos. The latter usually works better but only if it does
not introduce too much noise or the albedo is prefiltered. If noise is an issue, we recommend to split the path into a
reflected and a transmitted path at the first hit, and perhaps fall back to an albedo of 1 for subsequent dielectric hits.
The reflected albedo in itself can be used for mirror-like surfaces as well.

The albedo for layered surfaces can be computed as the weighted sum of the albedos of the individual layers. Non-
absorbing clear coat layers can be simply ignored (or the albedo of the perfect specular reflection can be used as well)
but absorption should be taken into account.

Normal

The normal image should contain the shading normals of the surfaces either in world-space or view-space. It is recom-
mended to include normal maps to preserve as much detail as possible.

[Example normal image obtained using the first hit (the values are actually in [−1, 1] but were mapped to [0, 1] for
illustration purposes).][imgMazdaNormalFirstHit]

[Example normal image obtained using the first diffuse or glossy (non-delta) hit. Note that the normals of per-
fect specular (delta) transparent surfaces are computed as the Fresnel blend of the reflected and transmitted nor-
mals.][imgMazdaNormalNonDeltaHit]

Just like any other input image, the normal image should be anti-aliased (i.e. by accumulating the normalized normals
per pixel). The final accumulated normals do not have to be normalized but must be in the [-1, 1] range (i.e. normals
mapped to [0, 1] are not acceptable and must be remapped to [−1, 1]).

Similar to the albedo, the normal can be stored for either the first or a subsequent hit (if the first hit has a perfect
specular/delta BSDF).

12.1. Overview 2121

oneAPI Specification, Release 1.1-rev-1

Weights

Instead of using the built-in trained models for filtering, it is also possible to specify user-trained models at runtime.
This can be achieved by passing the model weights blob corresponding to the specified set of features and other filter
parameters, produced by the included training tool. See Section [Training] for details.

RTLightmap

The RTLightmap filter is a variant of the RT filter optimized for denoising HDR and normalized directional (e.g. spher-
ical harmonics) lightmaps. It does not support LDR images.

The filter can be created by passing "RTLightmap" to the oidnNewFilter function as the filter type. The filter
supports the following parameters:

Table 26: Parameters supported by the RTLightmap filter.
Type Name De-

fault
Description

Imagecolor input beauty image (3 channels, HDR values in [0, +∞), interpreted such that, after scaling
with the inputScale parameter, a value of 1 corresponds to aluminance level of 100 cd/m2;
directional values in [-1, 1])

Imageoutput output image (3 channels); can be one of the input images
bool directionalfalse whether the input contains normalized coefficients (in [-1, 1]) of a directional lightmap

(e.g. normalized L1 or higher spherical harmonics band with the L0 band divided out); if the
range of the coefficients is different from [-1, 1], the inputScale parameter can be used to
adjust the range without changing the stored values

floatinputScaleNaN scales input color values before filtering, without scaling the output too, which can be used to
map color values to the expected range, e.g. for mapping HDR values to physical units (which
affects the quality of the output but not the range of the output values); if set to NaN, the scale
is computed implicitly for HDR images or set to 1 otherwise

Data weightsop-
tional

trained model weights blob

int maxMemoryMB3000 approximate maximum scratch memory to use in megabytes (actual memory usage may be
higher); limiting memory usage may cause slower denoising due to internally splitting the
image into overlapping tiles

const
int

alignment when manually denoising in tiles, the tile size and offsets should be multiples of this amount
of pixels to avoid artifacts; when denoising HDR images inputScale must be set by the user
to avoid seam artifacts

const
int

overlap when manually denoising in tiles, the tiles should overlap by this amount of pixels

Training

The Intel Open Image Denoise source distribution includes a Python-based neural network training toolkit (located in
the training directory), which can be used to train the denoising filter models with image datasets provided by the
user. This is an advanced feature of the library which usage requires some background knowledge of machine learning
and basic familiarity with deep learning frameworks and toolkits (e.g. PyTorch or TensorFlow, TensorBoard).

The training toolkit consists of the following command-line scripts:

• preprocess.py: Preprocesses training and validation datasets.

• train.py: Trains a model using preprocessed datasets.

12.1. Overview 2122

oneAPI Specification, Release 1.1-rev-1

• infer.py: Performs inference on a dataset using the specified training result.

• export.py: Exports a training result to the runtime model weights format.

• find_lr.py: Tool for finding the optimal minimum and maximum learning rates.

• visualize.py: Invokes TensorBoard for visualizing statistics of a training result.

• split_exr.py: Splits a multi-channel EXR image into multiple feature images.

• convert_image.py: Converts a feature image to a different image format.

• compare_image.py: Compares two feature images using the specified quality metrics.

Prerequisites

Before you can run the training toolkit you need the following prerequisites:

• Linux (other operating systems are currently not supported)

• Python 3.7 or later

• PyTorch 1.8 or later

• NumPy 1.19 or later

• OpenImageIO 2.1 or later

• TensorBoard 2.4 or later (optional)

Devices

Most scripts in the training toolkit support selecting what kind of device (e.g. CPU, GPU) to use for the computations
(--device or -d option). If multiple devices of the same kind are available (e.g. multiple GPUs), the user can specify
which one of these to use (--device_id or -k option). Additionally, some scripts, like train.py, support data-
parallel execution on multiple devices for faster performance (--num_devices or -n option).

Datasets

A dataset should consist of a collection of noisy and corresponding noise-free reference images. It is possible to have
more than one noisy version of the same image in the dataset, e.g. rendered at different samples per pixel and/or using
different seeds.

The training toolkit expects to have all datasets (e.g. training, validation) in the same parent directory (e.g. data). Each
dataset is stored in its own subdirectory (e.g. train, valid), which can have an arbitrary name.

The images must be stored in OpenEXR format (.exr files), and the filenames must have a specific format but the files
can be stored in an arbitrary directory structure inside the dataset directory. The only restriction is that all versions of
an image (noisy images and the reference image) must be located in the same subdirectory. Each feature of an image
(e.g. color, albedo) must be stored in a separate image file, i.e. multi-channel EXR image files are not supported. If
you have multi-channel EXRs, you can split them into separate images per feature using the included split_exr.py
tool.

An image filename must consist of a base name, a suffix with the number of samples per pixel or whether it is the
reference image (e.g. _0128spp, _ref), the feature type extension (e.g. .hdr, .alb), and the image format extension
(.exr). The exact filename format as a regular expression is the following:

.+_([0-9]+(spp)?|ref|reference|gt|target)\.(hdr|ldr|sh1[xyz]|alb|nrm)\.exr

12.1. Overview 2123

https://pytorch.org/
https://numpy.org/
http://openimageio.org/
https://www.tensorflow.org/tensorboard
https://www.openexr.com/

oneAPI Specification, Release 1.1-rev-1

The number of samples per pixel should be padded with leading zeros to have a fixed number of digits. If the reference
image is not explicitly named as such (i.e. has the number of samples instead), the image with the most samples per
pixel will be considered the reference.

The following image features are supported:

Table 27: Image features supported by the training toolkit.
Feature Description Channels File extension
hdr color (HDR) 3 .hdr.exr
ldr color (LDR) 3 .ldr.exr
sh1 color (normalized L1 spherical harmonics) 3 × 3 images .sh1x.exr, .sh1y.exr, .sh1z.exr
alb albedo 3 .alb.exr
nrm normal 3 .nrm.exr

The following directory tree demonstrates an example root dataset directory (data) containing one dataset (rt_train)
with HDR color and albedo feature images:

data
`-- rt_train

|-- scene1
| |-- view1_0001.alb.exr
| |-- view1_0001.hdr.exr
| |-- view1_0004.alb.exr
| |-- view1_0004.hdr.exr
| |-- view1_8192.alb.exr
| |-- view1_8192.hdr.exr
| |-- view2_0001.alb.exr
| |-- view2_0001.hdr.exr
| |-- view2_8192.alb.exr
| `-- view2_8192.hdr.exr
|-- scene2_000008spp.alb.exr
|-- scene2_000008spp.hdr.exr
|-- scene2_000064spp.alb.exr
|-- scene2_000064spp.hdr.exr
|-- scene2_reference.alb.exr
`-- scene2_reference.hdr.exr

Preprocessing (preprocess.py)

Training and validation datasets can be used only after preprocessing them using the preprocess.py script. This will
convert the specified training (--train_data or -t option) and validation datasets (--valid_data or -v option)
located in the root dataset directory (--data_dir or -D option) to a format that can be loaded more efficiently during
training. All preprocessed datasets will be stored in a root preprocessed dataset directory (--preproc_dir or -P
option).

The preprocessing script requires the set of image features to include in the preprocessed dataset as command-line
arguments. Only these specified features will be available for training but it is not required to use all of them at the
same time. Thus, a single preprocessed dataset can be reused for training multiple models with different combinations
of the preprocessed features.

By default, all input features are assumed to be noisy, including the auxiliary features (e.g. albedo, normal), each having
versions at different samples per pixel. However, it is also possible to train with noise-free auxiliary features, in which
case the reference auxiliary features are used instead of the various noisy ones (--clean_aux option).

12.1. Overview 2124

oneAPI Specification, Release 1.1-rev-1

Preprocessing also depends on the filter that will be trained (e.g. determines which HDR/LDR transfer function has to
be used), which should be also specified (--filter or -f option). The alternative is to manually specify the transfer
function (--transfer or -x option) and other filter-specific parameters, which could be useful for training custom
filters.

For example, to preprocess the training and validation datasets (rt_train and rt_valid) with HDR color, albedo,
and normal image features, for training the RT filter, the following command can be used:

./preprocess.py hdr alb nrm --filter RT --train_data rt_train --valid_data rt_valid

It is possible to preprocess the same dataset multiple times, with possibly different combinations of features and op-
tions. The training script will use the most suitable and most recent preprocessed version depending on the training
parameters.

For more details about using the preprocessing script, including other options, please have a look at the help message:

./preprocess.py -h

Training (train.py)

The filters require separate trained models for each supported combination of input features. Thus, depending on which
combinations of features the user wants to support for a particular filter, one or more models have to be trained.

After preprocessing the datasets, it is possible to start training a model using the train.py script. Similar to the
preprocessing script, the input features must be specified (could be a subset of the preprocessed features), and the
dataset names, directory paths, and the filter can be also passed.

The tool will produce a training result, the name of which can be either specified (--result or -r option) or automat-
ically generated (by default). Each result is stored in its own subdirectory, and these are located in a common parent
directory (--results_dir or -R option). If a training result already exists, the tool will resume training that result
from the latest checkpoint.

The default training hyperparameters should work reasonably well in general, but some adjustments might be necessary
for certain datasets to attain optimal performance, most importantly: the number of epochs (--num_epochs or -e
option), the global mini-batch size (--batch_size or -b option), and the learning rate. The training tool uses a
one-cycle learning rate schedule with cosine annealing, which can be configured by setting the base learning rate
(--learning_rate or --lr option), the maximum learning rate (--max_learning_rate or --max_lr option), and
the percentage of the cycle spent increasing the learning rate (--learning_rate_warmup or --lr_warmup option).

Example usage:

./train.py hdr alb --filter RT --train_data rt_train --valid_data rt_valid --result rt_
→˓hdr_alb

For finding the optimal learning rate range, we recommend using the included find_lr.py script, which trains one
epoch using an increasing learning rate and logs the resulting losses in a comma-separated values (CSV) file. Plotting
the loss curve can show when the model starts to learn (the base learning rate) and when it starts to diverge (the
maximum learning rate).

The model is evaluated with the validation dataset at regular intervals (--num_valid_epochs option), and checkpoints
are also regularly created (--num_save_epochs option) to save training progress. Also, some statistics are logged
(e.g. training and validation losses, learning rate) per epoch, which can be later visualized with TensorBoard by running
the visualize.py script, e.g.:

./visualize.py --result rt_hdr_alb

12.1. Overview 2125

oneAPI Specification, Release 1.1-rev-1

Training is performed with mixed precision (FP16 and FP32) by default, if it supported by the hardware, which makes
training faster and use less memory. However, in some rare cases this might cause some convergence issues. The
training precision can be manually set to FP32 if necessary (--precision or -p option).

Inference (infer.py)

A training result can be tested by performing inference on an image dataset (--input_data or -i option) using the
infer.py script. The dataset does not have to be preprocessed. In addition to the result to use, it is possible to specify
which checkpoint to load as well (-e or --num_epochs option). By default the latest checkpoint is loaded.

The tool saves the output images in a separate directory (--output_dir or -O option) in the requested formats
(--format or -F option). It also evaluates a set of image quality metrics (--metric or -M option), e.g. PSNR, SSIM,
for images that have reference images available. All metrics are computed in tonemapped non-linear sRGB space.
Thus, HDR images are first tonemapped (with Naughty Dog’s Filmic Tonemapper from John Hable’s Uncharted 2:
HDR Lighting presentation) and converted to sRGB before evaluating the metrics.

Example usage:

./infer.py --result rt_hdr_alb --input_data rt_test --format exr png --metric ssim

The inference tool supports prefiltering of auxiliary features as well, which can be performed by specifying the list of
training results for each feature to prefilter (--aux_results or -a option). This is primarily useful for evaluating the
quality of models trained with clean auxiliary features.

Exporting Results (export.py)

The training result produced by the train.py script cannot be immediately used by the main library. It has to be
first exported to the runtime model weights format, a Tensor Archive (TZA) file. Running the export.py script for a
training result (and optionally a checkpoint epoch) will create a binary .tza file in the directory of the result, which
can be either used at runtime through the API or it can be included in the library build by replacing one of the built-in
weights files.

Example usage:

./export.py --result rt_hdr_alb

Image Conversion and Comparison

In addition to the already mentioned split_exr.py script, the toolkit contains a few other image utilities as well.

convert_image.py converts a feature image to a different image format (and/or a different feature, e.g. HDR color to
LDR), performing tonemapping and other transforms as well if needed. For HDR images the exposure can be adjusted
by passing a linear exposure scale (--exposure or -E option). Example usage:

./convert_image.py view1_0004.hdr.exr view1_0004.png --exposure 2.5

The compare_image.py script compares two feature images (preferably having the dataset filename format to correctly
detect the feature) using the specified image quality metrics, similar to the infer.py tool. Example usage:

./compare_image.py view1_0004.hdr.exr view1_8192.hdr.exr --exposure 2.5 --metric mse ssim

12.1. Overview 2126

oneAPI Specification, Release 1.1-rev-1

OSPRay

OSPRay is a scalable, and portable ray tracing engine for high-performance, high-fidelity visualization.

Introduction

OSPRay is a scalable, and portable ray tracing engine for high-performance, high-fidelity visualization.

The purpose of OSPRay is to provide an open, powerful, and easy-to-use rendering library that allows one to easily build
applications that use ray tracing based rendering for interactive applications (including both surface- and volume-based
visualizations).

OSPRay API

To access the OSPRay API you first need to include the OSPRay header

#include "ospray/ospray.h"

where the API is compatible with C99 and C++.

Initialization and Shutdown

To use the API, OSPRay must be initialized with a “device”. A device is the object which implements the API. Creating
and initializing a device can be done in either of two ways: command line arguments using ospInit or manually
instantiating a device and setting parameters on it.

Command Line Arguments

The first is to do so by giving OSPRay the command line from main() by calling

OSPError ospInit(int *argc, const char **argv);

OSPRay parses (and removes) its known command line parameters from your application’s main function. For an
example see the tutorial. For possible error codes see section Error Handling and Status Messages. It is important to
note that the arguments passed to ospInit() are processed in order they are listed. The following parameters (which
are prefixed by convention with “--osp:”) are understood:

12.1. Overview 2127

oneAPI Specification, Release 1.1-rev-1

Table 28: Command line parameters accepted by OSPRay’s ospInit.
Parameter Description
--osp:debug enables various extra checks and debug output, and disables multi-threading
--osp:num-threads=<n>use n threads instead of per default using all detected hardware threads
--osp:log-level=<str>set logging level; valid values (in order of severity) are none, error, warning, info, and

debug
--osp:warn-as-errorsend warning and error messages through the error callback, otherwise send warning

messages through the message callback; must have sufficient logLevel to enable warnings
--osp:verbose shortcut for --osp:log-level=info and enable debug output on cout, error output on

cerr
--osp:vv shortcut for --osp:log-level=debug and enable debug output on cout, error output on

cerr
--osp:load-modules=<name>[,
...]

load one or more modules during initialization; equivalent to calling
ospLoadModule(name)

--osp:log-output=<dst>convenience for setting where status messages go; valid values for dst are cerr and cout
--osp:error-output=<dst>convenience for setting where error messages go; valid values for dst are cerr and cout
--osp:device=<name>use name as the type of device for OSPRay to create; e.g., --osp:device=cpu gives you

the default cpu device; Note if the device to be used is defined in a module, remember to
pass --osp:load-modules=<name> first

--osp:set-affinity=<n>if 1, bind software threads to hardware threads; 0 disables binding; default is 1 on KNL
and 0 otherwise

--osp:device-params=<param>:<value>[,
...]

set one or more other device parameters; equivalent to calling ospDeviceSet*(param,
value)

Manual Device Instantiation

The second method of initialization is to explicitly create the device and possibly set parameters. This method looks
almost identical to how other objects are created and used by OSPRay (described in later sections). The first step is to
create the device with

OSPDevice ospNewDevice(const char *type);

where the type string maps to a specific device implementation. OSPRay always provides the “cpu” device, which
maps to a fast, local CPU implementation. Other devices can also be added through additional modules, such as
distributed MPI device implementations.

Once a device is created, you can call

void ospDeviceSetParam(OSPObject, const char *id, OSPDataType type, const void *mem);

to set parameters on the device. The semantics of setting parameters is exactly the same as ospSetParam, which is
documented below in the parameters section. The following parameters can be set on all devices:

12.1. Overview 2128

oneAPI Specification, Release 1.1-rev-1

Table 29: Parameters shared by all devices.
Type Name Description
int numThreadsnumber of threads which OSPRay should use
int logLevel logging level; valid values (in order of severity) are OSP_LOG_NONE, OSP_LOG_ERROR,

OSP_LOG_WARNING, OSP_LOG_INFO, and OSP_LOG_DEBUG
string lo-

gOut-
put

convenience for setting where status messages go; valid values are cerr and cout

string erro-
rOut-
put

convenience for setting where error messages go; valid values are cerr and cout

bool debug set debug mode; equivalent to logLevel=debug and numThreads=1
bool war-

nAsEr-
ror

send warning and error messages through the error callback, otherwise send warning messages
through the message callback; must have sufficient logLevel to enable warnings

bool setAffin-
ity

bind software threads to hardware threads if set to 1; 0 disables binding omitting the parameter
will let OSPRay choose

Once parameters are set on the created device, the device must be committed with

void ospDeviceCommit(OSPDevice);

To use the newly committed device, you must call

void ospSetCurrentDevice(OSPDevice);

This then sets the given device as the object which will respond to all other OSPRay API calls.

Device handle lifetimes are managed with two calls, the first which increments the internal reference count to the given
OSPDevice

void ospDeviceRetain(OSPDevice)

and the second which decrements the reference count

void ospDeviceRelease(OSPDevice)

Users can change parameters on the device after initialization (from either method above), by calling

OSPDevice ospGetCurrentDevice();

This function returns the handle to the device currently used to respond to OSPRay API calls, where users can set/change
parameters and recommit the device. If changes are made to the device that is already set as the current device, it does
not need to be set as current again. Note this API call will increment the ref count of the returned device handle,
so applications must use ospDeviceRelease when finished using the handle to avoid leaking the underlying device
object. If there is no current device set, this will return an invalid NULL handle.

When a device is created, its reference count is initially 1. When a device is set as the current device, it inter-
nally has its reference count incremented. Note that ospDeviceRetain and ospDeviceRelease should only be
used with reference counts that the application tracks: removing reference held by the current set device should be
handled by ospShutdown. Thus, ospDeviceRelease should only decrement the reference counts that come from
ospNewDevice, ospGetCurrentDevice, and the number of explicit calls to ospDeviceRetain.

OSPRay allows applications to query runtime properties of a device in order to do enhanced validation of what device
was loaded at runtime. The following function can be used to get these device-specific properties (attributes about the

12.1. Overview 2129

oneAPI Specification, Release 1.1-rev-1

device, not parameter values)

int64_t ospDeviceGetProperty(OSPDevice, OSPDeviceProperty);

It returns an integer value of the queried property and the following properties can be provided as parameter:

OSP_DEVICE_VERSION
OSP_DEVICE_VERSION_MAJOR
OSP_DEVICE_VERSION_MINOR
OSP_DEVICE_VERSION_PATCH
OSP_DEVICE_SO_VERSION

Environment Variables

OSPRay’s generic device parameters can be overridden via environment variables for easy changes to OSPRay’s be-
havior without needing to change the application (variables are prefixed by convention with “OSPRAY_”):

Table 30: Environment variables interpreted by OSPRay.
Variable Description
OS-
PRAY_NUM_THREADS

equivalent to --osp:num-threads

OS-
PRAY_LOG_LEVEL

equivalent to --osp:log-level

OS-
PRAY_LOG_OUTPUT

equivalent to --osp:log-output

OS-
PRAY_ERROR_OUTPUT

equivalent to --osp:error-output

OSPRAY_DEBUG equivalent to --osp:debug
OS-
PRAY_WARN_AS_ERROR

equivalent to --osp:warn-as-error

OS-
PRAY_SET_AFFINITY

equivalent to --osp:set-affinity

OS-
PRAY_LOAD_MODULES

equivalent to --osp:load-modules, can be a comma separated list of modules which
will be loaded in order

OSPRAY_DEVICE equivalent to --osp:device:

Note that these environment variables take precedence over values specified through ospInit or manually set device
parameters.

Error Handling and Status Messages

The following errors are currently used by OSPRay:

12.1. Overview 2130

oneAPI Specification, Release 1.1-rev-1

Table 31: Possible error codes, i.e., valid named constants of type
OSPError.

Name Description
OSP_NO_ERROR no error occurred
OSP_UNKNOWN_ERROR an unknown error occurred
OSP_INVALID_ARGUMENT an invalid argument was specified
OSP_INVALID_OPERATION the operation is not allowed for the specified object
OSP_OUT_OF_MEMORY there is not enough memory to execute the command
OSP_UNSUPPORTED_CPU the CPU is not supported (minimum ISA is SSE4.1 on x86_64 and NEON on

ARM64)
OSP_VERSION_MISMATCH a module could not be loaded due to mismatching version

These error codes are either directly return by some API functions, or are recorded to be later queried by the application
via

OSPError ospDeviceGetLastErrorCode(OSPDevice);

A more descriptive error message can be queried by calling

const char* ospDeviceGetLastErrorMsg(OSPDevice);

Alternatively, the application can also register a callback function of type

typedef void (*OSPErrorCallback)(void *userData, OSPError, const char* errorDetails);

via

void ospDeviceSetErrorCallback(OSPDevice, OSPErrorCallback, void *userData);

to get notified when errors occur.

Applications may be interested in messages which OSPRay emits, whether for debugging or logging events. Applica-
tions can call

void ospDeviceSetStatusCallback(OSPDevice, OSPStatusCallback, void *userData);

in order to register a callback function of type

typedef void (*OSPStatusCallback)(void *userData, const char* messageText);

which OSPRay will use to emit status messages. By default, OSPRay uses a callback which does nothing, so any
output desired by an application will require that a callback is provided. Note that callbacks for C++ std::cout and
std::cerr can be alternatively set through ospInit() or the OSPRAY_LOG_OUTPUT environment variable.

Applications can clear either callback by passing NULL instead of an actual function pointer.

12.1. Overview 2131

oneAPI Specification, Release 1.1-rev-1

Loading OSPRay Extensions at Runtime

OSPRay’s functionality can be extended via plugins (which we call “modules”), which are implemented in
shared libraries. To load module name from libospray_module_<name>.so (on Linux and Mac OS X) or
ospray_module_<name>.dll (on Windows) use

OSPError ospLoadModule(const char *name);

Modules are searched in OS-dependent paths. ospLoadModule returns OSP_NO_ERROR if the plugin could be success-
fully loaded.

Shutting Down OSPRay

When the application is finished using OSPRay (typically on application exit), the OSPRay API should be finalized
with

void ospShutdown();

This API call ensures that the current device is cleaned up appropriately. Due to static object allocation having non-
deterministic ordering, it is recommended that applications call ospShutdown() before the calling application process
terminates.

Objects

All entities of OSPRay (the renderer, volumes, geometries, lights, cameras, . . .) are a logical specialization of
OSPObject and share common mechanism to deal with parameters and lifetime.

An important aspect of object parameters is that parameters do not get passed to objects immediately. Instead, param-
eters are not visible at all to objects until they get explicitly committed to a given object via a call to

void ospCommit(OSPObject);

at which time all previously additions or changes to parameters are visible at the same time. If a user wants to change
the state of an existing object (e.g., to change the origin of an already existing camera) it is perfectly valid to do so, as
long as the changed parameters are recommitted.

The commit semantic allow for batching up multiple small changes, and specifies exactly when changes to objects will
occur. This can impact performance and consistency for devices crossing a PCI bus or across a network.

Note that OSPRay uses reference counting to manage the lifetime of all objects, so one cannot explicitly “delete” any
object. Instead, to indicate that the application does not need and does not access the given object anymore, call

void ospRelease(OSPObject);

This decreases its reference count and if the count reaches 0 the object will automatically get deleted. Passing NULL is
not an error. Note that every handle returned via the API needs to be released when the object is no longer needed, to
avoid memory leaks.

Sometimes applications may want to have more than one reference to an object, where it is desirable for the application
to increment the reference count of an object. This is done with

void ospRetain(OSPObject);

12.1. Overview 2132

oneAPI Specification, Release 1.1-rev-1

It is important to note that this is only necessary if the application wants to call ospRelease on an object more than
once: objects which contain other objects as parameters internally increment/decrement ref counts and should not be
explicitly done by the application.

Parameters

Parameters allow to configure the behavior of and to pass data to objects. However, objects do not have an explicit
interface for reasons of high flexibility and a more stable compile-time API. Instead, parameters are passed separately
to objects in an arbitrary order, and unknown parameters will simply be ignored (though a warning message will be
posted). The following function allows adding various types of parameters with name id to a given object:

void ospSetParam(OSPObject, const char *id, OSPDataType type, const void *mem);

The valid parameter names for all OSPObjects and what types are valid are discussed in future sections.

Note that mem must always be a pointer to the object, otherwise accidental type casting can occur. This is especially true
for pointer types (OSP_VOID_PTR and OSPObject handles), as they will implicitly cast to void\ *, but be incorrectly
interpreted. To help with some of these issues, there also exist variants of ospSetParam for specific types, such as
ospSetInt and ospSetVec3f in the OSPRay utility library (found in ospray_util.h). Note that half precision float
parameters OSP_HALF, OSP_VEC[234]H are not supported.

Users can also remove parameters that have been explicitly set from ospSetParam. Any parameters which have been
removed will go back to their default value during the next commit unless a new parameter was set after the parameter
was removed. To remove a parameter, use

void ospRemoveParam(OSPObject, const char *id);

Data

OSPRay consumes data arrays from the application using a specific object type, OSPData. There are several compo-
nents to describing a data array: element type, 1/2/3 dimensional striding, and whether the array is shared with the
application or copied into opaque, OSPRay-owned memory.

Shared data arrays require that the application’s array memory outlives the lifetime of the created OSPData, as OSPRay
is referring to application memory. Where this is not preferable, applications use opaque arrays to allow the OSPData
to own the lifetime of the array memory. However, opaque arrays dictate the cost of copying data into it, which should
be kept in mind.

Thus, the most efficient way to specify a data array from the application is to created a shared data array, which is done
with

OSPData ospNewSharedData(const void *sharedData,
OSPDataType,
uint64_t numItems1,
int64_t byteStride1 = 0,
uint64_t numItems2 = 1,
int64_t byteStride2 = 0,
uint64_t numItems3 = 1,
int64_t byteStride3 = 0);

The call returns an OSPData handle to the created array. The calling program guarantees that the sharedData pointer
will remain valid for the duration that this data array is being used. The number of elements numItems must be
positive (there cannot be an empty data object). The data is arranged in three dimensions, with specializations to two
or one dimension (if some numItems are 1). The distance between consecutive elements (per dimension) is given in

12.1. Overview 2133

oneAPI Specification, Release 1.1-rev-1

bytes with byteStride and can also be negative. If byteStride is zero it will be determined automatically (e.g., as
sizeof(type)). Strides do not need to be ordered, i.e., byteStride2 can be smaller than byteStride1, which is
equivalent to a transpose. However, if the stride should be calculated, then an ordering in dimensions is assumed to
disambiguate, i.e., byteStride1 < byteStride2 < byteStride3.

The enum type OSPDataType describes the different element types that can be represented in OSPRay; valid constants
are listed in the table below.

Table 32: Valid named constants for OSPDataType.
Type/Name Description
OSP_DEVICE API device object reference
OSP_DATA data reference
OSP_OBJECT generic object reference
OSP_CAMERA camera object reference
OSP_FRAMEBUFFER framebuffer object reference
OSP_LIGHT light object reference
OSP_MATERIAL material object reference
OSP_TEXTURE texture object reference
OSP_RENDERER renderer object reference
OSP_WORLD world object reference
OSP_GEOMETRY geometry object reference
OSP_VOLUME volume object reference
OSP_TRANSFER_FUNCTION transfer function object reference
OSP_IMAGE_OPERATION image operation object reference
OSP_STRING C-style zero-terminated character string
OSP_CHAR, OSP_VEC[234]C 8 bit signed character scalar and [234]-element vector
OSP_UCHAR, OSP_VEC[234]UC 8 bit unsigned character scalar and [234]-element vector
OSP_SHORT, OSP_VEC[234]S 16 bit unsigned integer scalar and [234]-element vector
OSP_USHORT, OSP_VEC[234]US 16 bit unsigned integer scalar and [234]-element vector
OSP_INT, OSP_VEC[234]I 32 bit signed integer scalar and [234]-element vector
OSP_UINT, OSP_VEC[234]UI 32 bit unsigned integer scalar and [234]-element vector
OSP_LONG, OSP_VEC[234]L 64 bit signed integer scalar and [234]-element vector
OSP_ULONG, OSP_VEC[234]UL 64 bit unsigned integer scalar and [234]-element vector
OSP_HALF, OSP_VEC[234]H 16 bit half precision floating-point scalar and [234]-element vector (IEEE 754 binary16)
OSP_FLOAT, OSP_VEC[234]F 32 bit single precision floating-point scalar and [234]-element vector
OSP_DOUBLE, OSP_VEC[234]D 64 bit double precision floating-point scalar and [234]-element vector
OSP_BOX[1234]I 32 bit integer box (lower + upper bounds)
OSP_BOX[1234]F 32 bit single precision floating-point box (lower + upper bounds)
OSP_LINEAR[23]F 32 bit single precision floating-point linear transform ([23] vectors)
OSP_AFFINE[23]F 32 bit single precision floating-point affine transform (linear transform plus translation)
OSP_QUATF 32 bit single precision floating-point quaternion, in (𝑖, 𝑗, 𝑘, 𝑤) layout
OSP_VOID_PTR raw memory address (only found in module extensions)

If the elements of the array are handles to objects, then their reference counter is incremented.

An opaque OSPData with memory allocated by OSPRay is created with

OSPData ospNewData(OSPDataType,
uint64_t numItems1,
uint64_t numItems2 = 1,
uint64_t numItems3 = 1);

To allow for (partial) copies or updates of data arrays use

12.1. Overview 2134

oneAPI Specification, Release 1.1-rev-1

void ospCopyData(const OSPData source,
OSPData destination,
uint64_t destinationIndex1 = 0,
uint64_t destinationIndex2 = 0,
uint64_t destinationIndex3 = 0);

which will copy the whole1 content of the source array into destination at the given location destinationIndex.
The OSPDataTypes of the data objects must match. The region to be copied must be valid inside the desti-
nation, i.e., in all dimensions, destinationIndex + sourceSize <= destinationSize. The affected region
[destinationIndex, destinationIndex + sourceSize) is marked as dirty, which may be used by OSPRay
to only process or update that sub-region (e.g., updating an acceleration structure). If the destination array is shared
with OSPData by the application (created with ospNewSharedData), then

• the source array must be shared as well (thus ospCopyData cannot be used to read opaque data)

• if source and destination memory overlaps (aliasing), then behavior is undefined

• except if source and destination regions are identical (including matching strides), which can be used by appli-
cation to mark that region as dirty (instead of the whole OSPData)

To add a data array as parameter named id to another object call also use

void ospSetObject(OSPObject, const char *id, OSPData);

Volumes

Volumes are volumetric data sets with discretely sampled values in 3D space, typically a 3D scalar field. To create a
new volume object of given type type use

OSPVolume ospNewVolume(const char *type);

Note that OSPRay’s implementation forwards type directly to Open VKL, allowing new Open VKL volume types to
be usable within OSPRay without the need to change (or even recompile) OSPRay.

Structured Regular Volume

Structured volumes only need to store the values of the samples, because their addresses in memory can be easily
computed from a 3D position. A common type of structured volumes are regular grids.

Structured regular volumes are created by passing the type string “structuredRegular” to ospNewVolume. Struc-
tured volumes are represented through an OSPData 3D array data (which may or may not be shared with the ap-
plication). The voxel data must be laid out in xyz-order2 and can be compact (best for performance) or can have a
stride between voxels, specified through the byteStride1 parameter when creating the OSPData. Only 1D strides are
supported, additional strides between scanlines (2D, byteStride2) and slices (3D, byteStride3) are not.

The parameters understood by structured volumes are summarized in the table below.
1 The number of items to be copied is defined by the size of the source array.
2 For consecutive memory addresses the x-index of the corresponding voxel changes the quickest.

12.1. Overview 2135

oneAPI Specification, Release 1.1-rev-1

Table 33: Configuration parameters for structured regular volumes.
Type Name Default Description
vec3f gridO-

rigin
(0, 0, 0) origin of the grid in object-space

vec3f gridSpac-
ing

(1, 1, 1) size of the grid cells in object-space

OSP-
Data

data the actual voxel 3D data

int filter OSP_VOLUME_FILTER_TRILINEARfilter used for reconstructing the field, also allowed is
OSP_VOLUME_FILTER_NEAREST and OSP_VOLUME_FILTER_TRICUBIC

int gradi-
entFil-
ter

same as filter filter used during gradient computations

float back-
ground

NaN value that is used when sampling an undefined region outside the volume
domain

The size of the volume is inferred from the size of the 3D array data, as is the type of the voxel values (currently
supported are: OSP_UCHAR, OSP_SHORT, OSP_USHORT, OSP_HALF, OSP_FLOAT, and OSP_DOUBLE).

Structured Spherical Volume

Structured spherical volumes are also supported, which are created by passing a type string of
“structuredSpherical” to ospNewVolume. The grid dimensions and parameters are defined in terms of
radial distance 𝑟, inclination angle 𝜃, and azimuthal angle 𝜑, conforming with the ISO convention for spherical coor-
dinate systems. The coordinate system and parameters understood by structured spherical volumes are summarized
below.

x

y

z
(r, θ, φ)

φ

θ

r

Fig. 3: Coordinate system of structured spherical volumes.

12.1. Overview 2136

oneAPI Specification, Release 1.1-rev-1

Table 34: Configuration parameters for structured spherical volumes.
Type Name Default Description
vec3f gridOri-

gin
(0, 0, 0) origin of the grid in units of (𝑟, 𝜃, 𝜑); angles in degrees

vec3f gridSpac-
ing

(1, 1, 1) size of the grid cells in units of (𝑟, 𝜃, 𝜑); angles in degrees

OSP-
Data

data the actual voxel 3D data

int filter OSP_VOLUME_FILTER_TRILINEARfilter used for reconstructing the field, also allowed is
OSP_VOLUME_FILTER_NEAREST

int gradient-
Filter

same as filter filter used during gradient computations

float back-
ground

NaN value that is used when sampling an undefined region outside
the volume domain

The dimensions (𝑟, 𝜃, 𝜑) of the volume are inferred from the size of the 3D array data, as is the type of the voxel values
(currently supported are: OSP_UCHAR, OSP_SHORT, OSP_USHORT, OSP_HALF, OSP_FLOAT, and OSP_DOUBLE).

These grid parameters support flexible specification of spheres, hemispheres, spherical shells, spherical wedges, and
so forth. The grid extents (computed as [gridOrigin, gridOrigin + (dimensions - 1) * gridSpacing])
however must be constrained such that:

• 𝑟 ≥ 0

• 0 ≤ 𝜃 ≤ 180

• 0 ≤ 𝜑 ≤ 360

Adaptive Mesh Refinement (AMR) Volume

OSPRay currently supports block-structured (Berger-Colella) AMR volumes. Volumes are specified as a list of blocks,
which exist at levels of refinement in potentially overlapping regions. Blocks exist in a tree structure, with coarser
refinement level blocks containing finer blocks. The cell width is equal for all blocks at the same refinement level,
though blocks at a coarser level have a larger cell width than finer levels.

There can be any number of refinement levels and any number of blocks at any level of refinement. An AMR volume
type is created by passing the type string “amr” to ospNewVolume.

Blocks are defined by three parameters: their bounds, the refinement level in which they reside, and the scalar data
contained within each block.

Note that cell widths are defined per refinement level, not per block.

12.1. Overview 2137

oneAPI Specification, Release 1.1-rev-1

Table 35: Configuration parameters for AMR volumes.
Type Name Default Description
OSPAMRMethodmethod OSP_AMR_CURRENTOSPAMRMethod sampling method. Supported methods are:

OSP_AMR_CURRENT
OSP_AMR_FINEST
OSP_AMR_OCTANT

float[] cell-
Width

NULL array of each level’s cell width

box3i[] block.boundsNULL data array of grid sizes (in voxels) for each AMR block
int[] block.level NULL array of each block’s refinement level
OSP-
Data[]

block.data NULL data array of OSPData containing the actual scalar voxel data, only
OSP_FLOAT is supported as OSPDataType

vec3f gridOri-
gin

(0, 0, 0) origin of the grid

vec3f gridSpac-
ing

(1, 1, 1) size of the grid cells

float back-
ground

NaN value that is used when sampling an undefined region outside the volume
domain

Lastly, note that the gridOrigin and gridSpacing parameters act just like the structured volume equivalent, but they
only modify the root (coarsest level) of refinement.

In particular, OSPRay’s / Open VKL’s AMR implementation was designed to cover Berger-Colella [1] and Chombo [2]
AMR data. The method parameter above determines the interpolation method used when sampling the volume.

OSP_AMR_CURRENT finds the finest refinement level at that cell and interpolates through this “current” level

OSP_AMR_FINEST will interpolate at the closest existing cell in the volume-wide finest refinement level regardless
of the sample cell’s level

OSP_AMR_OCTANT interpolates through all available refinement levels at that cell. This method avoids disconti-
nuities at refinement level boundaries at the cost of performance

Details and more information can be found in the publication for the implementation [3].

1. M.J. Berger and P. Colella, “Local adaptive mesh refinement for shock hydrodynamics.” Journal of Computa-
tional Physics 82.1 (1989): 64-84. DOI: 10.1016/0021-9991(89)90035-1

2. M. Adams, P. Colella, D.T. Graves, J.N. Johnson, N.D. Keen, T.J. Ligocki, D.F. Martin. P.W. McCorquodale,
D. Modiano. P.O. Schwartz, T.D. Sternberg, and B. Van Straalen, “Chombo Software Package for AMR Ap-
plications – Design Document”, Lawrence Berkeley National Laboratory Technical Report LBNL-6616E.

3. I. Wald, C. Brownlee, W. Usher, and A. Knoll, “CPU volume rendering of adaptive mesh refine-
ment data”. SIGGRAPH Asia 2017 Symposium on Visualization – SA ’17, 18(8), 1–8. DOI:
10.1145/3139295.3139305

12.1. Overview 2138

oneAPI Specification, Release 1.1-rev-1

Unstructured Volume

Unstructured volumes can have their topology and geometry freely defined. Geometry can be composed of tetrahedral,
hexahedral, wedge or pyramid cell types. The data format used is compatible with VTK and consists of multiple arrays:
vertex positions and values, vertex indices, cell start indices, cell types, and cell values. An unstructured volume type
is created by passing the type string “unstructured” to ospNewVolume.

Sampled cell values can be specified either per-vertex (vertex.data) or per-cell (cell.data). If both arrays are set,
cell.data takes precedence.

Similar to a mesh, each cell is formed by a group of indices into the vertices. For each vertex, the corresponding (by
array index) data value will be used for sampling when rendering, if specified. The index order for a tetrahedron is the
same as VTK_TETRA: bottom triangle counterclockwise, then the top vertex.

For hexahedral cells, each hexahedron is formed by a group of eight indices into the vertices and data values. Vertex
ordering is the same as VTK_HEXAHEDRON: four bottom vertices counterclockwise, then top four counterclockwise.

For wedge cells, each wedge is formed by a group of six indices into the vertices and data values. Vertex ordering is
the same as VTK_WEDGE: three bottom vertices counterclockwise, then top three counterclockwise.

For pyramid cells, each cell is formed by a group of five indices into the vertices and data values. Vertex ordering is
the same as VTK_PYRAMID: four bottom vertices counterclockwise, then the top vertex.

To maintain VTK data compatibility, the index array may be specified with cell sizes interleaved with vertex indices
in the following format: 𝑛, 𝑖𝑑1, ..., 𝑖𝑑𝑛,𝑚, 𝑖𝑑1, ..., 𝑖𝑑𝑚. This alternative index array layout can be enabled through the
indexPrefixed flag (in which case, the cell.type parameter must be omitted).

Table 36: Configuration parameters for unstructured volumes.
Type Name De-

fault
Description

vec3f[] ver-
tex.position

data array of vertex positions

float[] vertex.data data array of vertex data values to be sampled
uint32[] /
uint64[]

index data array of indices (into the vertex array(s)) that form cells

bool indexPre-
fixed

false indicates that the index array is compatible to VTK, where the indices of each
cell are prefixed with the number of vertices

uint32[] /
uint64[]

cell.index data array of locations (into the index array), specifying the first index of each
cell

float[] cell.data data array of cell data values to be sampled
uint8[] cell.type data array of cell types (VTK compatible), only set if indexPrefixed =

false false. Supported types are:
OSP_TETRAHEDRON
OSP_HEXAHEDRON
OSP_WEDGE
OSP_PYRAMID

bool hexItera-
tive

false hexahedron interpolation method, defaults to fast non-iterative version which
could have rendering inaccuracies may appear if hex is not parallelepiped

bool precom-
putedNor-
mals

false whether to accelerate by precomputing, at a cost of 12 bytes/face

float back-
ground

NaN value that is used when sampling an undefined region outside the volume domain

12.1. Overview 2139

oneAPI Specification, Release 1.1-rev-1

VDB Volume

VDB volumes implement a data structure that is very similar to the data structure outlined in Museth [1], they are
created by passing the type string “vdb” to ospNewVolume.

The data structure is a hierarchical regular grid at its core: Nodes are regular grids, and each grid cell may either store
a constant value (this is called a tile), or child pointers. Nodes in VDB trees are wide: Nodes on the first level have a
resolution of 323 voxels, on the next level 163, and on the leaf level 83 voxels. All nodes on a given level have the same
resolution. This makes it easy to find the node containing a coordinate using shift operations (see [1]). VDB leaf nodes
are implicit in OSPRay / Open VKL: they are stored as pointers to user-provided data.

Fig. 4: Topology of VDB volumes.

VDB volumes interpret input data as constant cells (which are then potentially filtered). This is in contrast to
structuredRegular volumes, which have a vertex-centered interpretation.

The VDB implementation in OSPRay / Open VKL follows the following goals:

• Efficient data structure traversal on vector architectures.

• Enable the use of industry-standard .vdb files created through the OpenVDB library.

• Compatibility with OpenVDB on a leaf data level, so that .vdb file may be loaded with minimal overhead.

VDB volumes have the following parameters:

12.1. Overview 2140

oneAPI Specification, Release 1.1-rev-1

Table 37: Configuration parameters for VDB volumes.
Type Name Description
int maxSam-

plingDepth
do not descend further than to this depth during sampling, the maximum value and the default is 3

uint32[]node.levellevel on which each input node exists, may be 1, 2 or 3 (levels are counted from the root level = 0
down)

vec3i[]node.originthe node origin index (per input node)
OS-
P-
Data[]

node.datadata arrays with the node data (per input node). Nodes that are tiles are expected to have single-item
arrays. Leaf-nodes with grid data expected to have compact 3D arrays in zyx layout (z changes most
quickly) with the correct number of voxels for the level. Only OSP_FLOAT is supported as field
OSPDataType.

int filter filter used for reconstructing the field, default is OSP_VOLUME_FILTER_TRILINEAR, alternatively
OSP_VOLUME_FILTER_NEAREST, or OSP_VOLUME_FILTER_TRICUBIC.

int gradi-
ent-
Filter

filter used for reconstructing the field during gradient computations, default same as filter

float back-
ground

value that is used when sampling an undefined region outside the volume domain, default NaN

1. Museth, K. VDB: High-Resolution Sparse Volumes with Dynamic Topology. ACM Transactions on Graphics
32(3), 2013. DOI: 10.1145/2487228.2487235

Particle Volume

Particle volumes consist of a set of points in space. Each point has a position, a radius, and a weight typically associated
with an attribute. Particle volumes are created by passing the type string “particle” to ospNewVolume.

A radial basis function defines the contribution of that particle. Currently, we use the Gaussian radial basis function

𝜑(𝑃) = 𝑤 exp

(︂
− (𝑃 − 𝑝)2

2𝑟2

)︂
,

where 𝑃 is the particle position, 𝑝 is the sample position, 𝑟 is the radius and 𝑤 is the weight. At each sample, the scalar
field value is then computed as the sum of each radial basis function 𝜑, for each particle that overlaps it.

The OSPRay / Open VKL implementation is similar to direct evaluation of samples in Reda et al. [2]. It uses an
Embree-built BVH with a custom traversal, similar to the method in [1].

12.1. Overview 2141

oneAPI Specification, Release 1.1-rev-1

Table 38: Configuration parameters for particle volumes.
Type Name De-

fault
Description

vec3f[]parti-
cle.position

data array of particle positions

float[] parti-
cle.radius

data array of particle radii

float[] parti-
cle.weight

NULLoptional data array of particle weights, specifying the height of the kernel.

float ra-
dius-
Sup-
port-
Fac-
tor

3.0 The multiplier of the particle radius required for support. Larger radii ensure smooth results
at the cost of performance. In the Gaussian kernel, the radius is one standard deviation (𝜎),
so a value of 3 corresponds to 3𝜎.

float clamp-
Max-
Cu-
mula-
tive-
Value

0 The maximum cumulative value possible, set by user. All cumulative values will be clamped
to this, and further traversal (RBF summation) of particle contributions will halt when this
value is reached. A value of zero or less turns this off.

bool esti-
mat-
eVal-
ueRanges

true Enable heuristic estimation of value ranges which are used in internal acceleration struc-
tures as well as for determining the volume’s overall value range. When set to false,
the user must specify clampMaxCumulativeValue, and all value ranges will be assumed
[0–clampMaxCumulativeValue]. Disabling this switch may improve volume commit time,
but will make volume rendering less efficient.

1. A. Knoll, I. Wald, P. Navratil, A. Bowen, K. Reda, M.E., Papka, and K. Gaither, “RBF Volume Ray Casting
on Multicore and Manycore CPUs”, 2014, Computer Graphics Forum, 33: 71–80. doi:10.1111/cgf.12363

2. K. Reda, A. Knoll, K. Nomura, M. E. Papka, A. E. Johnson and J. Leigh, “Visualizing large-scale atom-
istic simulations in ultra-resolution immersive environments”, 2013 IEEE Symposium on Large-Scale Data
Analysis and Visualization (LDAV), Atlanta, GA, 2013, pp. 59–65.

Transfer Function

Transfer functions map the scalar values of volumes to color and opacity and thus they can be used to visually emphasize
certain features of the volume. To create a new transfer function of given type type use

OSPTransferFunction ospNewTransferFunction(const char *type);

The returned handle can be assigned to a volumetric model (described below) as parameter “transferFunction”
using ospSetObject.

One type of transfer function that is supported by OSPRay is the linear transfer function, which interpolates
between given equidistant colors and opacities. It is create by passing the string “piecewiseLinear” to
ospNewTransferFunction and it is controlled by these parameters:

Table 39: Parameters accepted by the linear transfer function.
Type Name Description
vec3f[] color data array of colors (linear RGB)
float[] opacity data array of opacities
vec2f valueRange domain (scalar range) this function maps from

12.1. Overview 2142

oneAPI Specification, Release 1.1-rev-1

The arrays color and opacity can be of different length.

VolumetricModels

Volumes in OSPRay are given volume rendering appearance information through VolumetricModels. This decou-
ples the physical representation of the volume (and possible acceleration structures it contains) to rendering-specific
parameters (where more than one set may exist concurrently). To create a volume instance, call

OSPVolumetricModel ospNewVolumetricModel(OSPVolume volume);

The passed volume can be NULL as long as the volume to be used is passed as a parameter. If both a volume is specified
on object creation and as a parameter, the parameter value is used. If the parameter value is later removed, the volume
object passed on object creation is again used.

Table 40: Parameters understood by VolumetricModel.
Type Name De-

fault
Description

OSPTransfer-
Function

transfer-
Function

transfer function to use

float densi-
tyScale

1.0 makes volumes uniformly thinner or thicker

float anisotropy 0.0 anisotropy of the (Henyey-Greenstein) phase function in [-1–1] (path tracer
only), default to isotropic scattering

OSPVolume volume optional volume object this model references

Geometries

Geometries in OSPRay are objects that describe intersectable surfaces. To create a new geometry object of given type
type use

OSPGeometry ospNewGeometry(const char *type);

Note that in the current implementation geometries are limited to a maximum of 232 primitives.

Mesh

A mesh consisting of either triangles or quads is created by calling ospNewGeometry with type string “mesh”. Once
created, a mesh recognizes the following parameters:

Table 41: Parameters defining a mesh geometry.
Type Name Description
vec3f[] vertex.position data array of vertex positions
vec3f[] vertex.normal data array of vertex normals
vec4f[] / vec3f[] vertex.color data array of vertex colors (linear RGBA/RGB)
vec2f[] vertex.texcoord data array of vertex texture coordinates
vec3ui[] / vec4ui[] index data array of (either triangle or quad) indices (into the vertex array(s))

The data type of index arrays differentiates between the underlying geometry, triangles are used for a index with vec3ui
type and quads for vec4ui type. Quads are internally handled as a pair of two triangles, thus mixing triangles and quads
is supported by encoding some triangle as a quad with the last two vertex indices being identical (w=z).

12.1. Overview 2143

oneAPI Specification, Release 1.1-rev-1

The vertex.position and index arrays are mandatory to create a valid mesh.

Subdivision

A mesh consisting of subdivision surfaces, created by specifying a geometry of type “subdivision”. Once created,
a subdivision recognizes the following parameters:

Table 42: Parameters defining a Subdivision geometry.
Type Name Description
vec3f[] vertex.position data array of vertex positions
vec4f[] vertex.color optional data array of vertex colors (linear RGBA)
vec2f[] vertex.texcoord optional data array of vertex texture coordinates
float level global level of tessellation, default 5
uint[] index data array of indices (into the vertex array(s))
float[] index.level optional data array of per-edge levels of tessellation, overrides global level
uint[] face optional data array holding the number of indices/edges (3 to 15) per face, defaults to

4 (a pure quad mesh)
vec2i[] edge-

Crease.index
optional data array of edge crease indices

float[] edge-
Crease.weight

optional data array of edge crease weights

uint[] vertex-
Crease.index

optional data array of vertex crease indices

float[] vertex-
Crease.weight

optional data array of vertex crease weights

uchar mode subdivision edge boundary mode, supported modes are:
OSP_SUBDIVISION_NO_BOUNDARY
OSP_SUBDIVISION_SMOOTH_BOUNDARY (default)
OSP_SUBDIVISION_PIN_CORNERS
OSP_SUBDIVISION_PIN_BOUNDARY
OSP_SUBDIVISION_PIN_ALL

The vertex and index arrays are mandatory to create a valid subdivision surface. If no face array is present then a
pure quad mesh is assumed (the number of indices must be a multiple of 4). Optionally supported are edge and vertex
creases.

Spheres

A geometry consisting of individual spheres, each of which can have an own radius, is created by calling
ospNewGeometry with type string “sphere”. The spheres will not be tessellated but rendered procedurally and are
thus perfectly round. To allow a variety of sphere representations in the application this geometry allows a flexible way
of specifying the data of center position and radius within a data array:

Table 43: Parameters defining a spheres geometry.
Type Name Default Description
vec3f[] sphere.position data array of center positions
float[] sphere.radius NULL optional data array of the per-sphere radius
vec2f[] sphere.texcoord NULL optional data array of texture coordinates (constant per sphere)
float radius 0.01 default radius for all spheres (if sphere.radius is not set)

12.1. Overview 2144

oneAPI Specification, Release 1.1-rev-1

Curves

A geometry consisting of multiple curves is created by calling ospNewGeometry with type string “curve”. The pa-
rameters defining this geometry are listed in the table below.

Table 44: Parameters defining a curves geometry.
Type Name Description
vec4f[] vertex.position_radius data array of vertex position and per-vertex radius
vec2f[] vertex.texcoord data array of per-vertex texture coordinates
vec4f[] vertex.color data array of corresponding vertex colors (linear RGBA)
vec3f[] vertex.normal data array of curve normals (only for “ribbon” curves)
vec4f[] vertex.tangent data array of curve tangents (only for “hermite” curves)
uint32[] index data array of indices to the first vertex or tangent of a curve segment
uchar type OSPCurveType for rendering the curve. Supported types are:

OSP_FLAT
OSP_ROUND
OSP_RIBBON
OSP_DISJOINT

uchar basis OSPCurveBasis for defining the curve. Supported bases are:
OSP_LINEAR
OSP_BEZIER
OSP_BSPLINE
OSP_HERMITE
OSP_CATMULL_ROM

Positions in vertex.position_radius parameter supports per-vertex varying radii with data type vec4f[] and
instantiate Embree curves internally for the relevant type/basis mapping.

The following section describes the properties of different curve basis’ and how they use the data provided in data
buffers:

OSP_LINEAR The indices point to the first of 2 consecutive control points in the vertex buffer. The first control point
is the start and the second control point the end of the line segment. The curve goes through all control points
listed in the vertex buffer.

OSP_BEZIER The indices point to the first of 4 consecutive control points in the vertex buffer. The first control point
represents the start point of the curve, and the 4th control point the end point of the curve. The Bézier basis is
interpolating, thus the curve does go exactly through the first and fourth control vertex.

OSP_BSPLINE The indices point to the first of 4 consecutive control points in the vertex buffer. This basis is not
interpolating, thus the curve does in general not go through any of the control points directly. Using this basis,
3 control points can be shared for two continuous neighboring curve segments, e.g., the curves (𝑝0, 𝑝1, 𝑝2, 𝑝3)
and (𝑝1, 𝑝2, 𝑝3, 𝑝4) are C1 continuous. This feature make this basis a good choice to construct continuous multi-
segment curves, as memory consumption can be kept minimal.

OSP_HERMITE It is necessary to have both vertex buffer and tangent buffer for using this basis. The indices point
to the first of 2 consecutive points in the vertex buffer, and the first of 2 consecutive tangents in the tangent buffer.
This basis is interpolating, thus does exactly go through the first and second control point, and the first order
derivative at the begin and end matches exactly the value specified in the tangent buffer. When connecting two
segments continuously, the end point and tangent of the previous segment can be shared.

OSP_CATMULL_ROM The indices point to the first of 4 consecutive control points in the vertex buffer. If
(𝑝0, 𝑝1, 𝑝2, 𝑝3) represent the points then this basis goes through 𝑝1 and 𝑝2, with tangents as (𝑝2 − 𝑝0)/2 and
(𝑝3− 𝑝1)/2.

The following section describes the properties of different curve types’ and how they define the geometry of a curve:

12.1. Overview 2145

oneAPI Specification, Release 1.1-rev-1

OSP_FLAT This type enables faster rendering as the curve is rendered as a connected sequence of ray facing quads.

OSP_ROUND This type enables rendering a real geometric surface for the curve which allows closeup views. This
mode renders a sweep surface by sweeping a varying radius circle tangential along the curve.

OSP_RIBBON The type enables normal orientation of the curve and requires a normal buffer be specified along
with vertex buffer. The curve is rendered as a flat band whose center approximately follows the provided vertex
buffer and whose normal orientation approximately follows the provided normal buffer. Not supported for basis
OSP_LINEAR.

OSP_DISJOINT Only supported for basis OSP_LINEAR; the segments are open and not connected at the joints, i.e.,
the curve segments are either individual cones or cylinders.

Boxes

OSPRay can directly render axis-aligned bounding boxes without the need to convert them to quads or triangles. To
do so create a boxes geometry by calling ospNewGeometry with type string “box”.

Table 45: Parameters defining a boxes geometry.
Type Name Description
box3f[] box data array of boxes

Planes

OSPRay can directly render planes defined by plane equation coefficients in its implicit form 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0.
By default planes are infinite but their extents can be limited by defining optional bounding boxes. A planes geometry
can be created by calling ospNewGeometry with type string “plane”.

Table 46: Parameters defining a planes geometry.
Type Name Description
vec4f[] plane.coefficients data array of plane coefficients (𝑎, 𝑏, 𝑐, 𝑑)
box3f[] plane.bounds optional data array of bounding boxes

Isosurfaces

OSPRay can directly render multiple isosurfaces of a volume without first tessellating them. To do so create an iso-
surfaces geometry by calling ospNewGeometry with type string “isosurface”. The appearance information of the
surfaces is set through the Geometric Model. Per-isosurface colors can be set by passing per-primitive colors to the
Geometric Model, in order of the isosurface array.

Table 47: Parameters defining an isosurfaces geometry.
Type Name Description
float isovalue single isovalues
float[] isovalue data array of isovalues
OSPVolume volume handle of the Volume to be isosurfaced

12.1. Overview 2146

oneAPI Specification, Release 1.1-rev-1

GeometricModels

Geometries are matched with surface appearance information through GeometricModels. These take a geometry, which
defines the surface representation, and applies either full-object or per-primitive color and material information. To
create a geometric model, call

OSPGeometricModel ospNewGeometricModel(OSPGeometry geometry);

The passed geometry can be NULL as long as the geometry to be used is passed as a parameter. If both a geometry is
specified on object creation and as a parameter, the parameter value is used. If the parameter value is later removed,
the geometry object passed on object creation is again used.

Color and material are fetched with the primitive ID of the hit (clamped to the valid range, thus a single color or
material is fine), or mapped first via the index array (if present). All parameters are optional, however, some renderers
(notably the path tracer) require a material to be set. Materials are either handles of OSPMaterial, or indices into the
material array on the renderer, which allows to build a world which can be used by different types of renderers.

An invertNormals flag allows to invert (shading) normal vectors of the rendered geometry. That is particularly useful
for clipping. By changing normal vectors orientation one can control whether inside or outside of the clipping geometry
is being removed. For example, a clipping geometry with normals oriented outside clips everything what’s inside.

Table 48: Parameters understood by GeometricModel.
Type Name Description
OSPMaterial /
uint32

material optional material applied to the geometry, may be an index into the material
parameter on the renderer (if it exists)

vec4f color optional color assigned to the geometry (linear RGBA)
OSPMaterial[] /
uint32[]

material optional data array of (per-primitive) materials, may be an index into the material
parameter on the renderer (if it exists)

vec4f[] color optional data array of (per-primitive) colors (linear RGBA)
uint8[] index optional data array of per-primitive indices into color and material
bool invert-

Normals
inverts all shading normals (Ns), default false

OSPGeometry geometry optional [geometry] object this model references

Lights

To create a new light source of given type type use

OSPLight ospNewLight(const char *type);

All light sources accept the following parameters:

Table 49: Parameters accepted by all lights.
Type Name De-

fault
Description

vec3f color white color of the light (linear RGB)
float intensity 1 intensity of the light (a factor)
uchar intensi-

tyQuantity
OSPIntensityQuantity to set the radiometric quantity represented by intensity.
The default value depends on the light source.

bool visible true whether the light can be directly seen

In OSPRay the intensity parameter of a light source can correspond to different types of radiometric quantities. The

12.1. Overview 2147

oneAPI Specification, Release 1.1-rev-1

type of the value represented by a light’s intensity parameter is set using intensityQuantity, which accepts values
from the enum type OSPIntensityQuantity. The supported types of OSPIntensityQuantity differ between the
different light sources (see documentation of each specific light source).

Table 50: Types of radiometric quantities used to interpret a light’s
intensity parameter.

Name Description
OSP_INTENSITY_QUANTITY_POWERthe overall amount of light energy emitted by the light source into the scene,

unit is W
OSP_INTENSITY_QUANTITY_INTENSITYthe overall amount of light emitted by the light in a given direction, unit is W/sr
OSP_INTENSITY_QUANTITY_RADIANCEthe amount of light emitted by a point on the light source in a given direction,

unit is W/sr/m2

OSP_INTENSITY_QUANTITY_IRRADIANCEthe amount of light arriving at a surface point, assuming the light is oriented
towards to the surface, unit is W/m2

OSP_INTENSITY_QUANTITY_SCALEa linear scaling factor for light sources with a built-in quantity (e.g., HDRI, or
sunSky).

The following light types are supported by most OSPRay renderers.

Directional Light / Distant Light

The distant light (or traditionally the directional light) is thought to be far away (outside of the scene), thus its light
arrives (almost) as parallel rays. It is created by passing the type string “distant” to ospNewLight. The distant
light supports OSP_INTENSITY_QUANTITY_RADIANCE and OSP_INTENSITY_QUANTITY_IRRADIANCE (default) as
intensityQuantity parameter value. In addition to the general parameters understood by all lights the distant light
supports the following special parameters:

Table 51: Special parameters accepted by the distant light.
Type Name Default Description
vec3f direction (0, 0, 1) main emission direction of the distant light
float angularDiameter 0 apparent size (angle in degree) of the light

Setting the angular diameter to a value greater than zero will result in soft shadows when the renderer uses stochastic
sampling (like the path tracer). For instance, the apparent size of the sun is about 0.53°.

Point Light / Sphere Light

The sphere light (or the special case point light) is a light emitting uniformly in all directions from the sur-
face toward the outside. It does not emit any light toward the inside of the sphere. It is created by passing
the type string “sphere” to ospNewLight. The point light supports OSP_INTENSITY_QUANTITY_POWER,
OSP_INTENSITY_QUANTITY_INTENSITY (default) and OSP_INTENSITY_QUANTITY_RADIANCE as
intensityQuantity parameter value. In addition to the general parameters understood by all lights the sphere light
supports the following special parameters:

Table 52: Special parameters accepted by the sphere light.
Type Name Default Description
vec3f position (0, 0, 0) the center of the sphere light
float radius 0 the size of the sphere light

12.1. Overview 2148

oneAPI Specification, Release 1.1-rev-1

Setting the radius to a value greater than zero will result in soft shadows when the renderer uses stochastic sampling
(like the path tracer).

Spotlight / Photometric Light

The spotlight is a light emitting into a cone of directions. It is created by passing the type
string “spot” to ospNewLight. The spotlight supports OSP_INTENSITY_QUANTITY_POWER,
OSP_INTENSITY_QUANTITY_INTENSITY (default) and OSP_INTENSITY_QUANTITY_RADIANCE as
intensityQuantity parameter value. In addition to the general parameters understood by all lights the spot-
light supports the special parameters listed in the table.

Table 53: Special parameters accepted by the spotlight.
Type Name De-

fault
Description

vec3f position (0, 0, 0)the center of the spotlight
vec3f direction (0, 0, 1)main emission direction of the spot
float openingAn-

gle
180 full opening angle (in degree) of the spot; outside of this cone is no illumination

float penum-
braAngle

5 size (angle in degree) of the “penumbra”, the region between the rim (of the illumination
cone) and full intensity of the spot; should be smaller than half of openingAngle

float radius 0 the size of the spotlight, the radius of a disk with normal direction
float innerRa-

dius
0 in combination with radius turns the disk into a ring

float[] intensity-
Distribu-
tion

luminous intensity distribution for photometric lights; can be 2D for asymmetric illu-
mination; values are assumed to be uniformly distributed

vec3f c0 orientation, i.e., direction of the C0-(half)plane (only needed if illumination via
intensityDistribution is asymmetric)

Fig. 5: Angles used by the spotlight.

Setting the radius to a value greater than zero will result in soft shadows when the renderer uses stochastic sampling
(like the path tracer). Additionally setting the inner radius will result in a ring instead of a disk emitting the light.

12.1. Overview 2149

oneAPI Specification, Release 1.1-rev-1

Measured light sources (IES, EULUMDAT, . . .) are supported by providing an intensityDistribution data array
to modulate the intensity per direction. The mapping is using the C-𝛾 coordinate system (see also below figure):
the values of the first (or only) dimension of intensityDistribution are uniformly mapped to 𝛾 in [0–𝜋]; the
first intensity value to 0, the last value to 𝜋, thus at least two values need to be present. If the array has a second
dimension then the intensities are not rotational symmetric around direction, but are accordingly mapped to the
C-halfplanes in [0–2𝜋]; the first “row” of values to 0 and 2𝜋, the other rows such that they have uniform distance to its
neighbors. The orientation of the C0-plane is specified via c0. A combination of using an intensityDistribution
and OSP_INTENSITY_QUANTITY_POWER as intensityQuantity is not supported at the moment.

Fig. 6: C-𝛾 coordinate system for the mapping of intensityDistribution to the spotlight.

Quad Light

The quad3 light is a planar, procedural area light source emitting uniformly on one side into the half-space. It is created
by passing the type string “quad” to ospNewLight. The quad light supports OSP_INTENSITY_QUANTITY_POWER,
OSP_INTENSITY_QUANTITY_INTENSITY and OSP_INTENSITY_QUANTITY_RADIANCE (default) as
intensityQuantity parameter. In addition to the general parameters understood by all lights the quad light
supports the following special parameters:

Table 54: Special parameters accepted by the quad light.
Type Name Default Description
vec3f position (0, 0, 0) position of one vertex of the quad light
vec3f edge1 (1, 0, 0) vector to one adjacent vertex
vec3f edge2 (0, 1, 0) vector to the other adjacent vertex

Fig. 7: Defining a quad light which emits toward the reader.

The emission side is determined by the cross product of edge1×edge2. Note that only renderers that use stochastic
sampling (like the path tracer) will compute soft shadows from the quad light. Other renderers will just sample the
center of the quad light, which results in hard shadows.

3 actually a parallelogram

12.1. Overview 2150

oneAPI Specification, Release 1.1-rev-1

Cylinder Light

The cylinder light is a cylindrical, procedural area light source emitting uniformly outwardly into the
space beyond the boundary. It is created by passing the type string “cylinder” to ospNewLight.
The cylinder light supports OSP_INTENSITY_QUANTITY_POWER, OSP_INTENSITY_QUANTITY_INTENSITY and
OSP_INTENSITY_QUANTITY_RADIANCE (default) as intensityQuantity parameter. In addition to the general pa-
rameters understood by all lights the cylinder light supports the following special parameters:

Table 55: Special parameters accepted by the cylinder light.
Type Name Default Description
vec3f position0 (0, 0, 0) position of the start of the cylinder
vec3f position1 (0, 0, 1) position of the end of the cylinder
float radius 1 radius of the cylinder

Note that only renderers that use stochastic sampling (like the path tracer) will compute soft shadows from the cylinder
light. Other renderers will just sample the closest point on the cylinder light, which results in hard shadows.

HDRI Light

The HDRI light is a textured light source surrounding the scene and illuminating it from infinity. It is created by passing
the type string “hdri” to ospNewLight. The values of the HDRI correspond to radiance and therefore the HDRI light
only accepts OSP_INTENSITY_QUANTITY_SCALE as intensityQuantity parameter value. In addition to the general
parameters the HDRI light supports the following special parameters:

Table 56: Special parameters accepted by the HDRI light.
Type Name De-

fault
Description

vec3f up (0, 1, 0) up direction of the light
vec3f direc-

tion
(0, 0, 1) direction to which the center of the texture will be mapped to (analog to

panoramic camera)
OSPTex-
ture

map environment map in latitude / longitude format

Fig. 8: Orientation and Mapping of an HDRI Light.

Note that the SciVis renderer only shows the HDRI light in the background (like an environment map) without com-
puting illumination of the scene.

12.1. Overview 2151

oneAPI Specification, Release 1.1-rev-1

Ambient Light

The ambient light surrounds the scene and illuminates it from infinity with constant radiance (determined
by combining the parameters ``color` and intensity <#lights>`__). It is created by passing the type
string “ambient” to ospNewLight. The ambient light supports OSP_INTENSITY_QUANTITY_RADIANCE and
OSP_INTENSITY_QUANTITY_IRRADIANCE (default) as intensityQuantity parameter value.

Note that the SciVis renderer uses ambient lights to control the color and intensity of the computed ambient occlusion
(AO).

Sun-Sky Light

The sun-sky light is a combination of a distant light for the sun and a procedural hdri light for the sky. It is created
by passing the type string “sunSky” to ospNewLight. The sun-sky light surrounds the scene and illuminates it from
infinity and can be used for rendering outdoor scenes. The radiance values are calculated using the Hošek-Wilkie sky
model and solar radiance function. The underlying model of the sun-sky light returns radiance values and therefore
the light only accepts OSP_INTENSITY_QUANTITY_SCALE as intensityQuantity parameter value. To rescale the
returned radiance of the sky model the default value for the intensity parameter is set to 0.025. In addition to the
general parameters the following special parameters are supported:

Table 57: Special parameters accepted by the sunSky light.
Type Name Default Description
vec3f up (0, 1, 0) zenith of sky
vec3f direction (0,−1, 0) main emission direction of the sun
float turbidity 3 atmospheric turbidity due to particles, in [1–10]
float albedo 0.3 ground reflectance, in [0–1]
float horizonEx-

tension
0.01 extend the sky dome by stretching the horizon, fraction of the lower hemisphere

to cover, in [0–1]

The lowest elevation for the sun is restricted to the horizon.

Note that the SciVis renderer only computes illumination from the sun (yet the sky is still shown in the background,
like an environment map).

Emissive Objects

The path tracer will consider illumination by geometries which have a light emitting material assigned (for example
the Luminous material).

Scene Hierarchy

Groups

Groups in OSPRay represent collections of GeometricModels, VolumetricModels and Lights which share a common
local-space coordinate system. To create a group call

OSPGroup ospNewGroup();

Groups take arrays of geometric models, volumetric models, clipping geometric models and lights, but they are all
optional. In other words, there is no need to create empty arrays if there are no geometries, volumes or lights in the
group.

12.1. Overview 2152

oneAPI Specification, Release 1.1-rev-1

By adding OSPGeometricModels to the clippingGeometry array a clipping geometry feature is enabled. Geometries
assigned to this parameter will be used as clipping geometries. Any supported geometry can be used for clipping4, the
only requirement is that it has to distinctly partition space into clipping and non-clipping one. The use of clipping
geometry that is not closed or infinite could result in rendering artifacts. User can decide which part of space is clipped
by changing shading normals orientation with the invertNormals flag of the GeometricModel. All geometries and
volumes assigned to geometry or volume will be clipped. All clipping geometries from all groups and Instances will
be combined together – a union of these areas will be applied to all other objects in the world.

Table 58: Parameters understood by groups.
Type Name De-

fault
Description

OSPGe-
ometric-
Model[]

geome-
try

NULLdata array of GeometricModels

OSPVol-
umetric-
Model[]

volume NULLdata array of VolumetricModels

OSPGe-
ometric-
Model[]

clip-
pingGe-
ometry

NULLdata array of GeometricModels used for clipping

OSP-
Light[]

light NULLdata array of lights

bool dynam-
icScene

false use RTC_SCENE_DYNAMIC flag (faster BVH build, slower ray traversal), oth-
erwise uses RTC_SCENE_STATIC flag (faster ray traversal, slightly slower BVH
build)

bool com-
pact-
Mode

false tell Embree to use a more compact BVH in memory by trading ray traversal per-
formance

bool robust-
Mode

false tell Embree to enable more robust ray intersection code paths (slightly slower)

Instances

Instances in OSPRay represent a single group’s placement into the world via a transform. To create and instance call

OSPInstance ospNewInstance(OSPGroup);

4 including spheres, boxes, infinite planes, closed meshes, closed subdivisions and curves

12.1. Overview 2153

oneAPI Specification, Release 1.1-rev-1

Table 59: Parameters understood by instances.
Type Name De-

fault
Description

affine3f transform iden-
tity

world-space transform for all attached geometries and volumes, overridden by
motion.* arrays

affine3f[]mo-
tion.transform

uniformly distributed world-space transforms

vec3f[] mo-
tion.scale

uniformly distributed world-space scale, overridden by motion.transform

vec3f[] mo-
tion.pivot

uniformly distributed world-space translation which is applied before motion.
rotation (i.e., the rotation center), overridden by motion.transform

quatf[] mo-
tion.rotation

uniformly distributed world-space quaternion rotation, overridden by motion.
transform

vec3f[] mo-
tion.translation

uniformly distributed world-space translation, overridden by motion.transform

box1f time [0,
1]

time associated with first and last key in motion.* arrays (for motion blur)

World

Worlds are a container of scene data represented by instances. To create an (empty) world call

OSPWorld ospNewWorld();

Objects are placed in the world through an array of instances. Similar to groups, the array of instances is optional:
there is no need to create empty arrays if there are no instances (though there will be nothing to render).

Applications can query the world (axis-aligned) bounding box after the world has been committed. To get this infor-
mation, call

OSPBounds ospGetBounds(OSPObject);

The result is returned in the provided OSPBounds5 struct:

typedef struct {
float lower[3];
float upper[3];

} OSPBounds;

This call can also take OSPGroup and OSPInstance as well: all other object types will return an empty bounding box.

Finally, Worlds can be configured with parameters for making various feature/performance trade-offs (similar to
groups).

5 OSPBounds has essentially the same layout as the OSP_BOX3F `OSPDataType <#data>`__.

12.1. Overview 2154

oneAPI Specification, Release 1.1-rev-1

Table 60: Parameters understood by worlds.
Type Name De-

fault
Description

OSPIn-
stance[]

in-
stance

NULL data array with handles of the instances

OSP-
Light[]

light NULL data array with handles of the lights

bool dy-
namic-
Scene

false use RTC_SCENE_DYNAMIC flag (faster BVH build, slower ray traversal), otherwise
uses RTC_SCENE_STATIC flag (faster ray traversal, slightly slower BVH build)

bool com-
pact-
Mode

false tell Embree to use a more compact BVH in memory by trading ray traversal perfor-
mance

bool robust-
Mode

false tell Embree to enable more robust ray intersection code paths (slightly slower)

Renderers

A renderer is the central object for rendering in OSPRay. Different renderers implement different features and support
different materials. To create a new renderer of given type type use

OSPRenderer ospNewRenderer(const char *type);

General parameters of all renderers are

Table 61: Parameters understood by all renderers.
Type Name Default Description
int pixelSam-

ples
1 samples per pixel

int maxPath-
Length

20 maximum ray recursion depth

float minCon-
tribution

0.001 sample contributions below this value will be neglected to speedup
rendering

float vari-
anceThresh-
old

0 threshold for adaptive accumulation

float /
vec3f /
vec4f

back-
ground-
Color

black, transpar-
ent

background color and alpha (linear A/RGB/RGBA), if no
map_backplate is set

OSPTex-
ture

map_backplate optional texture image used as background (use texture type
texture2d)

OSPTex-
ture

map_maxDepth optional screen-sized float texture with maximum far distance per
pixel (use texture type texture2d)

OSPMate-
rial[]

material optional data array of materials which can be indexed by a Geomet-
ricModel’s material parameter

uchar pixelFilter OSP_PIXELFILTER_GAUSSOSPPixelFilterType to select the pixel filter used by the renderer
for antialiasing. Possible pixel filters are listed below.

OSPRay’s renderers support a feature called adaptive accumulation, which accelerates progressive rendering by stop-
ping the rendering and refinement of image regions that have an estimated variance below the varianceThreshold.
This feature requires a framebuffer with an OSP_FB_VARIANCE channel.

12.1. Overview 2155

oneAPI Specification, Release 1.1-rev-1

Per default the background of the rendered image will be transparent black, i.e., the alpha channel holds the opacity
of the rendered objects. This eases transparency-aware blending of the image with an arbitrary background image by
the application. The parameter backgroundColor or map_backplate can be used to already blend with a constant
background color or backplate texture, respectively, (and alpha) during rendering.

OSPRay renderers support depth composition with images of other renderers, for example to incorporate help ge-
ometries of a 3D UI that were rendered with OpenGL. The screen-sized texture map_maxDepth must have format
OSP_TEXTURE_R32F and flag OSP_TEXTURE_FILTER_NEAREST. The fetched values are used to limit the distance of
primary rays, thus objects of other renderers can hide objects rendered by OSPRay.

OSPRay supports antialiasing in image space by using pixel filters, which are centered around the center of a pixel.
The size 𝑤𝑤 of the filter depends on the selected filter type. The types of supported pixel filters are defined by the
OSPPixelFilterType enum and can be set using the pixelFilter parameter.

Table 62: Pixel filter types supported by OSPRay for antialiasing in image
space.

Name Description
OSP_PIXELFILTER_POINT a point filter only samples the center of the pixel, therefore the filter width is

𝑤 = 0
OSP_PIXELFILTER_BOX a uniform box filter with a width of 𝑤 = 1
OSP_PIXELFILTER_GAUSS a truncated, smooth Gaussian filter with a standard deviation of 𝜎 = 0.5 and

a filter width of 𝑤 = 3
OSP_PIXELFILTER_MITCHELL the Mitchell-Netravali filter with a width of 𝑤 = 4
OSP_PIXELFILTER_BLACKMAN_HARRISthe Blackman-Harris filter with a width of 𝑤 = 3

SciVis Renderer

The SciVis renderer is a fast ray tracer for scientific visualization which supports volume rendering and ambient occlu-
sion (AO). It is created by passing the type string “scivis” to ospNewRenderer. In addition to the general parameters
understood by all renderers, the SciVis renderer supports the following parameters:

Table 63: Special parameters understood by the SciVis renderer.
Type Name De-

fault
Description

bool shadows false whether to compute (hard) shadows
int aoSamples 0 number of rays per sample to compute ambient occlusion
float aoDistance 1020 maximum distance to consider for ambient occlusion
float volumeSamplin-

gRate
1 sampling rate for volumes

bool visibleLights false whether light sources are potentially visible (as in the path tracer, regarding
each light’s visible)

Note that the intensity (and color) of AO is deduced from an ambient light in the lights array.6 If aoSamples is zero
(the default) then ambient lights cause ambient illumination (without occlusion).

6 If there are multiple ambient lights then their contribution is added.

12.1. Overview 2156

oneAPI Specification, Release 1.1-rev-1

Ambient Occlusion Renderer

This renderer supports only a subset of the features of the SciVis renderer to gain performance. As the name suggest its
main shading method is ambient occlusion (AO), lights are not considered at all and , Volume rendering is supported.
The Ambient Occlusion renderer is created by passing the type string “ao” to ospNewRenderer. In addition to the
general parameters understood by all renderers the following parameters are supported as well:

Table 64: Special parameters understood by the Ambient Occlusion ren-
derer.

Type Name Default Description
int aoSamples 1 number of rays per sample to compute ambient occlusion
float aoDistance 1020 maximum distance to consider for ambient occlusion
float aoIntensity 1 ambient occlusion strength
float volumeSamplingRate 1 sampling rate for volumes

Path Tracer

The path tracer supports soft shadows, indirect illumination and realistic materials. This renderer is created by passing
the type string “pathtracer” to ospNewRenderer. In addition to the general parameters understood by all renderers
the path tracer supports the following special parameters:

Table 65: Special parameters understood by the path tracer.
Type Name De-

fault
Description

int lightSamples all number of random light samples per path vertex, per default all light sources
are sampled

int roulettePath-
Length

5 ray recursion depth at which to start Russian roulette termination

float maxContribution ∞ samples are clamped to this value before they are accumulated into the
framebuffer

bool back-
groundRefraction

false allow for alpha blending even if background is seen through refractive ob-
jects like glass

The path tracer requires that materials are assigned to geometries, otherwise surfaces are treated as completely black.

The path tracer supports volumes with multiple scattering. The scattering albedo can be specified using the transfer
function. Extinction is assumed to be spectrally constant.

Materials

Materials describe how light interacts with surfaces, they give objects their distinctive look. To let the given renderer
create a new material of given type type call

OSPMaterial ospNewMaterial(const char *, const char *material_type);

Please note that the first argument is ignored.

The returned handle can then be used to assign the material to a given geometry with

void ospSetObject(OSPGeometricModel, "material", OSPMaterial);

12.1. Overview 2157

oneAPI Specification, Release 1.1-rev-1

OBJ Material

The OBJ material is the workhorse material supported by both the SciVis renderer and the path tracer (the Ambient
Occlusion renderer only uses the kd and d parameter). It offers widely used common properties like diffuse and
specular reflection and is based on the MTL material format of Lightwave’s OBJ scene files. To create an OBJ material
pass the type string “obj” to ospNewMaterial. Its main parameters are

Table 66: Main parameters of the OBJ material.
Type Name Default Description
vec3f kd white 0.8 diffuse color (linear RGB)
vec3f ks black specular color (linear RGB)
float ns 10 shininess (Phong exponent), usually in [2–104]
float d opaque opacity
vec3f tf black transparency filter color (linear RGB)
OSPTexture map_bump NULL normal map

In particular when using the path tracer it is important to adhere to the principle of energy conservation, i.e., that the
amount of light reflected by a surface is not larger than the light arriving. Therefore the path tracer issues a warning
and renormalizes the color parameters if the sum of Kd, Ks, and Tf is larger than one in any color channel. Similarly
important to mention is that almost all materials of the real world reflect at most only about 80% of the incoming light.
So even for a white sheet of paper or white wall paint do better not set Kd larger than 0.8; otherwise rendering times
are unnecessary long and the contrast in the final images is low (for example, the corners of a white room would hardly
be discernible, as can be seen in the figure below).

Fig. 9: Comparison of diffuse rooms with 100% reflecting white paint (left) and realistic 80% reflecting white paint
(right), which leads to higher overall contrast. Note that exposure has been adjusted to achieve similar brightness levels.

If present, the color component of geometries is also used for the diffuse color Kd and the alpha component is also used
for the opacity d.

Normal mapping can simulate small geometric features via the texture map_Bump. The normals 𝑛 in the normal map
are with respect to the local tangential shading coordinate system and are encoded as (𝑛+ 1), thus a texel (0.5, 0.5, 1)7

represents the unperturbed shading normal (0, 0, 1). Because of this encoding an sRGB gamma texture format is ignored
and normals are always fetched as linear from a normal map. Note that the orientation of normal maps is important
for a visually consistent look: by convention OSPRay uses a coordinate system with the origin in the lower left corner;

7 respectively (127, 127, 255) for 8 bit textures and (32767, 32767, 65535) for 16 bit textures

12.1. Overview 2158

http://paulbourke.net/dataformats/mtl/

oneAPI Specification, Release 1.1-rev-1

thus a convexity will look green toward the top of the texture image (see also the example image of a normal map). If
this is not the case flip the normal map vertically or invert its green channel.

Fig. 10: Normal map representing an exalted square pyramidal frustum.

Note that Tf colored transparency is implemented in the SciVis and the path tracer but normal mapping with map_Bump
is currently supported in the path tracer only.

All parameters (except Tf) can be textured by passing a texture handle, prefixed with “map_”. The fetched texels are
multiplied by the respective parameter value. If only the texture is given (but not the corresponding parameter), only
the texture is used (the default value of the parameter is not multiplied). The color textures map_Kd and map_Ks are
typically in one of the sRGB gamma encoded formats, whereas textures map_Ns and map_d are usually in a linear
format (and only the first component is used). Additionally, all textures support texture transformations.

Fig. 11: Rendering of a OBJ material with wood textures.

12.1. Overview 2159

oneAPI Specification, Release 1.1-rev-1

Principled

The Principled material is the most complex material offered by the path tracer, which is capable of producing a wide
variety of materials (e.g., plastic, metal, wood, glass) by combining multiple different layers and lobes. It uses the GGX
microfacet distribution with approximate multiple scattering for dielectrics and metals, uses the Oren-Nayar model for
diffuse reflection, and is energy conserving. To create a Principled material, pass the type string “principled” to
ospNewMaterial. Its parameters are listed in the table below.

Table 67: Parameters of the Principled material.
Type Name De-

fault
Description

vec3f baseColor white
0.8

base reflectivity (diffuse and/or metallic, linear RGB)

vec3f edgeColor white edge tint (metallic only, linear RGB)
float metallic 0 mix between dielectric (diffuse and/or specular) and metallic (specular only with

complex IOR) in [0–1]
float diffuse 1 diffuse reflection weight in [0–1]
float specular 1 specular reflection/transmission weight in [0–1]
float ior 1 dielectric index of refraction
float transmission 0 specular transmission weight in [0–1]
vec3f transmis-

sionColor
white attenuated color due to transmission (Beer’s law, linear RGB)

float transmis-
sionDepth

1 distance at which color attenuation is equal to transmissionColor

float roughness 0 diffuse and specular roughness in [0–1], 0 is perfectly smooth
float anisotropy 0 amount of specular anisotropy in [0–1]
float rotation 0 rotation of the direction of anisotropy in [0–1], 1 is going full circle
float normal 1 default normal map/scale for all layers
float baseNormal 1 base normal map/scale (overrides default normal)
bool thin false flag specifying whether the material is thin or solid
float thickness 1 thickness of the material (thin only), affects the amount of color attenuation due to

specular transmission
float backlight 0 amount of diffuse transmission (thin only) in [0–2], 1 is 50% reflection and 50%

transmission, 2 is transmission only
float coat 0 clear coat layer weight in [0–1]
float coatIor 1.5 clear coat index of refraction
vec3f coatColor white clear coat color tint (linear RGB)
float coatThick-

ness
1 clear coat thickness, affects the amount of color attenuation

float coatRough-
ness

0 clear coat roughness in [0–1], 0 is perfectly smooth

float coatNormal 1 clear coat normal map/scale (overrides default normal)
float sheen 0 sheen layer weight in [0–1]
vec3f sheenColor white sheen color tint (linear RGB)
float sheenTint 0 how much sheen is tinted from sheenColor toward baseColor
float sheenRough-

ness
0.2 sheen roughness in [0–1], 0 is perfectly smooth

float opacity 1 cut-out opacity/transparency, 1 is fully opaque

All parameters can be textured by passing a texture handle, prefixed with “map_” (e.g., “map_baseColor”). texture
transformations are supported as well.

12.1. Overview 2160

oneAPI Specification, Release 1.1-rev-1

Fig. 12: Rendering of a Principled coated brushed metal material with textured anisotropic rotation and a dust layer
(sheen) on top.

CarPaint

The CarPaint material is a specialized version of the Principled material for rendering different types of car paints. To
create a CarPaint material, pass the type string “carPaint” to ospNewMaterial. Its parameters are listed in the table
below.

12.1. Overview 2161

oneAPI Specification, Release 1.1-rev-1

Table 68: Parameters of the CarPaint material.
Type Name Default Description
vec3f baseColor white

0.8
diffuse base reflectivity (linear RGB)

float roughness 0 diffuse roughness in [0–1], 0 is perfectly smooth
float normal 1 normal map/scale
vec3f flakeColor Alu-

minium
color of metallic flakes (linear RGB)

float flakeDen-
sity

0 density of metallic flakes in [0–1], 0 disables flakes, 1 fully covers the surface with
flakes

float flakeScale 100 scale of the flake structure, higher values increase the amount of flakes
float flake-

Spread
0.3 flake spread in [0–1]

float flakeJitter 0.75 flake randomness in [0–1]
float flakeR-

oughness
0.3 flake roughness in [0–1], 0 is perfectly smooth

float coat 1 clear coat layer weight in [0–1]
float coatIor 1.5 clear coat index of refraction
vec3f coatColor white clear coat color tint (linear RGB)
float coatThick-

ness
1 clear coat thickness, affects the amount of color attenuation

float coa-
tRough-
ness

0 clear coat roughness in [0–1], 0 is perfectly smooth

float coatNor-
mal

1 clear coat normal map/scale

vec3f flipflop-
Color

white reflectivity of coated flakes at grazing angle, used together with coatColor produces
a pearlescent paint (linear RGB)

float flipflop-
Falloff

1 flip flop color falloff, 1 disables the flip flop effect

All parameters can be textured by passing a texture handle, prefixed with “map_” (e.g., “map_baseColor”). texture
transformations are supported as well.

Metal

The path tracer offers a physical metal, supporting changing roughness and realistic color shifts at edges. To create a
Metal material pass the type string “metal” to ospNewMaterial. Its parameters are

Table 69: Parameters of the Metal material.
Type Name De-

fault
Description

vec3f[] ior Alu-
minium

data array of spectral samples of complex refractive index, each entry in the form (wave-
length, eta, k), ordered by wavelength (which is in nm)

vec3f eta RGB complex refractive index, real part
vec3f k RGB complex refractive index, imaginary part
float rough-

ness
0.1 roughness in [0–1], 0 is perfect mirror

The main appearance (mostly the color) of the Metal material is controlled by the physical parameters eta and k, the
wavelength-dependent, complex index of refraction. These coefficients are quite counter-intuitive but can be found in

12.1. Overview 2162

oneAPI Specification, Release 1.1-rev-1

Fig. 13: Rendering of a pearlescent CarPaint material.

published measurements. For accuracy the index of refraction can be given as an array of spectral samples in ior,
each sample a triplet of wavelength (in nm), eta, and k, ordered monotonically increasing by wavelength; OSPRay will
then calculate the Fresnel in the spectral domain. Alternatively, eta and k can also be specified as approximated RGB
coefficients; some examples are given in below table.

Table 70: Index of refraction of selected metals as approximated RGB
coefficients, based on data from https://refractiveindex.info/.

Metal eta k
Ag, Silver (0.051, 0.043, 0.041) (5.3, 3.6, 2.3)
Al, Aluminium (1.5, 0.98, 0.6) (7.6, 6.6, 5.4)
Au, Gold (0.07, 0.37, 1.5) (3.7, 2.3, 1.7)
Cr, Chromium (3.2, 3.1, 2.3) (3.3, 3.3, 3.1)
Cu, Copper (0.1, 0.8, 1.1) (3.5, 2.5, 2.4)

The roughness parameter controls the variation of microfacets and thus how polished the metal will look. The rough-
ness can be modified by a texture map_roughness (texture transformations are supported as well) to create notable
edging effects.

Alloy

The path tracer offers an alloy material, which behaves similar to Metal, but allows for more intuitive and flexible
control of the color. To create an Alloy material pass the type string “alloy” to ospNewMaterial. Its parameters are

Table 71: Parameters of the Alloy material.
Type Name Default Description
vec3f color white 0.9 reflectivity at normal incidence (0 degree, linear RGB)
vec3f edgeColor white reflectivity at grazing angle (90 degree, linear RGB)
float roughness 0.1 roughness, in [0–1], 0 is perfect mirror

The main appearance of the Alloy material is controlled by the parameter color, while edgeColor influences the tint

12.1. Overview 2163

https://refractiveindex.info/

oneAPI Specification, Release 1.1-rev-1

Fig. 14: Rendering of golden Metal material with textured roughness.

of reflections when seen at grazing angles (for real metals this is always 100% white). If present, the color component
of geometries is also used for reflectivity at normal incidence color. As in Metal the roughness parameter controls
the variation of microfacets and thus how polished the alloy will look. All parameters can be textured by passing a
texture handle, prefixed with “map_”; texture transformations are supported as well.

Fig. 15: Rendering of a fictional Alloy material with textured color.

12.1. Overview 2164

oneAPI Specification, Release 1.1-rev-1

Glass

The path tracer offers a realistic a glass material, supporting refraction and volumetric attenuation (i.e., the transparency
color varies with the geometric thickness). To create a Glass material pass the type string “glass” to ospNewMaterial.
Its parameters are

Table 72: Parameters of the Glass material.
Type Name Default Description
float eta 1.5 index of refraction
vec3f attenuationColor white resulting color due to attenuation (linear RGB)
float attenuationDistance 1 distance affecting attenuation

For convenience, the rather counter-intuitive physical attenuation coefficients will be calculated from the user inputs
in such a way, that the attenuationColor will be the result when white light traveled trough a glass of thickness
attenuationDistance.

Fig. 16: Rendering of a Glass material with orange attenuation.

ThinGlass

The path tracer offers a thin glass material useful for objects with just a single surface, most prominently windows. It
models a thin, transparent slab, i.e., it behaves as if a second, virtual surface is parallel to the real geometric surface. The
implementation accounts for multiple internal reflections between the interfaces (including attenuation), but neglects
parallax effects due to its (virtual) thickness. To create a such a thin glass material pass the type string “thinGlass”
to ospNewMaterial. Its parameters are

Table 73: Parameters of the ThinGlass material.
Type Name Default Description
float eta 1.5 index of refraction
vec3f attenuationColor white resulting color due to attenuation (linear RGB)
float attenuationDistance 1 distance affecting attenuation
float thickness 1 virtual thickness

12.1. Overview 2165

oneAPI Specification, Release 1.1-rev-1

For convenience the attenuation is controlled the same way as with the Glass material. Additionally, the color due to
attenuation can be modulated with a texture map_attenuationColor (texture transformations are supported as well).
If present, the color component of geometries is also used for the attenuation color. The thickness parameter sets the
(virtual) thickness and allows for easy exchange of parameters with the (real) Glass material; internally just the ratio
between attenuationDistance and thickness is used to calculate the resulting attenuation and thus the material
appearance.

Fig. 17: Rendering of a ThinGlass material with red attenuation.

Fig. 18: Example image of a colored window made with textured attenuation of the ThinGlass material.

12.1. Overview 2166

oneAPI Specification, Release 1.1-rev-1

MetallicPaint

The path tracer offers a metallic paint material, consisting of a base coat with optional flakes and a clear coat. To create
a MetallicPaint material pass the type string “metallicPaint” to ospNewMaterial. Its parameters are listed in the
table below.

Table 74: Parameters of the MetallicPaint material.
Type Name Default Description
vec3f baseColor white 0.8 color of base coat (linear RGB)
float flakeAmount 0.3 amount of flakes, in [0–1]
vec3f flakeColor Aluminium color of metallic flakes (linear RGB)
float flakeSpread 0.5 spread of flakes, in [0–1]
float eta 1.5 index of refraction of clear coat

The color of the base coat baseColor can be textured by a texture map_baseColor, which also supports texture
transformations. If present, the color component of geometries is also used for the color of the base coat. Parameter
flakeAmount controls the proportion of flakes in the base coat, so when setting it to 1 the baseColor will not be
visible. The shininess of the metallic component is governed by flakeSpread, which controls the variation of the
orientation of the flakes, similar to the roughness parameter of Metal. Note that the effect of the metallic flakes is
currently only computed on average, thus individual flakes are not visible.

Fig. 19: Rendering of a MetallicPaint material.

Luminous

The path tracer supports the Luminous material which emits light uniformly in all directions and which can thus
be used to turn any geometric object into a light source. It is created by passing the type string “luminous” to
ospNewMaterial. The amount of constant radiance that is emitted is determined by combining the general parameters
of lights: `color and intensity <#lights>`__ (which essentially means that parameter intensityQuantity is not
needed because it is always OSP_INTENSITY_QUANTITY_RADIANCE).

12.1. Overview 2167

oneAPI Specification, Release 1.1-rev-1

Table 75: Parameters accepted by the Luminous material.
Type Name Default Description
vec3f color white color of the emitted light (linear RGB)
float intensity 1 intensity of the light (a factor)
float transparency 1 material transparency

Fig. 20: Rendering of a yellow Luminous material.

Texture

OSPRay currently implements two texture types (texture2d and volume) and is open for extension to other types by
applications. More types may be added in future releases.

To create a new texture use

OSPTexture ospNewTexture(const char *type);

Texture2D

The texture2d texture type implements an image-based texture, where its parameters are as follows

Table 76: Parameters of texture2d texture type.
Type Name Description
int format OSPTextureFormat for the texture
int filter default OSP_TEXTURE_FILTER_BILINEAR, alternatively OSP_TEXTURE_FILTER_NEAREST
OSPData data the actual texel 2D data

The supported texture formats for texture2d are:

12.1. Overview 2168

oneAPI Specification, Release 1.1-rev-1

Table 77: Supported texture formats by texture2d, i.e., valid constants
of type OSPTextureFormat.

Name Description
OSP_TEXTURE_RGBA8 8 bit [0–255] linear components red, green, blue, alpha
OSP_TEXTURE_SRGBA 8 bit sRGB gamma encoded color components, and linear alpha
OSP_TEXTURE_RGBA32F 32 bit float components red, green, blue, alpha
OSP_TEXTURE_RGB8 8 bit [0–255] linear components red, green, blue
OSP_TEXTURE_SRGB 8 bit sRGB gamma encoded components red, green, blue
OSP_TEXTURE_RGB32F 32 bit float components red, green, blue
OSP_TEXTURE_R8 8 bit [0–255] linear single component red
OSP_TEXTURE_RA8 8 bit [0–255] linear two components red, alpha
OSP_TEXTURE_L8 8 bit [0–255] gamma encoded luminance (replicated into red, green, blue)
OSP_TEXTURE_LA8 8 bit [0–255] gamma encoded luminance, and linear alpha
OSP_TEXTURE_R32F 32 bit float single component red
OSP_TEXTURE_RGBA16 16 bit [0–65535] linear components red, green, blue, alpha
OSP_TEXTURE_RGB16 16 bit [0–65535] linear components red, green, blue
OSP_TEXTURE_RA16 16 bit [0–65535] linear two components red, alpha
OSP_TEXTURE_R16 16 bit [0–65535] linear single component red

The size of the texture is inferred from the size of the 2D array data, which also needs have a compatible type to
format. The texel data in data starts with the texels in the lower left corner of the texture image, like in OpenGL. Per
default a texture fetch is filtered by performing bi-linear interpolation of the nearest 2×2 texels; if instead fetching only
the nearest texel is desired (i.e., no filtering) then pass the OSP_TEXTURE_FILTER_NEAREST flag.

Texturing with texture2d image textures requires geometries with texture coordinates, e.g., a mesh with vertex.
texcoord provided.

Volume Texture

The volume texture type implements texture lookups based on 3D object coordinates of the surface hit point on the
associated geometry. If the given hit point is within the attached volume, the volume is sampled and classified with
the transfer function attached to the volume. This implements the ability to visualize volume values (as colored by a
transfer function) on arbitrary surfaces inside the volume (as opposed to an isosurface showing a particular value in the
volume). Its parameters are as follows

Table 78: Parameters of volume texture type.
Type Name Description
OSPVolume volume Volume used to generate color lookups
OSPTransferFunction transferFunction transfer function applied to volume

TextureVolume can be used for implementing slicing of volumes with any geometry type. It enables coloring of the
slicing geometry with a different transfer function than that of the sliced volume.

12.1. Overview 2169

oneAPI Specification, Release 1.1-rev-1

Texture Transformations

All materials with textures also offer to manipulate the placement of these textures with the help of texture transforma-
tions. If so, this convention shall be used: the following parameters are prefixed with “texture_name.*”).

Table 79: Parameters to define 2D texture coordinate transformations.
Type Name Description
linear2f transform linear transformation (rotation, scale)
float rotation angle in degree, counterclockwise, around center
vec2f scale enlarge texture, relative to center (0.5, 0.5)
vec2f translation move texture in positive direction (right/up)

Above parameters are combined into a single affine2d transformation matrix and the transformations are applied in
the given order. Rotation, scale and translation are interpreted “texture centric”, i.e., their effect seen by an user are
relative to the texture (although the transformations are applied to the texture coordinates).

Table 80: Parameter to define 3D volume texture transformations.
Type Name Description
affine3f transform linear transformation (rotation, scale) plus translation

Similarly, volume texture placement can also be modified by an affine3f transformation matrix.

Cameras

To create a new camera of given type type use

OSPCamera ospNewCamera(const char *type);

All cameras accept these parameters:

12.1. Overview 2170

oneAPI Specification, Release 1.1-rev-1

Table 81: Parameters accepted by all cameras.
Type Name Default Description
vec3f position (0, 0, 0) position of the camera
vec3f direction (0, 0, 1) main viewing direction of the camera
vec3f up (0, 1, 0) up direction of the camera
affine3ftransform identity additional world-space transform, overridden by motion.* arrays
float nearClip 10-6 near clipping distance
vec2f imageStart (0, 0) start of image region (lower left corner)
vec2f imageEnd (1, 1) end of image region (upper right corner)
affine3f[]mo-

tion.transform
additional uniformly distributed world-space transforms

vec3f[] mo-
tion.scale

additional uniformly distributed world-space scale, overridden by motion.
transform

vec3f[] mo-
tion.pivot

additional uniformly distributed world-space translation which is applied be-
fore motion.rotation (i.e., the rotation center), overridden by motion.
transform

quatf[] mo-
tion.rotation

additional uniformly distributed world-space quaternion rotation, overridden
by motion.transform

vec3f[] mo-
tion.translation

additional uniformly distributed world-space translation, overridden by
motion.transform

box1f time [0, 1] time associated with first and last key in motion.* arrays
box1f shutter [0.5, 0.5] start and end of shutter time (for motion blur), in [0, 1]
uchar shutter-

Type
OSP_SHUTTER_GLOBALOSPShutterType for motion blur, also allowed are:

OSP_SHUTTER_ROLLING_RIGHT
OSP_SHUTTER_ROLLING_LEFT
OSP_SHUTTER_ROLLING_DOWN
OSP_SHUTTER_ROLLING_UP

float rolling-
Shutter-
Duration

0 for a rolling shutter (see shutterType) the “open” time per line, in [0,
shutter.upper-shutter.lower]

The camera is placed and oriented in the world with position, direction and up. Additionally, an extra trans-
formation transform can be specified, which will only be applied to 3D vectors (i.e. position, direction and
up), but does not affect any sizes (e.g., nearClip, apertureRadius, or height). The same holds for the array of
transformations motion.transform to achieve camera motion blur (in combination with time and shutter).

OSPRay uses a right-handed coordinate system. The region of the camera sensor that is rendered to the image can
be specified in normalized screen-space coordinates with imageStart (lower left corner) and imageEnd (upper right
corner). This can be used, for example, to crop the image, to achieve asymmetrical view frusta, or to horizontally flip
the image to view scenes which are specified in a left-handed coordinate system. Note that values outside the default
range of [0–1] are valid, which is useful to easily realize overscan or film gate, or to emulate a shifted sensor.

12.1. Overview 2171

oneAPI Specification, Release 1.1-rev-1

Perspective Camera

The perspective camera implements a simple thin lens camera for perspective rendering, supporting optionally depth
of field and stereo rendering (with the path tracer). It is created by passing the type string “perspective” to
ospNewCamera. In addition to the general parameters understood by all cameras the perspective camera supports
the special parameters listed in the table below.

Table 82: Additional parameters accepted by the perspective camera.
Type Name Default Description
float fovy 60 the field of view (angle in degree) of the frame’s height
float aspect 1 ratio of width by height of the frame (and image region)
float apertureRadius 0 size of the aperture, controls the depth of field
float focusDistance 1 distance at where the image is sharpest when depth of field is

enabled
bool architectural false vertical edges are projected to be parallel
uchar stereoMode OSP_STEREO_NONE OSPStereoMode for stereo rendering, also allowed are:

OSP_STEREO_LEFT
OSP_STEREO_RIGHT
OSP_STEREO_SIDE_BY_SIDE
OSP_STEREO_TOP_BOTTOM (left eye at top half)

float interpupillaryDis-
tance

0.0635 distance between left and right eye when stereo is enabled

Note that when computing the aspect ratio a potentially set image region (using imageStart & imageEnd) needs to
be regarded as well.

In architectural photography it is often desired for aesthetic reasons to display the vertical edges of buildings or walls
vertically in the image as well, regardless of how the camera is tilted. Enabling the architectural mode achieves
this by internally leveling the camera parallel to the ground (based on the up direction) and then shifting the lens such
that the objects in direction dir are centered in the image. If finer control of the lens shift is needed use imageStart
& imageEnd. Because the camera is now effectively leveled its image plane and thus the plane of focus is oriented
parallel to the front of buildings, the whole façade appears sharp, as can be seen in the example images below. The
resolution of the framebuffer is not altered by imageStart/imageEnd.

Orthographic Camera

The orthographic camera implements a simple camera with orthographic projection, without support for depth. It is
created by passing the type string “orthographic” to ospNewCamera. In addition to the general parameters under-
stood by all cameras the orthographic camera supports the following special parameters:

Table 83: Additional parameters accepted by the orthographic camera.
Type Name Description
float height size of the camera’s image plane in y, in world coordinates
float aspect ratio of width by height of the frame

For convenience the size of the camera sensor, and thus the extent of the scene that is captured in the image, can be
controlled with the height parameter. The same effect can be achieved with imageStart and imageEnd, and both
methods can be combined. In any case, the aspect ratio needs to be set accordingly to get an undistorted image.

12.1. Overview 2172

oneAPI Specification, Release 1.1-rev-1

Fig. 21: Example image created with the perspective camera, featuring depth of field.

12.1. Overview 2173

oneAPI Specification, Release 1.1-rev-1

Fig. 22: Enabling the architectural flag corrects the perspective projection distortion, resulting in parallel vertical
edges.

12.1. Overview 2174

oneAPI Specification, Release 1.1-rev-1

Fig. 23: Example 3D stereo image using stereoMode = OSP_STEREO_SIDE_BY_SIDE.

12.1. Overview 2175

oneAPI Specification, Release 1.1-rev-1

Fig. 24: Example image created with the orthographic camera.

12.1. Overview 2176

oneAPI Specification, Release 1.1-rev-1

Panoramic Camera

The panoramic camera implements a simple camera with support for stereo rendering. It captures the complete sur-
rounding with a latitude / longitude mapping and thus the rendered images should best have a ratio of 2:1. A panoramic
camera is created by passing the type string “panoramic” to ospNewCamera. It is placed and oriented in the scene by
using the general parameters understood by all cameras.

Table 84: Additional parameters accepted by the panoramic camera.
Type Name Description
uchar stereoMode OSPStereoMode for stereo rendering, possible values are:

OSP_STEREO_NONE (default)
OSP_STEREO_LEFT
OSP_STEREO_RIGHT
OSP_STEREO_SIDE_BY_SIDE
OSP_STEREO_TOP_BOTTOM (left eye at top half)

float interpupillaryDistance distance between left and right eye when stereo is enabled, default 0.0635

Fig. 25: Latitude / longitude map created with the panoramic camera.

Picking

To get the world-space position of the geometry (if any) seen at [0–1] normalized screen-space pixel coordinates
screenPos_x and screenPos_y use

void ospPick(OSPPickResult *,
OSPFrameBuffer,
OSPRenderer,
OSPCamera,
OSPWorld,
float screenPos_x,
float screenPos_y);

The result is returned in the provided OSPPickResult struct:

12.1. Overview 2177

oneAPI Specification, Release 1.1-rev-1

typedef struct {
int hasHit;
float worldPosition[3];
OSPInstance instance;
OSPGeometricModel model;
uint32_t primID;

} OSPPickResult;

Note that ospPick considers exactly the same camera of the given renderer that is used to render an image, thus
matching results can be expected. If the camera supports depth of field then the center of the lens and thus the center of
the circle of confusion is used for picking. Note that the caller needs to ospRelease the instance and model handles
of OSPPickResult once the information is not needed anymore.

Framebuffer

The framebuffer holds the rendered 2D image (and optionally auxiliary information associated with pixels). To create
a new framebuffer object of given size size (in pixels), color format, and channels use

OSPFrameBuffer ospNewFrameBuffer(int size_x, int size_y,
OSPFrameBufferFormat format = OSP_FB_SRGBA,
uint32_t frameBufferChannels = OSP_FB_COLOR);

The parameter format describes the format the color buffer has on the host, and the format that ospMapFrameBuffer
will eventually return. Valid values are:

Table 85: Supported color formats of the framebuffer that can
be passed to ospNewFrameBuffer, i.e., valid constants of type
OSPFrameBufferFormat.

Name Description
OSP_FB_NONE framebuffer will not be mapped by the application
OSP_FB_RGBA8 8 bit [0–255] linear component red, green, blue, alpha
OSP_FB_SRGBA 8 bit sRGB gamma encoded color components, and linear alpha
OSP_FB_RGBA32F 32 bit float components red, green, blue, alpha

The parameter frameBufferChannels specifies which channels the framebuffer holds, and can be combined together
by bitwise OR from the values of OSPFrameBufferChannel listed in the table below.

Table 86: Framebuffer channels constants (of type
OSPFrameBufferChannel), naming optional information the frame-
buffer can store. These values can be combined by bitwise OR when
passed to ospNewFrameBuffer.

Name Description
OSP_FB_COLOR RGB color including alpha
OSP_FB_DEPTH euclidean distance to the camera (not to the image plane), as linear 32 bit float; for multiple

samples per pixel their minimum is taken
OSP_FB_ACCUMaccumulation buffer for progressive refinement
OSP_FB_VARIANCEfor estimation of the current noise level if OSP_FB_ACCUM is also present, see rendering
OSP_FB_NORMALaccumulated world-space normal of the first non-specular hit, as vec3f
OSP_FB_ALBEDOaccumulated material albedo (color without illumination) at the first hit, as vec3f

If a certain channel value is not specified, the given buffer channel will not be present. Note that OSPRay makes a clear

12.1. Overview 2178

oneAPI Specification, Release 1.1-rev-1

distinction between the external format of the framebuffer and the internal one: The external format is the format the
user specifies in the format parameter; it specifies what color format OSPRay will eventually return the framebuffer
to the application (when calling ospMapFrameBuffer): no matter what OSPRay uses internally, it will simply return
a 2D array of pixels of that format, with possibly all kinds of reformatting, compression/decompression, etc., going on
in-between the generation of the internal framebuffer and the mapping of the externally visible one.

In particular, OSP_FB_NONE is a perfectly valid pixel format for a framebuffer that an application will never map. For
example, an application driving a display wall may well generate an intermediate framebuffer and eventually transfer
its pixel to the individual displays using an OSPImageOperation image operation.

The application can map the given channel of a framebuffer – and thus access the stored pixel information – via

const void *ospMapFrameBuffer(OSPFrameBuffer, OSPFrameBufferChannel = OSP_FB_COLOR);

Note that OSP_FB_ACCUM or OSP_FB_VARIANCE cannot be mapped. The origin of the screen coordinate system in
OSPRay is the lower left corner (as in OpenGL), thus the first pixel addressed by the returned pointer is the lower left
pixel of the image.

A previously mapped channel of a framebuffer can be unmapped by passing the received pointer mapped to

void ospUnmapFrameBuffer(const void *mapped, OSPFrameBuffer);

The individual channels of a framebuffer can be cleared with

void ospResetAccumulation(OSPFrameBuffer);

This function will clear all accumulating buffers (OSP_FB_VARIANCE, OSP_FB_NORMAL, and OSP_FB_ALBEDO, if
present) and resets the accumulation counter accumID. It is unspecified if the existing color and depth buffers are
physically cleared when ospResetAccumulation is called.

If OSP_FB_VARIANCE is specified, an estimate of the variance of the last accumulated frame can be queried with

float ospGetVariance(OSPFrameBuffer);

Note this value is only updated after synchronizing with OSP_FRAME_FINISHED, as further described in asynchronous
rendering. The estimated variance can be used by the application as a quality indicator and thus to decide whether to
stop or to continue progressive rendering.

The framebuffer takes a list of pixel operations to be applied to the image in sequence as an OSPData. The pixel
operations will be run in the order they are in the array.

Table 87: Parameters accepted by the framebuffer.
Type Name Description
OSPImageOperation[] imageOperation ordered sequence of image operations

Image Operation

Image operations are functions that are applied to every pixel of a frame. Examples include post-processing, filtering,
blending, tone mapping, or sending tiles to a display wall. To create a new pixel operation of given type type use

OSPImageOperation ospNewImageOperation(const char *type);

12.1. Overview 2179

oneAPI Specification, Release 1.1-rev-1

Tone Mapper

The tone mapper is a pixel operation which implements a generic filmic tone mapping operator. Using the default
parameters it approximates the Academy Color Encoding System (ACES). The tone mapper is created by passing
the type string “tonemapper” to ospNewImageOperation. The tone mapping curve can be customized using the
parameters listed in the table below.

Table 88: Parameters accepted by the tone mapper.
Type Name Default Description
float exposure 1.0 amount of light per unit area
float contrast 1.6773 contrast (toe of the curve); typically is in [1–2]
float shoulder 0.9714 highlight compression (shoulder of the curve); typically is in [0.9–1]
float midIn 0.18 mid-level anchor input; default is 18% gray
float midOut 0.18 mid-level anchor output; default is 18% gray
float hdrMax 11.0785 maximum HDR input that is not clipped
bool acesColor true apply the ACES color transforms

To use the popular “Uncharted 2” filmic tone mapping curve instead, set the parameters to the values listed in the table
below.

Table 89: Filmic tone mapping curve parameters. Note that the curve
includes an exposure bias to match 18% middle gray.

Name Value
contrast 1.1759
shoulder 0.9746
midIn 0.18
midOut 0.18
hdrMax 6.3704
acesColor false

Denoiser

OSPRay comes with a module that adds support for Intel® Open Image Denoise. This is provided as an optional
module as it creates an additional project dependency at compile time. The module implements a “denoiser” frame
operation, which denoises the entire frame before the frame is completed.

Rendering

Asynchronous Rendering

Rendering is by default asynchronous (non-blocking), and is done by combining a framebuffer, renderer, camera, and
world.

What to render and how to render it depends on the renderer’s parameters. If the framebuffer supports accumula-
tion (i.e., it was created with OSP_FB_ACCUM) then successive calls to ospRenderFrame will progressively refine the
rendered image.

To start an render task, use

OSPFuture ospRenderFrame(OSPFrameBuffer, OSPRenderer, OSPCamera, OSPWorld);

12.1. Overview 2180

oneAPI Specification, Release 1.1-rev-1

This returns an OSPFuture handle, which can be used to synchronize with the application, cancel, or query for progress
of the running task. When ospRenderFrame is called, there is no guarantee when the associated task will begin
execution.

Progress of a running frame can be queried with the following API function

float ospGetProgress(OSPFuture);

This returns the approximated progress of the task in [0-1].

Applications can cancel a currently running asynchronous operation via

void ospCancel(OSPFuture);

Applications can wait on the result of an asynchronous operation, or choose to only synchronize with a specific event.
To synchronize with an OSPFuture use

void ospWait(OSPFuture, OSPSyncEvent = OSP_TASK_FINISHED);

The following are values which can be synchronized with the application

Table 90: Supported events that can be passed to ospWait.
Name Description
OSP_NONE_FINISHEDDo not wait for anything to be finished (immediately return from ospWait)
OSP_WORLD_COMMITTEDWait for the world to be committed (not yet implemented)
OSP_WORLD_RENDEREDWait for the world to be rendered, but not post-processing operations (Pixel/Tile/Frame Op)
OSP_FRAME_FINISHEDWait for all rendering operations to complete
OSP_TASK_FINISHEDWait on full completion of the task associated with the future. The underlying task may

involve one or more of the above synchronization events

Currently only rendering can be invoked asynchronously. However, future releases of OSPRay may add more asyn-
chronous versions of API calls (and thus return OSPFuture).

Applications can query whether particular events are complete with

int ospIsReady(OSPFuture, OSPSyncEvent = OSP_TASK_FINISHED);

As the given running task runs (as tracked by the OSPFuture), applications can query a boolean [0, 1] result if the
passed event has been completed.

Applications can query how long an async task ran with

float ospGetTaskDuration(OSPFuture);

This returns the wall clock execution time of the task in seconds. If the task is still running, this will block until the
task is completed. This is useful for applications to query exactly how long an asynchronous task executed without the
overhead of measuring both task execution + synchronization by the calling application.

12.1. Overview 2181

oneAPI Specification, Release 1.1-rev-1

Asynchronously Rendering and ospCommit()

The use of either ospRenderFrame or ospRenderFrame requires that all objects in the scene being rendered have
been committed before rendering occurs. If a call to ospCommit() happens while a frame is rendered, the result is
undefined behavior and should be avoided.

Synchronous Rendering

For convenience in certain use cases, ospray_util.h provides a synchronous version of ospRenderFrame:

float ospRenderFrameBlocking(OSPFrameBuffer, OSPRenderer, OSPCamera, OSPWorld);

This version is the equivalent of:

ospRenderFrame
ospWait(f, OSP_TASK_FINISHED)
return ospGetVariance(fb)

This version is closest to ospRenderFrame from OSPRay v1.x.

Distributed Rendering with MPI

The purpose of the MPI module for OSPRay is to provide distributed rendering capabilities for OSPRay. The mod-
ule enables image- and data-parallel rendering across HPC clusters using MPI, allowing applications to transparently
distribute rendering work, or to render data sets which are too large to fit in memory on a single machine.

The MPI module provides two OSPRay devices to allow applications to leverage distributed rendering capabilities.
The mpiOffload device provides transparent image-parallel rendering, where the same OSPRay application written
for local rendering can be replicated across multiple nodes to distribute the rendering work. The mpiDistributed
device allows MPI distributed applications to use OSPRay for distributed rendering, where each rank can render and
independent piece of a global data set, or hybrid rendering where ranks partially or completely share data.

MPI Offload Rendering

The mpiOffload device can be used to distribute image rendering tasks across a cluster without requiring modifications
to the application itself. Existing applications using OSPRay for local rendering simply be passed command line argu-
ments to load the module and indicate that the mpiOffload device should be used for image-parallel rendering. To load
the module, pass --osp:load-modules=mpi, to select the MPIOffloadDevice, pass --osp:device=mpiOffload.
For example, the ospExamples application can be run as:

mpirun -n <N> ./ospExamples --osp:load-modules=mpi --osp:device=mpiOffload

and will automatically distribute the image rendering tasks among the corresponding N nodes. Note that in this config-
uration rank 0 will act as a master/application rank, and will run the user application code but not perform rendering
locally. Thus, a minimum of 2 ranks are required, one master to run the application and one worker to perform the
rendering. Running with 3 ranks for example would now distribute half the image rendering work to rank 1 and half to
rank 2.

If more control is required over the placement of ranks to nodes, or you want to run a worker rank on the master
node as well you can run the application and the ospray_mpi_worker program through MPI’s MPMD mode. The
ospray_mpi_worker will load the MPI module and select the offload device by default.

12.1. Overview 2182

oneAPI Specification, Release 1.1-rev-1

mpirun -n 1 ./ospExamples --osp:load-modules=mpi --osp:device=mpiOffload \
: -n <N> ./ospray_mpi_worker

If initializing the mpiOffload device manually, or passing parameters through the command line, the following pa-
rameters can be set:

Table 91: Parameters specific to the mpiOffload Device.
Type Name De-

fault
Description

string mpiMode mpi The mode to communicate with the worker ranks. mpi will assume you’re launching
the application and workers in the same mpi command (or split launch command). mpi
is the only supported mode

uint maxCom-
mand-
BufferEn-
tries

8192 Set the max number of commands to buffer before submitting the command buffer to
the workers

uint command-
BufferSize

512 MiBSet the max command buffer size to allow. Units are in MiB. Max size is 1.8 GiB

uint maxInline-
DataSize

32 MiBSet the max size of an OSPData which can be inline’d into the command buffer instead
of being sent separately. Max size is half the commandBufferSize. Units are in MiB

The maxCommandBufferEntries, commandBufferSize, and maxInlineDataSize can also be set via the en-
vironment variables: OSPRAY_MPI_MAX_COMMAND_BUFFER_ENTRIES, OSPRAY_MPI_COMMAND_BUFFER_SIZE, and
OSPRAY_MPI_MAX_INLINE_DATA_SIZE, respectively.

The mpiOffload device does not support multiple init/shutdown cycles. Thus, to run ospBenchmark for this device
make sure to exclude the init/shutdown test by passing --benchmark_filter=-ospInit_ospShutdown through the
command line.

MPI Distributed Rendering

While MPI Offload rendering is used to transparently distribute rendering work without requiring modification to
the application, MPI Distributed rendering is targeted at use of OSPRay within MPI-parallel applications. The MPI
distributed device can be selected by loading the mpi module, and manually creating and using an instance of the
mpiDistributed device:

ospLoadModule("mpi");

OSPDevice mpiDevice = ospNewDevice("mpiDistributed");
ospDeviceCommit(mpiDevice);
ospSetCurrentDevice(mpiDevice);

Your application can either initialize MPI before-hand, ensuring that MPI_THREAD_SERIALIZED or higher is supported,
or allow the device to initialize MPI on commit. Thread multiple support is required if your application will make
MPI calls while rendering asynchronously with OSPRay. When using the distributed device each rank can specify
independent local data using the OSPRay API, as if rendering locally. However, when calling ospRenderFrameAsync
the ranks will work collectively to render the data. The distributed device supports both image-parallel, where the data
is replicated, and data-parallel, where the data is distributed, rendering modes. The mpiDistributed device will by
default use each rank in MPI_COMM_WORLD as a render worker; however, it can also take a specific MPI communicator
to use as the world communicator. Only those ranks in the specified communicator will participate in rendering.

12.1. Overview 2183

oneAPI Specification, Release 1.1-rev-1

Table 92: Parameters specific to the distributed mpiDistributed De-
vice.

Type Name Default Description
void * worldCommuni-

cator
MPI_COMM_WORLDThe MPI communicator which the OSPRay workers should treat

as their world

Table 93: Parameters specific to the distributed OSPWorld.
Type Name De-

fault
Description

box3f[] region NULL A list of bounding boxes which bound the owned local data to be rendered by the
rank

Table 94: Parameters specific to the mpiRaycast renderer.
Type Name De-

fault
Description

int aoSam-
ples

0 The number of AO samples to take per-pixel

float aoDis-
tance

1020 The AO ray length to use. Note that if the AO ray would have crossed a rank boundary and
ghost geometry is not available, there will be visible artifacts in the shading

Image Parallel Rendering in the MPI Distributed Device

If all ranks specify exactly the same data, the distributed device can be used for image-parallel rendering. This works
identical to the offload device, except that the MPI-aware application is able to load data in parallel on each rank rather
than loading on the master and shipping data out to the workers. When a parallel file system is available, this can
improve data load times. Image-parallel rendering is selected by specifying the same data on each rank, and using any
of the existing local renderers (e.g., scivis, pathtracer). See ospMPIDistribTutorialReplicated for an example.

Data Parallel Rendering in the MPI Distributed Device

The MPI Distributed device also supports data-parallel rendering with sort-last compositing. Each rank can specify a
different piece of data, as long as the bounding boxes of each rank’s data are non-overlapping. The rest of the scene
setup is similar to local rendering; however, for distributed rendering only the mpiRaycast renderer is supported. This
renderer implements a subset of the scivis rendering features which are suitable for implementation in a distributed
environment.

By default the aggregate bounding box of the instances in the local world will be used as the bounds of that rank’s
data. However, when using ghost zones for volume interpolation, geometry or ambient occlusion, each rank’s data can
overlap. To clip these non-owned overlap regions out a set of regions (the region parameter) can pass as a parameter to
the OSPWorld being rendered. Each rank can specify one or more non-overlapping box3f’s which bound the portions
of its local data which it is responsible for rendering. See the ospMPIDistribTutorialVolume for an example.

Finally, the MPI distributed device also supports hybrid-parallel rendering, where multiple ranks can share a single
piece of data. For each shared piece of data the rendering work will be assigned image-parallel among the ranks.
Partially-shared regions are determined by finding those ranks specifying data with the same bounds (matching regions)
and merging them. See the ospMPIDistribTutorialPartialRepl for an example.

12.1. Overview 2184

https://github.com/ospray/ospray/blob/master/modules/mpi/tutorials/ospMPIDistribTutorialReplicated.cpp
https://github.com/ospray/ospray/blob/master/modules/mpi/tutorials/ospMPIDistribTutorialVolume.cpp
https://github.com/ospray/ospray/blob/master/modules/mpi/tutorials/ospMPIDistribTutorialPartialRepl.cpp

oneAPI Specification, Release 1.1-rev-1

Picking on Distributed Data in the MPI Distributed Device

Calling ospPick in the distributed device will find and return the closest global object at the screen position on the
rank that owns that object. The other ranks will report no hit. Picking in the distributed device takes into account data
clipping applied through the regions parameter to avoid picking ghost data.

Interaction with User Modules

The MPI Offload rendering mode trivially supports user modules, with the caveat that attempting to share data directly
with the application (e.g., passing a void\ * or other tricks to the module) will not work in a distributed environment.
Instead, use the ospNewSharedData API to share data from the application with OSPRay, which will in turn be copied
over the network to the workers.

The MPI Distributed device also supports user modules, as all that is required for compositing the distributed data are
the bounds of each rank’s local data.

MultiDevice Rendering

The multidevice module is an experimental OSPRay device type that renders images by delegating off pixel tiles to a
number of internal delegate OSPRay devices. Multidevice is in still in an development stage and is currently limited
to automatically creating ISPCDevice delegates.

If you wish to try it set the OSPRAY_NUM_SUBDEVICES environmental variable to the number of subdevices you
want to create and tell OSPRay to both load the multidevice extension and create a multidevice for rendering instead
of the default ISPCDevice.

One example in a bash like shell is as follows:

OSPRAY_NUM_SUBDEVICES=6 ./ospTutorial --osp:load-modules=multidevice --
→˓osp:device=multidevice

12.1.2 Appendices

• OSPRay Studio: Rendering Focused Application fully utilizing the OSPRay API.

• OSPRay Plug-in for USD Hydra: Universal Scene Description “Hydra API Delegate” using OSPRay for scalable
interactive and real-time ray traced preview

• ISPC Implicit SPMD Program Compiler: Single Program Multi-Data Vectorizing Compiler

• Future Considerations

• Acknowledgment

12.1. Overview 2185

oneAPI Specification, Release 1.1-rev-1

OSPRay Studio

Intel OSPRay Studio is an open source and interactive visualization and ray tracing application that leverages Intel
OSPRay as its core rendering engine. It can be used to load complex scenes requiring high fidelity rendering or very
large scenes requiring supercomputing resources.

The main control structure is a scene graph which allows users to create an abstract scene in a directed acyclical graph
manner. Scenes can either be imported or created using scene graph nodes and structure support. The scenes can then
be rendered either with OSPRay’s pathtracer or scivis renderer.

More information can be found at the OSPRay Studio website.

OSPRay Plug-in for USD Hydra

The Intel® OSPRay Plug-in for USD Hydra is an open source plugin for Pixar’s USD to extend USD’s Hydra ren-
dering framework with Intel® OSPRay. The OSPRay for Hydra Plug-in enables interactive scene preview by utilizing
OSPRay’s high quality renderers and the Intel® Open Image Denoise denoiser.

As part of the oneAPI Rendering Toolkit, OSPRay is highly-optimized for Intel® CPU architectures ranging from
laptops to large-scale distributed HPC systems. HdOSPRay leverages the Intel® Rendering Framework to deliver
interactive rendering for large-scale models at high levels of fidelity.

More information can be found at the OSPRay for Hydra Plug-in website.

ISPC Implicit SPMD Program Compiler

ISPC is a compiler for a variant of the C programming language, with extensions for “single program, multiple data”
(SPMD) programming. Under the SPMD model, the programmer writes a program that generally appears to be a
regular serial program, though the execution model is actually that a number of program instances execute in parallel
on the hardware.

ISPC compiles a C-based SPMD programming language to run on the SIMD units of CPUs and GPUs; it frequently
provides a 3x or more speedup on architectures with 4-wide vector SSE units and 5x-6x on architectures with 8-wide
AVX vector units, without any of the difficulty of writing intrinsics code. Parallelization across multiple cores is also
supported by ispc, making it possible to write programs that achieve performance improvement that scales by both
number of cores and vector unit size.

More information can be found at the ISPC Implicit SPMD Program Compiler website.

Future Considerations

Acknowledgment

12.1. Overview 2186

https://github.com/ospray/ospray_studio
https://github.com/ospray/hdospray
https://ispc.github.io

CHAPTER

THIRTEEN

LEGAL NOTICES AND DISCLAIMERS

The content of this oneAPI Specification is licensed under the Creative Commons Attribution 4.0 International License.
Unless stated otherwise, the sample code examples in this document are released to you under the MIT license.

This specification is a continuation of Intel’s decades-long history of working with standards groups and indus-
try/academia initiatives such as The Khronos Group*, to create and define specifications in an open and fair process to
achieve interoperability and interchangeability. oneAPI is intended to be an open specification and we encourage you to
help us make it better. Your feedback is optional, but to enable Intel to incorporate any feedback you may provide to this
specification, and to further upstream your feedback to other standards bodies, including The Khronos Group SYCL*
specification, please submit your feedback under the terms and conditions below. Any contribution of your feedback to
the oneAPI Specification does not prohibit you from also contributing your feedback directly to other standard bodies,
including The Khronos Group under their respective submission policies.

By opening an issue, providing feedback, or otherwise contributing to the specification, you agree that Intel will be
free to use, disclose, reproduce, modify, license, or otherwise distribute your feedback at its sole discretion without any
obligations or restrictions of any kind, including without limitation, intellectual property rights or licensing obligations.

This document contains information on products, services and/or processes in development. All information provided
here is subject to change without notice.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

2187

https://creativecommons.org/licenses/by/4.0/legalcode
https://opensource.org/licenses/MIT

BIBLIOGRAPHY

[OpenCLSpec] Khronos OpenCL Working Group, The OpenCL Specification Version:2.1 Document Revision:24
Available from opencl-2.1.pdf

[SYCLSpec] Khronos®OpenCL™ Working Group — SYCL™ subgroup, SYCL™ Specification SYCL™ integrates
OpenCL™ devices with modern C++, Version 1.2.1 Available from sycl-1.2.1.pdf

[Lloyd82] Stuart P Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory 1982, 28
(2): 1982pp: 129–137.

[Bro07] Bro, R.; Acar, E.; Kolda, T. Resolving the sign ambiguity in the singular value decomposition. SANDIA
Report, SAND2007-6422, Unlimited Release, October, 2007.

[Bentley80] J. L. Bentley. Multidimensional Divide and Conquer. Communications of the ACM, 23(4):214–229,
1980.

[Friedman17] J. Friedman, T. Hastie, R. Tibshirani. The Elements of Statistical Learning Data Mining, Inference, and
Prediction. Springer, 2017.

[Zhang04] T. Zhang. Solving Large Scale Linear Prediction Problems Using Stochastic Gradient Descent Algo-
rithms. ICML 2004: Proceedings Of The Twenty-First International Conference On Machine Learning,
919–926, 2004.

[Lang87] S. Lang. Linear Algebra. Springer-Verlag New York, 1987.

[Ping14] Ping Tak Peter and Eric Polizzi. FEAST as a Subspace Iteration Eigensolver Accelerated by Approximate
Spectral Projection. 2014.

[Demmel90] J. W. Demmel and W. Kahan. Accurate singular values of bidiagonal matrices. SIAM J. Sci. Stat. Com-
put., 11 (1990), pp. 873-912.

2188

https://www.khronos.org/registry/OpenCL/specs/opencl-2.1.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf

INDEX

Symbols
_mfxExtCencParam (C++ struct), 947
_mfxExtCencParam::Header (C++ member), 947
_mfxExtCencParam::StatusReportIndex (C++ member), 947
~global_control (C++ function), 432
~graph (C++ function), 377
~null_mutex (C++ function), 720
~task_arena (C++ function), 442
~task_group_context (C++ function), 430
~task_scheduler_handle (C++ function), 434
~task_scheduler_observer (C++ function), 447

A
Accessor, 237
activate (C++ function), 387
active_value (C++ function), 432
add (C++ function), 356
allocate (C++ function), 705
API, 239
AsyncNodeBody::Body::~Body (C++ function), 336
AsyncNodeBody::Body::Body (C++ function), 336
AsyncNodeBody::Body::operator() (C++ function), 336
attach (C++ struct), 725
automatic (C++ member), 441
AVC, 1039

B
Batch mode, 237
begin (C++ function), 366
blocked_range (C++ function), 365
Body::~Body (C++ function), 324
Body::assign (C++ function), 328
Body::Body (C++ function), 324, 328
Body::operator() (C++ function), 324, 326, 328
Body::reverse_join (C++ function), 328
BRC, 1039
broadcast_node (C++ function), 410
buffer_node (C++ function), 403
Builder, 237

2189

oneAPI Specification, Release 1.1-rev-1

C
cache_aligned_resource (C++ function), 706
cancel (C++ function), 377
cancel_group_execution (C++ function), 430
canceled (C macro), 438
capture_fp_settings (C++ function), 430
cast_to (C++ function), 423
Categorical feature, 236
Classification, 236
clear (C++ function), 361
Clustering, 236
collaborative_once_flag (C++ function), 344
Combine::operator() (C++ function), 328
complete (C macro), 438
composite_node (C++ function), 419
const_iterator (C++ type), 365
constraints (C++ struct), 441
Contiguous data, 237
ContinueNodeBody::Body::~Body (C++ function), 336
ContinueNodeBody::Body::Body (C++ function), 336
ContinueNodeBody::Body::operator() (C++ function), 336
Continuous feature, 236
CORE, 730
CQP, 1039
CR::begin (C++ function), 335
CR::const_reference (C++ type), 335
CR::difference_type (C++ type), 335
CR::end (C++ function), 335
CR::grainsize (C++ function), 335
CR::iterator (C++ type), 335
CR::reference (C++ type), 335
CR::size_type (C++ type), 335
CR::value_type (C++ type), 335
CSV file, 236

D
Data format, 237
Data layout, 237
Data type, 238
Dataset, 236
deallocate (C++ function), 705
DECODE, 730
DECODE_VPP, 730
default_concurrency (C++ function), 724
Dimensionality reduction, 236
dnnl::algorithm (C++ enum), 61
dnnl::algorithm::binary_add (C++ enumerator), 63
dnnl::algorithm::binary_max (C++ enumerator), 64
dnnl::algorithm::binary_min (C++ enumerator), 64
dnnl::algorithm::binary_mul (C++ enumerator), 64
dnnl::algorithm::convolution_auto (C++ enumerator), 61
dnnl::algorithm::convolution_direct (C++ enumerator), 61
dnnl::algorithm::convolution_winograd (C++ enumerator), 61
dnnl::algorithm::deconvolution_direct (C++ enumerator), 61

Index 2190

oneAPI Specification, Release 1.1-rev-1

dnnl::algorithm::deconvolution_winograd (C++ enumerator), 61
dnnl::algorithm::eltwise_abs (C++ enumerator), 62
dnnl::algorithm::eltwise_bounded_relu (C++ enumerator), 62
dnnl::algorithm::eltwise_clip (C++ enumerator), 62
dnnl::algorithm::eltwise_elu (C++ enumerator), 62
dnnl::algorithm::eltwise_elu_use_dst_for_bwd (C++ enumerator), 63
dnnl::algorithm::eltwise_exp (C++ enumerator), 62
dnnl::algorithm::eltwise_exp_use_dst_for_bwd (C++ enumerator), 63
dnnl::algorithm::eltwise_gelu (C++ enumerator), 62
dnnl::algorithm::eltwise_gelu_erf (C++ enumerator), 62
dnnl::algorithm::eltwise_gelu_tanh (C++ enumerator), 62
dnnl::algorithm::eltwise_linear (C++ enumerator), 62
dnnl::algorithm::eltwise_log (C++ enumerator), 62
dnnl::algorithm::eltwise_logistic (C++ enumerator), 62
dnnl::algorithm::eltwise_logistic_use_dst_for_bwd (C++ enumerator), 63
dnnl::algorithm::eltwise_pow (C++ enumerator), 62
dnnl::algorithm::eltwise_relu (C++ enumerator), 61
dnnl::algorithm::eltwise_relu_use_dst_for_bwd (C++ enumerator), 63
dnnl::algorithm::eltwise_round (C++ enumerator), 62
dnnl::algorithm::eltwise_soft_relu (C++ enumerator), 62
dnnl::algorithm::eltwise_sqrt (C++ enumerator), 62
dnnl::algorithm::eltwise_sqrt_use_dst_for_bwd (C++ enumerator), 63
dnnl::algorithm::eltwise_square (C++ enumerator), 62
dnnl::algorithm::eltwise_swish (C++ enumerator), 62
dnnl::algorithm::eltwise_tanh (C++ enumerator), 61
dnnl::algorithm::eltwise_tanh_use_dst_for_bwd (C++ enumerator), 63
dnnl::algorithm::lbr_gru (C++ enumerator), 63
dnnl::algorithm::lrn_across_channels (C++ enumerator), 63
dnnl::algorithm::lrn_within_channel (C++ enumerator), 63
dnnl::algorithm::pooling_avg (C++ enumerator), 63
dnnl::algorithm::pooling_avg_exclude_padding (C++ enumerator), 63
dnnl::algorithm::pooling_avg_include_padding (C++ enumerator), 63
dnnl::algorithm::pooling_max (C++ enumerator), 63
dnnl::algorithm::resampling_linear (C++ enumerator), 64
dnnl::algorithm::resampling_nearest (C++ enumerator), 64
dnnl::algorithm::undef (C++ enumerator), 61
dnnl::algorithm::vanilla_gru (C++ enumerator), 63
dnnl::algorithm::vanilla_lstm (C++ enumerator), 63
dnnl::algorithm::vanilla_rnn (C++ enumerator), 63
dnnl::batch_normalization_backward (C++ struct), 88
dnnl::batch_normalization_backward::batch_normalization_backward (C++ function), 88
dnnl::batch_normalization_backward::desc (C++ struct), 88
dnnl::batch_normalization_backward::desc::desc (C++ function), 89
dnnl::batch_normalization_backward::primitive_desc (C++ struct), 89
dnnl::batch_normalization_backward::primitive_desc::diff_dst_desc (C++ function), 90
dnnl::batch_normalization_backward::primitive_desc::diff_src_desc (C++ function), 90
dnnl::batch_normalization_backward::primitive_desc::diff_weights_desc (C++ function), 90
dnnl::batch_normalization_backward::primitive_desc::dst_desc (C++ function), 90
dnnl::batch_normalization_backward::primitive_desc::mean_desc (C++ function), 90
dnnl::batch_normalization_backward::primitive_desc::primitive_desc (C++ function), 89
dnnl::batch_normalization_backward::primitive_desc::src_desc (C++ function), 89
dnnl::batch_normalization_backward::primitive_desc::variance_desc (C++ function), 90
dnnl::batch_normalization_backward::primitive_desc::weights_desc (C++ function), 89
dnnl::batch_normalization_backward::primitive_desc::workspace_desc (C++ function), 90

Index 2191

oneAPI Specification, Release 1.1-rev-1

dnnl::batch_normalization_forward (C++ struct), 86
dnnl::batch_normalization_forward::batch_normalization_forward (C++ function), 87
dnnl::batch_normalization_forward::desc (C++ struct), 87
dnnl::batch_normalization_forward::desc::desc (C++ function), 87
dnnl::batch_normalization_forward::primitive_desc (C++ struct), 87
dnnl::batch_normalization_forward::primitive_desc::dst_desc (C++ function), 88
dnnl::batch_normalization_forward::primitive_desc::mean_desc (C++ function), 88
dnnl::batch_normalization_forward::primitive_desc::primitive_desc (C++ function), 87
dnnl::batch_normalization_forward::primitive_desc::src_desc (C++ function), 88
dnnl::batch_normalization_forward::primitive_desc::variance_desc (C++ function), 88
dnnl::batch_normalization_forward::primitive_desc::weights_desc (C++ function), 88
dnnl::batch_normalization_forward::primitive_desc::workspace_desc (C++ function), 88
dnnl::binary (C++ struct), 92
dnnl::binary::binary (C++ function), 92
dnnl::binary::desc (C++ struct), 92
dnnl::binary::desc::desc (C++ function), 92
dnnl::binary::primitive_desc (C++ struct), 92
dnnl::binary::primitive_desc::dst_desc (C++ function), 93
dnnl::binary::primitive_desc::primitive_desc (C++ function), 92
dnnl::binary::primitive_desc::src0_desc (C++ function), 93
dnnl::binary::primitive_desc::src1_desc (C++ function), 93
dnnl::binary::primitive_desc::src_desc (C++ function), 93
dnnl::concat (C++ struct), 94
dnnl::concat::concat (C++ function), 94
dnnl::concat::primitive_desc (C++ struct), 94
dnnl::concat::primitive_desc::dst_desc (C++ function), 95
dnnl::concat::primitive_desc::primitive_desc (C++ function), 95
dnnl::concat::primitive_desc::src_desc (C++ function), 95
dnnl::convolution_backward_data (C++ struct), 105
dnnl::convolution_backward_data::convolution_backward_data (C++ function), 105
dnnl::convolution_backward_data::desc (C++ struct), 105
dnnl::convolution_backward_data::desc::desc (C++ function), 105, 106
dnnl::convolution_backward_data::primitive_desc (C++ struct), 106
dnnl::convolution_backward_data::primitive_desc::diff_dst_desc (C++ function), 107
dnnl::convolution_backward_data::primitive_desc::diff_src_desc (C++ function), 107
dnnl::convolution_backward_data::primitive_desc::primitive_desc (C++ function), 107
dnnl::convolution_backward_data::primitive_desc::weights_desc (C++ function), 107
dnnl::convolution_backward_weights (C++ struct), 107
dnnl::convolution_backward_weights::convolution_backward_weights (C++ function), 108
dnnl::convolution_backward_weights::desc (C++ struct), 108
dnnl::convolution_backward_weights::desc::desc (C++ function), 108, 109
dnnl::convolution_backward_weights::primitive_desc (C++ struct), 110
dnnl::convolution_backward_weights::primitive_desc::diff_bias_desc (C++ function), 111
dnnl::convolution_backward_weights::primitive_desc::diff_dst_desc (C++ function), 111
dnnl::convolution_backward_weights::primitive_desc::diff_weights_desc (C++ function), 111
dnnl::convolution_backward_weights::primitive_desc::primitive_desc (C++ function), 110
dnnl::convolution_backward_weights::primitive_desc::src_desc (C++ function), 111
dnnl::convolution_forward (C++ struct), 101
dnnl::convolution_forward::convolution_forward (C++ function), 102
dnnl::convolution_forward::desc (C++ struct), 102
dnnl::convolution_forward::desc::desc (C++ function), 102–104
dnnl::convolution_forward::primitive_desc (C++ struct), 104
dnnl::convolution_forward::primitive_desc::bias_desc (C++ function), 105
dnnl::convolution_forward::primitive_desc::dst_desc (C++ function), 105

Index 2192

oneAPI Specification, Release 1.1-rev-1

dnnl::convolution_forward::primitive_desc::primitive_desc (C++ function), 104
dnnl::convolution_forward::primitive_desc::src_desc (C++ function), 105
dnnl::convolution_forward::primitive_desc::weights_desc (C++ function), 105
dnnl::deconvolution_backward_data (C++ struct), 114
dnnl::deconvolution_backward_data::deconvolution_backward_data (C++ function), 115
dnnl::deconvolution_backward_data::desc (C++ struct), 115
dnnl::deconvolution_backward_data::desc::desc (C++ function), 115
dnnl::deconvolution_backward_data::primitive_desc (C++ struct), 116
dnnl::deconvolution_backward_data::primitive_desc::diff_dst_desc (C++ function), 117
dnnl::deconvolution_backward_data::primitive_desc::diff_src_desc (C++ function), 116
dnnl::deconvolution_backward_data::primitive_desc::primitive_desc (C++ function), 116
dnnl::deconvolution_backward_data::primitive_desc::weights_desc (C++ function), 116
dnnl::deconvolution_backward_weights (C++ struct), 117
dnnl::deconvolution_backward_weights::deconvolution_backward_weights (C++ function), 117
dnnl::deconvolution_backward_weights::desc (C++ struct), 117
dnnl::deconvolution_backward_weights::desc::desc (C++ function), 117–119
dnnl::deconvolution_backward_weights::primitive_desc (C++ struct), 119
dnnl::deconvolution_backward_weights::primitive_desc::diff_bias_desc (C++ function), 120
dnnl::deconvolution_backward_weights::primitive_desc::diff_dst_desc (C++ function), 120
dnnl::deconvolution_backward_weights::primitive_desc::diff_weights_desc (C++ function), 120
dnnl::deconvolution_backward_weights::primitive_desc::primitive_desc (C++ function), 119
dnnl::deconvolution_backward_weights::primitive_desc::src_desc (C++ function), 120
dnnl::deconvolution_forward (C++ struct), 111
dnnl::deconvolution_forward::deconvolution_forward (C++ function), 111
dnnl::deconvolution_forward::desc (C++ struct), 111
dnnl::deconvolution_forward::desc::desc (C++ function), 111–113
dnnl::deconvolution_forward::primitive_desc (C++ struct), 113
dnnl::deconvolution_forward::primitive_desc::bias_desc (C++ function), 114
dnnl::deconvolution_forward::primitive_desc::dst_desc (C++ function), 114
dnnl::deconvolution_forward::primitive_desc::primitive_desc (C++ function), 114
dnnl::deconvolution_forward::primitive_desc::src_desc (C++ function), 114
dnnl::deconvolution_forward::primitive_desc::weights_desc (C++ function), 114
dnnl::eltwise_backward (C++ struct), 125
dnnl::eltwise_backward::desc (C++ struct), 125
dnnl::eltwise_backward::desc::desc (C++ function), 126
dnnl::eltwise_backward::eltwise_backward (C++ function), 125
dnnl::eltwise_backward::primitive_desc (C++ struct), 126
dnnl::eltwise_backward::primitive_desc::diff_dst_desc (C++ function), 127
dnnl::eltwise_backward::primitive_desc::diff_src_desc (C++ function), 126
dnnl::eltwise_backward::primitive_desc::primitive_desc (C++ function), 126
dnnl::eltwise_backward::primitive_desc::src_desc (C++ function), 126
dnnl::eltwise_forward (C++ struct), 124
dnnl::eltwise_forward::desc (C++ struct), 124
dnnl::eltwise_forward::desc::desc (C++ function), 124
dnnl::eltwise_forward::eltwise_forward (C++ function), 124
dnnl::eltwise_forward::primitive_desc (C++ struct), 124
dnnl::eltwise_forward::primitive_desc::dst_desc (C++ function), 125
dnnl::eltwise_forward::primitive_desc::primitive_desc (C++ function), 125
dnnl::eltwise_forward::primitive_desc::src_desc (C++ function), 125
dnnl::engine (C++ struct), 28
dnnl::engine::engine (C++ function), 29
dnnl::engine::get_count (C++ function), 29
dnnl::engine::get_kind (C++ function), 29
dnnl::engine::kind (C++ enum), 28

Index 2193

oneAPI Specification, Release 1.1-rev-1

dnnl::engine::kind::any (C++ enumerator), 28
dnnl::engine::kind::cpu (C++ enumerator), 28
dnnl::engine::kind::gpu (C++ enumerator), 28
dnnl::error (C++ struct), 26
dnnl::gru_backward (C++ struct), 193
dnnl::gru_backward::desc (C++ struct), 193
dnnl::gru_backward::desc::desc (C++ function), 194
dnnl::gru_backward::gru_backward (C++ function), 193
dnnl::gru_backward::primitive_desc (C++ struct), 194
dnnl::gru_backward::primitive_desc::bias_desc (C++ function), 195
dnnl::gru_backward::primitive_desc::diff_bias_desc (C++ function), 196
dnnl::gru_backward::primitive_desc::diff_dst_iter_desc (C++ function), 196
dnnl::gru_backward::primitive_desc::diff_dst_layer_desc (C++ function), 196
dnnl::gru_backward::primitive_desc::diff_src_iter_desc (C++ function), 196
dnnl::gru_backward::primitive_desc::diff_src_layer_desc (C++ function), 196
dnnl::gru_backward::primitive_desc::diff_weights_iter_desc (C++ function), 196
dnnl::gru_backward::primitive_desc::diff_weights_layer_desc (C++ function), 196
dnnl::gru_backward::primitive_desc::dst_iter_desc (C++ function), 195
dnnl::gru_backward::primitive_desc::dst_layer_desc (C++ function), 195
dnnl::gru_backward::primitive_desc::primitive_desc (C++ function), 195
dnnl::gru_backward::primitive_desc::src_iter_desc (C++ function), 195
dnnl::gru_backward::primitive_desc::src_layer_desc (C++ function), 195
dnnl::gru_backward::primitive_desc::weights_iter_desc (C++ function), 195
dnnl::gru_backward::primitive_desc::weights_layer_desc (C++ function), 195
dnnl::gru_backward::primitive_desc::workspace_desc (C++ function), 196
dnnl::gru_forward (C++ struct), 191
dnnl::gru_forward::desc (C++ struct), 191
dnnl::gru_forward::desc::desc (C++ function), 192
dnnl::gru_forward::gru_forward (C++ function), 191
dnnl::gru_forward::primitive_desc (C++ struct), 192
dnnl::gru_forward::primitive_desc::bias_desc (C++ function), 193
dnnl::gru_forward::primitive_desc::dst_iter_desc (C++ function), 193
dnnl::gru_forward::primitive_desc::dst_layer_desc (C++ function), 193
dnnl::gru_forward::primitive_desc::primitive_desc (C++ function), 192
dnnl::gru_forward::primitive_desc::src_iter_desc (C++ function), 193
dnnl::gru_forward::primitive_desc::src_layer_desc (C++ function), 193
dnnl::gru_forward::primitive_desc::weights_iter_desc (C++ function), 193
dnnl::gru_forward::primitive_desc::weights_layer_desc (C++ function), 193
dnnl::gru_forward::primitive_desc::workspace_desc (C++ function), 193
dnnl::inner_product_backward_data (C++ struct), 131
dnnl::inner_product_backward_data::desc (C++ struct), 131
dnnl::inner_product_backward_data::desc::desc (C++ function), 131
dnnl::inner_product_backward_data::inner_product_backward_data (C++ function), 131
dnnl::inner_product_backward_data::primitive_desc (C++ struct), 132
dnnl::inner_product_backward_data::primitive_desc::diff_dst_desc (C++ function), 132
dnnl::inner_product_backward_data::primitive_desc::diff_src_desc (C++ function), 132
dnnl::inner_product_backward_data::primitive_desc::primitive_desc (C++ function), 132
dnnl::inner_product_backward_data::primitive_desc::weights_desc (C++ function), 132
dnnl::inner_product_backward_weights (C++ struct), 132
dnnl::inner_product_backward_weights::desc (C++ struct), 133
dnnl::inner_product_backward_weights::desc::desc (C++ function), 133
dnnl::inner_product_backward_weights::inner_product_backward_weights (C++ function), 133
dnnl::inner_product_backward_weights::primitive_desc (C++ struct), 133
dnnl::inner_product_backward_weights::primitive_desc::diff_bias_desc (C++ function), 134

Index 2194

oneAPI Specification, Release 1.1-rev-1

dnnl::inner_product_backward_weights::primitive_desc::diff_dst_desc (C++ function), 134
dnnl::inner_product_backward_weights::primitive_desc::diff_weights_desc (C++ function), 134
dnnl::inner_product_backward_weights::primitive_desc::primitive_desc (C++ function), 134
dnnl::inner_product_backward_weights::primitive_desc::src_desc (C++ function), 134
dnnl::inner_product_forward (C++ struct), 129
dnnl::inner_product_forward::desc (C++ struct), 129
dnnl::inner_product_forward::desc::desc (C++ function), 130
dnnl::inner_product_forward::inner_product_forward (C++ function), 129
dnnl::inner_product_forward::primitive_desc (C++ struct), 130
dnnl::inner_product_forward::primitive_desc::bias_desc (C++ function), 131
dnnl::inner_product_forward::primitive_desc::dst_desc (C++ function), 131
dnnl::inner_product_forward::primitive_desc::primitive_desc (C++ function), 130
dnnl::inner_product_forward::primitive_desc::src_desc (C++ function), 131
dnnl::inner_product_forward::primitive_desc::weights_desc (C++ function), 131
dnnl::layer_normalization_backward (C++ struct), 139
dnnl::layer_normalization_backward::desc (C++ struct), 140
dnnl::layer_normalization_backward::desc::desc (C++ function), 140
dnnl::layer_normalization_backward::layer_normalization_backward (C++ function), 140
dnnl::layer_normalization_backward::primitive_desc (C++ struct), 140
dnnl::layer_normalization_backward::primitive_desc::diff_dst_desc (C++ function), 141
dnnl::layer_normalization_backward::primitive_desc::diff_src_desc (C++ function), 141
dnnl::layer_normalization_backward::primitive_desc::diff_weights_desc (C++ function), 141
dnnl::layer_normalization_backward::primitive_desc::dst_desc (C++ function), 141
dnnl::layer_normalization_backward::primitive_desc::mean_desc (C++ function), 141
dnnl::layer_normalization_backward::primitive_desc::primitive_desc (C++ function), 140, 141
dnnl::layer_normalization_backward::primitive_desc::src_desc (C++ function), 141
dnnl::layer_normalization_backward::primitive_desc::variance_desc (C++ function), 141
dnnl::layer_normalization_backward::primitive_desc::weights_desc (C++ function), 141
dnnl::layer_normalization_backward::primitive_desc::workspace_desc (C++ function), 141
dnnl::layer_normalization_forward (C++ struct), 138
dnnl::layer_normalization_forward::desc (C++ struct), 138
dnnl::layer_normalization_forward::desc::desc (C++ function), 138
dnnl::layer_normalization_forward::layer_normalization_forward (C++ function), 138
dnnl::layer_normalization_forward::primitive_desc (C++ struct), 138
dnnl::layer_normalization_forward::primitive_desc::dst_desc (C++ function), 139
dnnl::layer_normalization_forward::primitive_desc::mean_desc (C++ function), 139
dnnl::layer_normalization_forward::primitive_desc::primitive_desc (C++ function), 139
dnnl::layer_normalization_forward::primitive_desc::src_desc (C++ function), 139
dnnl::layer_normalization_forward::primitive_desc::variance_desc (C++ function), 139
dnnl::layer_normalization_forward::primitive_desc::weights_desc (C++ function), 139
dnnl::layer_normalization_forward::primitive_desc::workspace_desc (C++ function), 139
dnnl::lbr_gru_backward (C++ struct), 198
dnnl::lbr_gru_backward::desc (C++ struct), 198
dnnl::lbr_gru_backward::desc::desc (C++ function), 199
dnnl::lbr_gru_backward::lbr_gru_backward (C++ function), 198
dnnl::lbr_gru_backward::primitive_desc (C++ struct), 199
dnnl::lbr_gru_backward::primitive_desc::bias_desc (C++ function), 200
dnnl::lbr_gru_backward::primitive_desc::diff_bias_desc (C++ function), 201
dnnl::lbr_gru_backward::primitive_desc::diff_dst_iter_desc (C++ function), 201
dnnl::lbr_gru_backward::primitive_desc::diff_dst_layer_desc (C++ function), 201
dnnl::lbr_gru_backward::primitive_desc::diff_src_iter_desc (C++ function), 201
dnnl::lbr_gru_backward::primitive_desc::diff_src_layer_desc (C++ function), 201
dnnl::lbr_gru_backward::primitive_desc::diff_weights_iter_desc (C++ function), 201
dnnl::lbr_gru_backward::primitive_desc::diff_weights_layer_desc (C++ function), 201

Index 2195

oneAPI Specification, Release 1.1-rev-1

dnnl::lbr_gru_backward::primitive_desc::dst_iter_desc (C++ function), 200
dnnl::lbr_gru_backward::primitive_desc::dst_layer_desc (C++ function), 200
dnnl::lbr_gru_backward::primitive_desc::primitive_desc (C++ function), 200
dnnl::lbr_gru_backward::primitive_desc::src_iter_desc (C++ function), 200
dnnl::lbr_gru_backward::primitive_desc::src_layer_desc (C++ function), 200
dnnl::lbr_gru_backward::primitive_desc::weights_iter_desc (C++ function), 200
dnnl::lbr_gru_backward::primitive_desc::weights_layer_desc (C++ function), 200
dnnl::lbr_gru_backward::primitive_desc::workspace_desc (C++ function), 201
dnnl::lbr_gru_forward (C++ struct), 196
dnnl::lbr_gru_forward::desc (C++ struct), 196
dnnl::lbr_gru_forward::desc::desc (C++ function), 197
dnnl::lbr_gru_forward::lbr_gru_forward (C++ function), 196
dnnl::lbr_gru_forward::primitive_desc (C++ struct), 197
dnnl::lbr_gru_forward::primitive_desc::bias_desc (C++ function), 198
dnnl::lbr_gru_forward::primitive_desc::dst_iter_desc (C++ function), 198
dnnl::lbr_gru_forward::primitive_desc::dst_layer_desc (C++ function), 198
dnnl::lbr_gru_forward::primitive_desc::primitive_desc (C++ function), 197
dnnl::lbr_gru_forward::primitive_desc::src_iter_desc (C++ function), 198
dnnl::lbr_gru_forward::primitive_desc::src_layer_desc (C++ function), 198
dnnl::lbr_gru_forward::primitive_desc::weights_iter_desc (C++ function), 198
dnnl::lbr_gru_forward::primitive_desc::weights_layer_desc (C++ function), 198
dnnl::lbr_gru_forward::primitive_desc::workspace_desc (C++ function), 198
dnnl::logsoftmax_backward (C++ struct), 144
dnnl::logsoftmax_backward::desc (C++ struct), 145
dnnl::logsoftmax_backward::desc::desc (C++ function), 145
dnnl::logsoftmax_backward::logsoftmax_backward (C++ function), 145
dnnl::logsoftmax_backward::primitive_desc (C++ struct), 145
dnnl::logsoftmax_backward::primitive_desc::diff_dst_desc (C++ function), 146
dnnl::logsoftmax_backward::primitive_desc::diff_src_desc (C++ function), 146
dnnl::logsoftmax_backward::primitive_desc::dst_desc (C++ function), 146
dnnl::logsoftmax_backward::primitive_desc::primitive_desc (C++ function), 145
dnnl::logsoftmax_forward (C++ struct), 143
dnnl::logsoftmax_forward::desc (C++ struct), 143
dnnl::logsoftmax_forward::desc::desc (C++ function), 144
dnnl::logsoftmax_forward::logsoftmax_forward (C++ function), 143
dnnl::logsoftmax_forward::primitive_desc (C++ struct), 144
dnnl::logsoftmax_forward::primitive_desc::dst_desc (C++ function), 144
dnnl::logsoftmax_forward::primitive_desc::primitive_desc (C++ function), 144
dnnl::logsoftmax_forward::primitive_desc::src_desc (C++ function), 144
dnnl::lrn_backward (C++ struct), 149
dnnl::lrn_backward::desc (C++ struct), 149
dnnl::lrn_backward::desc::desc (C++ function), 150
dnnl::lrn_backward::lrn_backward (C++ function), 149
dnnl::lrn_backward::primitive_desc (C++ struct), 150
dnnl::lrn_backward::primitive_desc::diff_dst_desc (C++ function), 150
dnnl::lrn_backward::primitive_desc::diff_src_desc (C++ function), 150
dnnl::lrn_backward::primitive_desc::primitive_desc (C++ function), 150
dnnl::lrn_backward::primitive_desc::workspace_desc (C++ function), 151
dnnl::lrn_forward (C++ struct), 148
dnnl::lrn_forward::desc (C++ struct), 148
dnnl::lrn_forward::desc::desc (C++ function), 148
dnnl::lrn_forward::lrn_forward (C++ function), 148
dnnl::lrn_forward::primitive_desc (C++ struct), 148
dnnl::lrn_forward::primitive_desc::dst_desc (C++ function), 149

Index 2196

oneAPI Specification, Release 1.1-rev-1

dnnl::lrn_forward::primitive_desc::primitive_desc (C++ function), 149
dnnl::lrn_forward::primitive_desc::src_desc (C++ function), 149
dnnl::lrn_forward::primitive_desc::workspace_desc (C++ function), 149
dnnl::lstm_backward (C++ struct), 185
dnnl::lstm_backward::desc (C++ struct), 185
dnnl::lstm_backward::desc::desc (C++ function), 185, 187, 188
dnnl::lstm_backward::lstm_backward (C++ function), 185
dnnl::lstm_backward::primitive_desc (C++ struct), 189
dnnl::lstm_backward::primitive_desc::bias_desc (C++ function), 190
dnnl::lstm_backward::primitive_desc::diff_bias_desc (C++ function), 191
dnnl::lstm_backward::primitive_desc::diff_dst_iter_c_desc (C++ function), 191
dnnl::lstm_backward::primitive_desc::diff_dst_iter_desc (C++ function), 191
dnnl::lstm_backward::primitive_desc::diff_dst_layer_desc (C++ function), 191
dnnl::lstm_backward::primitive_desc::diff_src_iter_c_desc (C++ function), 190
dnnl::lstm_backward::primitive_desc::diff_src_iter_desc (C++ function), 190
dnnl::lstm_backward::primitive_desc::diff_src_layer_desc (C++ function), 190
dnnl::lstm_backward::primitive_desc::diff_weights_iter_desc (C++ function), 190
dnnl::lstm_backward::primitive_desc::diff_weights_layer_desc (C++ function), 190
dnnl::lstm_backward::primitive_desc::diff_weights_peephole_desc (C++ function), 191
dnnl::lstm_backward::primitive_desc::diff_weights_projection_desc (C++ function), 191
dnnl::lstm_backward::primitive_desc::dst_iter_c_desc (C++ function), 190
dnnl::lstm_backward::primitive_desc::dst_iter_desc (C++ function), 190
dnnl::lstm_backward::primitive_desc::dst_layer_desc (C++ function), 190
dnnl::lstm_backward::primitive_desc::primitive_desc (C++ function), 189
dnnl::lstm_backward::primitive_desc::src_iter_c_desc (C++ function), 189
dnnl::lstm_backward::primitive_desc::src_iter_desc (C++ function), 189
dnnl::lstm_backward::primitive_desc::src_layer_desc (C++ function), 189
dnnl::lstm_backward::primitive_desc::weights_iter_desc (C++ function), 190
dnnl::lstm_backward::primitive_desc::weights_layer_desc (C++ function), 190
dnnl::lstm_backward::primitive_desc::weights_peephole_desc (C++ function), 190
dnnl::lstm_backward::primitive_desc::weights_projection_desc (C++ function), 190
dnnl::lstm_backward::primitive_desc::workspace_desc (C++ function), 190
dnnl::lstm_forward (C++ struct), 181
dnnl::lstm_forward::desc (C++ struct), 181
dnnl::lstm_forward::desc::desc (C++ function), 181–183
dnnl::lstm_forward::lstm_forward (C++ function), 181
dnnl::lstm_forward::primitive_desc (C++ struct), 183
dnnl::lstm_forward::primitive_desc::bias_desc (C++ function), 184
dnnl::lstm_forward::primitive_desc::dst_iter_c_desc (C++ function), 185
dnnl::lstm_forward::primitive_desc::dst_iter_desc (C++ function), 185
dnnl::lstm_forward::primitive_desc::dst_layer_desc (C++ function), 184
dnnl::lstm_forward::primitive_desc::primitive_desc (C++ function), 184
dnnl::lstm_forward::primitive_desc::src_iter_c_desc (C++ function), 184
dnnl::lstm_forward::primitive_desc::src_iter_desc (C++ function), 184
dnnl::lstm_forward::primitive_desc::src_layer_desc (C++ function), 184
dnnl::lstm_forward::primitive_desc::weights_iter_desc (C++ function), 184
dnnl::lstm_forward::primitive_desc::weights_layer_desc (C++ function), 184
dnnl::lstm_forward::primitive_desc::weights_peephole_desc (C++ function), 184
dnnl::lstm_forward::primitive_desc::weights_projection_desc (C++ function), 184
dnnl::lstm_forward::primitive_desc::workspace_desc (C++ function), 185
dnnl::matmul (C++ struct), 153
dnnl::matmul::desc (C++ struct), 153
dnnl::matmul::desc::desc (C++ function), 153
dnnl::matmul::matmul (C++ function), 153

Index 2197

oneAPI Specification, Release 1.1-rev-1

dnnl::matmul::primitive_desc (C++ struct), 153
dnnl::matmul::primitive_desc::bias_desc (C++ function), 154
dnnl::matmul::primitive_desc::dst_desc (C++ function), 154
dnnl::matmul::primitive_desc::primitive_desc (C++ function), 154
dnnl::matmul::primitive_desc::src_desc (C++ function), 154
dnnl::matmul::primitive_desc::weights_desc (C++ function), 154
dnnl::memory (C++ struct), 45
dnnl::memory::data_type (C++ enum), 31
dnnl::memory::data_type::bf16 (C++ enumerator), 31
dnnl::memory::data_type::f16 (C++ enumerator), 31
dnnl::memory::data_type::f32 (C++ enumerator), 31
dnnl::memory::data_type::s32 (C++ enumerator), 31
dnnl::memory::data_type::s8 (C++ enumerator), 31
dnnl::memory::data_type::u8 (C++ enumerator), 31
dnnl::memory::data_type::undef (C++ enumerator), 31
dnnl::memory::desc (C++ struct), 42
dnnl::memory::desc::data_type (C++ function), 44
dnnl::memory::desc::desc (C++ function), 42, 43
dnnl::memory::desc::dims (C++ function), 44
dnnl::memory::desc::get_size (C++ function), 45
dnnl::memory::desc::is_zero (C++ function), 45
dnnl::memory::desc::operator!= (C++ function), 45
dnnl::memory::desc::operator== (C++ function), 45
dnnl::memory::desc::permute_axes (C++ function), 44
dnnl::memory::desc::reshape (C++ function), 43
dnnl::memory::desc::submemory_desc (C++ function), 43
dnnl::memory::dim (C++ type), 33
dnnl::memory::dims (C++ type), 33
dnnl::memory::format_tag (C++ enum), 36
dnnl::memory::format_tag::a (C++ enumerator), 37
dnnl::memory::format_tag::ab (C++ enumerator), 37
dnnl::memory::format_tag::abc (C++ enumerator), 37
dnnl::memory::format_tag::abcd (C++ enumerator), 37
dnnl::memory::format_tag::abcde (C++ enumerator), 38
dnnl::memory::format_tag::abcdef (C++ enumerator), 38
dnnl::memory::format_tag::abdc (C++ enumerator), 38
dnnl::memory::format_tag::abdec (C++ enumerator), 38
dnnl::memory::format_tag::acb (C++ enumerator), 37
dnnl::memory::format_tag::acbde (C++ enumerator), 38
dnnl::memory::format_tag::acbdef (C++ enumerator), 38
dnnl::memory::format_tag::acdb (C++ enumerator), 38
dnnl::memory::format_tag::acdeb (C++ enumerator), 38
dnnl::memory::format_tag::any (C++ enumerator), 37
dnnl::memory::format_tag::ba (C++ enumerator), 37
dnnl::memory::format_tag::bac (C++ enumerator), 37
dnnl::memory::format_tag::bacd (C++ enumerator), 38
dnnl::memory::format_tag::bacde (C++ enumerator), 38
dnnl::memory::format_tag::bca (C++ enumerator), 37
dnnl::memory::format_tag::bcda (C++ enumerator), 38
dnnl::memory::format_tag::bcdea (C++ enumerator), 38
dnnl::memory::format_tag::cba (C++ enumerator), 37
dnnl::memory::format_tag::cdba (C++ enumerator), 38
dnnl::memory::format_tag::cdeba (C++ enumerator), 38
dnnl::memory::format_tag::chwn (C++ enumerator), 39

Index 2198

oneAPI Specification, Release 1.1-rev-1

dnnl::memory::format_tag::cn (C++ enumerator), 39
dnnl::memory::format_tag::dcab (C++ enumerator), 38
dnnl::memory::format_tag::decab (C++ enumerator), 38
dnnl::memory::format_tag::defcab (C++ enumerator), 38
dnnl::memory::format_tag::dhwigo (C++ enumerator), 41
dnnl::memory::format_tag::dhwio (C++ enumerator), 40
dnnl::memory::format_tag::giodhw (C++ enumerator), 41
dnnl::memory::format_tag::giohw (C++ enumerator), 40
dnnl::memory::format_tag::goidhw (C++ enumerator), 40
dnnl::memory::format_tag::goihw (C++ enumerator), 40
dnnl::memory::format_tag::goiw (C++ enumerator), 40
dnnl::memory::format_tag::hwigo (C++ enumerator), 40
dnnl::memory::format_tag::hwio (C++ enumerator), 40
dnnl::memory::format_tag::idhwo (C++ enumerator), 40
dnnl::memory::format_tag::ihwo (C++ enumerator), 40
dnnl::memory::format_tag::io (C++ enumerator), 39
dnnl::memory::format_tag::iodhw (C++ enumerator), 40
dnnl::memory::format_tag::iohw (C++ enumerator), 40
dnnl::memory::format_tag::iwo (C++ enumerator), 40
dnnl::memory::format_tag::ldgo (C++ enumerator), 41
dnnl::memory::format_tag::ldgoi (C++ enumerator), 41
dnnl::memory::format_tag::ldigo (C++ enumerator), 41
dnnl::memory::format_tag::ldio (C++ enumerator), 41
dnnl::memory::format_tag::ldnc (C++ enumerator), 41
dnnl::memory::format_tag::ldoi (C++ enumerator), 41
dnnl::memory::format_tag::nc (C++ enumerator), 39
dnnl::memory::format_tag::ncdhw (C++ enumerator), 39
dnnl::memory::format_tag::nchw (C++ enumerator), 39
dnnl::memory::format_tag::ncw (C++ enumerator), 39
dnnl::memory::format_tag::ndhwc (C++ enumerator), 39
dnnl::memory::format_tag::nhwc (C++ enumerator), 39
dnnl::memory::format_tag::nt (C++ enumerator), 39
dnnl::memory::format_tag::ntc (C++ enumerator), 41
dnnl::memory::format_tag::nwc (C++ enumerator), 39
dnnl::memory::format_tag::odhwi (C++ enumerator), 40
dnnl::memory::format_tag::ohwi (C++ enumerator), 40
dnnl::memory::format_tag::oi (C++ enumerator), 39
dnnl::memory::format_tag::oidhw (C++ enumerator), 40
dnnl::memory::format_tag::oihw (C++ enumerator), 40
dnnl::memory::format_tag::oiw (C++ enumerator), 39
dnnl::memory::format_tag::owi (C++ enumerator), 39
dnnl::memory::format_tag::tn (C++ enumerator), 39
dnnl::memory::format_tag::tnc (C++ enumerator), 41
dnnl::memory::format_tag::undef (C++ enumerator), 37
dnnl::memory::format_tag::wigo (C++ enumerator), 40
dnnl::memory::format_tag::wio (C++ enumerator), 39
dnnl::memory::format_tag::x (C++ enumerator), 39
dnnl::memory::get_data_handle (C++ function), 46
dnnl::memory::get_desc (C++ function), 46
dnnl::memory::get_engine (C++ function), 46
dnnl::memory::map_data (C++ function), 47
dnnl::memory::memory (C++ function), 45, 46
dnnl::memory::set_data_handle (C++ function), 46, 47
dnnl::memory::unmap_data (C++ function), 47

Index 2199

oneAPI Specification, Release 1.1-rev-1

dnnl::normalization_flags (C++ enum), 64
dnnl::normalization_flags::fuse_norm_relu (C++ enumerator), 64
dnnl::normalization_flags::none (C++ enumerator), 64
dnnl::normalization_flags::use_global_stats (C++ enumerator), 64
dnnl::normalization_flags::use_scale_shift (C++ enumerator), 64
dnnl::pooling_backward (C++ struct), 158
dnnl::pooling_backward::desc (C++ struct), 158
dnnl::pooling_backward::desc::desc (C++ function), 158
dnnl::pooling_backward::pooling_backward (C++ function), 158
dnnl::pooling_backward::primitive_desc (C++ struct), 159
dnnl::pooling_backward::primitive_desc::diff_dst_desc (C++ function), 159
dnnl::pooling_backward::primitive_desc::diff_src_desc (C++ function), 159
dnnl::pooling_backward::primitive_desc::primitive_desc (C++ function), 159
dnnl::pooling_backward::primitive_desc::workspace_desc (C++ function), 159
dnnl::pooling_forward (C++ struct), 156
dnnl::pooling_forward::desc (C++ struct), 157
dnnl::pooling_forward::desc::desc (C++ function), 157
dnnl::pooling_forward::pooling_forward (C++ function), 157
dnnl::pooling_forward::primitive_desc (C++ struct), 157
dnnl::pooling_forward::primitive_desc::dst_desc (C++ function), 158
dnnl::pooling_forward::primitive_desc::primitive_desc (C++ function), 157
dnnl::pooling_forward::primitive_desc::src_desc (C++ function), 158
dnnl::pooling_forward::primitive_desc::workspace_desc (C++ function), 158
dnnl::post_ops (C++ struct), 71
dnnl::post_ops::append_eltwise (C++ function), 72
dnnl::post_ops::append_sum (C++ function), 71
dnnl::post_ops::get_params_eltwise (C++ function), 72
dnnl::post_ops::get_params_sum (C++ function), 71, 72
dnnl::post_ops::kind (C++ function), 71
dnnl::post_ops::len (C++ function), 71
dnnl::post_ops::post_ops (C++ function), 71
dnnl::primitive (C++ struct), 52
dnnl::primitive::execute (C++ function), 54
dnnl::primitive::get_kind (C++ function), 54
dnnl::primitive::kind (C++ enum), 53
dnnl::primitive::kind::batch_normalization (C++ enumerator), 53
dnnl::primitive::kind::binary (C++ enumerator), 53
dnnl::primitive::kind::concat (C++ enumerator), 53
dnnl::primitive::kind::convolution (C++ enumerator), 53
dnnl::primitive::kind::deconvolution (C++ enumerator), 53
dnnl::primitive::kind::eltwise (C++ enumerator), 53
dnnl::primitive::kind::inner_product (C++ enumerator), 53
dnnl::primitive::kind::layer_normalization (C++ enumerator), 53
dnnl::primitive::kind::logsoftmax (C++ enumerator), 54
dnnl::primitive::kind::lrn (C++ enumerator), 53
dnnl::primitive::kind::matmul (C++ enumerator), 54
dnnl::primitive::kind::pooling (C++ enumerator), 53
dnnl::primitive::kind::reorder (C++ enumerator), 53
dnnl::primitive::kind::resampling (C++ enumerator), 54
dnnl::primitive::kind::rnn (C++ enumerator), 53
dnnl::primitive::kind::shuffle (C++ enumerator), 53
dnnl::primitive::kind::softmax (C++ enumerator), 53
dnnl::primitive::kind::sum (C++ enumerator), 53
dnnl::primitive::kind::undef (C++ enumerator), 53

Index 2200

oneAPI Specification, Release 1.1-rev-1

dnnl::primitive::operator= (C++ function), 54
dnnl::primitive::primitive (C++ function), 54
dnnl::primitive_attr (C++ struct), 79
dnnl::primitive_attr::get_output_scales (C++ function), 79
dnnl::primitive_attr::get_post_ops (C++ function), 81
dnnl::primitive_attr::get_scales (C++ function), 80
dnnl::primitive_attr::get_scratchpad_mode (C++ function), 79
dnnl::primitive_attr::get_zero_points (C++ function), 81
dnnl::primitive_attr::primitive_attr (C++ function), 79
dnnl::primitive_attr::set_output_scales (C++ function), 79
dnnl::primitive_attr::set_post_ops (C++ function), 81
dnnl::primitive_attr::set_rnn_data_qparams (C++ function), 82
dnnl::primitive_attr::set_rnn_weights_qparams (C++ function), 82
dnnl::primitive_attr::set_scales (C++ function), 80
dnnl::primitive_attr::set_scratchpad_mode (C++ function), 79
dnnl::primitive_attr::set_zero_points (C++ function), 81
dnnl::primitive_desc (C++ struct), 57
dnnl::primitive_desc::next_impl (C++ function), 58
dnnl::primitive_desc::primitive_desc (C++ function), 58
dnnl::primitive_desc_base (C++ struct), 55
dnnl::primitive_desc_base::diff_dst_desc (C++ function), 56, 57
dnnl::primitive_desc_base::diff_src_desc (C++ function), 56, 57
dnnl::primitive_desc_base::diff_weights_desc (C++ function), 56, 57
dnnl::primitive_desc_base::dst_desc (C++ function), 56, 57
dnnl::primitive_desc_base::get_engine (C++ function), 55
dnnl::primitive_desc_base::get_kind (C++ function), 57
dnnl::primitive_desc_base::get_primitive_attr (C++ function), 57
dnnl::primitive_desc_base::impl_info_str (C++ function), 55
dnnl::primitive_desc_base::primitive_desc_base (C++ function), 55
dnnl::primitive_desc_base::query_md (C++ function), 55
dnnl::primitive_desc_base::query_s64 (C++ function), 55
dnnl::primitive_desc_base::scratchpad_desc (C++ function), 57
dnnl::primitive_desc_base::scratchpad_engine (C++ function), 57
dnnl::primitive_desc_base::src_desc (C++ function), 55, 56
dnnl::primitive_desc_base::weights_desc (C++ function), 56, 57
dnnl::primitive_desc_base::workspace_desc (C++ function), 57
dnnl::prop_kind (C++ enum), 60
dnnl::prop_kind::backward (C++ enumerator), 61
dnnl::prop_kind::backward_bias (C++ enumerator), 61
dnnl::prop_kind::backward_data (C++ enumerator), 61
dnnl::prop_kind::backward_weights (C++ enumerator), 61
dnnl::prop_kind::forward (C++ enumerator), 61
dnnl::prop_kind::forward_inference (C++ enumerator), 61
dnnl::prop_kind::forward_scoring (C++ enumerator), 61
dnnl::prop_kind::forward_training (C++ enumerator), 60
dnnl::prop_kind::undef (C++ enumerator), 60
dnnl::reorder (C++ struct), 162
dnnl::reorder::execute (C++ function), 162
dnnl::reorder::primitive_desc (C++ struct), 162
dnnl::reorder::primitive_desc::dst_desc (C++ function), 163
dnnl::reorder::primitive_desc::get_dst_engine (C++ function), 163
dnnl::reorder::primitive_desc::get_src_engine (C++ function), 163
dnnl::reorder::primitive_desc::primitive_desc (C++ function), 162, 163
dnnl::reorder::primitive_desc::src_desc (C++ function), 163

Index 2201

oneAPI Specification, Release 1.1-rev-1

dnnl::reorder::reorder (C++ function), 162
dnnl::resampling_backward (C++ struct), 167
dnnl::resampling_backward::desc (C++ struct), 168
dnnl::resampling_backward::desc::desc (C++ function), 168
dnnl::resampling_backward::primitive_desc (C++ struct), 168
dnnl::resampling_backward::primitive_desc::diff_dst_desc (C++ function), 169
dnnl::resampling_backward::primitive_desc::diff_src_desc (C++ function), 169
dnnl::resampling_backward::primitive_desc::primitive_desc (C++ function), 168, 169
dnnl::resampling_backward::resampling_backward (C++ function), 168
dnnl::resampling_forward (C++ struct), 166
dnnl::resampling_forward::desc (C++ struct), 166
dnnl::resampling_forward::desc::desc (C++ function), 166
dnnl::resampling_forward::primitive_desc (C++ struct), 167
dnnl::resampling_forward::primitive_desc::dst_desc (C++ function), 167
dnnl::resampling_forward::primitive_desc::primitive_desc (C++ function), 167
dnnl::resampling_forward::primitive_desc::src_desc (C++ function), 167
dnnl::resampling_forward::resampling_forward (C++ function), 166
dnnl::rnn_direction (C++ enum), 175
dnnl::rnn_direction::bidirectional_concat (C++ enumerator), 175
dnnl::rnn_direction::bidirectional_sum (C++ enumerator), 176
dnnl::rnn_direction::unidirectional (C++ enumerator), 176
dnnl::rnn_direction::unidirectional_left2right (C++ enumerator), 175
dnnl::rnn_direction::unidirectional_right2left (C++ enumerator), 175
dnnl::rnn_flags (C++ enum), 175
dnnl::rnn_flags::undef (C++ enumerator), 175
dnnl::rnn_primitive_desc_base (C++ struct), 58
dnnl::rnn_primitive_desc_base::bias_desc (C++ function), 59
dnnl::rnn_primitive_desc_base::diff_bias_desc (C++ function), 60
dnnl::rnn_primitive_desc_base::diff_dst_iter_c_desc (C++ function), 60
dnnl::rnn_primitive_desc_base::diff_dst_iter_desc (C++ function), 60
dnnl::rnn_primitive_desc_base::diff_dst_layer_desc (C++ function), 60
dnnl::rnn_primitive_desc_base::diff_src_iter_c_desc (C++ function), 60
dnnl::rnn_primitive_desc_base::diff_src_iter_desc (C++ function), 59
dnnl::rnn_primitive_desc_base::diff_src_layer_desc (C++ function), 59
dnnl::rnn_primitive_desc_base::diff_weights_iter_desc (C++ function), 60
dnnl::rnn_primitive_desc_base::diff_weights_layer_desc (C++ function), 60
dnnl::rnn_primitive_desc_base::diff_weights_peephole_desc (C++ function), 60
dnnl::rnn_primitive_desc_base::diff_weights_projection_desc (C++ function), 60
dnnl::rnn_primitive_desc_base::dst_iter_c_desc (C++ function), 59
dnnl::rnn_primitive_desc_base::dst_iter_desc (C++ function), 59
dnnl::rnn_primitive_desc_base::dst_layer_desc (C++ function), 59
dnnl::rnn_primitive_desc_base::rnn_primitive_desc_base (C++ function), 58
dnnl::rnn_primitive_desc_base::src_iter_c_desc (C++ function), 59
dnnl::rnn_primitive_desc_base::src_iter_desc (C++ function), 58
dnnl::rnn_primitive_desc_base::src_layer_desc (C++ function), 58
dnnl::rnn_primitive_desc_base::weights_iter_desc (C++ function), 59
dnnl::rnn_primitive_desc_base::weights_layer_desc (C++ function), 59
dnnl::rnn_primitive_desc_base::weights_peephole_desc (C++ function), 59
dnnl::rnn_primitive_desc_base::weights_projection_desc (C++ function), 59
dnnl::scratchpad_mode (C++ enum), 73
dnnl::scratchpad_mode::library (C++ enumerator), 73
dnnl::scratchpad_mode::user (C++ enumerator), 73
dnnl::shuffle_backward (C++ struct), 204
dnnl::shuffle_backward::desc (C++ struct), 204

Index 2202

oneAPI Specification, Release 1.1-rev-1

dnnl::shuffle_backward::desc::desc (C++ function), 205
dnnl::shuffle_backward::primitive_desc (C++ struct), 205
dnnl::shuffle_backward::primitive_desc::diff_dst_desc (C++ function), 205
dnnl::shuffle_backward::primitive_desc::diff_src_desc (C++ function), 205
dnnl::shuffle_backward::primitive_desc::primitive_desc (C++ function), 205
dnnl::shuffle_backward::shuffle_backward (C++ function), 204
dnnl::shuffle_forward (C++ struct), 203
dnnl::shuffle_forward::desc (C++ struct), 203
dnnl::shuffle_forward::desc::desc (C++ function), 204
dnnl::shuffle_forward::primitive_desc (C++ struct), 204
dnnl::shuffle_forward::primitive_desc::dst_desc (C++ function), 204
dnnl::shuffle_forward::primitive_desc::primitive_desc (C++ function), 204
dnnl::shuffle_forward::primitive_desc::src_desc (C++ function), 204
dnnl::shuffle_forward::shuffle_forward (C++ function), 203
dnnl::softmax_backward (C++ struct), 208
dnnl::softmax_backward::desc (C++ struct), 209
dnnl::softmax_backward::desc::desc (C++ function), 209
dnnl::softmax_backward::primitive_desc (C++ struct), 209
dnnl::softmax_backward::primitive_desc::diff_dst_desc (C++ function), 210
dnnl::softmax_backward::primitive_desc::diff_src_desc (C++ function), 210
dnnl::softmax_backward::primitive_desc::dst_desc (C++ function), 210
dnnl::softmax_backward::primitive_desc::primitive_desc (C++ function), 209
dnnl::softmax_backward::softmax_backward (C++ function), 209
dnnl::softmax_forward (C++ struct), 207
dnnl::softmax_forward::desc (C++ struct), 207
dnnl::softmax_forward::desc::desc (C++ function), 208
dnnl::softmax_forward::primitive_desc (C++ struct), 208
dnnl::softmax_forward::primitive_desc::dst_desc (C++ function), 208
dnnl::softmax_forward::primitive_desc::primitive_desc (C++ function), 208
dnnl::softmax_forward::primitive_desc::src_desc (C++ function), 208
dnnl::softmax_forward::softmax_forward (C++ function), 207
dnnl::stream (C++ struct), 30
dnnl::stream::flags (C++ enum), 30
dnnl::stream::flags::default_flags (C++ enumerator), 30
dnnl::stream::flags::in_order (C++ enumerator), 30
dnnl::stream::flags::out_of_order (C++ enumerator), 30
dnnl::stream::stream (C++ function), 30
dnnl::stream::wait (C++ function), 30
dnnl::sum (C++ struct), 211
dnnl::sum::primitive_desc (C++ struct), 211
dnnl::sum::primitive_desc::dst_desc (C++ function), 212
dnnl::sum::primitive_desc::primitive_desc (C++ function), 211
dnnl::sum::primitive_desc::src_desc (C++ function), 212
dnnl::sum::sum (C++ function), 211
dnnl::sycl_interop::execute (C++ function), 54
dnnl::sycl_interop::get_buffer (C++ function), 50
dnnl::sycl_interop::get_context (C++ function), 29
dnnl::sycl_interop::get_device (C++ function), 29
dnnl::sycl_interop::get_memory_kind (C++ function), 49
dnnl::sycl_interop::get_queue (C++ function), 31
dnnl::sycl_interop::make_engine (C++ function), 29
dnnl::sycl_interop::make_memory (C++ function), 47–49
dnnl::sycl_interop::make_stream (C++ function), 30
dnnl::sycl_interop::memory_kind (C++ enum), 47

Index 2203

oneAPI Specification, Release 1.1-rev-1

dnnl::sycl_interop::memory_kind::buffer (C++ enumerator), 47
dnnl::sycl_interop::memory_kind::usm (C++ enumerator), 47
dnnl::sycl_interop::set_buffer (C++ function), 49, 50
dnnl::vanilla_rnn_backward (C++ struct), 178
dnnl::vanilla_rnn_backward::desc (C++ struct), 178
dnnl::vanilla_rnn_backward::desc::desc (C++ function), 178
dnnl::vanilla_rnn_backward::primitive_desc (C++ struct), 179
dnnl::vanilla_rnn_backward::primitive_desc::bias_desc (C++ function), 180
dnnl::vanilla_rnn_backward::primitive_desc::diff_bias_desc (C++ function), 181
dnnl::vanilla_rnn_backward::primitive_desc::diff_dst_iter_desc (C++ function), 181
dnnl::vanilla_rnn_backward::primitive_desc::diff_dst_layer_desc (C++ function), 181
dnnl::vanilla_rnn_backward::primitive_desc::diff_src_iter_desc (C++ function), 180
dnnl::vanilla_rnn_backward::primitive_desc::diff_src_layer_desc (C++ function), 180
dnnl::vanilla_rnn_backward::primitive_desc::diff_weights_iter_desc (C++ function), 181
dnnl::vanilla_rnn_backward::primitive_desc::diff_weights_layer_desc (C++ function), 180
dnnl::vanilla_rnn_backward::primitive_desc::dst_iter_desc (C++ function), 180
dnnl::vanilla_rnn_backward::primitive_desc::dst_layer_desc (C++ function), 180
dnnl::vanilla_rnn_backward::primitive_desc::primitive_desc (C++ function), 179
dnnl::vanilla_rnn_backward::primitive_desc::src_iter_desc (C++ function), 180
dnnl::vanilla_rnn_backward::primitive_desc::src_layer_desc (C++ function), 180
dnnl::vanilla_rnn_backward::primitive_desc::weights_iter_desc (C++ function), 180
dnnl::vanilla_rnn_backward::primitive_desc::weights_layer_desc (C++ function), 180
dnnl::vanilla_rnn_backward::primitive_desc::workspace_desc (C++ function), 180
dnnl::vanilla_rnn_backward::vanilla_rnn_backward (C++ function), 178
dnnl::vanilla_rnn_forward (C++ struct), 176
dnnl::vanilla_rnn_forward::desc (C++ struct), 176
dnnl::vanilla_rnn_forward::desc::desc (C++ function), 176
dnnl::vanilla_rnn_forward::primitive_desc (C++ struct), 177
dnnl::vanilla_rnn_forward::primitive_desc::bias_desc (C++ function), 177
dnnl::vanilla_rnn_forward::primitive_desc::dst_iter_desc (C++ function), 178
dnnl::vanilla_rnn_forward::primitive_desc::dst_layer_desc (C++ function), 178
dnnl::vanilla_rnn_forward::primitive_desc::primitive_desc (C++ function), 177
dnnl::vanilla_rnn_forward::primitive_desc::src_iter_desc (C++ function), 177
dnnl::vanilla_rnn_forward::primitive_desc::src_layer_desc (C++ function), 177
dnnl::vanilla_rnn_forward::primitive_desc::weights_iter_desc (C++ function), 177
dnnl::vanilla_rnn_forward::primitive_desc::weights_layer_desc (C++ function), 177
dnnl::vanilla_rnn_forward::primitive_desc::workspace_desc (C++ function), 178
dnnl::vanilla_rnn_forward::vanilla_rnn_forward (C++ function), 176
DNNL_ARG_ATTR_OUTPUT_SCALES (C macro), 68
DNNL_ARG_ATTR_ZERO_POINTS (C macro), 68
DNNL_ARG_BIAS (C macro), 66
DNNL_ARG_DIFF_BIAS (C macro), 68
DNNL_ARG_DIFF_DST (C macro), 67
DNNL_ARG_DIFF_DST_0 (C macro), 67
DNNL_ARG_DIFF_DST_1 (C macro), 67
DNNL_ARG_DIFF_DST_2 (C macro), 67
DNNL_ARG_DIFF_DST_ITER (C macro), 67
DNNL_ARG_DIFF_DST_ITER_C (C macro), 67
DNNL_ARG_DIFF_DST_LAYER (C macro), 67
DNNL_ARG_DIFF_SCALE_SHIFT (C macro), 67
DNNL_ARG_DIFF_SRC (C macro), 66
DNNL_ARG_DIFF_SRC_0 (C macro), 66
DNNL_ARG_DIFF_SRC_1 (C macro), 66
DNNL_ARG_DIFF_SRC_2 (C macro), 66

Index 2204

oneAPI Specification, Release 1.1-rev-1

DNNL_ARG_DIFF_SRC_ITER (C macro), 66
DNNL_ARG_DIFF_SRC_ITER_C (C macro), 67
DNNL_ARG_DIFF_SRC_LAYER (C macro), 66
DNNL_ARG_DIFF_WEIGHTS (C macro), 67
DNNL_ARG_DIFF_WEIGHTS_0 (C macro), 67
DNNL_ARG_DIFF_WEIGHTS_1 (C macro), 67
DNNL_ARG_DIFF_WEIGHTS_ITER (C macro), 67
DNNL_ARG_DIFF_WEIGHTS_LAYER (C macro), 67
DNNL_ARG_DST (C macro), 65
DNNL_ARG_DST_0 (C macro), 65
DNNL_ARG_DST_1 (C macro), 65
DNNL_ARG_DST_2 (C macro), 65
DNNL_ARG_DST_ITER (C macro), 65
DNNL_ARG_DST_ITER_C (C macro), 65
DNNL_ARG_DST_LAYER (C macro), 65
DNNL_ARG_FROM (C macro), 65
DNNL_ARG_MEAN (C macro), 66
DNNL_ARG_MULTIPLE_DST (C macro), 68
DNNL_ARG_MULTIPLE_SRC (C macro), 68
DNNL_ARG_SCALE_SHIFT (C macro), 66
DNNL_ARG_SCRATCHPAD (C macro), 66
DNNL_ARG_SRC (C macro), 65
DNNL_ARG_SRC_0 (C macro), 65
DNNL_ARG_SRC_1 (C macro), 65
DNNL_ARG_SRC_2 (C macro), 65
DNNL_ARG_SRC_ITER (C macro), 65
DNNL_ARG_SRC_ITER_C (C macro), 65
DNNL_ARG_SRC_LAYER (C macro), 65
DNNL_ARG_TO (C macro), 65
DNNL_ARG_VARIANCE (C macro), 66
DNNL_ARG_WEIGHTS (C macro), 66
DNNL_ARG_WEIGHTS_0 (C macro), 65
DNNL_ARG_WEIGHTS_1 (C macro), 66
DNNL_ARG_WEIGHTS_ITER (C macro), 66
DNNL_ARG_WEIGHTS_LAYER (C macro), 66
DNNL_ARG_WORKSPACE (C macro), 66
DNNL_MEMORY_ALLOCATE (C macro), 50
DNNL_MEMORY_NONE (C macro), 50
DNNL_RUNTIME_DIM_VAL (C macro), 68
DNNL_RUNTIME_F32_VAL (C macro), 68
DNNL_RUNTIME_S32_VAL (C macro), 68
DNNL_RUNTIME_SIZE_VAL (C macro), 68
do_allocate (C++ function), 706
do_deallocate (C++ function), 706
do_is_equal (C++ function), 706
DPC++, 239
DRM, 1039
DXVA2, 1039

E
empty (C++ function), 365
ENCODE, 730
end (C++ function), 366
enqueue (C++ function), 442, 443

Index 2205

oneAPI Specification, Release 1.1-rev-1

ets_key_usage_type::ets_key_per_instance (C++ enum), 699
ets_key_usage_type::ets_no_key (C++ enum), 699
ets_key_usage_type::ets_suspend_aware (C++ enum), 699
exception_thrown (C++ function), 377
execute (C++ function), 443

F
F::operator() (C++ function), 324
Feature, 236
Feature vector, 236
filter (C++ function), 361
finalize (C++ function), 434, 435
FirstFilterBody::Body::operator() (C++ function), 330
Flat data, 238
Func::~Func (C++ function), 337
Func::Func (C++ function), 337
Func::operator() (C++ function), 326, 338
FunctionNodeBody::Body::~Body (C++ function), 337
FunctionNodeBody::Body::Body (C++ function), 337
FunctionNodeBody::Body::operator() (C++ function), 337

G
Getter, 238
global_control (C++ function), 432
GOP, 1039
GPB, 1039
grainsize (C++ function), 365
graph (C++ function), 377

H
H.264, 1039
H::~H (C++ function), 334
H::equal (C++ function), 334
H::H (C++ function), 334
H::hash (C++ function), 334
HDR, 1039
Heterogeneous data, 238
Homogeneous data, 238
Host/Device, 239
HRD, 1039

I
I010, 1040
IDR, 1039
Immutability, 238
Index::~Index (C++ function), 324
Index::Index (C++ function), 324
Inference, 236
Inference set, 236
initialize (C++ function), 442, 725
input_node (C++ function), 387
input_ports (C++ function), 419
InputNodeBody::Body::~Body (C++ function), 338

Index 2206

oneAPI Specification, Release 1.1-rev-1

InputNodeBody::Body::Body (C++ function), 338
InputNodeBody::Body::operator() (C++ function), 338
Interval feature, 236
is_a (C++ function), 423
is_active (C++ function), 442
is_cancelled (C++ function), 377
is_divisible (C++ function), 365
is_final_scan (C++ function), 353
is_group_execution_cancelled (C++ function), 430
is_observing (C++ function), 447
IYUV, 1040

J
JIT, 239

K
Kernel, 239
kind_t::bound (C++ enum), 430
kind_t::isolated (C++ enum), 430

L
LA, 1039
Label, 236
LastFilterBody::Body::operator() (C++ function), 330
left (C++ function), 374
lock (C++ function), 720

M
make_filter (C++ function), 361
max_concurrency (C++ function), 442
max_size (C++ function), 705
MCTF, 1039
Metadata, 238
mfx3DLutChannelMapping (C++ enum), 976
mfx3DLutChannelMapping::MFX_3DLUT_CHANNEL_MAPPING_DEFAULT (C++ enumerator), 976
mfx3DLutChannelMapping::MFX_3DLUT_CHANNEL_MAPPING_RGB_RGB (C++ enumerator), 976
mfx3DLutChannelMapping::MFX_3DLUT_CHANNEL_MAPPING_VUY_RGB (C++ enumerator), 976
mfx3DLutChannelMapping::MFX_3DLUT_CHANNEL_MAPPING_YUV_RGB (C++ enumerator), 976
mfx3DLutMemoryLayout (C++ enum), 976
mfx3DLutMemoryLayout::MFX_3DLUT_MEMORY_LAYOUT_DEFAULT (C++ enumerator), 976
mfx3DLutMemoryLayout::MFX_3DLUT_MEMORY_LAYOUT_INTEL_17LUT (C++ enumerator), 976
mfx3DLutMemoryLayout::MFX_3DLUT_MEMORY_LAYOUT_INTEL_33LUT (C++ enumerator), 976
mfx3DLutMemoryLayout::MFX_3DLUT_MEMORY_LAYOUT_INTEL_65LUT (C++ enumerator), 977
mfx3DLutMemoryLayout::MFX_3DLUT_MEMORY_LAYOUT_VENDOR (C++ enumerator), 976
mfx3DLutSystemBuffer (C++ struct), 943
mfx3DLutSystemBuffer::Channel (C++ member), 944
mfx3DLutSystemBuffer::reserved (C++ member), 944
mfx3DLutVideoBuffer (C++ struct), 944
mfx3DLutVideoBuffer::DataType (C++ member), 944
mfx3DLutVideoBuffer::MemId (C++ member), 944
mfx3DLutVideoBuffer::MemLayout (C++ member), 944
mfx3DLutVideoBuffer::reserved (C++ member), 944
MFX_ADD_PROPERTY_PTR (C macro), 1022

Index 2207

oneAPI Specification, Release 1.1-rev-1

MFX_ADD_PROPERTY_U16 (C macro), 1022
MFX_ADD_PROPERTY_U32 (C macro), 1022
MFX_ANGLE_0 (C++ enumerator), 950
MFX_ANGLE_180 (C++ enumerator), 950
MFX_ANGLE_270 (C++ enumerator), 950
MFX_ANGLE_90 (C++ enumerator), 950
MFX_AV1_SEGMENT_FEATURE_ALT_LF_U (C++ enumerator), 1002
MFX_AV1_SEGMENT_FEATURE_ALT_LF_V (C++ enumerator), 1002
MFX_AV1_SEGMENT_FEATURE_ALT_LF_Y_HORZ (C++ enumerator), 1002
MFX_AV1_SEGMENT_FEATURE_ALT_LF_Y_VERT (C++ enumerator), 1002
MFX_AV1_SEGMENT_FEATURE_ALT_QINDEX (C++ enumerator), 1002
MFX_AV1_SEGMENT_FEATURE_GLOBALMV (C++ enumerator), 1002
MFX_AV1_SEGMENT_FEATURE_REFERENCE (C++ enumerator), 1002
MFX_AV1_SEGMENT_FEATURE_SKIP (C++ enumerator), 1002
MFX_B_REF_OFF (C++ enumerator), 951
MFX_B_REF_PYRAMID (C++ enumerator), 951
MFX_B_REF_UNKNOWN (C++ enumerator), 951
MFX_BITSTREAM_COMPLETE_FRAME (C++ enumerator), 950
MFX_BITSTREAM_EOS (C++ enumerator), 950
MFX_BITSTREAM_NO_FLAG (C++ enumerator), 950
MFX_BLOCKSIZE_MIN_16X16 (C++ enumerator), 977
MFX_BLOCKSIZE_MIN_4X4 (C++ enumerator), 977
MFX_BLOCKSIZE_MIN_8X8 (C++ enumerator), 977
MFX_BLOCKSIZE_UNKNOWN (C++ enumerator), 977
MFX_BPSEI_DEFAULT (C++ enumerator), 951
MFX_BPSEI_IFRAME (C++ enumerator), 951
MFX_BRC_BIG_FRAME (C++ enumerator), 951
MFX_BRC_OK (C++ enumerator), 951
MFX_BRC_PANIC_BIG_FRAME (C++ enumerator), 951
MFX_BRC_PANIC_SMALL_FRAME (C++ enumerator), 951
MFX_BRC_SMALL_FRAME (C++ enumerator), 951
MFX_CHROMA_SITING_HORIZONTAL_CENTER (C++ enumerator), 953
MFX_CHROMA_SITING_HORIZONTAL_LEFT (C++ enumerator), 952
MFX_CHROMA_SITING_UNKNOWN (C++ enumerator), 952
MFX_CHROMA_SITING_VERTICAL_BOTTOM (C++ enumerator), 952
MFX_CHROMA_SITING_VERTICAL_CENTER (C++ enumerator), 952
MFX_CHROMA_SITING_VERTICAL_TOP (C++ enumerator), 952
MFX_CHROMAFORMAT_JPEG_SAMPLING (C++ enumerator), 952
MFX_CHROMAFORMAT_MONOCHROME (C++ enumerator), 952
MFX_CHROMAFORMAT_RESERVED1 (C++ enumerator), 952
MFX_CHROMAFORMAT_YUV400 (C++ enumerator), 952
MFX_CHROMAFORMAT_YUV411 (C++ enumerator), 952
MFX_CHROMAFORMAT_YUV420 (C++ enumerator), 952
MFX_CHROMAFORMAT_YUV422 (C++ enumerator), 952
MFX_CHROMAFORMAT_YUV422H (C++ enumerator), 952
MFX_CHROMAFORMAT_YUV422V (C++ enumerator), 952
MFX_CHROMAFORMAT_YUV444 (C++ enumerator), 952
MFX_CODEC_AV1 (C++ enumerator), 953
MFX_CODEC_AVC (C++ enumerator), 953
MFX_CODEC_HEVC (C++ enumerator), 953
MFX_CODEC_JPEG (C++ enumerator), 953
MFX_CODEC_MPEG2 (C++ enumerator), 953
MFX_CODEC_VC1 (C++ enumerator), 953
MFX_CODEC_VP9 (C++ enumerator), 953

Index 2208

oneAPI Specification, Release 1.1-rev-1

MFX_CODINGOPTION_ADAPTIVE (C++ enumerator), 958
MFX_CODINGOPTION_OFF (C++ enumerator), 958
MFX_CODINGOPTION_ON (C++ enumerator), 958
MFX_CODINGOPTION_UNKNOWN (C++ enumerator), 958
MFX_CONTENT_FULL_SCREEN_VIDEO (C++ enumerator), 961
MFX_CONTENT_NON_VIDEO_SCREEN (C++ enumerator), 961
MFX_CONTENT_UNKNOWN (C++ enumerator), 961
MFX_CORRUPTION_ABSENT_BOTTOM_FIELD (C++ enumerator), 961
MFX_CORRUPTION_ABSENT_TOP_FIELD (C++ enumerator), 961
MFX_CORRUPTION_MAJOR (C++ enumerator), 961
MFX_CORRUPTION_MINOR (C++ enumerator), 961
MFX_CORRUPTION_NO (C++ enumerator), 961
MFX_CORRUPTION_REFERENCE_FRAME (C++ enumerator), 961
MFX_CORRUPTION_REFERENCE_LIST (C++ enumerator), 962
MFX_DECODERDESCRIPTION_VERSION (C macro), 1002
MFX_DEINTERLACING_24FPS_OUT (C++ enumerator), 962
MFX_DEINTERLACING_30FPS_OUT (C++ enumerator), 962
MFX_DEINTERLACING_ADVANCED (C++ enumerator), 962
MFX_DEINTERLACING_ADVANCED_NOREF (C++ enumerator), 962
MFX_DEINTERLACING_ADVANCED_SCD (C++ enumerator), 962
MFX_DEINTERLACING_AUTO_DOUBLE (C++ enumerator), 962
MFX_DEINTERLACING_AUTO_SINGLE (C++ enumerator), 962
MFX_DEINTERLACING_BOB (C++ enumerator), 962
MFX_DEINTERLACING_DETECT_INTERLACE (C++ enumerator), 962
MFX_DEINTERLACING_FIELD_WEAVING (C++ enumerator), 963
MFX_DEINTERLACING_FIXED_TELECINE_PATTERN (C++ enumerator), 962
MFX_DEINTERLACING_FULL_FR_OUT (C++ enumerator), 962
MFX_DEINTERLACING_HALF_FR_OUT (C++ enumerator), 962
MFX_DEVICEDESCRIPTION_VERSION (C macro), 1002
MFX_ENCODERDESCRIPTION_VERSION (C macro), 1002
MFX_ERROR_FRAME_GAP (C++ enumerator), 963
MFX_ERROR_NO (C++ enumerator), 963
MFX_ERROR_PPS (C++ enumerator), 963
MFX_ERROR_SLICEDATA (C++ enumerator), 963
MFX_ERROR_SLICEHEADER (C++ enumerator), 963
MFX_ERROR_SPS (C++ enumerator), 963
MFX_EXTBUFF_ALLOCATION_HINTS (C++ enumerator), 969
MFX_EXTBUFF_AV1_FILM_GRAIN_PARAM (C++ enumerator), 969
MFX_EXTBUFF_AV1_SEGMENTATION (C++ enumerator), 969
MFX_EXTBUFF_AVC_REFLIST_CTRL (C++ enumerator), 964
MFX_EXTBUFF_AVC_REFLISTS (C++ enumerator), 966
MFX_EXTBUFF_AVC_ROUNDING_OFFSET (C++ enumerator), 968
MFX_EXTBUFF_AVC_TEMPORAL_LAYERS (C++ enumerator), 965
MFX_EXTBUFF_BRC (C++ enumerator), 968
MFX_EXTBUFF_CENC_PARAM (C++ enumerator), 969
MFX_EXTBUFF_CHROMA_LOC_INFO (C++ enumerator), 966
MFX_EXTBUFF_CODING_OPTION (C++ enumerator), 963
MFX_EXTBUFF_CODING_OPTION2 (C++ enumerator), 965
MFX_EXTBUFF_CODING_OPTION3 (C++ enumerator), 966
MFX_EXTBUFF_CODING_OPTION_SPSPPS (C++ enumerator), 963
MFX_EXTBUFF_CODING_OPTION_VPS (C++ enumerator), 967
MFX_EXTBUFF_CONTENT_LIGHT_LEVEL_INFO (C++ enumerator), 967
MFX_EXTBUFF_CROPS (C++ enumerator), 969
MFX_EXTBUFF_DEC_VIDEO_PROCESSING (C++ enumerator), 966

Index 2209

oneAPI Specification, Release 1.1-rev-1

MFX_EXTBUFF_DECODE_ERROR_REPORT (C++ enumerator), 967
MFX_EXTBUFF_DECODED_FRAME_INFO (C++ enumerator), 966
MFX_EXTBUFF_DEVICE_AFFINITY_MASK (C++ enumerator), 969
MFX_EXTBUFF_DIRTY_RECTANGLES (C++ enumerator), 967
MFX_EXTBUFF_ENCODED_FRAME_INFO (C++ enumerator), 965
MFX_EXTBUFF_ENCODED_SLICES_INFO (C++ enumerator), 967
MFX_EXTBUFF_ENCODED_UNITS_INFO (C++ enumerator), 968
MFX_EXTBUFF_ENCODER_CAPABILITY (C++ enumerator), 965
MFX_EXTBUFF_ENCODER_IPCM_AREA (C++ enumerator), 969
MFX_EXTBUFF_ENCODER_RESET_OPTION (C++ enumerator), 965
MFX_EXTBUFF_ENCODER_ROI (C++ enumerator), 965
MFX_EXTBUFF_HEVC_PARAM (C++ enumerator), 966
MFX_EXTBUFF_HEVC_REFLIST_CTRL (C++ enumerator), 967
MFX_EXTBUFF_HEVC_REFLISTS (C++ enumerator), 967
MFX_EXTBUFF_HEVC_REGION (C++ enumerator), 966
MFX_EXTBUFF_HEVC_TEMPORAL_LAYERS (C++ enumerator), 967
MFX_EXTBUFF_HEVC_TILES (C++ enumerator), 966
MFX_EXTBUFF_INSERT_HEADERS (C++ enumerator), 969
MFX_EXTBUFF_JPEG_HUFFMAN (C++ enumerator), 969
MFX_EXTBUFF_JPEG_QT (C++ enumerator), 969
MFX_EXTBUFF_MASTERING_DISPLAY_COLOUR_VOLUME (C++ enumerator), 968
MFX_EXTBUFF_MASTERING_DISPLAY_COLOUR_VOLUME_IN (C++ enumerator), 968
MFX_EXTBUFF_MASTERING_DISPLAY_COLOUR_VOLUME_OUT (C++ enumerator), 968
MFX_EXTBUFF_MB_DISABLE_SKIP_MAP (C++ enumerator), 966
MFX_EXTBUFF_MB_FORCE_INTRA (C++ enumerator), 966
MFX_EXTBUFF_MBQP (C++ enumerator), 966
MFX_EXTBUFF_MOVING_RECTANGLES (C++ enumerator), 967
MFX_EXTBUFF_MV_OVER_PIC_BOUNDARIES (C++ enumerator), 967
MFX_EXTBUFF_MVC_SEQ_DESC (C++ enumerator), 969
MFX_EXTBUFF_MVC_TARGET_VIEWS (C++ enumerator), 969
MFX_EXTBUFF_PARTIAL_BITSTREAM_PARAM (C++ enumerator), 968
MFX_EXTBUFF_PICTURE_TIMING_SEI (C++ enumerator), 965
MFX_EXTBUFF_PRED_WEIGHT_TABLE (C++ enumerator), 967
MFX_EXTBUFF_THREADS_PARAM (C++ enumerator), 963
MFX_EXTBUFF_TIME_CODE (C++ enumerator), 966
MFX_EXTBUFF_UNIVERSAL_TEMPORAL_LAYERS (C++ enumerator), 969
MFX_EXTBUFF_VIDEO_SIGNAL_INFO (C++ enumerator), 964
MFX_EXTBUFF_VIDEO_SIGNAL_INFO_IN (C++ enumerator), 964
MFX_EXTBUFF_VIDEO_SIGNAL_INFO_OUT (C++ enumerator), 964
MFX_EXTBUFF_VP8_CODING_OPTION (C++ enumerator), 968
MFX_EXTBUFF_VP9_PARAM (C++ enumerator), 968
MFX_EXTBUFF_VP9_SEGMENTATION (C++ enumerator), 968
MFX_EXTBUFF_VP9_TEMPORAL_LAYERS (C++ enumerator), 968
MFX_EXTBUFF_VPP_3DLUT (C++ enumerator), 964
MFX_EXTBUFF_VPP_AUXDATA (C++ enumerator), 963
MFX_EXTBUFF_VPP_COLOR_CONVERSION (C++ enumerator), 967
MFX_EXTBUFF_VPP_COLORFILL (C++ enumerator), 967
MFX_EXTBUFF_VPP_COMPOSITE (C++ enumerator), 965
MFX_EXTBUFF_VPP_DEINTERLACING (C++ enumerator), 965
MFX_EXTBUFF_VPP_DENOISE (C++ enumerator), 964
MFX_EXTBUFF_VPP_DENOISE2 (C++ enumerator), 964
MFX_EXTBUFF_VPP_DETAIL (C++ enumerator), 964
MFX_EXTBUFF_VPP_DONOTUSE (C++ enumerator), 963
MFX_EXTBUFF_VPP_DOUSE (C++ enumerator), 964

Index 2210

oneAPI Specification, Release 1.1-rev-1

MFX_EXTBUFF_VPP_FIELD_PROCESSING (C++ enumerator), 966
MFX_EXTBUFF_VPP_FRAME_RATE_CONVERSION (C++ enumerator), 964
MFX_EXTBUFF_VPP_IMAGE_STABILIZATION (C++ enumerator), 965
MFX_EXTBUFF_VPP_MCTF (C++ enumerator), 968
MFX_EXTBUFF_VPP_MIRRORING (C++ enumerator), 967
MFX_EXTBUFF_VPP_PROCAMP (C++ enumerator), 964
MFX_EXTBUFF_VPP_ROTATION (C++ enumerator), 967
MFX_EXTBUFF_VPP_SCALING (C++ enumerator), 967
MFX_EXTBUFF_VPP_SCENE_ANALYSIS (C++ enumerator), 964
MFX_EXTBUFF_VPP_VIDEO_SIGNAL_INFO (C++ enumerator), 965
MFX_FILM_GRAIN_APPLY (C++ enumerator), 1000
MFX_FILM_GRAIN_CHROMA_SCALING_FROM_LUMA (C++ enumerator), 1000
MFX_FILM_GRAIN_CLIP_TO_RESTRICTED_RANGE (C++ enumerator), 1000
MFX_FILM_GRAIN_NO (C++ enumerator), 1000
MFX_FILM_GRAIN_OVERLAP (C++ enumerator), 1000
MFX_FILM_GRAIN_UPDATE (C++ enumerator), 1000
MFX_FOURCC_A2RGB10 (C++ enumerator), 960
MFX_FOURCC_ABGR16 (C++ enumerator), 960
MFX_FOURCC_ARGB16 (C++ enumerator), 960
MFX_FOURCC_AYUV (C++ enumerator), 960
MFX_FOURCC_AYUV_RGB4 (C++ enumerator), 960
MFX_FOURCC_BGR4 (C++ enumerator), 960
MFX_FOURCC_BGRA (C++ enumerator), 959
MFX_FOURCC_BGRP (C++ enumerator), 961
MFX_FOURCC_I010 (C++ enumerator), 960
MFX_FOURCC_I210 (C++ enumerator), 960
MFX_FOURCC_I420 (C++ enumerator), 959
MFX_FOURCC_I422 (C++ enumerator), 959
MFX_FOURCC_IYUV (C++ enumerator), 959
MFX_FOURCC_NV12 (C++ enumerator), 959
MFX_FOURCC_NV16 (C++ enumerator), 959
MFX_FOURCC_NV21 (C++ enumerator), 959
MFX_FOURCC_P010 (C++ enumerator), 960
MFX_FOURCC_P016 (C++ enumerator), 960
MFX_FOURCC_P210 (C++ enumerator), 960
MFX_FOURCC_P8 (C++ enumerator), 959
MFX_FOURCC_P8_TEXTURE (C++ enumerator), 959
MFX_FOURCC_R16 (C++ enumerator), 960
MFX_FOURCC_RGB4 (C++ enumerator), 959
MFX_FOURCC_RGB565 (C++ enumerator), 959
MFX_FOURCC_RGBP (C++ enumerator), 959
MFX_FOURCC_UYVY (C++ enumerator), 960
MFX_FOURCC_Y210 (C++ enumerator), 961
MFX_FOURCC_Y216 (C++ enumerator), 961
MFX_FOURCC_Y410 (C++ enumerator), 961
MFX_FOURCC_Y416 (C++ enumerator), 961
MFX_FOURCC_YUY2 (C++ enumerator), 959
MFX_FOURCC_YV12 (C++ enumerator), 959
MFX_FRAMEDATA_ORIGINAL_TIMESTAMP (C++ enumerator), 971
MFX_FRAMEDATA_TIMESTAMP_UNKNOWN (C++ enumerator), 971
MFX_FRAMEORDER_UNKNOWN (C++ enumerator), 971
MFX_FRAMESURFACE1_VERSION (C macro), 1003
MFX_FRAMESURFACEINTERFACE_VERSION (C macro), 1003
MFX_FRAMETYPE_B (C++ enumerator), 971

Index 2211

oneAPI Specification, Release 1.1-rev-1

MFX_FRAMETYPE_I (C++ enumerator), 971
MFX_FRAMETYPE_IDR (C++ enumerator), 971
MFX_FRAMETYPE_P (C++ enumerator), 971
MFX_FRAMETYPE_REF (C++ enumerator), 971
MFX_FRAMETYPE_S (C++ enumerator), 971
MFX_FRAMETYPE_UNKNOWN (C++ enumerator), 971
MFX_FRAMETYPE_xB (C++ enumerator), 972
MFX_FRAMETYPE_xI (C++ enumerator), 971
MFX_FRAMETYPE_xIDR (C++ enumerator), 972
MFX_FRAMETYPE_xP (C++ enumerator), 971
MFX_FRAMETYPE_xREF (C++ enumerator), 972
MFX_FRAMETYPE_xS (C++ enumerator), 972
MFX_FRCALGM_DISTRIBUTED_TIMESTAMP (C++ enumerator), 972
MFX_FRCALGM_FRAME_INTERPOLATION (C++ enumerator), 972
MFX_FRCALGM_PRESERVE_TIMESTAMP (C++ enumerator), 972
MFX_GOP_CLOSED (C++ enumerator), 973
MFX_GOP_STRICT (C++ enumerator), 973
MFX_GPUCOPY_DEFAULT (C++ enumerator), 973
MFX_GPUCOPY_OFF (C++ enumerator), 973
MFX_GPUCOPY_ON (C++ enumerator), 973
MFX_GUID_SURFACE_POOL (C++ member), 1023
MFX_HEVC_CONSTR_REXT_INTRA (C++ enumerator), 972
MFX_HEVC_CONSTR_REXT_LOWER_BIT_RATE (C++ enumerator), 972
MFX_HEVC_CONSTR_REXT_MAX_10BIT (C++ enumerator), 972
MFX_HEVC_CONSTR_REXT_MAX_12BIT (C++ enumerator), 972
MFX_HEVC_CONSTR_REXT_MAX_420CHROMA (C++ enumerator), 972
MFX_HEVC_CONSTR_REXT_MAX_422CHROMA (C++ enumerator), 972
MFX_HEVC_CONSTR_REXT_MAX_8BIT (C++ enumerator), 972
MFX_HEVC_CONSTR_REXT_MAX_MONOCHROME (C++ enumerator), 972
MFX_HEVC_CONSTR_REXT_ONE_PICTURE_ONLY (C++ enumerator), 972
MFX_HEVC_NALU_TYPE_CRA_NUT (C++ enumerator), 983
MFX_HEVC_NALU_TYPE_IDR_N_LP (C++ enumerator), 983
MFX_HEVC_NALU_TYPE_IDR_W_RADL (C++ enumerator), 983
MFX_HEVC_NALU_TYPE_RADL_N (C++ enumerator), 983
MFX_HEVC_NALU_TYPE_RADL_R (C++ enumerator), 983
MFX_HEVC_NALU_TYPE_RASL_N (C++ enumerator), 983
MFX_HEVC_NALU_TYPE_RASL_R (C++ enumerator), 983
MFX_HEVC_NALU_TYPE_TRAIL_N (C++ enumerator), 983
MFX_HEVC_NALU_TYPE_TRAIL_R (C++ enumerator), 983
MFX_HEVC_NALU_TYPE_UNKNOWN (C++ enumerator), 983
MFX_HEVC_REGION_ENCODING_OFF (C++ enumerator), 974
MFX_HEVC_REGION_ENCODING_ON (C++ enumerator), 974
MFX_HEVC_REGION_SLICE (C++ enumerator), 974
MFX_IMAGESTAB_MODE_BOXING (C++ enumerator), 974
MFX_IMAGESTAB_MODE_UPSCALE (C++ enumerator), 974
MFX_IMPL_AUTO (C++ enumerator), 981
MFX_IMPL_AUTO_ANY (C++ enumerator), 981
MFX_IMPL_BASETYPE (C macro), 982
MFX_IMPL_HARDWARE (C++ enumerator), 981
MFX_IMPL_HARDWARE2 (C++ enumerator), 981
MFX_IMPL_HARDWARE3 (C++ enumerator), 981
MFX_IMPL_HARDWARE4 (C++ enumerator), 981
MFX_IMPL_HARDWARE_ANY (C++ enumerator), 981
MFX_IMPL_NAME_LEN (C macro), 1022

Index 2212

oneAPI Specification, Release 1.1-rev-1

MFX_IMPL_RUNTIME (C++ enumerator), 981
MFX_IMPL_SOFTWARE (C++ enumerator), 981
MFX_IMPL_UNSUPPORTED (C++ enumerator), 982
MFX_IMPL_VIA_ANY (C++ enumerator), 981
MFX_IMPL_VIA_D3D11 (C++ enumerator), 981
MFX_IMPL_VIA_D3D9 (C++ enumerator), 981
MFX_IMPL_VIA_HDDLUNITE (C++ enumerator), 981
MFX_IMPL_VIA_VAAPI (C++ enumerator), 981
MFX_IMPLDESCRIPTION_VERSION (C macro), 1003
MFX_INTERPOLATION_ADVANCED (C++ enumerator), 975
MFX_INTERPOLATION_BILINEAR (C++ enumerator), 975
MFX_INTERPOLATION_DEFAULT (C++ enumerator), 975
MFX_INTERPOLATION_NEAREST_NEIGHBOR (C++ enumerator), 975
MFX_IOPATTERN_IN_SYSTEM_MEMORY (C++ enumerator), 978
MFX_IOPATTERN_IN_VIDEO_MEMORY (C++ enumerator), 978
MFX_IOPATTERN_OUT_SYSTEM_MEMORY (C++ enumerator), 978
MFX_IOPATTERN_OUT_VIDEO_MEMORY (C++ enumerator), 978
MFX_JPEG_COLORFORMAT_RGB (C++ enumerator), 978
MFX_JPEG_COLORFORMAT_UNKNOWN (C++ enumerator), 978
MFX_JPEG_COLORFORMAT_YCbCr (C++ enumerator), 978
MFX_LEGACY_VERSION (C macro), 1003
MFX_LEVEL_AV1_2 (C++ enumerator), 956
MFX_LEVEL_AV1_21 (C++ enumerator), 956
MFX_LEVEL_AV1_22 (C++ enumerator), 956
MFX_LEVEL_AV1_23 (C++ enumerator), 956
MFX_LEVEL_AV1_3 (C++ enumerator), 956
MFX_LEVEL_AV1_31 (C++ enumerator), 956
MFX_LEVEL_AV1_32 (C++ enumerator), 956
MFX_LEVEL_AV1_33 (C++ enumerator), 956
MFX_LEVEL_AV1_4 (C++ enumerator), 956
MFX_LEVEL_AV1_41 (C++ enumerator), 956
MFX_LEVEL_AV1_42 (C++ enumerator), 956
MFX_LEVEL_AV1_43 (C++ enumerator), 956
MFX_LEVEL_AV1_5 (C++ enumerator), 956
MFX_LEVEL_AV1_51 (C++ enumerator), 956
MFX_LEVEL_AV1_52 (C++ enumerator), 956
MFX_LEVEL_AV1_53 (C++ enumerator), 956
MFX_LEVEL_AV1_6 (C++ enumerator), 956
MFX_LEVEL_AV1_61 (C++ enumerator), 956
MFX_LEVEL_AV1_62 (C++ enumerator), 956
MFX_LEVEL_AV1_63 (C++ enumerator), 956
MFX_LEVEL_AV1_7 (C++ enumerator), 956
MFX_LEVEL_AV1_71 (C++ enumerator), 956
MFX_LEVEL_AV1_72 (C++ enumerator), 956
MFX_LEVEL_AV1_73 (C++ enumerator), 956
MFX_LEVEL_AVC_1 (C++ enumerator), 953
MFX_LEVEL_AVC_11 (C++ enumerator), 953
MFX_LEVEL_AVC_12 (C++ enumerator), 953
MFX_LEVEL_AVC_13 (C++ enumerator), 953
MFX_LEVEL_AVC_1b (C++ enumerator), 953
MFX_LEVEL_AVC_2 (C++ enumerator), 954
MFX_LEVEL_AVC_21 (C++ enumerator), 954
MFX_LEVEL_AVC_22 (C++ enumerator), 954
MFX_LEVEL_AVC_3 (C++ enumerator), 954

Index 2213

oneAPI Specification, Release 1.1-rev-1

MFX_LEVEL_AVC_31 (C++ enumerator), 954
MFX_LEVEL_AVC_32 (C++ enumerator), 954
MFX_LEVEL_AVC_4 (C++ enumerator), 954
MFX_LEVEL_AVC_41 (C++ enumerator), 954
MFX_LEVEL_AVC_42 (C++ enumerator), 954
MFX_LEVEL_AVC_5 (C++ enumerator), 954
MFX_LEVEL_AVC_51 (C++ enumerator), 954
MFX_LEVEL_AVC_52 (C++ enumerator), 954
MFX_LEVEL_AVC_6 (C++ enumerator), 954
MFX_LEVEL_AVC_61 (C++ enumerator), 954
MFX_LEVEL_AVC_62 (C++ enumerator), 954
MFX_LEVEL_HEVC_1 (C++ enumerator), 955
MFX_LEVEL_HEVC_2 (C++ enumerator), 955
MFX_LEVEL_HEVC_21 (C++ enumerator), 955
MFX_LEVEL_HEVC_3 (C++ enumerator), 955
MFX_LEVEL_HEVC_31 (C++ enumerator), 955
MFX_LEVEL_HEVC_4 (C++ enumerator), 955
MFX_LEVEL_HEVC_41 (C++ enumerator), 955
MFX_LEVEL_HEVC_5 (C++ enumerator), 955
MFX_LEVEL_HEVC_51 (C++ enumerator), 955
MFX_LEVEL_HEVC_52 (C++ enumerator), 955
MFX_LEVEL_HEVC_6 (C++ enumerator), 955
MFX_LEVEL_HEVC_61 (C++ enumerator), 955
MFX_LEVEL_HEVC_62 (C++ enumerator), 955
MFX_LEVEL_MPEG2_HIGH (C++ enumerator), 954
MFX_LEVEL_MPEG2_HIGH1440 (C++ enumerator), 954
MFX_LEVEL_MPEG2_LOW (C++ enumerator), 954
MFX_LEVEL_MPEG2_MAIN (C++ enumerator), 954
MFX_LEVEL_UNKNOWN (C++ enumerator), 953
MFX_LEVEL_VC1_0 (C++ enumerator), 955
MFX_LEVEL_VC1_1 (C++ enumerator), 955
MFX_LEVEL_VC1_2 (C++ enumerator), 955
MFX_LEVEL_VC1_3 (C++ enumerator), 955
MFX_LEVEL_VC1_4 (C++ enumerator), 955
MFX_LEVEL_VC1_HIGH (C++ enumerator), 955
MFX_LEVEL_VC1_LOW (C++ enumerator), 955
MFX_LEVEL_VC1_MEDIAN (C++ enumerator), 955
MFX_LONGTERM_IDX_NO_IDX (C++ enumerator), 979
MFX_LOOKAHEAD_DS_2x (C++ enumerator), 979
MFX_LOOKAHEAD_DS_4x (C++ enumerator), 979
MFX_LOOKAHEAD_DS_OFF (C++ enumerator), 979
MFX_LOOKAHEAD_DS_UNKNOWN (C++ enumerator), 979
MFX_MBQP_MODE_QP_ADAPTIVE (C++ enumerator), 979
MFX_MBQP_MODE_QP_DELTA (C++ enumerator), 979
MFX_MBQP_MODE_QP_VALUE (C++ enumerator), 979
MFX_MEMTYPE_DXVA2_DECODER_TARGET (C++ enumerator), 970
MFX_MEMTYPE_DXVA2_PROCESSOR_TARGET (C++ enumerator), 970
MFX_MEMTYPE_EXPORT_FRAME (C++ enumerator), 970
MFX_MEMTYPE_EXTERNAL_FRAME (C++ enumerator), 970
MFX_MEMTYPE_FROM_DECODE (C++ enumerator), 970
MFX_MEMTYPE_FROM_ENC (C++ enumerator), 970
MFX_MEMTYPE_FROM_ENCODE (C++ enumerator), 970
MFX_MEMTYPE_FROM_VPPIN (C++ enumerator), 970
MFX_MEMTYPE_FROM_VPPOUT (C++ enumerator), 970

Index 2214

oneAPI Specification, Release 1.1-rev-1

MFX_MEMTYPE_INTERNAL_FRAME (C++ enumerator), 970
MFX_MEMTYPE_PERSISTENT_MEMORY (C++ enumerator), 970
MFX_MEMTYPE_RESERVED1 (C++ enumerator), 970
MFX_MEMTYPE_SHARED_RESOURCE (C++ enumerator), 971
MFX_MEMTYPE_SYSTEM_MEMORY (C++ enumerator), 970
MFX_MEMTYPE_VIDEO_MEMORY_DECODER_TARGET (C++ enumerator), 970
MFX_MEMTYPE_VIDEO_MEMORY_ENCODER_TARGET (C++ enumerator), 971
MFX_MEMTYPE_VIDEO_MEMORY_PROCESSOR_TARGET (C++ enumerator), 970
MFX_MIRRORING_DISABLED (C++ enumerator), 987
MFX_MIRRORING_HORIZONTAL (C++ enumerator), 987
MFX_MIRRORING_VERTICAL (C++ enumerator), 987
MFX_MVPRECISION_HALFPEL (C++ enumerator), 988
MFX_MVPRECISION_INTEGER (C++ enumerator), 988
MFX_MVPRECISION_QUARTERPEL (C++ enumerator), 988
MFX_MVPRECISION_UNKNOWN (C++ enumerator), 988
MFX_NOMINALRANGE_0_255 (C++ enumerator), 989
MFX_NOMINALRANGE_16_235 (C++ enumerator), 989
MFX_NOMINALRANGE_UNKNOWN (C++ enumerator), 989
MFX_P_REF_DEFAULT (C++ enumerator), 992
MFX_P_REF_PYRAMID (C++ enumerator), 992
MFX_P_REF_SIMPLE (C++ enumerator), 992
MFX_PARTIAL_BITSTREAM_ANY (C++ enumerator), 989
MFX_PARTIAL_BITSTREAM_BLOCK (C++ enumerator), 989
MFX_PARTIAL_BITSTREAM_NONE (C++ enumerator), 989
MFX_PARTIAL_BITSTREAM_SLICE (C++ enumerator), 989
MFX_PAYLOAD_CTRL_SUFFIX (C++ enumerator), 989
MFX_PAYLOAD_IDR (C++ enumerator), 974
MFX_PAYLOAD_OFF (C++ enumerator), 974
MFX_PICSTRUCT_FIELD_BFF (C++ enumerator), 989
MFX_PICSTRUCT_FIELD_BOTTOM (C++ enumerator), 990
MFX_PICSTRUCT_FIELD_PAIRED_NEXT (C++ enumerator), 990
MFX_PICSTRUCT_FIELD_PAIRED_PREV (C++ enumerator), 990
MFX_PICSTRUCT_FIELD_REPEATED (C++ enumerator), 990
MFX_PICSTRUCT_FIELD_SINGLE (C++ enumerator), 990
MFX_PICSTRUCT_FIELD_TFF (C++ enumerator), 989
MFX_PICSTRUCT_FIELD_TOP (C++ enumerator), 990
MFX_PICSTRUCT_FRAME_DOUBLING (C++ enumerator), 990
MFX_PICSTRUCT_FRAME_TRIPLING (C++ enumerator), 990
MFX_PICSTRUCT_PROGRESSIVE (C++ enumerator), 989
MFX_PICSTRUCT_UNKNOWN (C++ enumerator), 989
MFX_PICTYPE_BOTTOMFIELD (C++ enumerator), 990
MFX_PICTYPE_FRAME (C++ enumerator), 990
MFX_PICTYPE_TOPFIELD (C++ enumerator), 990
MFX_PICTYPE_UNKNOWN (C++ enumerator), 990
MFX_PLATFORM_ALDERLAKE_P (C++ enumerator), 992
MFX_PLATFORM_ALDERLAKE_S (C++ enumerator), 992
MFX_PLATFORM_APOLLOLAKE (C++ enumerator), 991
MFX_PLATFORM_BAYTRAIL (C++ enumerator), 991
MFX_PLATFORM_BROADWELL (C++ enumerator), 991
MFX_PLATFORM_CANNONLAKE (C++ enumerator), 991
MFX_PLATFORM_CHERRYTRAIL (C++ enumerator), 991
MFX_PLATFORM_COFFEELAKE (C++ enumerator), 991
MFX_PLATFORM_ELKHARTLAKE (C++ enumerator), 991
MFX_PLATFORM_GEMINILAKE (C++ enumerator), 991

Index 2215

oneAPI Specification, Release 1.1-rev-1

MFX_PLATFORM_HASWELL (C++ enumerator), 991
MFX_PLATFORM_ICELAKE (C++ enumerator), 991
MFX_PLATFORM_IVYBRIDGE (C++ enumerator), 991
MFX_PLATFORM_JASPERLAKE (C++ enumerator), 991
MFX_PLATFORM_KABYLAKE (C++ enumerator), 991
MFX_PLATFORM_KEEMBAY (C++ enumerator), 992
MFX_PLATFORM_ROCKETLAKE (C++ enumerator), 992
MFX_PLATFORM_SANDYBRIDGE (C++ enumerator), 991
MFX_PLATFORM_SKYLAKE (C++ enumerator), 991
MFX_PLATFORM_TIGERLAKE (C++ enumerator), 991
MFX_PLATFORM_UNKNOWN (C++ enumerator), 991
MFX_PLATFORM_XEHP_SDV (C++ enumerator), 992
MFX_PROFILE_AV1_HIGH (C++ enumerator), 957
MFX_PROFILE_AV1_MAIN (C++ enumerator), 957
MFX_PROFILE_AV1_PRO (C++ enumerator), 957
MFX_PROFILE_AVC_BASELINE (C++ enumerator), 957
MFX_PROFILE_AVC_CONSTRAINED_BASELINE (C++ enumerator), 957
MFX_PROFILE_AVC_CONSTRAINED_HIGH (C++ enumerator), 957
MFX_PROFILE_AVC_CONSTRAINT_SET0 (C++ enumerator), 958
MFX_PROFILE_AVC_CONSTRAINT_SET1 (C++ enumerator), 958
MFX_PROFILE_AVC_CONSTRAINT_SET2 (C++ enumerator), 958
MFX_PROFILE_AVC_CONSTRAINT_SET3 (C++ enumerator), 958
MFX_PROFILE_AVC_CONSTRAINT_SET4 (C++ enumerator), 958
MFX_PROFILE_AVC_CONSTRAINT_SET5 (C++ enumerator), 958
MFX_PROFILE_AVC_EXTENDED (C++ enumerator), 957
MFX_PROFILE_AVC_HIGH (C++ enumerator), 957
MFX_PROFILE_AVC_HIGH10 (C++ enumerator), 957
MFX_PROFILE_AVC_HIGH_422 (C++ enumerator), 957
MFX_PROFILE_AVC_MAIN (C++ enumerator), 957
MFX_PROFILE_AVC_MULTIVIEW_HIGH (C++ enumerator), 988
MFX_PROFILE_AVC_STEREO_HIGH (C++ enumerator), 988
MFX_PROFILE_HEVC_MAIN (C++ enumerator), 973
MFX_PROFILE_HEVC_MAIN10 (C++ enumerator), 973
MFX_PROFILE_HEVC_MAINSP (C++ enumerator), 973
MFX_PROFILE_HEVC_REXT (C++ enumerator), 973
MFX_PROFILE_HEVC_SCC (C++ enumerator), 973
MFX_PROFILE_JPEG_BASELINE (C++ enumerator), 958
MFX_PROFILE_MPEG2_HIGH (C++ enumerator), 988
MFX_PROFILE_MPEG2_MAIN (C++ enumerator), 988
MFX_PROFILE_MPEG2_SIMPLE (C++ enumerator), 988
MFX_PROFILE_UNKNOWN (C++ enumerator), 956
MFX_PROFILE_VC1_ADVANCED (C++ enumerator), 957
MFX_PROFILE_VC1_MAIN (C++ enumerator), 957
MFX_PROFILE_VC1_SIMPLE (C++ enumerator), 957
MFX_PROFILE_VP8_0 (C++ enumerator), 957
MFX_PROFILE_VP8_1 (C++ enumerator), 957
MFX_PROFILE_VP8_2 (C++ enumerator), 957
MFX_PROFILE_VP8_3 (C++ enumerator), 957
MFX_PROFILE_VP9_0 (C++ enumerator), 958
MFX_PROFILE_VP9_1 (C++ enumerator), 958
MFX_PROFILE_VP9_2 (C++ enumerator), 958
MFX_PROFILE_VP9_3 (C++ enumerator), 958
MFX_PROTECTION_CENC_WV_CLASSIC (C++ enumerator), 992
MFX_PROTECTION_CENC_WV_GOOGLE_DASH (C++ enumerator), 992

Index 2216

oneAPI Specification, Release 1.1-rev-1

MFX_RATECONTROL_AVBR (C++ enumerator), 993
MFX_RATECONTROL_CBR (C++ enumerator), 993
MFX_RATECONTROL_CQP (C++ enumerator), 993
MFX_RATECONTROL_ICQ (C++ enumerator), 993
MFX_RATECONTROL_LA (C++ enumerator), 993
MFX_RATECONTROL_LA_HRD (C++ enumerator), 993
MFX_RATECONTROL_LA_ICQ (C++ enumerator), 993
MFX_RATECONTROL_QVBR (C++ enumerator), 993
MFX_RATECONTROL_VBR (C++ enumerator), 993
MFX_RATECONTROL_VCM (C++ enumerator), 993
MFX_REFRESH_HORIZONTAL (C++ enumerator), 977
MFX_REFRESH_NO (C++ enumerator), 977
MFX_REFRESH_SLICE (C++ enumerator), 977
MFX_REFRESH_VERTICAL (C++ enumerator), 977
MFX_ROI_MODE_PRIORITY (C++ enumerator), 994
MFX_ROI_MODE_QP_DELTA (C++ enumerator), 994
MFX_ROI_MODE_QP_VALUE (C++ enumerator), 994
MFX_ROTATION_0 (C++ enumerator), 994
MFX_ROTATION_180 (C++ enumerator), 994
MFX_ROTATION_270 (C++ enumerator), 994
MFX_ROTATION_90 (C++ enumerator), 994
MFX_SAO_DISABLE (C++ enumerator), 994
MFX_SAO_ENABLE_CHROMA (C++ enumerator), 994
MFX_SAO_ENABLE_LUMA (C++ enumerator), 994
MFX_SAO_UNKNOWN (C++ enumerator), 994
MFX_SCALING_MODE_DEFAULT (C++ enumerator), 995
MFX_SCALING_MODE_INTEL_GEN_COMPUTE (C++ enumerator), 995
MFX_SCALING_MODE_INTEL_GEN_VDBOX (C++ enumerator), 995
MFX_SCALING_MODE_INTEL_GEN_VEBOX (C++ enumerator), 995
MFX_SCALING_MODE_LOWPOWER (C++ enumerator), 995
MFX_SCALING_MODE_QUALITY (C++ enumerator), 995
MFX_SCALING_MODE_VENDOR (C++ enumerator), 995
MFX_SCANTYPE_INTERLEAVED (C++ enumerator), 978
MFX_SCANTYPE_NONINTERLEAVED (C++ enumerator), 978
MFX_SCANTYPE_UNKNOWN (C++ enumerator), 978
MFX_SCENARIO_ARCHIVE (C++ enumerator), 995
MFX_SCENARIO_CAMERA_CAPTURE (C++ enumerator), 995
MFX_SCENARIO_DISPLAY_REMOTING (C++ enumerator), 995
MFX_SCENARIO_GAME_STREAMING (C++ enumerator), 995
MFX_SCENARIO_LIVE_STREAMING (C++ enumerator), 995
MFX_SCENARIO_REMOTE_GAMING (C++ enumerator), 995
MFX_SCENARIO_UNKNOWN (C++ enumerator), 995
MFX_SCENARIO_VIDEO_CONFERENCE (C++ enumerator), 995
MFX_SCENARIO_VIDEO_SURVEILLANCE (C++ enumerator), 995
MFX_SKIPFRAME_BRC_ONLY (C++ enumerator), 997
MFX_SKIPFRAME_INSERT_DUMMY (C++ enumerator), 996
MFX_SKIPFRAME_INSERT_NOTHING (C++ enumerator), 996
MFX_SKIPFRAME_NO_SKIP (C++ enumerator), 996
MFX_STRFIELD_LEN (C macro), 1022
MFX_STRUCT_VERSION (C macro), 1003
MFX_SURFACEARRAY_VERSION (C macro), 1003
MFX_TARGETUSAGE_1 (C++ enumerator), 997
MFX_TARGETUSAGE_2 (C++ enumerator), 997
MFX_TARGETUSAGE_3 (C++ enumerator), 997

Index 2217

oneAPI Specification, Release 1.1-rev-1

MFX_TARGETUSAGE_4 (C++ enumerator), 997
MFX_TARGETUSAGE_5 (C++ enumerator), 997
MFX_TARGETUSAGE_6 (C++ enumerator), 997
MFX_TARGETUSAGE_7 (C++ enumerator), 997
MFX_TARGETUSAGE_BALANCED (C++ enumerator), 997
MFX_TARGETUSAGE_BEST_QUALITY (C++ enumerator), 997
MFX_TARGETUSAGE_BEST_SPEED (C++ enumerator), 997
MFX_TARGETUSAGE_UNKNOWN (C++ enumerator), 997
MFX_TELECINE_PATTERN_2332 (C++ enumerator), 998
MFX_TELECINE_PATTERN_32 (C++ enumerator), 998
MFX_TELECINE_PATTERN_41 (C++ enumerator), 998
MFX_TELECINE_PATTERN_FRAME_REPEAT (C++ enumerator), 998
MFX_TELECINE_POSITION_PROVIDED (C++ enumerator), 998
MFX_TIER_HEVC_HIGH (C++ enumerator), 974
MFX_TIER_HEVC_MAIN (C++ enumerator), 974
MFX_TIMESTAMP_UNKNOWN (C++ enumerator), 971
MFX_TIMESTAMPCALC_TELECINE (C++ enumerator), 998
MFX_TIMESTAMPCALC_UNKNOWN (C++ enumerator), 998
MFX_TRANSFERMATRIX_BT601 (C++ enumerator), 998
MFX_TRANSFERMATRIX_BT709 (C++ enumerator), 998
MFX_TRANSFERMATRIX_UNKNOWN (C++ enumerator), 998
MFX_TRELLIS_B (C++ enumerator), 999
MFX_TRELLIS_I (C++ enumerator), 999
MFX_TRELLIS_OFF (C++ enumerator), 999
MFX_TRELLIS_P (C++ enumerator), 999
MFX_TRELLIS_UNKNOWN (C++ enumerator), 999
MFX_UPDATE_PROPERTY_PTR (C macro), 1023
MFX_UPDATE_PROPERTY_U16 (C macro), 1023
MFX_UPDATE_PROPERTY_U32 (C macro), 1023
MFX_VARIANT_VERSION (C macro), 1003
MFX_VERSION (C macro), 1003
MFX_VERSION_MAJOR (C macro), 1003
MFX_VERSION_MINOR (C macro), 1003
MFX_VP9_REF_ALTREF (C++ enumerator), 999
MFX_VP9_REF_GOLDEN (C++ enumerator), 999
MFX_VP9_REF_INTRA (C++ enumerator), 999
MFX_VP9_REF_LAST (C++ enumerator), 999
MFX_VP9_SEGMENT_FEATURE_LOOP_FILTER (C++ enumerator), 996
MFX_VP9_SEGMENT_FEATURE_QINDEX (C++ enumerator), 996
MFX_VP9_SEGMENT_FEATURE_REFERENCE (C++ enumerator), 996
MFX_VP9_SEGMENT_FEATURE_SKIP (C++ enumerator), 996
MFX_VP9_SEGMENT_ID_BLOCK_SIZE_16x16 (C++ enumerator), 996
MFX_VP9_SEGMENT_ID_BLOCK_SIZE_32x32 (C++ enumerator), 996
MFX_VP9_SEGMENT_ID_BLOCK_SIZE_64x64 (C++ enumerator), 996
MFX_VP9_SEGMENT_ID_BLOCK_SIZE_8x8 (C++ enumerator), 996
MFX_VP9_SEGMENT_ID_BLOCK_SIZE_UNKNOWN (C++ enumerator), 996
MFX_VPP_COPY_FIELD (C++ enumerator), 999
MFX_VPP_COPY_FRAME (C++ enumerator), 999
MFX_VPP_SWAP_FIELDS (C++ enumerator), 999
MFX_VPPDESCRIPTION_VERSION (C macro), 1003
MFX_WEIGHTED_PRED_DEFAULT (C++ enumerator), 1000
MFX_WEIGHTED_PRED_EXPLICIT (C++ enumerator), 1000
MFX_WEIGHTED_PRED_IMPLICIT (C++ enumerator), 1000
MFX_WEIGHTED_PRED_UNKNOWN (C++ enumerator), 1000

Index 2218

oneAPI Specification, Release 1.1-rev-1

mfxA2RGB10 (C++ struct), 841
mfxA2RGB10::A (C++ member), 841
mfxA2RGB10::B (C++ member), 841
mfxA2RGB10::G (C++ member), 841
mfxA2RGB10::R (C++ member), 841
mfxAccelerationMode (C++ enum), 1020
mfxAccelerationMode::MFX_ACCEL_MODE_NA (C++ enumerator), 1020
mfxAccelerationMode::MFX_ACCEL_MODE_VIA_D3D11 (C++ enumerator), 1020
mfxAccelerationMode::MFX_ACCEL_MODE_VIA_D3D9 (C++ enumerator), 1020
mfxAccelerationMode::MFX_ACCEL_MODE_VIA_HDDLUNITE (C++ enumerator), 1021
mfxAccelerationMode::MFX_ACCEL_MODE_VIA_VAAPI (C++ enumerator), 1020
mfxAccelerationMode::MFX_ACCEL_MODE_VIA_VAAPI_DRM_MODESET (C++ enumerator), 1020
mfxAccelerationMode::MFX_ACCEL_MODE_VIA_VAAPI_DRM_RENDER_NODE (C++ enumerator), 1020
mfxAccelerationMode::MFX_ACCEL_MODE_VIA_VAAPI_GLX (C++ enumerator), 1020
mfxAccelerationMode::MFX_ACCEL_MODE_VIA_VAAPI_WAYLAND (C++ enumerator), 1021
mfxAccelerationMode::MFX_ACCEL_MODE_VIA_VAAPI_X11 (C++ enumerator), 1021
mfxAccelerationModeDescription (C++ struct), 1019
mfxAccelerationModeDescription::Mode (C++ member), 1019
mfxAccelerationModeDescription::NumAccelerationModes (C++ member), 1019
mfxAccelerationModeDescription::reserved (C++ member), 1019
mfxAccelerationModeDescription::Version (C++ member), 1019
mfxAdapterInfo (C++ struct), 855
mfxAdapterInfo::Number (C++ member), 855
mfxAdapterInfo::Platform (C++ member), 855
mfxAdaptersInfo (C++ struct), 856
mfxAdaptersInfo::Adapters (C++ member), 856
mfxAdaptersInfo::NumActual (C++ member), 856
mfxAdaptersInfo::NumAlloc (C++ member), 856
mfxAV1FilmGrainPoint (C++ struct), 877
mfxAV1FilmGrainPoint::Scaling (C++ member), 877
mfxAV1FilmGrainPoint::Value (C++ member), 877
mfxAV1SegmentIdBlockSize (C++ enum), 1001
mfxAV1SegmentIdBlockSize::MFX_AV1_SEGMENT_ID_BLOCK_SIZE_128x128 (C++ enumerator), 1002
mfxAV1SegmentIdBlockSize::MFX_AV1_SEGMENT_ID_BLOCK_SIZE_16x16 (C++ enumerator), 1001
mfxAV1SegmentIdBlockSize::MFX_AV1_SEGMENT_ID_BLOCK_SIZE_32x32 (C++ enumerator), 1002
mfxAV1SegmentIdBlockSize::MFX_AV1_SEGMENT_ID_BLOCK_SIZE_4x4 (C++ enumerator), 1001
mfxAV1SegmentIdBlockSize::MFX_AV1_SEGMENT_ID_BLOCK_SIZE_64x64 (C++ enumerator), 1002
mfxAV1SegmentIdBlockSize::MFX_AV1_SEGMENT_ID_BLOCK_SIZE_8x8 (C++ enumerator), 1001
mfxAV1SegmentIdBlockSize::MFX_AV1_SEGMENT_ID_BLOCK_SIZE_UNSPECIFIED (C++ enumerator), 1001
mfxBitstream (C++ struct), 836
mfxBitstream::CodecId (C++ member), 836
mfxBitstream::Data (C++ member), 837
mfxBitstream::DataFlag (C++ member), 837
mfxBitstream::DataLength (C++ member), 837
mfxBitstream::DataOffset (C++ member), 837
mfxBitstream::DecodeTimeStamp (C++ member), 836
mfxBitstream::EncryptedData (C++ member), 836
mfxBitstream::ExtParam (C++ member), 836
mfxBitstream::FrameType (C++ member), 837
mfxBitstream::MaxLength (C++ member), 837
mfxBitstream::NumExtParam (C++ member), 836
mfxBitstream::PicStruct (C++ member), 837
mfxBitstream::reserved2 (C++ member), 837
mfxBitstream::TimeStamp (C++ member), 837

Index 2219

oneAPI Specification, Release 1.1-rev-1

mfxBRCFrameCtrl (C++ struct), 882
mfxBRCFrameCtrl::DeltaQP (C++ member), 883
mfxBRCFrameCtrl::ExtParam (C++ member), 883
mfxBRCFrameCtrl::InitialCpbRemovalDelay (C++ member), 883
mfxBRCFrameCtrl::InitialCpbRemovalOffset (C++ member), 883
mfxBRCFrameCtrl::MaxFrameSize (C++ member), 883
mfxBRCFrameCtrl::MaxNumRepak (C++ member), 883
mfxBRCFrameCtrl::NumExtParam (C++ member), 883
mfxBRCFrameCtrl::QpY (C++ member), 883
mfxBRCFrameParam (C++ struct), 883
mfxBRCFrameParam::CodedFrameSize (C++ member), 884
mfxBRCFrameParam::DisplayOrder (C++ member), 884
mfxBRCFrameParam::EncodedOrder (C++ member), 884
mfxBRCFrameParam::ExtParam (C++ member), 884
mfxBRCFrameParam::FrameCmplx (C++ member), 884
mfxBRCFrameParam::FrameType (C++ member), 884
mfxBRCFrameParam::LongTerm (C++ member), 884
mfxBRCFrameParam::NumExtParam (C++ member), 884
mfxBRCFrameParam::NumRecode (C++ member), 884
mfxBRCFrameParam::PyramidLayer (C++ member), 884
mfxBRCFrameParam::SceneChange (C++ member), 884
mfxBRCFrameStatus (C++ struct), 885
mfxBRCFrameStatus::BRCStatus (C++ member), 885
mfxBRCFrameStatus::MinFrameSize (C++ member), 885
mfxChannel (C++ struct), 943
mfxChannel::Data (C++ member), 943
mfxChannel::Data16 (C++ member), 943
mfxChannel::DataType (C++ member), 943
mfxChannel::reserved (C++ member), 943
mfxChannel::Size (C++ member), 943
mfxChar (C++ type), 1003
MFXCloneSession (C++ function), 823
MFXClose (C++ function), 821
mfxComponentInfo (C++ struct), 860
mfxComponentInfo::Requirements (C++ member), 860
mfxComponentInfo::Type (C++ member), 860
mfxComponentType (C++ enum), 979
mfxComponentType::MFX_COMPONENT_DECODE (C++ enumerator), 979
mfxComponentType::MFX_COMPONENT_ENCODE (C++ enumerator), 979
mfxComponentType::MFX_COMPONENT_VPP (C++ enumerator), 979
mfxConfig (C++ type), 1004
MFXCreateConfig (C++ function), 1005
MFXCreateSession (C++ function), 1006
mfxDataType (C++ enum), 975
mfxDataType::MFX_DATA_TYPE_F32 (C++ enumerator), 975
mfxDataType::MFX_DATA_TYPE_F64 (C++ enumerator), 976
mfxDataType::MFX_DATA_TYPE_I16 (C++ enumerator), 975
mfxDataType::MFX_DATA_TYPE_I32 (C++ enumerator), 975
mfxDataType::MFX_DATA_TYPE_I64 (C++ enumerator), 975
mfxDataType::MFX_DATA_TYPE_I8 (C++ enumerator), 975
mfxDataType::MFX_DATA_TYPE_U16 (C++ enumerator), 975
mfxDataType::MFX_DATA_TYPE_U32 (C++ enumerator), 975
mfxDataType::MFX_DATA_TYPE_U64 (C++ enumerator), 975
mfxDataType::MFX_DATA_TYPE_U8 (C++ enumerator), 975

Index 2220

oneAPI Specification, Release 1.1-rev-1

mfxDataType::MFX_DATA_TYPE_UNSET (C++ enumerator), 975
mfxDecoderDescription (C++ struct), 1009
mfxDecoderDescription::Codecs (C++ member), 1009
mfxDecoderDescription::decoder (C++ struct), 1009
mfxDecoderDescription::decoder::CodecID (C++ member), 1010
mfxDecoderDescription::decoder::decprofile (C++ struct), 1010
mfxDecoderDescription::decoder::decprofile::decmemdesc (C++ struct), 1010
mfxDecoderDescription::decoder::decprofile::decmemdesc::ColorFormats (C++ member), 1011
mfxDecoderDescription::decoder::decprofile::decmemdesc::Height (C++ member), 1010
mfxDecoderDescription::decoder::decprofile::decmemdesc::MemHandleType (C++ member), 1010
mfxDecoderDescription::decoder::decprofile::decmemdesc::NumColorFormats (C++ member), 1011
mfxDecoderDescription::decoder::decprofile::decmemdesc::reserved (C++ member), 1010
mfxDecoderDescription::decoder::decprofile::decmemdesc::Width (C++ member), 1010
mfxDecoderDescription::decoder::decprofile::MemDesc (C++ member), 1010
mfxDecoderDescription::decoder::decprofile::NumMemTypes (C++ member), 1010
mfxDecoderDescription::decoder::decprofile::Profile (C++ member), 1010
mfxDecoderDescription::decoder::decprofile::reserved (C++ member), 1010
mfxDecoderDescription::decoder::MaxcodecLevel (C++ member), 1010
mfxDecoderDescription::decoder::NumProfiles (C++ member), 1010
mfxDecoderDescription::decoder::Profiles (C++ member), 1010
mfxDecoderDescription::decoder::reserved (C++ member), 1010
mfxDecoderDescription::NumCodecs (C++ member), 1009
mfxDecoderDescription::reserved (C++ member), 1009
mfxDecoderDescription::Version (C++ member), 1009
mfxDecodeStat (C++ struct), 879
mfxDecodeStat::NumCachedFrame (C++ member), 879
mfxDecodeStat::NumError (C++ member), 879
mfxDecodeStat::NumFrame (C++ member), 879
mfxDecodeStat::NumSkippedFrame (C++ member), 879
mfxDenoiseMode (C++ enum), 987
mfxDenoiseMode::MFX_DENOISE_MODE_DEFAULT (C++ enumerator), 987
mfxDenoiseMode::MFX_DENOISE_MODE_INTEL_HVS_AUTO_ADJUST (C++ enumerator), 988
mfxDenoiseMode::MFX_DENOISE_MODE_INTEL_HVS_AUTO_BDRATE (C++ enumerator), 988
mfxDenoiseMode::MFX_DENOISE_MODE_INTEL_HVS_AUTO_SUBJECTIVE (C++ enumerator), 988
mfxDenoiseMode::MFX_DENOISE_MODE_INTEL_HVS_POST_MANUAL (C++ enumerator), 988
mfxDenoiseMode::MFX_DENOISE_MODE_INTEL_HVS_PRE_MANUAL (C++ enumerator), 988
mfxDenoiseMode::MFX_DENOISE_MODE_VENDOR (C++ enumerator), 987
mfxDeviceDescription (C++ struct), 1011
mfxDeviceDescription::DeviceID (C++ member), 1011
mfxDeviceDescription::MediaAdapterType (C++ member), 1011
mfxDeviceDescription::NumSubDevices (C++ member), 1011
mfxDeviceDescription::reserved (C++ member), 1011
mfxDeviceDescription::SubDevices (C++ member), 1011
mfxDeviceDescription::subdevices (C++ struct), 1011
mfxDeviceDescription::subdevices::Index (C++ member), 1011
mfxDeviceDescription::subdevices::reserved (C++ member), 1011
mfxDeviceDescription::subdevices::SubDeviceID (C++ member), 1011
mfxDeviceDescription::Version (C++ member), 1011
MFXDisjoinSession (C++ function), 822
MFXDispReleaseImplDescription (C++ function), 1006
mfxEncodeCtrl (C++ struct), 885
mfxEncodeCtrl::ExtParam (C++ member), 886
mfxEncodeCtrl::FrameType (C++ member), 885
mfxEncodeCtrl::Header (C++ member), 885

Index 2221

oneAPI Specification, Release 1.1-rev-1

mfxEncodeCtrl::MfxNalUnitType (C++ member), 885
mfxEncodeCtrl::NumExtParam (C++ member), 885
mfxEncodeCtrl::NumPayload (C++ member), 886
mfxEncodeCtrl::Payload (C++ member), 886
mfxEncodeCtrl::QP (C++ member), 885
mfxEncodeCtrl::SkipFrame (C++ member), 885
mfxEncodedUnitInfo (C++ struct), 886
mfxEncodedUnitInfo::Offset (C++ member), 886
mfxEncodedUnitInfo::Size (C++ member), 886
mfxEncodedUnitInfo::Type (C++ member), 886
mfxEncoderDescription (C++ struct), 1012
mfxEncoderDescription::Codecs (C++ member), 1012
mfxEncoderDescription::encoder (C++ struct), 1012
mfxEncoderDescription::encoder::BiDirectionalPrediction (C++ member), 1012
mfxEncoderDescription::encoder::CodecID (C++ member), 1012
mfxEncoderDescription::encoder::encprofile (C++ struct), 1012
mfxEncoderDescription::encoder::encprofile::encmemdesc (C++ struct), 1013
mfxEncoderDescription::encoder::encprofile::encmemdesc::ColorFormats (C++ member), 1013
mfxEncoderDescription::encoder::encprofile::encmemdesc::Height (C++ member), 1013
mfxEncoderDescription::encoder::encprofile::encmemdesc::MemHandleType (C++ member), 1013
mfxEncoderDescription::encoder::encprofile::encmemdesc::NumColorFormats (C++ member), 1013
mfxEncoderDescription::encoder::encprofile::encmemdesc::reserved (C++ member), 1013
mfxEncoderDescription::encoder::encprofile::encmemdesc::Width (C++ member), 1013
mfxEncoderDescription::encoder::encprofile::MemDesc (C++ member), 1013
mfxEncoderDescription::encoder::encprofile::NumMemTypes (C++ member), 1013
mfxEncoderDescription::encoder::encprofile::Profile (C++ member), 1013
mfxEncoderDescription::encoder::encprofile::reserved (C++ member), 1013
mfxEncoderDescription::encoder::MaxcodecLevel (C++ member), 1012
mfxEncoderDescription::encoder::NumProfiles (C++ member), 1012
mfxEncoderDescription::encoder::Profiles (C++ member), 1012
mfxEncoderDescription::encoder::reserved (C++ member), 1012
mfxEncoderDescription::NumCodecs (C++ member), 1012
mfxEncoderDescription::reserved (C++ member), 1012
mfxEncoderDescription::Version (C++ member), 1012
mfxEncodeStat (C++ struct), 886
mfxEncodeStat::NumBit (C++ member), 886
mfxEncodeStat::NumCachedFrame (C++ member), 886
mfxEncodeStat::NumFrame (C++ member), 886
MFXEnumImplementations (C++ function), 1007
mfxExtAllocationHints (C++ struct), 878
mfxExtAllocationHints::AllocationPolicy (C++ member), 878
mfxExtAllocationHints::DeltaToAllocateOnTheFly (C++ member), 878
mfxExtAllocationHints::Header (C++ member), 878
mfxExtAllocationHints::NumberToPreAllocate (C++ member), 878
mfxExtAllocationHints::reserved1 (C++ member), 879
mfxExtAllocationHints::VPPPoolType (C++ member), 879
mfxExtAllocationHints::Wait (C++ member), 879
mfxExtAV1BitstreamParam (C++ struct), 927
mfxExtAV1BitstreamParam::Header (C++ member), 927
mfxExtAV1BitstreamParam::WriteIVFHeaders (C++ member), 927
mfxExtAV1FilmGrainParam (C++ struct), 875
mfxExtAV1FilmGrainParam::ArCoeffLag (C++ member), 876
mfxExtAV1FilmGrainParam::ArCoeffsCbPlus128 (C++ member), 876
mfxExtAV1FilmGrainParam::ArCoeffsCrPlus128 (C++ member), 876

Index 2222

oneAPI Specification, Release 1.1-rev-1

mfxExtAV1FilmGrainParam::ArCoeffShiftMinus6 (C++ member), 876
mfxExtAV1FilmGrainParam::ArCoeffsYPlus128 (C++ member), 876
mfxExtAV1FilmGrainParam::CbLumaMult (C++ member), 876
mfxExtAV1FilmGrainParam::CbMult (C++ member), 876
mfxExtAV1FilmGrainParam::CbOffset (C++ member), 876
mfxExtAV1FilmGrainParam::CrLumaMult (C++ member), 877
mfxExtAV1FilmGrainParam::CrMult (C++ member), 876
mfxExtAV1FilmGrainParam::CrOffset (C++ member), 877
mfxExtAV1FilmGrainParam::FilmGrainFlags (C++ member), 875
mfxExtAV1FilmGrainParam::GrainScaleShift (C++ member), 876
mfxExtAV1FilmGrainParam::GrainScalingMinus8 (C++ member), 876
mfxExtAV1FilmGrainParam::GrainSeed (C++ member), 875
mfxExtAV1FilmGrainParam::Header (C++ member), 875
mfxExtAV1FilmGrainParam::NumCbPoints (C++ member), 876
mfxExtAV1FilmGrainParam::NumCrPoints (C++ member), 876
mfxExtAV1FilmGrainParam::NumYPoints (C++ member), 875
mfxExtAV1FilmGrainParam::PointCb (C++ member), 876
mfxExtAV1FilmGrainParam::PointCr (C++ member), 876
mfxExtAV1FilmGrainParam::PointY (C++ member), 876
mfxExtAV1FilmGrainParam::RefIdx (C++ member), 875
mfxExtAV1ResolutionParam (C++ struct), 927
mfxExtAV1ResolutionParam::FrameHeight (C++ member), 927
mfxExtAV1ResolutionParam::FrameWidth (C++ member), 927
mfxExtAV1ResolutionParam::Header (C++ member), 927
mfxExtAV1Segmentation (C++ struct), 928
mfxExtAV1Segmentation::Header (C++ member), 928
mfxExtAV1Segmentation::NumSegmentIdAlloc (C++ member), 928
mfxExtAV1Segmentation::NumSegments (C++ member), 928
mfxExtAV1Segmentation::Segment (C++ member), 928
mfxExtAV1Segmentation::SegmentIdBlockSize (C++ member), 928
mfxExtAV1Segmentation::SegmentIds (C++ member), 929
mfxExtAV1TileParam (C++ struct), 927
mfxExtAV1TileParam::Header (C++ member), 927
mfxExtAV1TileParam::NumTileColumns (C++ member), 927
mfxExtAV1TileParam::NumTileGroups (C++ member), 927
mfxExtAV1TileParam::NumTileRows (C++ member), 927
mfxExtAVCEncodedFrameInfo (C++ struct), 887
mfxExtAVCEncodedFrameInfo::BRCPanicMode (C++ member), 887
mfxExtAVCEncodedFrameInfo::FrameOrder (C++ member), 887
mfxExtAVCEncodedFrameInfo::Header (C++ member), 887
mfxExtAVCEncodedFrameInfo::LongTermIdx (C++ member), 887
mfxExtAVCEncodedFrameInfo::MAD (C++ member), 887
mfxExtAVCEncodedFrameInfo::PicStruct (C++ member), 887
mfxExtAVCEncodedFrameInfo::QP (C++ member), 888
mfxExtAVCEncodedFrameInfo::reserved (C++ member), 887
mfxExtAVCEncodedFrameInfo::SecondFieldOffset (C++ member), 888
mfxExtAVCEncodedFrameInfo::UsedRefListL0 (C++ member), 888
mfxExtAVCEncodedFrameInfo::UsedRefListL1 (C++ member), 888
mfxExtAVCRefListCtrl (C++ struct), 888
mfxExtAVCRefListCtrl::ApplyLongTermIdx (C++ member), 889
mfxExtAVCRefListCtrl::FrameOrder (C++ member), 888
mfxExtAVCRefListCtrl::Header (C++ member), 889
mfxExtAVCRefListCtrl::LongTermIdx (C++ member), 888
mfxExtAVCRefListCtrl::LongTermRefList (C++ member), 889

Index 2223

oneAPI Specification, Release 1.1-rev-1

mfxExtAVCRefListCtrl::NumRefIdxL0Active (C++ member), 889
mfxExtAVCRefListCtrl::NumRefIdxL1Active (C++ member), 889
mfxExtAVCRefListCtrl::PicStruct (C++ member), 888
mfxExtAVCRefListCtrl::PreferredRefList (C++ member), 889
mfxExtAVCRefListCtrl::RejectedRefList (C++ member), 889
mfxExtAVCRefListCtrl::reserved (C++ member), 888
mfxExtAVCRefListCtrl::ViewId (C++ member), 888
mfxExtAVCRefLists (C++ struct), 889
mfxExtAVCRefLists::Header (C++ member), 890
mfxExtAVCRefLists::mfxRefPic (C++ struct), 890
mfxExtAVCRefLists::mfxRefPic::FrameOrder (C++ member), 890
mfxExtAVCRefLists::mfxRefPic::PicStruct (C++ member), 890
mfxExtAVCRefLists::NumRefIdxL0Active (C++ member), 890
mfxExtAVCRefLists::NumRefIdxL1Active (C++ member), 890
mfxExtAVCRefLists::RefPicList0 (C++ member), 890
mfxExtAVCRefLists::RefPicList1 (C++ member), 890
mfxExtAVCRoundingOffset (C++ struct), 891
mfxExtAVCRoundingOffset::EnableRoundingInter (C++ member), 891
mfxExtAVCRoundingOffset::EnableRoundingIntra (C++ member), 891
mfxExtAVCRoundingOffset::Header (C++ member), 891
mfxExtAVCRoundingOffset::RoundingOffsetInter (C++ member), 891
mfxExtAVCRoundingOffset::RoundingOffsetIntra (C++ member), 891
mfxExtAvcTemporalLayers (C++ struct), 891
mfxExtAvcTemporalLayers::BaseLayerPID (C++ member), 891
mfxExtAvcTemporalLayers::Header (C++ member), 891
mfxExtAvcTemporalLayers::Scale (C++ member), 891
mfxExtBRC (C++ struct), 892
mfxExtBRC::Close (C++ member), 892
mfxExtBRC::GetFrameCtrl (C++ member), 893
mfxExtBRC::Header (C++ member), 892
mfxExtBRC::Init (C++ member), 892
mfxExtBRC::pthis (C++ member), 892
mfxExtBRC::Reset (C++ member), 892
mfxExtBRC::Update (C++ member), 893
mfxExtBuffer (C++ struct), 834
mfxExtBuffer::BufferId (C++ member), 834
mfxExtBuffer::BufferSz (C++ member), 834
mfxExtChromaLocInfo (C++ struct), 893
mfxExtChromaLocInfo::ChromaLocInfoPresentFlag (C++ member), 893
mfxExtChromaLocInfo::ChromaSampleLocTypeBottomField (C++ member), 893
mfxExtChromaLocInfo::ChromaSampleLocTypeTopField (C++ member), 893
mfxExtChromaLocInfo::Header (C++ member), 893
mfxExtChromaLocInfo::reserved (C++ member), 893
mfxExtCodingOption (C++ struct), 894
mfxExtCodingOption2 (C++ struct), 896
mfxExtCodingOption2::AdaptiveB (C++ member), 897
mfxExtCodingOption2::AdaptiveI (C++ member), 897
mfxExtCodingOption2::BitrateLimit (C++ member), 897
mfxExtCodingOption2::BRefType (C++ member), 897
mfxExtCodingOption2::BufferingPeriodSEI (C++ member), 899
mfxExtCodingOption2::DisableDeblockingIdc (C++ member), 899
mfxExtCodingOption2::DisableVUI (C++ member), 899
mfxExtCodingOption2::EnableMAD (C++ member), 899
mfxExtCodingOption2::ExtBRC (C++ member), 897

Index 2224

oneAPI Specification, Release 1.1-rev-1

mfxExtCodingOption2::FixedFrameRate (C++ member), 899
mfxExtCodingOption2::Header (C++ member), 896
mfxExtCodingOption2::IntRefCycleSize (C++ member), 896
mfxExtCodingOption2::IntRefQPDelta (C++ member), 896
mfxExtCodingOption2::IntRefType (C++ member), 896
mfxExtCodingOption2::LookAheadDepth (C++ member), 897
mfxExtCodingOption2::LookAheadDS (C++ member), 898
mfxExtCodingOption2::MaxFrameSize (C++ member), 896
mfxExtCodingOption2::MaxQPB (C++ member), 899
mfxExtCodingOption2::MaxQPI (C++ member), 898
mfxExtCodingOption2::MaxQPP (C++ member), 898
mfxExtCodingOption2::MaxSliceSize (C++ member), 896
mfxExtCodingOption2::MBBRC (C++ member), 897
mfxExtCodingOption2::MinQPB (C++ member), 899
mfxExtCodingOption2::MinQPI (C++ member), 898
mfxExtCodingOption2::MinQPP (C++ member), 898
mfxExtCodingOption2::NumMbPerSlice (C++ member), 898
mfxExtCodingOption2::RepeatPPS (C++ member), 897
mfxExtCodingOption2::SkipFrame (C++ member), 898
mfxExtCodingOption2::Trellis (C++ member), 897
mfxExtCodingOption2::UseRawRef (C++ member), 900
mfxExtCodingOption3 (C++ struct), 900
mfxExtCodingOption3::AdaptiveCQM (C++ member), 904
mfxExtCodingOption3::AdaptiveLTR (C++ member), 904
mfxExtCodingOption3::AdaptiveMaxFrameSize (C++ member), 904
mfxExtCodingOption3::AdaptiveRef (C++ member), 904
mfxExtCodingOption3::AspectRatioInfoPresent (C++ member), 901
mfxExtCodingOption3::BitstreamRestriction (C++ member), 902
mfxExtCodingOption3::BRCPanicMode (C++ member), 903
mfxExtCodingOption3::ContentInfo (C++ member), 902
mfxExtCodingOption3::DirectBiasAdjustment (C++ member), 901
mfxExtCodingOption3::EnableMBForceIntra (C++ member), 904
mfxExtCodingOption3::EnableMBQP (C++ member), 901
mfxExtCodingOption3::EnableNalUnitType (C++ member), 904
mfxExtCodingOption3::EnableQPOffset (C++ member), 903
mfxExtCodingOption3::EncodedUnitsInfo (C++ member), 904
mfxExtCodingOption3::FadeDetection (C++ member), 902
mfxExtCodingOption3::GlobalMotionBiasAdjustment (C++ member), 901
mfxExtCodingOption3::GPB (C++ member), 902
mfxExtCodingOption3::Header (C++ member), 900
mfxExtCodingOption3::IntRefCycleDist (C++ member), 901
mfxExtCodingOption3::LowDelayBRC (C++ member), 904
mfxExtCodingOption3::LowDelayHrd (C++ member), 902
mfxExtCodingOption3::MaxFrameSizeI (C++ member), 903
mfxExtCodingOption3::MaxFrameSizeP (C++ member), 903
mfxExtCodingOption3::MBDisableSkipMap (C++ member), 901
mfxExtCodingOption3::MotionVectorsOverPicBoundaries (C++ member), 902
mfxExtCodingOption3::MVCostScalingFactor (C++ member), 901
mfxExtCodingOption3::NumRefActiveBL0 (C++ member), 903
mfxExtCodingOption3::NumRefActiveBL1 (C++ member), 903
mfxExtCodingOption3::NumRefActiveP (C++ member), 903
mfxExtCodingOption3::NumSliceB (C++ member), 900
mfxExtCodingOption3::NumSliceI (C++ member), 900
mfxExtCodingOption3::NumSliceP (C++ member), 900

Index 2225

oneAPI Specification, Release 1.1-rev-1

mfxExtCodingOption3::OverscanAppropriate (C++ member), 902
mfxExtCodingOption3::OverscanInfoPresent (C++ member), 902
mfxExtCodingOption3::PRefType (C++ member), 902
mfxExtCodingOption3::QPOffset (C++ member), 903
mfxExtCodingOption3::QVBRQuality (C++ member), 901
mfxExtCodingOption3::RepartitionCheckEnable (C++ member), 904
mfxExtCodingOption3::ScenarioInfo (C++ member), 902
mfxExtCodingOption3::TargetBitDepthChroma (C++ member), 903
mfxExtCodingOption3::TargetBitDepthLuma (C++ member), 903
mfxExtCodingOption3::TargetChromaFormatPlus1 (C++ member), 903
mfxExtCodingOption3::TimingInfoPresent (C++ member), 902
mfxExtCodingOption3::TransformSkip (C++ member), 903
mfxExtCodingOption3::WeightedBiPred (C++ member), 901
mfxExtCodingOption3::WeightedPred (C++ member), 901
mfxExtCodingOption3::WinBRCMaxAvgKbps (C++ member), 900
mfxExtCodingOption3::WinBRCSize (C++ member), 901
mfxExtCodingOption::AUDelimiter (C++ member), 895
mfxExtCodingOption::CAVLC (C++ member), 894
mfxExtCodingOption::FieldOutput (C++ member), 895
mfxExtCodingOption::FramePicture (C++ member), 894
mfxExtCodingOption::Header (C++ member), 894
mfxExtCodingOption::InterPredBlockSize (C++ member), 895
mfxExtCodingOption::IntraPredBlockSize (C++ member), 895
mfxExtCodingOption::MaxDecFrameBuffering (C++ member), 895
mfxExtCodingOption::MECostType (C++ member), 894
mfxExtCodingOption::MESearchType (C++ member), 894
mfxExtCodingOption::MVPrecision (C++ member), 895
mfxExtCodingOption::MVSearchWindow (C++ member), 894
mfxExtCodingOption::NalHrdConformance (C++ member), 894
mfxExtCodingOption::PicTimingSEI (C++ member), 895
mfxExtCodingOption::RateDistortionOpt (C++ member), 894
mfxExtCodingOption::RecoveryPointSEI (C++ member), 894
mfxExtCodingOption::RefPicListReordering (C++ member), 895
mfxExtCodingOption::RefPicMarkRep (C++ member), 895
mfxExtCodingOption::ResetRefList (C++ member), 895
mfxExtCodingOption::SingleSeiNalUnit (C++ member), 895
mfxExtCodingOption::ViewOutput (C++ member), 894
mfxExtCodingOption::VuiNalHrdParameters (C++ member), 896
mfxExtCodingOption::VuiVclHrdParameters (C++ member), 895
mfxExtCodingOptionSPSPPS (C++ struct), 905
mfxExtCodingOptionSPSPPS::Header (C++ member), 905
mfxExtCodingOptionSPSPPS::PPSBuffer (C++ member), 905
mfxExtCodingOptionSPSPPS::PPSBufSize (C++ member), 905
mfxExtCodingOptionSPSPPS::PPSId (C++ member), 905
mfxExtCodingOptionSPSPPS::SPSBuffer (C++ member), 905
mfxExtCodingOptionSPSPPS::SPSBufSize (C++ member), 905
mfxExtCodingOptionSPSPPS::SPSId (C++ member), 905
mfxExtCodingOptionVPS (C++ struct), 906
mfxExtCodingOptionVPS::Header (C++ member), 906
mfxExtCodingOptionVPS::VPSBuffer (C++ member), 906
mfxExtCodingOptionVPS::VPSBufSize (C++ member), 906
mfxExtCodingOptionVPS::VPSId (C++ member), 906
mfxExtColorConversion (C++ struct), 930
mfxExtColorConversion::ChromaSiting (C++ member), 930

Index 2226

oneAPI Specification, Release 1.1-rev-1

mfxExtColorConversion::Header (C++ member), 930
mfxExtContentLightLevelInfo (C++ struct), 906
mfxExtContentLightLevelInfo::Header (C++ member), 906
mfxExtContentLightLevelInfo::InsertPayloadToggle (C++ member), 906
mfxExtContentLightLevelInfo::MaxContentLightLevel (C++ member), 906
mfxExtContentLightLevelInfo::MaxPicAverageLightLevel (C++ member), 907
mfxExtDecodedFrameInfo (C++ struct), 880
mfxExtDecodedFrameInfo::FrameType (C++ member), 880
mfxExtDecodedFrameInfo::Header (C++ member), 880
mfxExtDecodeErrorReport (C++ struct), 880
mfxExtDecodeErrorReport::ErrorTypes (C++ member), 880
mfxExtDecodeErrorReport::Header (C++ member), 880
mfxExtDecVideoProcessing (C++ struct), 930
mfxExtDecVideoProcessing::Header (C++ member), 931
mfxExtDecVideoProcessing::In (C++ member), 931
mfxExtDecVideoProcessing::mfxIn (C++ struct), 931
mfxExtDecVideoProcessing::mfxIn::CropH (C++ member), 931
mfxExtDecVideoProcessing::mfxIn::CropW (C++ member), 931
mfxExtDecVideoProcessing::mfxIn::CropX (C++ member), 931
mfxExtDecVideoProcessing::mfxIn::CropY (C++ member), 931
mfxExtDecVideoProcessing::mfxOut (C++ struct), 931
mfxExtDecVideoProcessing::mfxOut::ChromaFormat (C++ member), 931
mfxExtDecVideoProcessing::mfxOut::CropH (C++ member), 932
mfxExtDecVideoProcessing::mfxOut::CropW (C++ member), 932
mfxExtDecVideoProcessing::mfxOut::CropX (C++ member), 931
mfxExtDecVideoProcessing::mfxOut::CropY (C++ member), 932
mfxExtDecVideoProcessing::mfxOut::FourCC (C++ member), 931
mfxExtDecVideoProcessing::mfxOut::Height (C++ member), 931
mfxExtDecVideoProcessing::mfxOut::Width (C++ member), 931
mfxExtDecVideoProcessing::Out (C++ member), 931
mfxExtDeviceAffinityMask (C++ struct), 858
mfxExtDeviceAffinityMask::DeviceID (C++ member), 858
mfxExtDeviceAffinityMask::Header (C++ member), 858
mfxExtDeviceAffinityMask::Mask (C++ member), 858
mfxExtDeviceAffinityMask::NumSubDevices (C++ member), 858
mfxExtDirtyRect (C++ struct), 907
mfxExtDirtyRect::Bottom (C++ member), 907
mfxExtDirtyRect::Header (C++ member), 907
mfxExtDirtyRect::Left (C++ member), 907
mfxExtDirtyRect::NumRect (C++ member), 907
mfxExtDirtyRect::Rect (C++ member), 907
mfxExtDirtyRect::Right (C++ member), 907
mfxExtDirtyRect::Top (C++ member), 907
mfxExtEncodedSlicesInfo (C++ struct), 932
mfxExtEncodedSlicesInfo::Header (C++ member), 932
mfxExtEncodedSlicesInfo::NumEncodedSlice (C++ member), 932
mfxExtEncodedSlicesInfo::NumSliceNonCopliant (C++ member), 932
mfxExtEncodedSlicesInfo::NumSliceSizeAlloc (C++ member), 932
mfxExtEncodedSlicesInfo::SliceSize (C++ member), 932
mfxExtEncodedSlicesInfo::SliceSizeOverflow (C++ member), 932
mfxExtEncodedUnitsInfo (C++ struct), 908
mfxExtEncodedUnitsInfo::Header (C++ member), 908
mfxExtEncodedUnitsInfo::NumUnitsAlloc (C++ member), 908
mfxExtEncodedUnitsInfo::NumUnitsEncoded (C++ member), 908

Index 2227

oneAPI Specification, Release 1.1-rev-1

mfxExtEncodedUnitsInfo::UnitInfo (C++ member), 908
mfxExtEncoderCapability (C++ struct), 909
mfxExtEncoderCapability::Header (C++ member), 909
mfxExtEncoderCapability::MBPerSec (C++ member), 909
mfxExtEncoderIPCMArea (C++ struct), 909
mfxExtEncoderIPCMArea::area (C++ struct), 909
mfxExtEncoderIPCMArea::area::Bottom (C++ member), 910
mfxExtEncoderIPCMArea::area::Left (C++ member), 910
mfxExtEncoderIPCMArea::area::Right (C++ member), 910
mfxExtEncoderIPCMArea::area::Top (C++ member), 910
mfxExtEncoderIPCMArea::Areas (C++ member), 909
mfxExtEncoderIPCMArea::Header (C++ member), 909
mfxExtEncoderResetOption (C++ struct), 910
mfxExtEncoderResetOption::Header (C++ member), 911
mfxExtEncoderResetOption::StartNewSequence (C++ member), 911
mfxExtEncoderROI (C++ struct), 911
mfxExtEncoderROI::Bottom (C++ member), 912
mfxExtEncoderROI::DeltaQP (C++ member), 912
mfxExtEncoderROI::Header (C++ member), 912
mfxExtEncoderROI::Left (C++ member), 912
mfxExtEncoderROI::NumROI (C++ member), 912
mfxExtEncoderROI::Priority (C++ member), 912
mfxExtEncoderROI::Right (C++ member), 912
mfxExtEncoderROI::ROI (C++ member), 912
mfxExtEncoderROI::ROIMode (C++ member), 912
mfxExtEncoderROI::Top (C++ member), 912
mfxExtHEVCParam (C++ struct), 860
mfxExtHEVCParam::GeneralConstraintFlags (C++ member), 860
mfxExtHEVCParam::Header (C++ member), 860
mfxExtHEVCParam::LCUSize (C++ member), 861
mfxExtHEVCParam::PicHeightInLumaSamples (C++ member), 860
mfxExtHEVCParam::PicWidthInLumaSamples (C++ member), 860
mfxExtHEVCParam::SampleAdaptiveOffset (C++ member), 861
mfxExtHEVCRegion (C++ struct), 913
mfxExtHEVCRegion::Header (C++ member), 913
mfxExtHEVCRegion::RegionEncoding (C++ member), 913
mfxExtHEVCRegion::RegionId (C++ member), 913
mfxExtHEVCRegion::RegionType (C++ member), 913
mfxExtHEVCTiles (C++ struct), 913
mfxExtHEVCTiles::Header (C++ member), 913
mfxExtHEVCTiles::NumTileColumns (C++ member), 913
mfxExtHEVCTiles::NumTileRows (C++ member), 913
mfxExtHyperModeParam (C++ struct), 878
mfxExtHyperModeParam::Header (C++ member), 878
mfxExtHyperModeParam::Mode (C++ member), 878
mfxExtInCrops (C++ struct), 950
mfxExtInCrops::Crops (C++ member), 950
mfxExtInsertHeaders (C++ struct), 913
mfxExtInsertHeaders::Header (C++ member), 914
mfxExtInsertHeaders::PPS (C++ member), 914
mfxExtInsertHeaders::reserved (C++ member), 914
mfxExtInsertHeaders::SPS (C++ member), 914
mfxExtJPEGHuffmanTables (C++ struct), 861
mfxExtJPEGHuffmanTables::ACTables (C++ member), 861

Index 2228

oneAPI Specification, Release 1.1-rev-1

mfxExtJPEGHuffmanTables::Bits (C++ member), 861
mfxExtJPEGHuffmanTables::DCTables (C++ member), 861
mfxExtJPEGHuffmanTables::Header (C++ member), 861
mfxExtJPEGHuffmanTables::NumACTable (C++ member), 861
mfxExtJPEGHuffmanTables::NumDCTable (C++ member), 861
mfxExtJPEGHuffmanTables::Values (C++ member), 861
mfxExtJPEGQuantTables (C++ struct), 862
mfxExtJPEGQuantTables::Header (C++ member), 862
mfxExtJPEGQuantTables::NumTable (C++ member), 862
mfxExtJPEGQuantTables::Qm (C++ member), 862
mfxExtMasteringDisplayColourVolume (C++ struct), 914
mfxExtMasteringDisplayColourVolume::DisplayPrimariesX (C++ member), 914
mfxExtMasteringDisplayColourVolume::DisplayPrimariesY (C++ member), 914
mfxExtMasteringDisplayColourVolume::Header (C++ member), 914
mfxExtMasteringDisplayColourVolume::InsertPayloadToggle (C++ member), 914
mfxExtMasteringDisplayColourVolume::MaxDisplayMasteringLuminance (C++ member), 914
mfxExtMasteringDisplayColourVolume::MinDisplayMasteringLuminance (C++ member), 915
mfxExtMasteringDisplayColourVolume::WhitePointX (C++ member), 914
mfxExtMasteringDisplayColourVolume::WhitePointY (C++ member), 914
mfxExtMBDisableSkipMap (C++ struct), 915
mfxExtMBDisableSkipMap::Header (C++ member), 915
mfxExtMBDisableSkipMap::Map (C++ member), 915
mfxExtMBDisableSkipMap::MapSize (C++ member), 915
mfxExtMBForceIntra (C++ struct), 915
mfxExtMBForceIntra::Header (C++ member), 915
mfxExtMBForceIntra::Map (C++ member), 915
mfxExtMBForceIntra::MapSize (C++ member), 915
mfxExtMBQP (C++ struct), 916
mfxExtMBQP::BlockSize (C++ member), 916
mfxExtMBQP::DeltaQP (C++ member), 916
mfxExtMBQP::Header (C++ member), 916
mfxExtMBQP::Mode (C++ member), 916
mfxExtMBQP::NumQPAlloc (C++ member), 916
mfxExtMBQP::QP (C++ member), 916
mfxExtMBQP::QPmode (C++ member), 916
mfxExtMoveRect (C++ struct), 917
mfxExtMoveRect::DestBottom (C++ member), 917
mfxExtMoveRect::DestLeft (C++ member), 917
mfxExtMoveRect::DestRight (C++ member), 917
mfxExtMoveRect::DestTop (C++ member), 917
mfxExtMoveRect::Header (C++ member), 917
mfxExtMoveRect::NumRect (C++ member), 917
mfxExtMoveRect::Rect (C++ member), 917
mfxExtMoveRect::SourceLeft (C++ member), 917
mfxExtMoveRect::SourceTop (C++ member), 917
mfxExtMVCSeqDesc (C++ struct), 862
mfxExtMVCSeqDesc::Header (C++ member), 862
mfxExtMVCSeqDesc::NumOP (C++ member), 863
mfxExtMVCSeqDesc::NumOPAlloc (C++ member), 863
mfxExtMVCSeqDesc::NumRefsTotal (C++ member), 863
mfxExtMVCSeqDesc::NumView (C++ member), 862
mfxExtMVCSeqDesc::NumViewAlloc (C++ member), 862
mfxExtMVCSeqDesc::NumViewId (C++ member), 862
mfxExtMVCSeqDesc::NumViewIdAlloc (C++ member), 863

Index 2229

oneAPI Specification, Release 1.1-rev-1

mfxExtMVCSeqDesc::OP (C++ member), 863
mfxExtMVCSeqDesc::View (C++ member), 862
mfxExtMVCSeqDesc::ViewId (C++ member), 863
mfxExtMVCTargetViews (C++ struct), 863
mfxExtMVCTargetViews::Header (C++ member), 863
mfxExtMVCTargetViews::NumView (C++ member), 863
mfxExtMVCTargetViews::TemporalId (C++ member), 863
mfxExtMVCTargetViews::ViewId (C++ member), 863
mfxExtMVOverPicBoundaries (C++ struct), 918
mfxExtMVOverPicBoundaries::Header (C++ member), 918
mfxExtMVOverPicBoundaries::StickBottom (C++ member), 918
mfxExtMVOverPicBoundaries::StickLeft (C++ member), 918
mfxExtMVOverPicBoundaries::StickRight (C++ member), 918
mfxExtMVOverPicBoundaries::StickTop (C++ member), 918
mfxExtPartialBitstreamParam (C++ struct), 918
mfxExtPartialBitstreamParam::BlockSize (C++ member), 919
mfxExtPartialBitstreamParam::Granularity (C++ member), 919
mfxExtPartialBitstreamParam::Header (C++ member), 919
mfxExtPictureTimingSEI (C++ struct), 919
mfxExtPictureTimingSEI::ClockTimestampFlag (C++ member), 919
mfxExtPictureTimingSEI::CntDroppedFlag (C++ member), 919
mfxExtPictureTimingSEI::CountingType (C++ member), 919
mfxExtPictureTimingSEI::CtType (C++ member), 919
mfxExtPictureTimingSEI::DiscontinuityFlag (C++ member), 919
mfxExtPictureTimingSEI::FullTimestampFlag (C++ member), 919
mfxExtPictureTimingSEI::Header (C++ member), 919
mfxExtPictureTimingSEI::HoursFlag (C++ member), 919
mfxExtPictureTimingSEI::HoursValue (C++ member), 920
mfxExtPictureTimingSEI::MinutesFlag (C++ member), 919
mfxExtPictureTimingSEI::MinutesValue (C++ member), 920
mfxExtPictureTimingSEI::NFrames (C++ member), 919
mfxExtPictureTimingSEI::NuitFieldBasedFlag (C++ member), 919
mfxExtPictureTimingSEI::reserved (C++ member), 919
mfxExtPictureTimingSEI::SecondsFlag (C++ member), 919
mfxExtPictureTimingSEI::SecondsValue (C++ member), 920
mfxExtPictureTimingSEI::TimeOffset (C++ member), 920
mfxExtPictureTimingSEI::TimeStamp (C++ member), 920
mfxExtPredWeightTable (C++ struct), 920
mfxExtPredWeightTable::ChromaLog2WeightDenom (C++ member), 920
mfxExtPredWeightTable::ChromaWeightFlag (C++ member), 920
mfxExtPredWeightTable::Header (C++ member), 920
mfxExtPredWeightTable::LumaLog2WeightDenom (C++ member), 920
mfxExtPredWeightTable::LumaWeightFlag (C++ member), 920
mfxExtPredWeightTable::Weights (C++ member), 920
mfxExtTemporalLayers (C++ struct), 926
mfxExtTemporalLayers::BaseLayerPID (C++ member), 926
mfxExtTemporalLayers::Layers (C++ member), 926
mfxExtTemporalLayers::NumLayers (C++ member), 926
mfxExtTemporalLayers::reserved (C++ member), 926
mfxExtTemporalLayers::reserved1 (C++ member), 926
mfxExtThreadsParam (C++ struct), 856
mfxExtThreadsParam::Header (C++ member), 856
mfxExtThreadsParam::NumThread (C++ member), 856
mfxExtThreadsParam::Priority (C++ member), 856

Index 2230

oneAPI Specification, Release 1.1-rev-1

mfxExtThreadsParam::reserved (C++ member), 856
mfxExtThreadsParam::SchedulingType (C++ member), 856
mfxExtTimeCode (C++ struct), 880
mfxExtTimeCode::DropFrameFlag (C++ member), 880
mfxExtTimeCode::Header (C++ member), 880
mfxExtTimeCode::TimeCodeHours (C++ member), 880
mfxExtTimeCode::TimeCodeMinutes (C++ member), 880
mfxExtTimeCode::TimeCodePictures (C++ member), 881
mfxExtTimeCode::TimeCodeSeconds (C++ member), 881
mfxExtVideoSignalInfo (C++ struct), 864
mfxExtVideoSignalInfo::ColourDescriptionPresent (C++ member), 864
mfxExtVideoSignalInfo::ColourPrimaries (C++ member), 864
mfxExtVideoSignalInfo::Header (C++ member), 864
mfxExtVideoSignalInfo::MatrixCoefficients (C++ member), 864
mfxExtVideoSignalInfo::TransferCharacteristics (C++ member), 864
mfxExtVideoSignalInfo::VideoFormat (C++ member), 864
mfxExtVideoSignalInfo::VideoFullRange (C++ member), 864
mfxExtVP8CodingOption (C++ struct), 921
mfxExtVP8CodingOption::CoeffTypeQPDelta (C++ member), 921
mfxExtVP8CodingOption::EnableMultipleSegments (C++ member), 921
mfxExtVP8CodingOption::Header (C++ member), 921
mfxExtVP8CodingOption::LoopFilterLevel (C++ member), 921
mfxExtVP8CodingOption::LoopFilterMbModeDelta (C++ member), 921
mfxExtVP8CodingOption::LoopFilterRefTypeDelta (C++ member), 921
mfxExtVP8CodingOption::LoopFilterType (C++ member), 921
mfxExtVP8CodingOption::NumFramesForIVFHeader (C++ member), 921
mfxExtVP8CodingOption::NumTokenPartitions (C++ member), 921
mfxExtVP8CodingOption::SegmentQPDelta (C++ member), 921
mfxExtVP8CodingOption::SharpnessLevel (C++ member), 921
mfxExtVP8CodingOption::Version (C++ member), 921
mfxExtVP8CodingOption::WriteIVFHeaders (C++ member), 921
mfxExtVP9Param (C++ struct), 864
mfxExtVP9Param::FrameHeight (C++ member), 864
mfxExtVP9Param::FrameWidth (C++ member), 864
mfxExtVP9Param::Header (C++ member), 864
mfxExtVP9Param::NumTileColumns (C++ member), 865
mfxExtVP9Param::NumTileRows (C++ member), 865
mfxExtVP9Param::QIndexDeltaChromaAC (C++ member), 865
mfxExtVP9Param::QIndexDeltaChromaDC (C++ member), 865
mfxExtVP9Param::QIndexDeltaLumaDC (C++ member), 865
mfxExtVP9Param::WriteIVFHeaders (C++ member), 864
mfxExtVP9Segmentation (C++ struct), 922
mfxExtVP9Segmentation::Header (C++ member), 922
mfxExtVP9Segmentation::NumSegmentIdAlloc (C++ member), 922
mfxExtVP9Segmentation::NumSegments (C++ member), 922
mfxExtVP9Segmentation::Segment (C++ member), 922
mfxExtVP9Segmentation::SegmentId (C++ member), 923
mfxExtVP9Segmentation::SegmentIdBlockSize (C++ member), 922
mfxExtVP9TemporalLayers (C++ struct), 923
mfxExtVP9TemporalLayers::Header (C++ member), 923
mfxExtVP9TemporalLayers::Layer (C++ member), 923
mfxExtVPP3DLut (C++ struct), 944
mfxExtVPP3DLut::BufferType (C++ member), 944
mfxExtVPP3DLut::ChannelMapping (C++ member), 944

Index 2231

oneAPI Specification, Release 1.1-rev-1

mfxExtVPP3DLut::Header (C++ member), 944
mfxExtVPP3DLut::reserved (C++ member), 945
mfxExtVPP3DLut::SystemBuffer (C++ member), 944
mfxExtVPP3DLut::VideoBuffer (C++ member), 944
mfxExtVppAuxData (C++ struct), 933
mfxExtVppAuxData::Header (C++ member), 933
mfxExtVppAuxData::PicStruct (C++ member), 933
mfxExtVPPColorFill (C++ struct), 933
mfxExtVPPColorFill::Enable (C++ member), 933
mfxExtVPPColorFill::Header (C++ member), 933
mfxExtVPPComposite (C++ struct), 933
mfxExtVPPComposite::B (C++ member), 935
mfxExtVPPComposite::G (C++ member), 935
mfxExtVPPComposite::Header (C++ member), 935
mfxExtVPPComposite::InputStream (C++ member), 935
mfxExtVPPComposite::NumInputStream (C++ member), 935
mfxExtVPPComposite::NumTiles (C++ member), 935
mfxExtVPPComposite::R (C++ member), 935
mfxExtVPPComposite::U (C++ member), 935
mfxExtVPPComposite::V (C++ member), 935
mfxExtVPPComposite::Y (C++ member), 935
mfxExtVPPDeinterlacing (C++ struct), 936
mfxExtVPPDeinterlacing::Header (C++ member), 936
mfxExtVPPDeinterlacing::Mode (C++ member), 936
mfxExtVPPDeinterlacing::reserved (C++ member), 936
mfxExtVPPDeinterlacing::TelecineLocation (C++ member), 936
mfxExtVPPDeinterlacing::TelecinePattern (C++ member), 936
mfxExtVPPDenoise (C++ struct), 936
mfxExtVPPDenoise2 (C++ struct), 937
mfxExtVPPDenoise2::Header (C++ member), 937
mfxExtVPPDenoise2::Mode (C++ member), 937
mfxExtVPPDenoise2::reserved (C++ member), 937
mfxExtVPPDenoise2::Strength (C++ member), 937
mfxExtVPPDenoise::DenoiseFactor (C++ member), 936
mfxExtVPPDenoise::Header (C++ member), 936
mfxExtVPPDetail (C++ struct), 937
mfxExtVPPDetail::DetailFactor (C++ member), 937
mfxExtVPPDetail::Header (C++ member), 937
mfxExtVPPDoNotUse (C++ struct), 937
mfxExtVPPDoNotUse::AlgList (C++ member), 938
mfxExtVPPDoNotUse::Header (C++ member), 938
mfxExtVPPDoNotUse::NumAlg (C++ member), 938
mfxExtVPPDoUse (C++ struct), 938
mfxExtVPPDoUse::AlgList (C++ member), 938
mfxExtVPPDoUse::Header (C++ member), 938
mfxExtVPPDoUse::NumAlg (C++ member), 938
mfxExtVPPFieldProcessing (C++ struct), 939
mfxExtVPPFieldProcessing::Header (C++ member), 939
mfxExtVPPFieldProcessing::InField (C++ member), 939
mfxExtVPPFieldProcessing::Mode (C++ member), 939
mfxExtVPPFieldProcessing::OutField (C++ member), 939
mfxExtVPPFrameRateConversion (C++ struct), 939
mfxExtVPPFrameRateConversion::Algorithm (C++ member), 940
mfxExtVPPFrameRateConversion::Header (C++ member), 940

Index 2232

oneAPI Specification, Release 1.1-rev-1

mfxExtVPPImageStab (C++ struct), 940
mfxExtVPPImageStab::Header (C++ member), 940
mfxExtVPPImageStab::Mode (C++ member), 940
mfxExtVppMctf (C++ struct), 940
mfxExtVppMctf::FilterStrength (C++ member), 941
mfxExtVppMctf::Header (C++ member), 941
mfxExtVPPMirroring (C++ struct), 941
mfxExtVPPMirroring::Header (C++ member), 941
mfxExtVPPMirroring::Type (C++ member), 941
mfxExtVPPProcAmp (C++ struct), 941
mfxExtVPPProcAmp::Brightness (C++ member), 942
mfxExtVPPProcAmp::Contrast (C++ member), 942
mfxExtVPPProcAmp::Header (C++ member), 942
mfxExtVPPProcAmp::Hue (C++ member), 942
mfxExtVPPProcAmp::Saturation (C++ member), 942
mfxExtVPPRotation (C++ struct), 942
mfxExtVPPRotation::Angle (C++ member), 942
mfxExtVPPRotation::Header (C++ member), 942
mfxExtVPPScaling (C++ struct), 942
mfxExtVPPScaling::Header (C++ member), 943
mfxExtVPPScaling::InterpolationMethod (C++ member), 943
mfxExtVPPScaling::ScalingMode (C++ member), 943
mfxExtVPPVideoSignalInfo (C++ struct), 945
mfxExtVPPVideoSignalInfo::Header (C++ member), 945
mfxExtVPPVideoSignalInfo::NominalRange (C++ member), 945
mfxExtVPPVideoSignalInfo::TransferMatrix (C++ member), 945
mfxF32 (C++ type), 1003
mfxF64 (C++ type), 1003
mfxFrameAllocator (C++ struct), 837
mfxFrameAllocator::Alloc (C++ member), 838
mfxFrameAllocator::Free (C++ member), 839
mfxFrameAllocator::GetHDL (C++ member), 838
mfxFrameAllocator::Lock (C++ member), 838
mfxFrameAllocator::pthis (C++ member), 838
mfxFrameAllocator::Unlock (C++ member), 838
mfxFrameAllocRequest (C++ struct), 839
mfxFrameAllocRequest::AllocId (C++ member), 839
mfxFrameAllocRequest::Info (C++ member), 839
mfxFrameAllocRequest::NumFrameMin (C++ member), 839
mfxFrameAllocRequest::NumFrameSuggested (C++ member), 839
mfxFrameAllocRequest::Type (C++ member), 839
mfxFrameAllocResponse (C++ struct), 840
mfxFrameAllocResponse::AllocId (C++ member), 840
mfxFrameAllocResponse::mids (C++ member), 840
mfxFrameAllocResponse::NumFrameActual (C++ member), 840
mfxFrameData (C++ struct), 841
mfxFrameData::A (C++ member), 842
mfxFrameData::A2RGB10 (C++ member), 844
mfxFrameData::B (C++ member), 844
mfxFrameData::Cb (C++ member), 843
mfxFrameData::CbCr (C++ member), 843
mfxFrameData::Corrupted (C++ member), 842
mfxFrameData::Cr (C++ member), 843
mfxFrameData::CrCb (C++ member), 843

Index 2233

oneAPI Specification, Release 1.1-rev-1

mfxFrameData::DataFlag (C++ member), 842
mfxFrameData::ExtParam (C++ member), 843
mfxFrameData::FrameOrder (C++ member), 842
mfxFrameData::G (C++ member), 843
mfxFrameData::Locked (C++ member), 842
mfxFrameData::MemId (C++ member), 842
mfxFrameData::MemType (C++ member), 842
mfxFrameData::NumExtParam (C++ member), 841
mfxFrameData::PitchHigh (C++ member), 842
mfxFrameData::PitchLow (C++ member), 843
mfxFrameData::R (C++ member), 843
mfxFrameData::reserved (C++ member), 842
mfxFrameData::TimeStamp (C++ member), 842
mfxFrameData::U (C++ member), 843
mfxFrameData::U16 (C++ member), 843
mfxFrameData::UV (C++ member), 843
mfxFrameData::V (C++ member), 843
mfxFrameData::V16 (C++ member), 844
mfxFrameData::VU (C++ member), 843
mfxFrameData::Y (C++ member), 843
mfxFrameData::Y16 (C++ member), 843
mfxFrameData::Y410 (C++ member), 843
mfxFrameData::Y416 (C++ member), 843
mfxFrameId (C++ struct), 866
mfxFrameId::DependencyId (C++ member), 866
mfxFrameId::PriorityId (C++ member), 866
mfxFrameId::QualityId (C++ member), 866
mfxFrameId::TemporalId (C++ member), 866
mfxFrameId::ViewId (C++ member), 866
mfxFrameInfo (C++ struct), 844
mfxFrameInfo::AspectRatioH (C++ member), 844
mfxFrameInfo::AspectRatioW (C++ member), 844
mfxFrameInfo::BitDepthChroma (C++ member), 845
mfxFrameInfo::BitDepthLuma (C++ member), 845
mfxFrameInfo::BufferSize (C++ member), 846
mfxFrameInfo::ChannelId (C++ member), 845
mfxFrameInfo::ChromaFormat (C++ member), 846
mfxFrameInfo::CropH (C++ member), 845
mfxFrameInfo::CropW (C++ member), 845
mfxFrameInfo::CropX (C++ member), 845
mfxFrameInfo::CropY (C++ member), 845
mfxFrameInfo::FourCC (C++ member), 846
mfxFrameInfo::FrameId (C++ member), 846
mfxFrameInfo::FrameRateExtD (C++ member), 844
mfxFrameInfo::FrameRateExtN (C++ member), 844
mfxFrameInfo::Height (C++ member), 846
mfxFrameInfo::PicStruct (C++ member), 846
mfxFrameInfo::reserved (C++ member), 845
mfxFrameInfo::Shift (C++ member), 845
mfxFrameInfo::Width (C++ member), 846
mfxFrameSurface1 (C++ struct), 847
mfxFrameSurface1::Data (C++ member), 847
mfxFrameSurface1::FrameInterface (C++ member), 847
mfxFrameSurface1::Info (C++ member), 847

Index 2234

oneAPI Specification, Release 1.1-rev-1

mfxFrameSurfaceInterface (C++ struct), 847
mfxFrameSurfaceInterface::AddRef (C++ member), 847
mfxFrameSurfaceInterface::Context (C++ member), 847
mfxFrameSurfaceInterface::GetDeviceHandle (C++ member), 850
mfxFrameSurfaceInterface::GetNativeHandle (C++ member), 850
mfxFrameSurfaceInterface::GetRefCounter (C++ member), 848
mfxFrameSurfaceInterface::Map (C++ member), 848
mfxFrameSurfaceInterface::OnComplete (C++ member), 851
mfxFrameSurfaceInterface::QueryInterface (C++ member), 851
mfxFrameSurfaceInterface::Release (C++ member), 848
mfxFrameSurfaceInterface::Synchronize (C++ member), 851
mfxFrameSurfaceInterface::Unmap (C++ member), 849
mfxFrameSurfaceInterface::Version (C++ member), 847
MFXGetPriority (C++ function), 823
mfxGUID (C++ struct), 878
mfxGUID::Data (C++ member), 878
mfxHandleType (C++ enum), 980
mfxHandleType::MFX_HANDLE_CM_DEVICE (C++ enumerator), 980
mfxHandleType::MFX_HANDLE_D3D11_DEVICE (C++ enumerator), 980
mfxHandleType::MFX_HANDLE_D3D9_DEVICE_MANAGER (C++ enumerator), 980
mfxHandleType::MFX_HANDLE_DIRECT3D_DEVICE_MANAGER9 (C++ enumerator), 980
mfxHandleType::MFX_HANDLE_HDDLUNITE_WORKLOADCONTEXT (C++ enumerator), 980
mfxHandleType::MFX_HANDLE_RESERVED1 (C++ enumerator), 980
mfxHandleType::MFX_HANDLE_RESERVED3 (C++ enumerator), 980
mfxHandleType::MFX_HANDLE_VA_CONFIG_ID (C++ enumerator), 980
mfxHandleType::MFX_HANDLE_VA_CONTEXT_ID (C++ enumerator), 980
mfxHandleType::MFX_HANDLE_VA_DISPLAY (C++ enumerator), 980
mfxHDL (C++ type), 1003
mfxHDLPair (C++ struct), 834
mfxHDLPair::first (C++ member), 834
mfxHDLPair::second (C++ member), 834
mfxHyperMode (C++ enum), 1000
mfxHyperMode::MFX_HYPERMODE_ADAPTIVE (C++ enumerator), 1000
mfxHyperMode::MFX_HYPERMODE_OFF (C++ enumerator), 1000
mfxHyperMode::MFX_HYPERMODE_ON (C++ enumerator), 1000
mfxI16 (C++ type), 1003
mfxI16Pair (C++ struct), 835
mfxI16Pair::x (C++ member), 835
mfxI16Pair::y (C++ member), 835
mfxI32 (C++ type), 1003
mfxI64 (C++ type), 1004
mfxI8 (C++ type), 1003
mfxIMPL (C++ type), 981
mfxImplCapsDeliveryFormat (C++ enum), 982
mfxImplCapsDeliveryFormat::MFX_IMPLCAPS_IMPLDESCSTRUCTURE (C++ enumerator), 982
mfxImplCapsDeliveryFormat::MFX_IMPLCAPS_IMPLEMENTEDFUNCTIONS (C++ enumerator), 982
mfxImplCapsDeliveryFormat::MFX_IMPLCAPS_IMPLPATH (C++ enumerator), 982
mfxImplDescription (C++ struct), 1013
mfxImplDescription::AccelerationMode (C++ member), 1014
mfxImplDescription::AccelerationModeDescription (C++ member), 1014
mfxImplDescription::ApiVersion (C++ member), 1014
mfxImplDescription::Dec (C++ member), 1014
mfxImplDescription::Dev (C++ member), 1014
mfxImplDescription::Enc (C++ member), 1014

Index 2235

oneAPI Specification, Release 1.1-rev-1

mfxImplDescription::ExtParam (C++ member), 1015
mfxImplDescription::ExtParams (C++ member), 1015
mfxImplDescription::Impl (C++ member), 1014
mfxImplDescription::ImplName (C++ member), 1014
mfxImplDescription::Keywords (C++ member), 1014
mfxImplDescription::License (C++ member), 1014
mfxImplDescription::NumExtParam (C++ member), 1014
mfxImplDescription::PoolPolicies (C++ member), 1014
mfxImplDescription::reserved (C++ member), 1014
mfxImplDescription::Reserved2 (C++ member), 1015
mfxImplDescription::VendorID (C++ member), 1014
mfxImplDescription::VendorImplID (C++ member), 1014
mfxImplDescription::Version (C++ member), 1014
mfxImplDescription::VPP (C++ member), 1014
mfxImplementedFunctions (C++ struct), 1019
mfxImplementedFunctions::FunctionsName (C++ member), 1019
mfxImplementedFunctions::NumFunctions (C++ member), 1019
mfxImplType (C++ enum), 1021
mfxImplType::MFX_IMPL_TYPE_HARDWARE (C++ enumerator), 1021
mfxImplType::MFX_IMPL_TYPE_SOFTWARE (C++ enumerator), 1021
mfxInfoMFX (C++ struct), 866
mfxInfoMFX::Accuracy (C++ member), 868
mfxInfoMFX::BRCParamMultiplier (C++ member), 866
mfxInfoMFX::BufferSizeInKB (C++ member), 868
mfxInfoMFX::CodecId (C++ member), 866
mfxInfoMFX::CodecLevel (C++ member), 867
mfxInfoMFX::CodecProfile (C++ member), 867
mfxInfoMFX::Convergence (C++ member), 869
mfxInfoMFX::DecodedOrder (C++ member), 869
mfxInfoMFX::EnableReallocRequest (C++ member), 869
mfxInfoMFX::EncodedOrder (C++ member), 869
mfxInfoMFX::ExtendedPicStruct (C++ member), 869
mfxInfoMFX::FilmGrain (C++ member), 870
mfxInfoMFX::FrameInfo (C++ member), 866
mfxInfoMFX::GopOptFlag (C++ member), 867
mfxInfoMFX::GopPicSize (C++ member), 867
mfxInfoMFX::GopRefDist (C++ member), 867
mfxInfoMFX::ICQQuality (C++ member), 868
mfxInfoMFX::IdrInterval (C++ member), 867
mfxInfoMFX::IgnoreLevelConstrain (C++ member), 870
mfxInfoMFX::InitialDelayInKB (C++ member), 868
mfxInfoMFX::Interleaved (C++ member), 870
mfxInfoMFX::InterleavedDec (C++ member), 870
mfxInfoMFX::JPEGChromaFormat (C++ member), 870
mfxInfoMFX::JPEGColorFormat (C++ member), 870
mfxInfoMFX::LowPower (C++ member), 866
mfxInfoMFX::MaxDecFrameBuffering (C++ member), 869
mfxInfoMFX::MaxKbps (C++ member), 868
mfxInfoMFX::NumRefFrame (C++ member), 869
mfxInfoMFX::NumSlice (C++ member), 869
mfxInfoMFX::QPB (C++ member), 869
mfxInfoMFX::QPI (C++ member), 868
mfxInfoMFX::QPP (C++ member), 868
mfxInfoMFX::Quality (C++ member), 871

Index 2236

oneAPI Specification, Release 1.1-rev-1

mfxInfoMFX::reserved (C++ member), 866
mfxInfoMFX::RestartInterval (C++ member), 871
mfxInfoMFX::Rotation (C++ member), 870
mfxInfoMFX::SamplingFactorH (C++ member), 870
mfxInfoMFX::SamplingFactorV (C++ member), 870
mfxInfoMFX::SkipOutput (C++ member), 870
mfxInfoMFX::SliceGroupsPresent (C++ member), 869
mfxInfoMFX::TargetKbps (C++ member), 868
mfxInfoMFX::TargetUsage (C++ member), 867
mfxInfoMFX::TimeStampCalc (C++ member), 869
mfxInfoVPP (C++ struct), 945
mfxInfoVPP::In (C++ member), 945
mfxInfoVPP::Out (C++ member), 945
MFXInit (C++ function), 819
MFXInitEx (C++ function), 819
mfxInitializationParam (C++ struct), 859
mfxInitializationParam::AccelerationMode (C++ member), 859
mfxInitializationParam::ExtParam (C++ member), 859
mfxInitializationParam::NumExtParam (C++ member), 859
mfxInitializationParam::reserved (C++ member), 859
mfxInitializationParam::reserved2 (C++ member), 859
mfxInitializationParam::VendorImplID (C++ member), 859
MFXInitialize (C++ function), 820
mfxInitParam (C++ struct), 857
mfxInitParam::ExternalThreads (C++ member), 857
mfxInitParam::ExtParam (C++ member), 857
mfxInitParam::GPUCopy (C++ member), 857
mfxInitParam::Implementation (C++ member), 857
mfxInitParam::NumExtParam (C++ member), 857
mfxInitParam::Version (C++ member), 857
MFXJoinSession (C++ function), 822
mfxL32 (C++ type), 1004
MFXLoad (C++ function), 1007
mfxLoader (C++ type), 1004
mfxMediaAdapterType (C++ enum), 982
mfxMediaAdapterType::MFX_MEDIA_DISCRETE (C++ enumerator), 982
mfxMediaAdapterType::MFX_MEDIA_INTEGRATED (C++ enumerator), 982
mfxMediaAdapterType::MFX_MEDIA_UNKNOWN (C++ enumerator), 982
mfxMemId (C++ type), 1004
MFXMemory_GetSurfaceForDecode (C++ function), 826
MFXMemory_GetSurfaceForEncode (C++ function), 825
MFXMemory_GetSurfaceForVPP (C++ function), 824
MFXMemory_GetSurfaceForVPPIn (C macro), 824
MFXMemory_GetSurfaceForVPPOut (C++ function), 825
mfxMemoryFlags (C++ enum), 982
mfxMemoryFlags::MFX_MAP_NOWAIT (C++ enumerator), 983
mfxMemoryFlags::MFX_MAP_READ (C++ enumerator), 982
mfxMemoryFlags::MFX_MAP_READ_WRITE (C++ enumerator), 983
mfxMemoryFlags::MFX_MAP_WRITE (C++ enumerator), 982
mfxMVCOperationPoint (C++ struct), 871
mfxMVCOperationPoint::LevelIdc (C++ member), 871
mfxMVCOperationPoint::NumTargetViews (C++ member), 871
mfxMVCOperationPoint::NumViews (C++ member), 871
mfxMVCOperationPoint::TargetViewId (C++ member), 872

Index 2237

oneAPI Specification, Release 1.1-rev-1

mfxMVCOperationPoint::TemporalId (C++ member), 871
mfxMVCViewDependency (C++ struct), 872
mfxMVCViewDependency::AnchorRefL0 (C++ member), 872
mfxMVCViewDependency::AnchorRefL1 (C++ member), 872
mfxMVCViewDependency::NonAnchorRefL0 (C++ member), 872
mfxMVCViewDependency::NumAnchorRefsL0 (C++ member), 872
mfxMVCViewDependency::NumAnchorRefsL1 (C++ member), 872
mfxMVCViewDependency::NumNonAnchorRefsL0 (C++ member), 872
mfxMVCViewDependency::NumNonAnchorRefsL1 (C++ member), 872
mfxMVCViewDependency::ViewId (C++ member), 872
mfxPayload (C++ struct), 873
mfxPayload::BufSize (C++ member), 873
mfxPayload::CtrlFlags (C++ member), 873
mfxPayload::Data (C++ member), 873
mfxPayload::NumBit (C++ member), 873
mfxPayload::Type (C++ member), 873
mfxPlatform (C++ struct), 857
mfxPlatform::CodeName (C++ member), 857
mfxPlatform::DeviceId (C++ member), 857
mfxPlatform::MediaAdapterType (C++ member), 857
mfxPlatform::reserved (C++ member), 857
mfxPoolAllocationPolicy (C++ enum), 1001
mfxPoolAllocationPolicy::MFX_ALLOCATION_LIMITED (C++ enumerator), 1001
mfxPoolAllocationPolicy::MFX_ALLOCATION_OPTIMAL (C++ enumerator), 1001
mfxPoolAllocationPolicy::MFX_ALLOCATION_UNLIMITED (C++ enumerator), 1001
mfxPoolPolicyDescription (C++ struct), 1019
mfxPoolPolicyDescription::NumPoolPolicies (C++ member), 1020
mfxPoolPolicyDescription::Policy (C++ member), 1020
mfxPoolPolicyDescription::reserved (C++ member), 1020
mfxPoolPolicyDescription::Version (C++ member), 1020
mfxPriority (C++ enum), 984
mfxPriority::MFX_PRIORITY_HIGH (C++ enumerator), 984
mfxPriority::MFX_PRIORITY_LOW (C++ enumerator), 984
mfxPriority::MFX_PRIORITY_NORMAL (C++ enumerator), 984
mfxQPandMode (C++ struct), 924
mfxQPandMode::DeltaQP (C++ member), 924
mfxQPandMode::Mode (C++ member), 924
mfxQPandMode::QP (C++ member), 924
MFXQueryAdapters (C++ function), 828
MFXQueryAdaptersDecode (C++ function), 828
MFXQueryAdaptersNumber (C++ function), 829
MFXQueryIMPL (C++ function), 821
MFXQueryImplsDescription (C++ function), 827
MFXQueryVersion (C++ function), 821
mfxRange32U (C++ struct), 835
mfxRange32U::Max (C++ member), 835
mfxRange32U::Min (C++ member), 835
mfxRange32U::Step (C++ member), 835
mfxRect (C++ struct), 877
mfxRect::Bottom (C++ member), 877
mfxRect::Left (C++ member), 877
mfxRect::Right (C++ member), 877
mfxRect::Top (C++ member), 877
MFXReleaseImplDescription (C++ function), 827

Index 2238

oneAPI Specification, Release 1.1-rev-1

mfxResourceType (C++ enum), 984
mfxResourceType::MFX_RESOURCE_DMA_RESOURCE (C++ enumerator), 984
mfxResourceType::MFX_RESOURCE_DX11_TEXTURE (C++ enumerator), 984
mfxResourceType::MFX_RESOURCE_DX12_RESOURCE (C++ enumerator), 984
mfxResourceType::MFX_RESOURCE_DX9_SURFACE (C++ enumerator), 984
mfxResourceType::MFX_RESOURCE_HDDLUNITE_REMOTE_MEMORY (C++ enumerator), 984
mfxResourceType::MFX_RESOURCE_SYSTEM_SURFACE (C++ enumerator), 984
mfxResourceType::MFX_RESOURCE_VA_BUFFER (C++ enumerator), 984
mfxResourceType::MFX_RESOURCE_VA_BUFFER_PTR (C++ enumerator), 984
mfxResourceType::MFX_RESOURCE_VA_SURFACE (C++ enumerator), 984
mfxResourceType::MFX_RESOURCE_VA_SURFACE_PTR (C++ enumerator), 984
mfxSession (C++ type), 1004
MFXSetConfigFilterProperty (C++ function), 1008
MFXSetPriority (C++ function), 823
mfxSkipMode (C++ enum), 985
mfxSkipMode::MFX_SKIPMODE_LESS (C++ enumerator), 985
mfxSkipMode::MFX_SKIPMODE_MORE (C++ enumerator), 985
mfxSkipMode::MFX_SKIPMODE_NOSKIP (C++ enumerator), 985
mfxStatus (C++ enum), 985
mfxStatus::MFX_ERR_ABORTED (C++ enumerator), 986
mfxStatus::MFX_ERR_DEVICE_FAILED (C++ enumerator), 986
mfxStatus::MFX_ERR_DEVICE_LOST (C++ enumerator), 986
mfxStatus::MFX_ERR_GPU_HANG (C++ enumerator), 986
mfxStatus::MFX_ERR_INCOMPATIBLE_VIDEO_PARAM (C++ enumerator), 986
mfxStatus::MFX_ERR_INVALID_HANDLE (C++ enumerator), 985
mfxStatus::MFX_ERR_INVALID_VIDEO_PARAM (C++ enumerator), 986
mfxStatus::MFX_ERR_LOCK_MEMORY (C++ enumerator), 985
mfxStatus::MFX_ERR_MEMORY_ALLOC (C++ enumerator), 985
mfxStatus::MFX_ERR_MORE_BITSTREAM (C++ enumerator), 986
mfxStatus::MFX_ERR_MORE_DATA (C++ enumerator), 985
mfxStatus::MFX_ERR_MORE_DATA_SUBMIT_TASK (C++ enumerator), 987
mfxStatus::MFX_ERR_MORE_SURFACE (C++ enumerator), 986
mfxStatus::MFX_ERR_NONE (C++ enumerator), 985
mfxStatus::MFX_ERR_NONE_PARTIAL_OUTPUT (C++ enumerator), 987
mfxStatus::MFX_ERR_NOT_ENOUGH_BUFFER (C++ enumerator), 985
mfxStatus::MFX_ERR_NOT_FOUND (C++ enumerator), 985
mfxStatus::MFX_ERR_NOT_IMPLEMENTED (C++ enumerator), 986
mfxStatus::MFX_ERR_NOT_INITIALIZED (C++ enumerator), 985
mfxStatus::MFX_ERR_NULL_PTR (C++ enumerator), 985
mfxStatus::MFX_ERR_REALLOC_SURFACE (C++ enumerator), 986
mfxStatus::MFX_ERR_RESOURCE_MAPPED (C++ enumerator), 986
mfxStatus::MFX_ERR_UNDEFINED_BEHAVIOR (C++ enumerator), 986
mfxStatus::MFX_ERR_UNKNOWN (C++ enumerator), 985
mfxStatus::MFX_ERR_UNSUPPORTED (C++ enumerator), 985
mfxStatus::MFX_TASK_BUSY (C++ enumerator), 987
mfxStatus::MFX_TASK_DONE (C++ enumerator), 987
mfxStatus::MFX_TASK_WORKING (C++ enumerator), 987
mfxStatus::MFX_WRN_ALLOC_TIMEOUT_EXPIRED (C++ enumerator), 987
mfxStatus::MFX_WRN_DEVICE_BUSY (C++ enumerator), 986
mfxStatus::MFX_WRN_FILTER_SKIPPED (C++ enumerator), 987
mfxStatus::MFX_WRN_IN_EXECUTION (C++ enumerator), 986
mfxStatus::MFX_WRN_INCOMPATIBLE_VIDEO_PARAM (C++ enumerator), 986
mfxStatus::MFX_WRN_OUT_OF_RANGE (C++ enumerator), 987
mfxStatus::MFX_WRN_PARTIAL_ACCELERATION (C++ enumerator), 986

Index 2239

oneAPI Specification, Release 1.1-rev-1

mfxStatus::MFX_WRN_VALUE_NOT_CHANGED (C++ enumerator), 987
mfxStatus::MFX_WRN_VIDEO_PARAM_CHANGED (C++ enumerator), 986
mfxStructVersion (C++ union), 835
mfxStructVersion::Major (C++ member), 835
mfxStructVersion::Minor (C++ member), 835
mfxStructVersion::Version (C++ member), 836
mfxStructVersion::[anonymous] (C++ member), 836
mfxSurfaceArray (C++ struct), 948
mfxSurfaceArray::AddRef (C++ member), 948
mfxSurfaceArray::Context (C++ member), 948
mfxSurfaceArray::GetRefCounter (C++ member), 949
mfxSurfaceArray::NumSurfaces (C++ member), 949
mfxSurfaceArray::Release (C++ member), 948
mfxSurfaceArray::Surfaces (C++ member), 949
mfxSurfaceArray::Version (C++ member), 948
mfxSurfacePoolInterface (C++ struct), 852
mfxSurfacePoolInterface::AddRef (C++ member), 852
mfxSurfacePoolInterface::Context (C++ member), 852
mfxSurfacePoolInterface::GetAllocationPolicy (C++ member), 854
mfxSurfacePoolInterface::GetCurrentPoolSize (C++ member), 854
mfxSurfacePoolInterface::GetMaximumPoolSize (C++ member), 854
mfxSurfacePoolInterface::GetRefCounter (C++ member), 853
mfxSurfacePoolInterface::Release (C++ member), 852
mfxSurfacePoolInterface::reserved (C++ member), 855
mfxSurfacePoolInterface::RevokeSurfaces (C++ member), 853
mfxSurfacePoolInterface::SetNumSurfaces (C++ member), 853
mfxSyncPoint (C++ type), 1004
mfxTemporalLayer (C++ struct), 925
mfxTemporalLayer::BufferSizeInKB (C++ member), 925
mfxTemporalLayer::FrameRateScale (C++ member), 925
mfxTemporalLayer::InitialDelayInKB (C++ member), 925
mfxTemporalLayer::MaxKbps (C++ member), 925
mfxTemporalLayer::QPB (C++ member), 926
mfxTemporalLayer::QPI (C++ member), 925
mfxTemporalLayer::QPP (C++ member), 925
mfxTemporalLayer::reserved (C++ member), 925
mfxTemporalLayer::reserved1 (C++ member), 925
mfxTemporalLayer::reserved2 (C++ member), 926
mfxTemporalLayer::TargetKbps (C++ member), 925
mfxThreadTask (C++ type), 1004
mfxU16 (C++ type), 1004
mfxU32 (C++ type), 1004
mfxU64 (C++ type), 1004
mfxU8 (C++ type), 1004
mfxUL32 (C++ type), 1004
MFXUnload (C++ function), 1008
mfxVariant (C++ struct), 1015
mfxVariant::Data (C++ member), 1015
mfxVariant::data (C++ union), 1015
mfxVariant::data::F32 (C++ member), 1016
mfxVariant::data::F64 (C++ member), 1016
mfxVariant::data::I16 (C++ member), 1015
mfxVariant::data::I32 (C++ member), 1015
mfxVariant::data::I64 (C++ member), 1016

Index 2240

oneAPI Specification, Release 1.1-rev-1

mfxVariant::data::I8 (C++ member), 1015
mfxVariant::data::Ptr (C++ member), 1016
mfxVariant::data::U16 (C++ member), 1015
mfxVariant::data::U32 (C++ member), 1015
mfxVariant::data::U64 (C++ member), 1016
mfxVariant::data::U8 (C++ member), 1015
mfxVariant::Type (C++ member), 1015
mfxVariant::Version (C++ member), 1015
mfxVariantType (C++ enum), 1016
mfxVariantType::MFX_VARIANT_TYPE_F32 (C++ enumerator), 1016
mfxVariantType::MFX_VARIANT_TYPE_F64 (C++ enumerator), 1017
mfxVariantType::MFX_VARIANT_TYPE_I16 (C++ enumerator), 1016
mfxVariantType::MFX_VARIANT_TYPE_I32 (C++ enumerator), 1016
mfxVariantType::MFX_VARIANT_TYPE_I64 (C++ enumerator), 1016
mfxVariantType::MFX_VARIANT_TYPE_I8 (C++ enumerator), 1016
mfxVariantType::MFX_VARIANT_TYPE_PTR (C++ enumerator), 1017
mfxVariantType::MFX_VARIANT_TYPE_U16 (C++ enumerator), 1016
mfxVariantType::MFX_VARIANT_TYPE_U32 (C++ enumerator), 1016
mfxVariantType::MFX_VARIANT_TYPE_U64 (C++ enumerator), 1016
mfxVariantType::MFX_VARIANT_TYPE_U8 (C++ enumerator), 1016
mfxVariantType::MFX_VARIANT_TYPE_UNSET (C++ enumerator), 1016
mfxVersion (C++ union), 858
mfxVersion::Major (C++ member), 858
mfxVersion::Minor (C++ member), 858
mfxVersion::Version (C++ member), 858
mfxVersion::[anonymous] (C++ member), 858
mfxVideoChannelParam (C++ struct), 949
mfxVideoChannelParam::ExtParam (C++ member), 949
mfxVideoChannelParam::IOPattern (C++ member), 949
mfxVideoChannelParam::NumExtParam (C++ member), 949
mfxVideoChannelParam::Protected (C++ member), 949
mfxVideoChannelParam::VPP (C++ member), 949
MFXVideoCORE_GetHandle (C++ function), 817
MFXVideoCORE_QueryPlatform (C++ function), 817
MFXVideoCORE_SetFrameAllocator (C++ function), 816
MFXVideoCORE_SetHandle (C++ function), 816
MFXVideoCORE_SyncOperation (C++ function), 817
MFXVideoDECODE_Close (C++ function), 801
MFXVideoDECODE_DecodeFrameAsync (C++ function), 803
MFXVideoDECODE_DecodeHeader (C++ function), 798
MFXVideoDECODE_GetDecodeStat (C++ function), 801
MFXVideoDECODE_GetPayload (C++ function), 802
MFXVideoDECODE_GetVideoParam (C++ function), 801
MFXVideoDECODE_Init (C++ function), 799
MFXVideoDECODE_Query (C++ function), 797
MFXVideoDECODE_QueryIOSurf (C++ function), 799
MFXVideoDECODE_Reset (C++ function), 800
MFXVideoDECODE_SetSkipMode (C++ function), 802
MFXVideoDECODE_VPP_Close (C++ function), 833
MFXVideoDECODE_VPP_DecodeFrameAsync (C++ function), 832
MFXVideoDECODE_VPP_GetChannelParam (C++ function), 831
MFXVideoDECODE_VPP_Init (C++ function), 830
MFXVideoDECODE_VPP_Reset (C++ function), 830
MFXVideoENCODE_Close (C++ function), 808

Index 2241

oneAPI Specification, Release 1.1-rev-1

MFXVideoENCODE_EncodeFrameAsync (C++ function), 809
MFXVideoENCODE_GetEncodeStat (C++ function), 808
MFXVideoENCODE_GetVideoParam (C++ function), 808
MFXVideoENCODE_Init (C++ function), 806
MFXVideoENCODE_Query (C++ function), 805
MFXVideoENCODE_QueryIOSurf (C++ function), 806
MFXVideoENCODE_Reset (C++ function), 807
mfxVideoParam (C++ struct), 874
mfxVideoParam::AllocId (C++ member), 874
mfxVideoParam::AsyncDepth (C++ member), 874
mfxVideoParam::ExtParam (C++ member), 874
mfxVideoParam::IOPattern (C++ member), 874
mfxVideoParam::mfx (C++ member), 874
mfxVideoParam::NumExtParam (C++ member), 874
mfxVideoParam::Protected (C++ member), 874
mfxVideoParam::vpp (C++ member), 874
MFXVideoVPP_Close (C++ function), 813
MFXVideoVPP_GetVideoParam (C++ function), 813
MFXVideoVPP_GetVPPStat (C++ function), 814
MFXVideoVPP_Init (C++ function), 812
MFXVideoVPP_ProcessFrameAsync (C++ function), 815
MFXVideoVPP_Query (C++ function), 810
MFXVideoVPP_QueryIOSurf (C++ function), 811
MFXVideoVPP_Reset (C++ function), 812
MFXVideoVPP_RunFrameVPPAsync (C++ function), 814
mfxVP9SegmentParam (C++ struct), 875
mfxVP9SegmentParam::FeatureEnabled (C++ member), 875
mfxVP9SegmentParam::LoopFilterLevelDelta (C++ member), 875
mfxVP9SegmentParam::QIndexDelta (C++ member), 875
mfxVP9SegmentParam::ReferenceFrame (C++ member), 875
mfxVP9TemporalLayer (C++ struct), 924
mfxVP9TemporalLayer::FrameRateScale (C++ member), 924
mfxVP9TemporalLayer::TargetKbps (C++ member), 924
mfxVPPCompInputStream (C++ struct), 946
mfxVPPCompInputStream::DstH (C++ member), 946
mfxVPPCompInputStream::DstW (C++ member), 946
mfxVPPCompInputStream::DstX (C++ member), 946
mfxVPPCompInputStream::DstY (C++ member), 946
mfxVPPCompInputStream::GlobalAlpha (C++ member), 946
mfxVPPCompInputStream::GlobalAlphaEnable (C++ member), 946
mfxVPPCompInputStream::LumaKeyEnable (C++ member), 946
mfxVPPCompInputStream::LumaKeyMax (C++ member), 946
mfxVPPCompInputStream::LumaKeyMin (C++ member), 946
mfxVPPCompInputStream::PixelAlphaEnable (C++ member), 946
mfxVPPCompInputStream::TileId (C++ member), 946
mfxVPPDescription (C++ struct), 1017
mfxVPPDescription::filter (C++ struct), 1017
mfxVPPDescription::filter::FilterFourCC (C++ member), 1017
mfxVPPDescription::filter::MaxDelayInFrames (C++ member), 1017
mfxVPPDescription::filter::MemDesc (C++ member), 1017
mfxVPPDescription::filter::memdesc (C++ struct), 1017
mfxVPPDescription::filter::memdesc::format (C++ struct), 1018
mfxVPPDescription::filter::memdesc::format::InFormat (C++ member), 1018
mfxVPPDescription::filter::memdesc::format::NumOutFormat (C++ member), 1018

Index 2242

oneAPI Specification, Release 1.1-rev-1

mfxVPPDescription::filter::memdesc::format::OutFormats (C++ member), 1018
mfxVPPDescription::filter::memdesc::format::reserved (C++ member), 1018
mfxVPPDescription::filter::memdesc::Formats (C++ member), 1018
mfxVPPDescription::filter::memdesc::Height (C++ member), 1018
mfxVPPDescription::filter::memdesc::MemHandleType (C++ member), 1018
mfxVPPDescription::filter::memdesc::NumInFormats (C++ member), 1018
mfxVPPDescription::filter::memdesc::reserved (C++ member), 1018
mfxVPPDescription::filter::memdesc::Width (C++ member), 1018
mfxVPPDescription::filter::NumMemTypes (C++ member), 1017
mfxVPPDescription::filter::reserved (C++ member), 1017
mfxVPPDescription::Filters (C++ member), 1017
mfxVPPDescription::NumFilters (C++ member), 1017
mfxVPPDescription::reserved (C++ member), 1017
mfxVPPDescription::Version (C++ member), 1017
mfxVPPPoolType (C++ enum), 1001
mfxVPPPoolType::MFX_VPP_POOL_IN (C++ enumerator), 1001
mfxVPPPoolType::MFX_VPP_POOL_OUT (C++ enumerator), 1001
mfxVPPStat (C++ struct), 947
mfxVPPStat::NumCachedFrame (C++ member), 947
mfxVPPStat::NumFrame (C++ member), 947
mfxY410 (C++ struct), 840
mfxY410::A (C++ member), 840
mfxY410::U (C++ member), 840
mfxY410::V (C++ member), 840
mfxY410::Y (C++ member), 840
mfxY416 (C++ struct), 840
mfxY416::A (C++ member), 841
mfxY416::U (C++ member), 841
mfxY416::V (C++ member), 841
mfxY416::Y (C++ member), 841
MiddleFilterBody::Body::operator() (C++ function), 330
Misc, 730
Model, 236
MPEG, 1040
MPEG-2, 1040
MultifunctionNodeBody::Body::~Body (C++ function), 338
MultifunctionNodeBody::Body::Body (C++ function), 338
MultifunctionNodeBody::Body::operator() (C++ function), 338
mutex_func::M::~scoped_lock (C++ function), 331
mutex_func::M::is_fair_mutex (C++ member), 332
mutex_func::M::is_recursive_mutex (C++ member), 331
mutex_func::M::is_rw_mutex (C++ member), 331
mutex_func::M::scoped_lock (C++ function), 331
mutex_func::M::scoped_lock::acquire (C++ function), 331
mutex_func::M::scoped_lock::release (C++ function), 331
mutex_func::M::scoped_lock::try_acquire (C++ function), 331
mutex_type::M::scoped_lock (C++ type), 331

N
NAL, 1039
Nominal feature, 237
not_complete (C macro), 438
not_initialized (C++ member), 441
null_mutex (C++ function), 720

Index 2243

oneAPI Specification, Release 1.1-rev-1

numa_nodes (C++ function), 724
NV12, 1040
NV16, 1040

O
Observation, 237
observe (C++ function), 447
on_scheduler_entry (C++ function), 447
on_scheduler_exit (C++ function), 447
oneapi::dal::array (C++ class), 264
oneapi::dal::array::array (C++ function), 266, 267
oneapi::dal::array::empty (C++ function), 264
oneapi::dal::array::full (C++ function), 264
oneapi::dal::array::get_count (C++ function), 268
oneapi::dal::array::get_data (C++ function), 268
oneapi::dal::array::get_mutable_data (C++ function), 268
oneapi::dal::array::get_size (C++ function), 268
oneapi::dal::array::has_mutable_data (C++ function), 268
oneapi::dal::array::need_mutable_data (C++ function), 268
oneapi::dal::array::operator= (C++ function), 267
oneapi::dal::array::operator[] (C++ function), 268
oneapi::dal::array::reset (C++ function), 268, 269
oneapi::dal::array::wrap (C++ function), 265
oneapi::dal::array::zeros (C++ function), 265
oneapi::dal::column_accessor (C++ class), 272
oneapi::dal::column_accessor::column_accessor (C++ function), 272
oneapi::dal::column_accessor::pull (C++ function), 272, 273
oneapi::dal::csv::data_source (C++ class), 279
oneapi::dal::csv::data_source::data_source (C++ function), 279
oneapi::dal::csv::data_source::delimiter (C++ member), 279
oneapi::dal::csv::data_source::file_name (C++ member), 279
oneapi::dal::csv::data_source::options (C++ member), 279
oneapi::dal::csv::read_args (C++ class), 280
oneapi::dal::csv::read_args::read_args (C++ function), 280
oneapi::dal::data_layout (C++ enum), 284
oneapi::dal::data_type (C++ enum), 253
oneapi::dal::feature_type (C++ enum), 284
oneapi::dal::homogen_table (C++ class), 285
oneapi::dal::homogen_table::get_data (C++ function), 286
oneapi::dal::homogen_table::get_kind (C++ function), 287
oneapi::dal::homogen_table::homogen_table (C++ function), 286
oneapi::dal::homogen_table::kind (C++ function), 285
oneapi::dal::homogen_table::wrap (C++ function), 285
oneapi::dal::kmeans::descriptor (C++ class), 289
oneapi::dal::kmeans::descriptor::accuracy_threshold (C++ member), 290
oneapi::dal::kmeans::descriptor::cluster_count (C++ member), 290
oneapi::dal::kmeans::descriptor::descriptor (C++ function), 290
oneapi::dal::kmeans::descriptor::max_iteration_count (C++ member), 290
oneapi::dal::kmeans::infer (C++ function), 295
oneapi::dal::kmeans::infer_input (C++ class), 294
oneapi::dal::kmeans::infer_input::data (C++ member), 295
oneapi::dal::kmeans::infer_input::infer_input (C++ function), 294
oneapi::dal::kmeans::infer_input::model (C++ member), 294
oneapi::dal::kmeans::infer_result (C++ class), 295

Index 2244

oneAPI Specification, Release 1.1-rev-1

oneapi::dal::kmeans::infer_result::get_labels (C++ function), 295
oneapi::dal::kmeans::infer_result::get_objective_function_value (C++ function), 295
oneapi::dal::kmeans::infer_result::infer_result (C++ function), 295
oneapi::dal::kmeans::method::by_default (C++ type), 291
oneapi::dal::kmeans::method::lloyd (C++ struct), 291
oneapi::dal::kmeans::model (C++ class), 291
oneapi::dal::kmeans::model::get_centroids (C++ function), 291
oneapi::dal::kmeans::model::get_cluster_count (C++ function), 291
oneapi::dal::kmeans::model::model (C++ function), 291
oneapi::dal::kmeans::task::by_default (C++ type), 291
oneapi::dal::kmeans::task::clustering (C++ struct), 291
oneapi::dal::kmeans::train (C++ function), 293
oneapi::dal::kmeans::train_input (C++ class), 292
oneapi::dal::kmeans::train_input::data (C++ member), 292
oneapi::dal::kmeans::train_input::initial_centroids (C++ member), 292
oneapi::dal::kmeans::train_input::train_input (C++ function), 292
oneapi::dal::kmeans::train_result (C++ class), 293
oneapi::dal::kmeans::train_result::get_iteration_count (C++ function), 293
oneapi::dal::kmeans::train_result::get_labels (C++ function), 293
oneapi::dal::kmeans::train_result::get_model (C++ function), 293
oneapi::dal::kmeans::train_result::get_objective_function_value (C++ function), 293
oneapi::dal::kmeans::train_result::train_result (C++ function), 293
oneapi::dal::kmeans_init::compute (C++ function), 299
oneapi::dal::kmeans_init::compute_input (C++ class), 298
oneapi::dal::kmeans_init::compute_input::compute_input (C++ function), 299
oneapi::dal::kmeans_init::compute_input::data (C++ member), 299
oneapi::dal::kmeans_init::compute_result (C++ class), 299
oneapi::dal::kmeans_init::compute_result::compute_result (C++ function), 299
oneapi::dal::kmeans_init::compute_result::get_centroids (C++ function), 299
oneapi::dal::kmeans_init::descriptor (C++ class), 297
oneapi::dal::kmeans_init::descriptor::cluster_count (C++ member), 297
oneapi::dal::kmeans_init::descriptor::descriptor (C++ function), 297
oneapi::dal::kmeans_init::method::by_default (C++ type), 298
oneapi::dal::kmeans_init::method::dense (C++ struct), 298
oneapi::dal::kmeans_init::task::by_default (C++ type), 298
oneapi::dal::kmeans_init::task::init (C++ struct), 298
oneapi::dal::knn::descriptor (C++ class), 303
oneapi::dal::knn::descriptor::class_count (C++ member), 303
oneapi::dal::knn::descriptor::descriptor (C++ function), 303
oneapi::dal::knn::descriptor::neighbor_count (C++ member), 303
oneapi::dal::knn::infer (C++ function), 308
oneapi::dal::knn::infer_input (C++ class), 306
oneapi::dal::knn::infer_input::data (C++ member), 307
oneapi::dal::knn::infer_input::infer_input (C++ function), 307
oneapi::dal::knn::infer_input::model (C++ member), 307
oneapi::dal::knn::infer_result (C++ class), 307
oneapi::dal::knn::infer_result::get_labels (C++ function), 307
oneapi::dal::knn::infer_result::infer_result (C++ function), 307
oneapi::dal::knn::method::bruteforce (C++ struct), 303
oneapi::dal::knn::method::by_default (C++ type), 304
oneapi::dal::knn::method::kd_tree (C++ struct), 303
oneapi::dal::knn::model (C++ class), 304
oneapi::dal::knn::model::model (C++ function), 304
oneapi::dal::knn::task::by_default (C++ type), 304

Index 2245

oneAPI Specification, Release 1.1-rev-1

oneapi::dal::knn::task::classification (C++ struct), 304
oneapi::dal::knn::train (C++ function), 306
oneapi::dal::knn::train_input (C++ class), 305
oneapi::dal::knn::train_input::data (C++ member), 305
oneapi::dal::knn::train_input::labels (C++ member), 305
oneapi::dal::knn::train_input::train_input (C++ function), 305
oneapi::dal::knn::train_result (C++ class), 305
oneapi::dal::knn::train_result::get_model (C++ function), 305
oneapi::dal::knn::train_result::train_result (C++ function), 305
oneapi::dal::pca::descriptor (C++ class), 311
oneapi::dal::pca::descriptor::component_count (C++ member), 311
oneapi::dal::pca::descriptor::descriptor (C++ function), 311
oneapi::dal::pca::descriptor::deterministic (C++ member), 312
oneapi::dal::pca::infer (C++ function), 317
oneapi::dal::pca::infer_input (C++ class), 316
oneapi::dal::pca::infer_input::data (C++ member), 316
oneapi::dal::pca::infer_input::infer_input (C++ function), 316
oneapi::dal::pca::infer_input::model (C++ member), 316
oneapi::dal::pca::infer_result (C++ class), 316
oneapi::dal::pca::infer_result::get_transformed_data (C++ function), 316
oneapi::dal::pca::infer_result::infer_result (C++ function), 316
oneapi::dal::pca::method::by_default (C++ type), 312
oneapi::dal::pca::method::cov (C++ struct), 312
oneapi::dal::pca::method::svd (C++ struct), 312
oneapi::dal::pca::model (C++ class), 313
oneapi::dal::pca::model::get_component_count (C++ function), 313
oneapi::dal::pca::model::get_eigenvectors (C++ function), 313
oneapi::dal::pca::model::model (C++ function), 313
oneapi::dal::pca::task::by_default (C++ type), 312
oneapi::dal::pca::task::dim_reduction (C++ struct), 312
oneapi::dal::pca::train (C++ function), 315
oneapi::dal::pca::train_input (C++ class), 313
oneapi::dal::pca::train_input::data (C++ member), 313
oneapi::dal::pca::train_input::train_input (C++ function), 313
oneapi::dal::pca::train_result (C++ class), 314
oneapi::dal::pca::train_result::get_eigenvalues (C++ function), 314
oneapi::dal::pca::train_result::get_eigenvectors (C++ function), 314
oneapi::dal::pca::train_result::get_means (C++ function), 314
oneapi::dal::pca::train_result::get_model (C++ function), 314
oneapi::dal::pca::train_result::get_variances (C++ function), 314
oneapi::dal::pca::train_result::train_result (C++ function), 314
oneapi::dal::range (C++ struct), 254
oneapi::dal::range::get_element_count (C++ function), 254
oneapi::dal::range::range (C++ function), 254
oneapi::dal::read (C++ function), 280
oneapi::dal::row_accessor (C++ class), 274
oneapi::dal::row_accessor::pull (C++ function), 275
oneapi::dal::row_accessor::row_accessor (C++ function), 274
oneapi::dal::table (C++ class), 282
oneapi::dal::table::get_column_count (C++ function), 283
oneapi::dal::table::get_data_layout (C++ function), 283
oneapi::dal::table::get_kind (C++ function), 283
oneapi::dal::table::get_metadata (C++ function), 283
oneapi::dal::table::get_row_count (C++ function), 283

Index 2246

oneAPI Specification, Release 1.1-rev-1

oneapi::dal::table::has_data (C++ function), 283
oneapi::dal::table::operator= (C++ function), 282
oneapi::dal::table::table (C++ function), 282
oneapi::dal::table_metadata (C++ class), 283
oneapi::dal::table_metadata::get_data_type (C++ function), 284
oneapi::dal::table_metadata::get_feature_count (C++ function), 284
oneapi::dal::table_metadata::get_feature_type (C++ function), 284
oneapi::dal::table_metadata::table_metadata (C++ function), 283
oneapi::tbb::combinable::~combinable (C++ function), 692
oneapi::tbb::combinable::clear (C++ function), 692
oneapi::tbb::combinable::combinable (C++ function), 692
oneapi::tbb::combinable::combine (C++ function), 692
oneapi::tbb::combinable::combine_each (C++ function), 692
oneapi::tbb::combinable::local (C++ function), 692
oneapi::tbb::combinable::operator= (C++ function), 692
oneapi::tbb::enumerable_thread_specific::begin (C++ function), 698
oneapi::tbb::enumerable_thread_specific::combine (C++ function), 698
oneapi::tbb::enumerable_thread_specific::combine_each (C++ function), 698
oneapi::tbb::enumerable_thread_specific::empty (C++ function), 698
oneapi::tbb::enumerable_thread_specific::end (C++ function), 698
oneapi::tbb::enumerable_thread_specific::local (C++ function), 697
oneapi::tbb::enumerable_thread_specific::range (C++ function), 698
oneapi::tbb::enumerable_thread_specific::size (C++ function), 698
oneapi::tbb::flatten2d::begin (C++ function), 700, 701
oneapi::tbb::flatten2d::end (C++ function), 700, 701
oneapi::tbb::flatten2d::flatten2d (C++ function), 701
oneapi::tbb::flatten2d::flattened2d (C++ function), 700, 701
oneapi::tbb::flatten2d::size (C++ function), 700
oneapi::tbb::flow::indexer_node::indexer_node (C++ function), 416
oneapi::tbb::flow::indexer_node::input_ports (C++ function), 416
oneapi::tbb::flow::indexer_node::try_get (C++ function), 416
oneapi::tbb::flow::limiter_node::decrementer (C++ function), 409
oneapi::tbb::flow::limiter_node::limiter_node (C++ function), 409
oneapi::tbb::flow::limiter_node::try_get (C++ function), 409
oneapi::tbb::flow::limiter_node::try_put (C++ function), 409
oneapi::tbb::flow::overwrite_node::~overwrite_node (C++ function), 398
oneapi::tbb::flow::overwrite_node::clear (C++ function), 398
oneapi::tbb::flow::overwrite_node::is_valid (C++ function), 398
oneapi::tbb::flow::overwrite_node::overwrite_node (C++ function), 398
oneapi::tbb::flow::overwrite_node::try_get (C++ function), 398
oneapi::tbb::flow::overwrite_node::try_put (C++ function), 398
oneapi::tbb::flow::priority_node_queue::priority_queue_node (C++ function), 405
oneapi::tbb::flow::priority_node_queue::try_get (C++ function), 405
oneapi::tbb::flow::priority_node_queue::try_put (C++ function), 405
oneapi::tbb::flow::queue_node::queue_node (C++ function), 404
oneapi::tbb::flow::queue_node::try_get (C++ function), 404
oneapi::tbb::flow::queue_node::try_put (C++ function), 404
oneapi::tbb::flow::sequencer_node::sequencer_node (C++ function), 406
oneapi::tbb::flow::sequencer_node::try_get (C++ function), 406
oneapi::tbb::flow::sequencer_node::try_put (C++ function), 406
oneapi::tbb::flow::split_node::~split_node (C++ function), 415
oneapi::tbb::flow::split_node::output_ports (C++ function), 415
oneapi::tbb::flow::split_node::split_node (C++ function), 415
oneapi::tbb::flow::split_node::try_put (C++ function), 415

Index 2247

oneAPI Specification, Release 1.1-rev-1

oneapi::tbb::flow::write_once_mode::~write_once_node (C++ function), 400
oneapi::tbb::flow::write_once_mode::clear (C++ function), 401
oneapi::tbb::flow::write_once_mode::is_valid (C++ function), 401
oneapi::tbb::flow::write_once_mode::try_get (C++ function), 401
oneapi::tbb::flow::write_once_mode::try_put (C++ function), 400
oneapi::tbb::flow::write_once_mode::write_once_node (C++ function), 400
oneapi::tbb::mutex::~mutex (C++ function), 711
oneapi::tbb::mutex::lock (C++ function), 711
oneapi::tbb::mutex::mutex (C++ function), 711
oneapi::tbb::mutex::scoped_lock (C++ class), 711
oneapi::tbb::mutex::try_lock (C++ function), 711
oneapi::tbb::mutex::unlock (C++ function), 711
oneapi::tbb::null_rw_mutex::~null_rw_mutex (C++ function), 721
oneapi::tbb::null_rw_mutex::lock (C++ function), 721
oneapi::tbb::null_rw_mutex::lock_shared (C++ function), 721
oneapi::tbb::null_rw_mutex::null_rw_mutex (C++ function), 721
oneapi::tbb::null_rw_mutex::scoped_lock (C++ class), 721
oneapi::tbb::null_rw_mutex::try_lock (C++ function), 721
oneapi::tbb::null_rw_mutex::try_lock_shared (C++ function), 721
oneapi::tbb::null_rw_mutex::unlock (C++ function), 721
oneapi::tbb::null_rw_mutex::unlock_shared (C++ function), 721
oneapi::tbb::queueing_mutex::~queuing_mutex (C++ function), 718
oneapi::tbb::queueing_mutex::queuing_mutex (C++ function), 718
oneapi::tbb::queueing_mutex::scoped_lock (C++ class), 718
oneapi::tbb::queueing_rw_mutex::~queuing_rw_mutex (C++ function), 719
oneapi::tbb::queueing_rw_mutex::queuing_rw_mutex (C++ function), 719
oneapi::tbb::queueing_rw_mutex::scoped_lock (C++ class), 719
oneapi::tbb::rw_mutex::~rw_mutex (C++ function), 712
oneapi::tbb::rw_mutex::lock (C++ function), 712
oneapi::tbb::rw_mutex::lock_shared (C++ function), 712
oneapi::tbb::rw_mutex::rw_mutex (C++ function), 712
oneapi::tbb::rw_mutex::scoped_lock (C++ class), 712
oneapi::tbb::rw_mutex::try_lock (C++ function), 712
oneapi::tbb::rw_mutex::try_lock_shared (C++ function), 712
oneapi::tbb::rw_mutex::unlock (C++ function), 712
oneapi::tbb::rw_mutex::unlock_shared (C++ function), 713
oneapi::tbb::scalable_allocator::allocate (C++ function), 703
oneapi::tbb::scalable_allocator::deallocate (C++ function), 703
oneapi::tbb::scalable_allocator::operator!= (C++ function), 704
oneapi::tbb::scalable_allocator::operator== (C++ function), 704
oneapi::tbb::speculative_spin_mutex::~speculative_spin_mutex (C++ function), 716
oneapi::tbb::speculative_spin_mutex::scoped_lock (C++ class), 716
oneapi::tbb::speculative_spin_mutex::speculative_spin_mutex (C++ function), 716
oneapi::tbb::speculative_spin_rw_mutex::~speculative_spin_rw_mutex (C++ function), 717
oneapi::tbb::speculative_spin_rw_mutex::scoped_lock (C++ class), 717
oneapi::tbb::speculative_spin_rw_mutex::speculative_spin_rw_mutex (C++ function), 717
oneapi::tbb::spin_mutex::~spin_mutex (C++ function), 714
oneapi::tbb::spin_mutex::lock (C++ function), 714
oneapi::tbb::spin_mutex::scoped_lock (C++ class), 713
oneapi::tbb::spin_mutex::spin_mutex (C++ function), 714
oneapi::tbb::spin_mutex::try_lock (C++ function), 714
oneapi::tbb::spin_mutex::unlock (C++ function), 714
oneapi::tbb::spin_rw_mutex::~spin_rw_mutex (C++ function), 715
oneapi::tbb::spin_rw_mutex::lock (C++ function), 715

Index 2248

oneAPI Specification, Release 1.1-rev-1

oneapi::tbb::spin_rw_mutex::lock_shared (C++ function), 715
oneapi::tbb::spin_rw_mutex::scoped_lock (C++ class), 715
oneapi::tbb::spin_rw_mutex::spin_rw_mutex (C++ function), 715
oneapi::tbb::spin_rw_mutex::try_lock (C++ function), 715
oneapi::tbb::spin_rw_mutex::try_lock_shared (C++ function), 715
oneapi::tbb::spin_rw_mutex::unlock (C++ function), 715
oneapi::tbb::spin_rw_mutex::unlock_shared (C++ function), 715
oneapi::tbb::task_group::~task_group (C++ function), 436
oneapi::tbb::task_group::cancel (C++ function), 437
oneapi::tbb::task_group::defer (C++ function), 437
oneapi::tbb::task_group::is_current_task_group_canceling (C++ function), 437
oneapi::tbb::task_group::run (C++ function), 437
oneapi::tbb::task_group::run_and_wait (C++ function), 437
oneapi::tbb::task_group::task_group (C++ function), 436
oneapi::tbb::task_group::wait (C++ function), 437
oneapi::tbb::tbb_allocator::allocate (C++ function), 702
oneapi::tbb::tbb_allocator::allocator_type (C++ function), 702
oneapi::tbb::tbb_allocator::deallocate (C++ function), 702
oneapi::tbb::tbb_allocator::operator!= (C++ function), 702
oneapi::tbb::tbb_allocator::operator== (C++ function), 702
Online mode, 238
operator bool (C++ function), 353, 434
operator split (C++ function), 374
operator!= (C++ function), 705
operator+ (C++ function), 325, 329
operator= (C++ function), 324, 329, 434
operator== (C++ function), 705
operator& (C++ function), 361
operator- (C++ function), 325, 329
operator< (C++ function), 322, 325, 329
Ordinal feature, 237
Outlier, 237
output_ports (C++ function), 419

P
P010, 1040
P210, 1040
ParallelReduceBody::Body::~Body (C++ function), 325
ParallelReduceBody::Body::Body (C++ function), 325
ParallelReduceBody::Body::join (C++ function), 325
ParallelReduceBody::Body::operator() (C++ function), 325
parameter::max_allowed_parallelism (C++ enum), 431
parameter::terminate_on_exception (C++ enum), 432
parameter::thread_stack_size (C++ enum), 431
PPS, 1039
priority::high (C++ enum), 441
priority::low (C++ enum), 441
priority::normal (C++ enum), 441
proportional_split (C++ function), 374

Q
QP, 1039

Index 2249

oneAPI Specification, Release 1.1-rev-1

R
R::~R (C++ function), 323
R::empty (C++ function), 323
R::is_divisible (C++ function), 323
R::R (C++ function), 322, 323
Ratio feature, 237
Reduction::operator() (C++ function), 326
Reference-counted object, 238
Regression, 237
release (C++ function), 434
reset (C++ function), 377, 430
Response, 237
RGB32, 1040
RGB4, 1040
right (C++ function), 374
RWM::scoped_lock (C++ type), 333
RWM::scoped_lock::M::is_fair_mutex (C++ member), 333
RWM::scoped_lock::M::is_recursive_mutex (C++ member), 333
RWM::scoped_lock::M::is_rw_mutex (C++ member), 333
RWM::scoped_lock::RWM::~scoped_lock (C++ function), 333
RWM::scoped_lock::RWM::scoped_lock (C++ function), 333
RWM::scoped_lock::RWM::scoped_lock::acquire (C++ function), 333
RWM::scoped_lock::RWM::scoped_lock::downgrade_to_reader (C++ function), 333
RWM::scoped_lock::RWM::scoped_lock::release (C++ function), 333
RWM::scoped_lock::RWM::scoped_lock::try_acquire (C++ function), 333
RWM::scoped_lock::RWM::scoped_lock::upgrade_to_writer (C++ function), 333

S
S::~S (C++ function), 339
S::operator() (C++ function), 339
S::S (C++ function), 339
scalable_allocation_command (C function), 709
scalable_allocation_mode (C++ function), 709
scalable_msize (C++ function), 708
Scan::operator() (C++ function), 329
scoped_lock (C++ class), 720
SEI, 1039
set_external_ports (C++ function), 419
Setter, 238
SingleFilterBody::Body::operator() (C++ function), 330
size (C++ function), 365
size_type (C++ type), 365
SPIR-V, 239
SPS, 1039
std::begin (C++ function), 327
std::end (C++ function), 327
stop (C++ function), 362
Supervised learning, 237
SuspendFunc::Func::Func (C++ function), 335
SuspendFunc::Func::operator() (C++ function), 335
swap (C++ function), 322
SYCL, 239

Index 2250

oneAPI Specification, Release 1.1-rev-1

T
T::release_wait (C++ function), 337
T::reserve_wait (C++ function), 337
T::try_put (C++ function), 337
Table, 238
tag (C++ function), 423
tagged_msg (C++ function), 423
task_arena (C++ function), 441, 442, 725
task_group_context (C++ function), 430
task_scheduler_handle (C++ function), 434
task_scheduler_observer (C++ function), 447
tbb::task_handle::~task_handle (C++ function), 439
tbb::task_handle::operator bool (C++ function), 439
tbb::task_handle::operator= (C++ function), 439
tbb::task_handle::task_handle (C++ function), 439
tbb::this_task_arena::current_thread_index (C++ function), 445
tbb::this_task_arena::enqueue (C++ function), 445, 446
tbb::this_task_arena::isolate (C++ function), 445
tbb::this_task_arena::max_concurrency (C++ function), 445
TBBMALLOC_CLEAN_ALL_BUFFERS (C macro), 709
TBBMALLOC_CLEAN_THREAD_BUFFERS (C macro), 710
TBBMALLOC_SET_HUGE_SIZE_THRESHOLD (C macro), 709
TBBMALLOC_SET_SOFT_HEAP_LIMIT (C macro), 709
TBBMALLOC_USE_HUGE_PAGES (C macro), 709
terminate (C++ function), 442
Training, 237
Training set, 237
traits (C++ function), 430
traits_type::fp_settings (C++ enum), 430
try_get (C++ function), 387, 403, 410
try_lock (C++ function), 720
try_put (C++ function), 403, 410

U
unlock (C++ function), 720
Unsupervised learning, 237
upstream_resource (C++ function), 706
UYVY, 1040

V
VA API, 1040
Value::~Value (C++ function), 329
Value::Value (C++ function), 329
VBR, 1040
VBV, 1040
VC-1, 1040
Video memory, 1040
VPP, 730
VUI, 1040

W
wait_for_all (C++ function), 377
Workload, 238

Index 2251

oneAPI Specification, Release 1.1-rev-1

X
X::X (C++ function), 323

Y
YUY2, 1040
YV12, 1040

Index 2252

	Introduction
	Target Audience
	Goals of the Specification
	Definitions
	Contribution Guidelines
	Sign your work

	Software Architecture
	oneAPI Platform
	API Programming Example
	Direct Programming Example

	DPC++
	Overview
	Detailed API and Language Descriptions
	Open Source Implementation
	Testing
	Acknowledgment

	oneDPL
	Namespaces
	Supported C++ Standard Library APIs and Algorithms
	Extensions to Parallel STL
	DPC++ Execution Policy
	device_policy class
	make_device_policy function

	Buffer wrappers

	Specific API of oneDPL
	Function Objects
	Iterators
	Parallel Algorithms

	oneDNN
	Introduction
	General API notes
	Error Handling
	Namespaces

	Conventions
	Variable (Tensor) Names
	RNN-Specific Notation

	Execution Model
	Engine
	Stream

	Data model
	Data types
	Bfloat16
	Workflow
	Support

	Int8
	Workflow
	Support

	Memory
	Memory Formats
	Plain Memory Formats
	Format Tags
	Optimized Format ‘any’
	Memory Format Propagation
	API

	Memory Descriptors and Objects
	Descriptors
	Objects
	API

	Primitives
	Common Definitions
	Base Class for Primitives
	Base Class for Primitives Descriptors
	Common Enumerations
	Normalization Primitives Flags
	Execution argument indices

	Attributes
	Post-ops
	Supported Post-ops
	Eltwise Post-op
	Sum Post-op
	Examples of Chained Post-ops
	Sum -> ReLU

	API

	Scratchpad Mode
	Examples
	Library Manages Scratchpad
	User Manages Scratchpad

	Quantization
	Quantization Model
	Example: Convolution Quantization Workflow
	Per-Channel Scaling

	Output Scaling Attribute
	Example 1: weights quantization with per-output-channel-and-group scaling
	Example 2: convolution with groups, with per-output-channel quantization
	Interplay of Output Scales with Post-ops

	Attribute Related Error Handling
	API

	Batch Normalization
	Forward
	Difference Between Forward Training and Forward Inference

	Backward
	Execution Arguments
	Operation Details
	Data Types Support
	Data Representation
	Source, Destination, and Their Gradients
	Statistics Tensors

	Post-ops and Attributes
	API

	Binary
	Forward and Backward
	Execution Arguments
	Operation Details
	Post-ops and Attributes
	Data Types Support
	Data Representation
	API

	Concat
	Forward and Backward
	Execution Arguments
	Operation Details
	Data Types Support
	Data Representation
	Post-ops and Attributes
	API

	Convolution and Deconvolution
	Forward
	Regular Convolution
	Convolution with Groups
	Convolution with Dilation
	Deconvolution (Transposed Convolution)
	Difference Between Forward Training and Forward Inference

	Backward
	Execution Arguments
	Operation Details
	Data Types Support
	Data Representation
	Post-ops and Attributes
	Example 1
	Example 2

	Algorithms
	API

	Elementwise
	Forward
	Backward
	Difference Between Forward Training and Forward Inference
	Execution Arguments
	Operation Details
	Data Type Support
	Data Representation
	Post-ops and Attributes
	API

	Inner Product
	Forward
	Difference Between Forward Training and Forward Inference

	Backward
	Execution Arguments

	Operation Details
	Data Types Support
	Data Representation
	Post-ops and Attributes
	API

	Layer normalization
	Forward
	Difference Between Forward Training and Forward Inference

	Backward
	Execution Arguments
	Operation Details
	Data Types Support
	Data Representation
	Mean and Variance
	Scale and Shift
	Source, Destination, and Their Gradients

	API

	LogSoftmax
	Forward
	Difference Between Forward Training and Forward Inference

	Backward
	Execution Arguments
	Operation Details
	Post-ops and Attributes
	Data Type Support
	Data Representation
	Source, Destination, and Their Gradients

	API

	Local Response Normalization
	Forward
	Backward
	Execution Arguments
	Operation Details
	Data Type Support
	Data Representation

	Source, Destination, and Their Gradients
	Post-ops and Attributes
	API

	Matrix Multiplication
	Execution Arguments
	Operation Details
	Data Types Support
	Data Representation
	Attributes and Post-ops
	API

	Pooling
	Forward
	Difference Between Forward Training and Forward Inference

	Backward
	Execution Arguments
	Operation Details
	Data Type Support
	Data Representation
	Source, Destination, and Their Gradients

	Post-ops and Attributes
	API

	Reorder
	Execution Arguments
	Operation Details
	Data Types Support
	Data Representation
	Post-ops and Attributes
	API

	Resampling
	Forward
	Nearest Neighbor Resampling
	Bilinear Resampling
	Difference Between Forward Training and Forward Inference

	Backward
	Execution Arguments
	Operation Details
	Data Types Support
	Post-ops and Attributes
	API

	RNN
	Cell Functions
	Vanilla RNN
	LSTM
	LSTM (or Vanilla LSTM)
	LSTM with Peephole
	LSTM with Projection

	GRU
	Linear-Before-Reset GRU

	Execution Arguments
	Operation Details
	Data Types Support
	Data Representation
	Post-ops and Attributes

	API

	Shuffle
	Forward
	Difference Between Forward Training and Forward Inference

	Backward
	Execution Arguments
	Operation Details
	Data Types Support
	Data Layouts
	Post-ops and Attributes
	API

	Softmax
	Forward
	Difference Between Forward Training and Forward Inference

	Backward
	Execution Arguments
	Operation Details
	Post-ops and Attributes
	Data Types Support
	Data Representation
	Source, Destination, and Their Gradients

	API

	Sum
	Execution Arguments
	Operation Details
	Post-ops and Attributes
	Data Types Support
	Data Representation
	Sources, Destination

	API

	Open Source Implementation
	Implementation Notes
	Testing

	oneCCL
	Introduction
	Namespaces
	oneapi::ccl namespace
	ccl namespace

	Current Version of this oneCCL Specification
	Definitions
	oneCCL Concepts
	Device
	Context
	Key-Value Store
	Communicator
	Stream
	Event
	Operation Attributes

	Communication Operations
	Datatypes
	Custom Datatypes

	Reductions
	Collective Operations
	Allgatherv
	Allreduce
	Alltoallv
	Barrier
	Broadcast
	Reduce
	ReduceScatter

	Operation Attributes
	Operation Progress Tracking
	Event

	Error handling
	Exception classification
	Common exceptions

	Programming Model
	Generic Workflow

	Level Zero
	Detailed API Descriptions

	oneDAL
	Introduction
	Glossary
	Machine learning terms
	oneDAL terms
	Common oneAPI terms

	Mathematical Notations
	Programming model
	End-to-end example
	Descriptors
	Floating-point Types
	Computational Methods
	Computational Tasks

	Operations
	General operation definition
	Operation shortcuts
	Input
	Result
	Supported operation
	Supported operations
	Train
	Infer
	Compute

	Computational modes
	Batch
	Online
	Distributed

	Common Interface
	Current Version of this oneDAL Specification
	Header files
	Namespaces
	Error handling
	Exception classification

	Common type definitions
	Programming interface
	Scalar types
	Enum classes
	Data type
	Range

	Data management
	Key concepts
	Dataset
	Data source
	Table
	Table metadata
	Accessor
	Example of interaction between table and accessor objects

	Details
	Array
	Usage example
	Data ownership requirements
	Implementation notes
	Programming interface

	Accessors
	Requirements
	Accessor Types
	Details
	Column accessor
	Usage example
	Programming interface
	Row accessor
	Usage example
	Programming interface

	Data Sources
	Read
	Read operation definition
	Read operation shortcuts
	Args
	Result

	Data Source Types
	Details
	CSV data source
	Usage example
	Programming Interface
	Reading oneapi::dal::read<Object>(...)
	Args
	Operation

	Tables
	Requirements on table types
	Table types
	Programming interface
	Table
	Table metadata
	Data layout
	Feature type
	Homogeneous table
	Programming interface

	Algorithms
	Clustering
	K-Means
	Mathematical formulation
	Training
	Training method: Lloyd’s
	Inference
	Inference method: Lloyd’s

	Usage example
	Training
	Inference

	Programming Interface
	Descriptor
	Method tags
	Task tags
	Model
	Training train(...)
	Input
	Result
	Operation
	Inference infer(...)
	Input
	Result
	Operation

	K-Means initialization
	Mathematical formulation
	Computing
	Computing method: dense

	Usage example
	Computing

	Programming Interface
	Descriptor
	Method tags
	Task tags
	Computing compute(...)
	Input
	Result
	Operation

	Nearest Neighbors (kNN)
	k-Nearest Neighbors Classification (k-NN)
	Mathematical formulation
	Training
	Training method: brute-force
	Training method: k-d tree
	Inference
	Inference method: brute-force
	Inference method: k-d tree

	Usage example
	Training
	Inference

	Programming Interface
	Descriptor
	Method tags
	Task tags
	Model
	Training train(...)
	Input
	Result
	Operation
	Inference infer(...)
	Input
	Result
	Operation

	Decomposition
	Principal Components Analysis (PCA)
	Mathematical formulation
	Training
	Training method: Covariance
	Training method: SVD
	Sign-flip technique
	Inference
	Inference methods: Covariance and SVD

	Usage example
	Training
	Inference

	Programming Interface
	Descriptor
	Method tags
	Task tags
	Model
	Training train(...)
	Input
	Result
	Operation
	Inference infer(...)
	Input
	Result
	Operation

	Appendix
	k-d Tree
	Related terms

	Bibliography

	oneTBB
	General Information
	Introduction
	Notational Conventions
	Identifiers
	Case
	Reserved Identifier Prefixes

	Named Requirements
	Algorithms
	Range
	Splittable
	ParallelForBody
	ParallelForFunc
	ParallelForIndex
	ParallelReduceBody
	ParallelReduceFunc
	ParallelReduceReduction
	ParallelForEachBody
	Terms

	ContainerBasedSequence
	ParallelScanBody
	ParallelScanCombine
	ParallelScanFunc
	BlockedRangeValue
	FilterBody

	Mutexes
	Mutex
	ReaderWriterMutex

	Containers
	HashCompare
	ContainerRange

	Task scheduler
	SuspendFunc

	Flow Graph
	AsyncNodeBody
	ContinueNodeBody
	GatewayType
	FunctionNodeBody
	JoinNodeFunctionObject
	InputNodeBody
	MultifunctionNodeBody
	Sequencer

	Thread Safety

	oneTBB Interfaces
	Configuration
	Namespaces
	tbb Namespace
	tbb::flow Namespace
	oneapi::tbb Namespace

	Version Information
	TBB_runtime_interface_version Function
	TBB_runtime_version Function
	TBB_VERSION Environment Variable

	Enabling Debugging Features
	TBB_USE_ASSERT Macro
	TBB_USE_PROFILING_TOOLS Macro

	Feature Macros
	TBB_USE_EXCEPTIONS macro
	TBB_USE_GLIBCXX_VERSION macro

	Algorithms
	Parallel Functions
	collaborative_call_once
	collaborative_once_flag Class
	collaborative_once_flag
	Member functions
	Example

	parallel_for
	parallel_reduce
	Example (Imperative Form)
	Example with Lambda Expressions

	parallel_deterministic_reduce
	parallel_scan
	pre_scan and final_scan Classes
	pre_scan_tag and final_scan_tag
	Member functions
	Example (Imperative Form)
	Example with Lambda Expressions

	parallel_for_each
	feeder Class
	feeder
	Member functions
	Example

	parallel_invoke
	Example

	parallel_pipeline
	Example
	filter Class Template
	filter
	filter_mode Enumeration
	filter_mode
	Member functions
	Non-member functions
	Deduction Guides
	flow_control Class
	flow_control
	Member functions

	parallel_sort

	Blocked Ranges
	blocked_range
	Member functions

	blocked_range2d
	Member types
	Member functions

	blocked_range3d
	Member types
	Member functions

	Partitioners
	auto_partitioner
	affinity_partitioner
	static_partitioner
	simple_partitioner

	Split Tags
	proportional split
	Member functions

	split

	Flow Graph
	Graph Class
	graph
	reset_flags enumeration
	reset_flags Enumeration
	Member functions

	Nodes
	Abstract Interfaces
	graph_node
	sender
	receiver

	Properties
	Forwarding and Buffering
	Forwarding
	Buffering

	Functional Nodes
	continue_node
	Member functions
	Deduction Guides
	Example
	function_node
	Member functions
	Deduction Guides
	Example
	input_node
	Member functions
	Deduction Guides
	multifunction_node
	Member types
	Member functions
	async_node
	Member types
	Member functions
	Function Nodes Policies
	Queueing
	Rejecting
	Lightweight
	Example
	Nodes Priorities
	Example
	Predefined Concurrency Limits
	copy_body

	Buffering Nodes
	overwrite_node
	Member functions
	Examples
	write_once_node
	Member functions
	Example
	buffer_node
	Member functions
	queue_node
	Member functions
	Example
	priority_queue_node
	Member functions
	Example
	sequencer_node
	Member functions
	Deduction Guides
	Example

	Service Nodes
	limiter_node
	Member functions
	broadcast_node
	Member functions
	join_node
	join_node Policies
	Member types
	Member functions
	Non-Member Types
	Deduction Guides
	split_node
	Member functions
	indexer_node
	Member types
	Member functions
	composite_node
	Member functions

	Ports and Edges
	input_port
	output_port
	make_edge
	remove_edge

	Special Messages Types
	continue_msg
	tagged_msg
	Member functions
	Non-member functions

	Examples
	Dependency Flow Graph Example
	Message Flow Graph Example

	Task Scheduler
	Scheduling controls
	task_group_context
	Member types and constants
	Member functions

	global_control
	Member types and constants
	Member functions

	Resumable tasks
	Example

	task_scheduler_handle
	Member Functions
	Non-member Functions
	Examples

	Task Group
	task_group
	Member functions
	Non-member functions

	task_group_status
	Member constants

	task_handle
	Member Functions
	Non-Member Functions

	Task Arena
	task_arena
	Member types and constants
	Member functions
	Example

	this_task_arena
	task_scheduler_observer
	Member functions
	Example

	Helper types
	attach tag type

	Containers
	Sequences
	concurrent_vector
	Class Template Synopsis
	Requirements
	Description
	Exception Safety
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	assign
	get_allocator
	Concurrent growth
	grow_by
	grow_to_at_least
	push_back
	emplace_back
	Element access
	Access by index
	Access the first and the last element
	Iterators
	begin and cbegin
	end and cend
	rbegin and crbegin
	rend and crend
	Size and capacity
	size
	empty
	max_size
	capacity
	Concurrently unsafe operations
	Reserving
	Resizing
	shrink_to_fit
	clear
	swap
	Parallel iteration
	range member function
	Non-member functions
	Non-member binary comparisons
	Non-member lexicographical comparisons
	Non-member swap
	Other
	Deduction guides

	Queues
	concurrent_queue
	Class Template Synopsis
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructor from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Concurrently safe member functions
	Pushing elements
	Popping elements
	get_allocator
	Concurrently unsafe member functions
	The number of elements
	clear
	Iterators
	unsafe_begin and unsafe_cbegin
	unsafe_end and unsafe_cend
	Other
	Deduction guides

	concurrent_bounded_queue
	Class Template Synopsis
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructor from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Concurrently safe member functions
	Pushing elements
	Popping elements
	abort
	Capacity of the queue
	get_allocator
	Concurrently unsafe member functions
	The number of elements
	clear
	Iterators
	unsafe_begin and unsafe_cbegin
	unsafe_end and unsafe_cend
	Other
	Deduction guides

	concurrent_priority_queue
	Class Template Synopsis
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	assign
	Size and capacity
	empty
	size
	Concurrently safe modifiers
	Pushing elements
	Popping elements
	Concurrently unsafe modifiers
	clear
	swap
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Other
	Deduction guides

	Unordered associative containers
	concurrent_hash_map
	Class Template Synopsis
	Member classes
	accessor and const_accessor
	accessor member class
	const_accessor member class
	Member functions
	Construction and destruction
	Emptiness
	Key-value pair access
	Releasing
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	get_allocator
	Concurrently unsafe modifiers
	clear
	swap
	Hash policy
	Rehashing
	bucket_count
	Size and capacity
	empty
	size
	max_size
	Lookup
	find
	count
	Concurrently safe modifiers
	Inserting values
	Inserting sequences of elements
	Emplacing elements
	Erasing elements
	Iterators
	begin and cbegin
	end and cend
	equal_range
	Parallel iteration
	range member function
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Other
	Deduction guides

	concurrent_unordered_map
	Class Template Synopsis
	Description
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	Iterators
	begin and cbegin
	end and cend
	Size and capacity
	empty
	size
	max_size
	Concurrently safe modifiers
	Emplacing elements
	Inserting values
	Inserting sequences of elements
	Inserting nodes
	Concurrently unsafe modifiers
	Clearing
	Erasing elements
	Erasing sequences
	Extracting nodes
	swap
	Element access
	at
	operator[]
	Lookup
	count
	find
	contains
	equal_range
	Bucket interface
	Bucket begin and bucket end
	The number of buckets
	Size of the bucket
	Bucket number
	Hash policy
	Load factor
	Manual rehashing
	Observers
	get_allocator
	hash_function
	key_eq
	Parallel iteration
	range member function
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Other
	Deduction guides

	concurrent_unordered_multimap
	Class Template Synopsis
	Description
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	Iterators
	begin and cbegin
	end and cend
	Size and capacity
	empty
	size
	max_size
	Concurrently safe modifiers
	Emplacing elements
	Inserting values
	Inserting sequences of elements
	Inserting nodes
	Merging containers
	Concurrently unsafe modifiers
	Clearing
	Erasing elements
	Erasing sequences
	Extracting nodes
	swap
	Lookup
	count
	find
	contains
	equal_range
	Bucket interface
	Bucket begin and bucket end
	The number of buckets
	Size of the bucket
	Bucket number
	Hash policy
	Load factor
	Manual rehashing
	Observers
	get_allocator
	hash_function
	key_eq
	Parallel iteration
	range member function
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Other
	Deduction guides

	concurrent_unordered_set
	Class Template Synopsis
	Description
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	Iterators
	begin and cbegin
	end and cend
	Size and capacity
	empty
	size
	max_size
	Concurrently safe modifiers
	Inserting values
	Inserting sequences of elements
	Inserting nodes
	Emplacing elements
	Merging containers
	Concurrently unsafe modifiers
	Clearing
	Erasing elements
	Erasing sequences
	Extracting nodes
	swap
	Lookup
	count
	find
	contains
	equal_range
	Bucket interface
	Bucket begin and bucket end
	The number of buckets
	Size of the bucket
	Bucket number
	Hash policy
	Load factor
	Manual rehashing
	Observers
	get_allocator
	hash_function
	key_eq
	Parallel iteration
	range member function
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Other
	Deduction guides

	concurrent_unordered_multiset
	Class Template Synopsis
	Description
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	Iterators
	begin and cbegin
	end and cend
	Size and capacity
	empty
	size
	max_size
	Concurrently safe modifiers
	Inserting values
	Inserting sequences of elements
	Inserting nodes
	Emplacing elements
	Merging containers
	Concurrently unsafe modifiers
	Clearing
	Erasing elements
	Erasing sequences
	Extracting nodes
	swap
	Lookup
	count
	find
	contains
	equal_range
	Bucket interface
	Bucket begin and bucket end
	The number of buckets
	Size of the bucket
	Bucket number
	Hash policy
	Load factor
	Manual rehashing
	Observers
	get_allocator
	hash_function
	key_eq
	Parallel iteration
	range member function
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Other
	Deduction guides

	Ordered associative containers
	concurrent_map
	Class Template Synopsis
	Member classes
	value_compare
	Class Synopsis
	Member objects
	Member functions
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	Element access
	at
	operator[]
	Iterators
	begin and cbegin
	end and cend
	Size and capacity
	empty
	size
	max_size
	Concurrently safe modifiers
	Inserting values
	Inserting sequences of elements
	Inserting nodes
	Emplacing elements
	Concurrently unsafe modifiers
	Clearing
	Erasing elements
	Erasing sequences
	Extracting nodes
	swap
	Lookup
	count
	find
	contains
	lower_bound
	upper_bound
	equal_range
	Observers
	get_allocator
	key_comp
	value_comp
	Parallel iteration
	range member function
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Non-member lexicographical comparisons
	Other
	Deduction guides

	concurrent_multimap
	Class Template Synopsis
	Member classes
	value_compare
	Class Synopsis
	Member objects
	Member functions
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	Iterators
	begin and cbegin
	end and cend
	Size and capacity
	empty
	size
	max_size
	Concurrently safe modifiers
	Emplacing elements
	Inserting values
	Inserting sequences of elements
	Inserting nodes
	Merging containers
	Concurrently unsafe modifiers
	Clearing
	Erasing elements
	Erasing sequences
	Extracting nodes
	swap
	Lookup
	count
	find
	contains
	lower_bound
	upper_bound
	equal_range
	Observers
	get_allocator
	key_comp
	value_comp
	Parallel iteration
	range member function
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Non-member lexicographical comparisons
	Other
	Deduction guides

	concurrent_set
	Class Template Synopsis
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	Iterators
	begin and cbegin
	end and cend
	Size and capacity
	empty
	size
	max_size
	Concurrently safe modifiers
	Inserting values
	Inserting sequences of elements
	Inserting nodes
	Emplacing elements
	Merging containers
	Concurrently unsafe modifiers
	Clearing
	Erasing elements
	Erasing sequences
	Extracting nodes
	swap
	Lookup
	count
	find
	contains
	lower_bound
	upper_bound
	equal_range
	Observers
	get_allocator
	key_comp
	value_comp
	Parallel iteration
	range member function
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Non-member lexicographical comparisons
	Other
	Deduction guides

	concurrent_multiset
	Class Template Synopsis
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Constructors from the sequence of elements
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	Iterators
	begin and cbegin
	end and cend
	Size and capacity
	empty
	size
	max_size
	Concurrently safe modifiers
	Inserting values
	Inserting sequences of elements
	Inserting nodes
	Emplacing elements
	Merging containers
	Concurrently unsafe modifiers
	Clearing
	Erasing elements
	Erasing sequences
	Extracting nodes
	swap
	Lookup
	count
	find
	contains
	lower_bound
	upper_bound
	equal_range
	Observers
	get_allocator
	key_comp
	value_comp
	Parallel iteration
	range member function
	Non-member functions
	Non-member swap
	Non-member binary comparisons
	Non-member lexicographical comparisons
	Other
	Deduction guides

	Auxiliary classes
	tbb_hash_compare
	Class Template Synopsis
	Member functions

	Node handles
	Class synopsis
	Member functions
	Constructors
	Assignment
	Destructor
	Swap
	State
	Access to the stored element
	get_allocator

	Thread Local Storage
	combinable
	Member functions

	enumerable_thread_specific
	Member functions
	Construction, destruction, copying
	Empty container constructors
	Copying constructors
	Moving constructors
	Destructor
	Assignment operators
	Concurrently safe modifiers
	Concurrently unsafe modifiers
	clear
	Size and capacity
	Iteration
	Combining

	Non-member types and constants

	flattened2d
	Member functions
	Non-member functions

	oneTBB Auxiliary Interfaces
	Memory Allocation
	Allocators
	tbb_allocator
	Member Functions
	Non-member Functions

	scalable_allocator
	Member Functions
	Non-member Functions

	cache_aligned_allocator
	Member Functions
	Non-member Functions

	Memory Resources
	cache_aligned_resource
	Member Functions

	scalable_memory_resource

	Library Functions
	C Interface to Scalable Allocator

	Mutual Exclusion
	Mutex Classes
	mutex
	Member classes
	Member functions

	rw_mutex
	Member classes
	Member functions

	spin_mutex
	Member classes
	Member functions

	spin_rw_mutex
	Member classes
	Member functions

	speculative_spin_mutex
	Member classes
	Member functions

	speculative_spin_rw_mutex
	Member classes
	Member functions

	queuing_mutex
	Member classes
	Member functions

	queuing_rw_mutex
	Member classes
	Member functions

	null_mutex
	Member classes
	Member functions

	null_rw_mutex
	Member classes
	Member functions

	Timing
	Syntax
	Classes
	tick_count class
	tick_count::interval_t class
	Non-member functions

	info Namespace
	Types
	Functions

	oneTBB Deprecated Interfaces
	task_arena::attach
	Member types and constants
	Member functions

	oneVPL
	oneVPL for Intel® Media Software Development Kit Users
	oneVPL Ease of Use Enhancements
	New APIs in oneVPL
	Intel® Media Software Development Kit Feature Removals
	Intel® Media Software Development Kit API Removals
	Intel® Media Software Development Kit Legacy API

	Architecture
	Video Decoding
	Video Encoding
	Video Processing
	Video Decoding with multiple video processing

	Programming Guide
	Status Codes
	oneVPL Session
	Intel® Media Software Development Kit Dispatcher (Legacy)
	oneVPL Dispatcher
	oneVPL Dispatcher Configuration Properties
	oneVPL Dispatcher Interactions
	oneVPL Dispatcher Debug Log
	Examples of Dispathcer’s Usage
	How To Check If Function is Implemented
	How To Search For The Available encoder/decoder implementation
	How To Search For The Available VPP Filter implementation
	How To Get Path to the Shared Library With the Implementation
	oneVPL implementation on Intel® platforms with Xe architecture and Intel® Media Software Development Kit Coexistence
	Multiple Sessions

	Frame and Fields
	Frame Surface Management

	Decoding Procedures
	Bitstream Repositioning
	Broken Streams Handling
	VP8 Specific Details
	JPEG
	Multi-view Video Decoding
	Combined Decode with Multi-channel Video Processing

	Encoding Procedures
	External Memory
	Internal Memory
	Configuration Change
	External Bitrate Control
	JPEG
	Multi-view Video Encoding

	Video Processing Procedures
	Configuration
	Region of Interest
	Multi-view Video Processing
	Video Processing 3DLUT
	HDR Tone Mapping

	Transcoding Procedures
	Asynchronous Pipeline
	Surface Pool Allocation
	Pipeline Error Reporting

	Hardware Acceleration
	New Model to Work with Hardware Acceleration
	Work with Hardware Acceleration in Legacy Mode
	Work with Multiple Media Devices
	Work with Video Memory
	Work with Microsoft DirectX* Applications
	Work with VA API Applications

	Memory Allocation and External Allocators
	External Memory Management
	Internal Memory Management
	mfxFrameSurfaceInterface

	Hardware Device Error Handling

	Mandatory APIs and Functions
	Disclaimer
	Exported Functions
	Mandatory APIs

	oneVPL API Reference
	Function Reference
	VideoDECODE
	API
	MFXVideoDECODE_Query
	MFXVideoDECODE_DecodeHeader
	MFXVideoDECODE_QueryIOSurf
	MFXVideoDECODE_Init
	MFXVideoDECODE_Reset
	MFXVideoDECODE_Close
	MFXVideoDECODE_GetVideoParam
	MFXVideoDECODE_GetDecodeStat
	MFXVideoDECODE_SetSkipMode
	MFXVideoDECODE_GetPayload
	MFXVideoDECODE_DecodeFrameAsync

	VideoENCODE
	API
	MFXVideoENCODE_Query
	MFXVideoENCODE_QueryIOSurf
	MFXVideoENCODE_Init
	MFXVideoENCODE_Reset
	MFXVideoENCODE_Close
	MFXVideoENCODE_GetVideoParam
	MFXVideoENCODE_GetEncodeStat
	MFXVideoENCODE_EncodeFrameAsync

	VideoVPP
	API
	MFXVideoVPP_Query
	MFXVideoVPP_QueryIOSurf
	MFXVideoVPP_Init
	MFXVideoVPP_Reset
	MFXVideoVPP_Close
	MFXVideoVPP_GetVideoParam
	MFXVideoVPP_GetVPPStat
	MFXVideoVPP_RunFrameVPPAsync
	MFXVideoVPP_ProcessFrameAsync

	VideoCORE
	API
	MFXVideoCORE_SetFrameAllocator
	MFXVideoCORE_SetHandle
	MFXVideoCORE_GetHandle
	MFXVideoCORE_QueryPlatform
	MFXVideoCORE_SyncOperation

	Session Management
	API
	MFXInit
	MFXInitEx
	MFXInitialize
	MFXClose
	MFXQueryIMPL
	MFXQueryVersion
	MFXJoinSession
	MFXDisjoinSession
	MFXCloneSession
	MFXSetPriority
	MFXGetPriority

	Memory
	API
	MFXMemory_GetSurfaceForVPP
	MFXMemory_GetSurfaceForVPPOut
	MFXMemory_GetSurfaceForEncode
	MFXMemory_GetSurfaceForDecode

	Implementation Capabilities
	API
	MFXQueryImplsDescription
	MFXReleaseImplDescription

	Adapters
	API
	MFXQueryAdapters
	MFXQueryAdaptersDecode
	MFXQueryAdaptersNumber

	VideoDECODE_VPP
	API
	MFXVideoDECODE_VPP_Init
	MFXVideoDECODE_VPP_Reset
	MFXVideoDECODE_VPP_GetChannelParam
	MFXVideoDECODE_VPP_DecodeFrameAsync
	MFXVideoDECODE_VPP_Close

	Structure Reference
	Type Definitions
	API
	mfxExtBuffer
	mfxHDLPair
	mfxI16Pair
	mfxRange32U
	mfxStructVersion

	Memory Structures
	API
	mfxBitstream
	mfxFrameAllocator
	mfxFrameAllocRequest
	mfxFrameAllocResponse
	mfxFrameData
	mfxFrameInfo
	mfxFrameSurface1
	mfxFrameSurfaceInterface
	mfxSurfacePoolInterface

	Implementation Management
	API
	mfxAdapterInfo
	mfxAdaptersInfo
	mfxExtThreadsParam
	mfxInitParam
	mfxPlatform
	mfxVersion
	mfxExtDeviceAffinityMask
	mfxInitializationParam

	Cross-component Structures
	API
	mfxComponentInfo
	mfxExtHEVCParam
	mfxExtJPEGHuffmanTables
	mfxExtJPEGQuantTables
	mfxExtMVCSeqDesc
	mfxExtMVCTargetViews
	mfxExtVideoSignalInfo
	mfxExtVP9Param
	mfxFrameId
	mfxInfoMFX
	mfxMVCOperationPoint
	mfxMVCViewDependency
	mfxPayload
	mfxVideoParam
	mfxVP9SegmentParam
	mfxExtAV1FilmGrainParam
	mfxAV1FilmGrainPoint
	mfxRect
	mfxExtHyperModeParam
	mfxGUID
	mfxExtAllocationHints

	Decode Structures
	API
	mfxDecodeStat
	mfxExtDecodeErrorReport
	mfxExtDecodedFrameInfo
	mfxExtTimeCode

	Encode Structures
	API
	mfxBRCFrameCtrl
	mfxBRCFrameParam
	mfxBRCFrameStatus
	mfxEncodeCtrl
	mfxEncodedUnitInfo
	mfxEncodeStat
	mfxExtAVCEncodedFrameInfo
	mfxExtAVCRefListCtrl
	mfxExtAVCRefLists
	mfxExtAVCRoundingOffset
	mfxExtAvcTemporalLayers
	mfxExtBRC
	mfxExtChromaLocInfo
	mfxExtCodingOption
	mfxExtCodingOption2
	mfxExtCodingOption3
	mfxExtCodingOptionSPSPPS
	mfxExtCodingOptionVPS
	mfxExtContentLightLevelInfo
	mfxExtDirtyRect
	mfxExtEncodedUnitsInfo
	mfxExtEncoderCapability
	mfxExtEncoderIPCMArea
	mfxExtEncoderResetOption
	mfxExtEncoderROI
	mfxExtHEVCRegion
	mfxExtHEVCTiles
	mfxExtInsertHeaders
	mfxExtMasteringDisplayColourVolume
	mfxExtMBDisableSkipMap
	mfxExtMBForceIntra
	mfxExtMBQP
	mfxExtMoveRect
	mfxExtMVOverPicBoundaries
	mfxExtPartialBitstreamParam
	mfxExtPictureTimingSEI
	mfxExtPredWeightTable
	mfxExtVP8CodingOption
	mfxExtVP9Segmentation
	mfxExtVP9TemporalLayers
	mfxQPandMode
	mfxVP9TemporalLayer
	mfxTemporalLayer
	mfxExtTemporalLayers
	mfxExtAV1BitstreamParam
	mfxExtAV1ResolutionParam
	mfxExtAV1TileParam
	mfxExtAV1Segmentation

	VPP Structures
	API
	mfxExtColorConversion
	mfxExtDecVideoProcessing
	mfxExtEncodedSlicesInfo
	mfxExtVppAuxData
	mfxExtVPPColorFill
	mfxExtVPPComposite
	mfxExtVPPDeinterlacing
	mfxExtVPPDenoise
	mfxExtVPPDenoise2
	mfxExtVPPDetail
	mfxExtVPPDoNotUse
	mfxExtVPPDoUse
	mfxExtVPPFieldProcessing
	mfxExtVPPFrameRateConversion
	mfxExtVPPImageStab
	mfxExtVppMctf
	mfxExtVPPMirroring
	mfxExtVPPProcAmp
	mfxExtVPPRotation
	mfxExtVPPScaling
	mfxChannel
	mfx3DLutSystemBuffer
	mfx3DLutVideoBuffer
	mfxExtVPP3DLut
	mfxExtVPPVideoSignalInfo
	mfxInfoVPP
	mfxVPPCompInputStream
	mfxVPPStat

	Protected Structures
	API
	mfxExtCencParam

	DECODDE_VPP Structures
	API
	mfxSurfaceArray
	mfxVideoChannelParam
	mfxExtInCrops

	Enumerator Reference
	Angle
	BitstreamDataFlag
	BPSEIControl
	BRCStatus
	BRefControl
	ChromaFormateIdc
	ChromaSiting
	CodecFormatFourCC
	CodecLevel
	H.264 Level 1-1.3
	H.264 Level 2-2.2
	H.264 Level 3-3.2
	H.264 Level 4-4.2
	H.264 Level 5-5.2
	H.264 Level 6-6.2
	MPEG2 Levels
	VC-1 Level Low (Simple and Main Profiles)
	VC-1 Advanced Profile Levels
	HEVC Levels
	AV1 Levels

	CodecProfile
	H.264 Profiles
	AV1 Profiles
	VC-1 Profiles
	VP8 Profiles
	VP9 Profiles
	H.264 Constraints
	JPEG Profiles

	CodingOptionValue
	ColorFourCC
	ContentInfo
	Corruption
	DeinterlacingMode
	ErrorTypes
	ExtendedBufferID
	ExtMemBufferType
	ExtMemFrameType
	Frame Data Flags
	FrameType
	FrcAlgm
	GeneralConstraintFlags
	GopOptFlag
	GPUCopy
	HEVC Profiles
	HEVC Tiers
	HEVCRegionEncoding
	HEVCRegionType
	ImageStabMode
	InsertHDRPayload
	InterpolationMode
	DataType
	3DLutChannelMapping
	3DLutMemoryLayout
	IntraPredBlockSize/InterPredBlockSize
	IntraRefreshTypes
	IOPattern
	JPEGColorFormat
	JPEGScanType
	LongTermIdx
	LookAheadDownSampling
	MBQPMode
	mfxComponentType
	mfxHandleType
	mfxIMPL
	mfxImplCapsDeliveryFormat
	mfxMediaAdapterType
	mfxMemoryFlags
	MfxNalUnitType
	mfxPriority
	mfxResourceType
	mfxSkipMode
	mfxStatus
	MirroringType
	DenoiseMode
	MPEG-2 Profiles
	Multi-view Video Coding Extension Profiles
	MVPrecision
	NominalRange
	PartialBitstreamOutput
	PayloadCtrlFlags
	PicStruct
	PicType
	PlatformCodeName
	PRefType
	Protected
	RateControlMethod
	ROImode
	Rotation
	SampleAdaptiveOffset
	ScalingMode
	ScenarioInfo
	SegmentFeature
	SegmentIdBlockSize
	SkipFrame
	TargetUsage
	TelecinePattern
	TimeStampCalc
	TransferMatrix
	TrellisControl
	VP9ReferenceFrame
	VPPFieldProcessingMode
	WeightedPred
	FilmGrainFlags
	mfxHyperMode
	mfxPoolAllocationPolicy
	mfxVPPPoolType
	mfxAV1SegmentIdBlockSize
	AV1SegmentFeature

	Define Reference
	API

	Type Reference
	Basic Types
	Typedefs

	Dispatcher API
	Dispatcher API Function Reference
	API
	MFXCreateConfig
	MFXCreateSession
	MFXDispReleaseImplDescription
	MFXEnumImplementations
	MFXLoad
	MFXSetConfigFilterProperty
	MFXUnload

	Dispatcher API Structure Reference
	API
	mfxDecoderDescription
	mfxDeviceDescription
	mfxEncoderDescription
	mfxImplDescription
	mfxVariant
	mfxVPPDescription
	mfxAccelerationModeDescription
	mfxImplementedFunctions
	mfxPoolPolicyDescription

	Dispatcher API Enumeration Reference
	API
	mfxAccelerationMode
	mfxImplType

	Dispatcher API Define Reference
	API
	MFX_IMPL_NAME_LEN
	MFX_STRFIELD_LEN
	MFX_ADD_PROPERTY_U32
	MFX_ADD_PROPERTY_U16
	MFX_ADD_PROPERTY_PTR
	MFX_UPDATE_PROPERTY_U32
	MFX_UPDATE_PROPERTY_U16
	MFX_UPDATE_PROPERTY_PTR

	GUIDs Reference
	API

	oneVPL API Versioning
	Appendices
	Configuration Parameter Constraints
	DECODE, ENCODE, and VPP Constraints
	DECODE Constraints
	ENCODE Constraints
	VPP Constraints
	Specifying Configuration Parameters

	Multiple-segment Encoding
	Streaming and Video Conferencing Features
	Dynamic Bitrate Change
	Dynamic Resolution Change
	Dynamic Reference Frame Scaling
	Forced Keyframe Generation
	Reference List Selection
	Low Latency Encoding and Decoding
	Reference Picture Marking Repetition SEI Message
	Long Term Reference Frame
	Temporal Scalability

	Switchable Graphics and Multiple Monitors
	Switchable Graphics
	Multiple Monitors

	Working Directly with VA API for Linux*
	CQP HRD Mode Encoding

	Glossary
	Acronyms and Terms
	Video Formats
	Color Formats

	Deprecated API
	Change Log
	Version 2.5
	Version 2.4
	Version 2.3

	oneMKL
	oneMKL Architecture
	Execution Model
	Use of Queues
	Non-Member Functions
	Member Functions

	Device Usage
	Asynchronous Execution
	Synchronization When Using Buffers
	Synchronization When Using USM APIs

	Host Thread Safety

	Memory Model
	The Buffer Memory Model
	Unified Shared Memory Model

	API Design
	oneMKL namespaces
	Standard C++ datatype usage
	DPC++ datatype usage
	oneMKL defined datatypes

	Exceptions and Error Handling
	Exception classification
	Common exceptions
	LAPACK specific exceptions

	Other Features
	Current Version of this oneMKL Specification
	Pre/Post Condition Checking

	oneMKL Domains
	Dense Linear Algebra
	Matrix Storage
	BLAS Routines
	BLAS Level 1 Routines
	asum
	asum (Buffer Version)
	asum (USM Version)
	axpy
	axpy (Buffer Version)
	axpy (USM Version)
	copy
	copy (Buffer Version)
	copy (USM Version)
	dot
	dot (Buffer Version)
	dot (USM Version)
	sdsdot
	sdsdot (Buffer Version)
	sdsdot (USM Version)
	dotc
	dotc (Buffer Version)
	dotc (USM Version)
	dotu
	dotu (Buffer Version)
	dotu (USM Version)
	nrm2
	nrm2 (Buffer Version)
	nrm2 (USM Version)
	rot
	rot (Buffer Version)
	rot (USM Version)
	rotg
	rotg (Buffer Version)
	rotg (USM Version)
	rotm
	rotm (Buffer Version)
	rotm (USM Version)
	rotmg
	rotmg (Buffer Version)
	rotmg (USM Version)
	scal
	scal (Buffer Version)
	scal (USM Version)
	swap
	swap (Buffer Version)
	swap (USM Version)
	iamax
	iamax (Buffer Version)
	iamax (USM Version)
	iamin
	iamin (Buffer Version)
	iamin (USM Version)

	BLAS Level 2 Routines
	gbmv
	gbmv (Buffer Version)
	gbmv (USM Version)
	gemv
	gemv (Buffer Version)
	gemv (USM Version)
	ger
	ger (Buffer Version)
	ger (USM Version)
	gerc
	gerc (Buffer Version)
	gerc (USM Version)
	geru
	geru (Buffer Version)
	geru (USM Version)
	hbmv
	hbmv (Buffer Version)
	hbmv (USM Version)
	hemv
	hemv (Buffer Version)
	hemv (USM Version)
	her
	her (Buffer Version)
	her (USM Version)
	her2
	her2 (Buffer Version)
	her2 (USM Version)
	hpmv
	hpmv (Buffer Version)
	hpmv (USM Version)
	hpr
	hpr (Buffer Version)
	hpr (USM Version)
	hpr2
	hpr2 (Buffer Version)
	hpr2 (USM Version)
	sbmv
	sbmv (Buffer Version)
	sbmv (USM Version)
	spmv
	spmv (Buffer Version)
	spmv (USM Version)
	spr
	spr (Buffer Version)
	spr (USM Version)
	spr2
	spr2 (Buffer Version)
	spr2 (USM Version)
	symv
	symv (Buffer Version)
	symv (USM Version)
	syr
	syr (Buffer Version)
	syr (USM Version)
	syr2
	syr2 (Buffer Version)
	syr2 (USM Version)
	tbmv
	tbmv (Buffer Version)
	tbmv (USM Version)
	tbsv
	tbsv (Buffer Version)
	tbsv (USM Version)
	tpmv
	tpmv (Buffer Version)
	tpmv (USM Version)
	tpsv
	tpsv (Buffer Version)
	tpsv (USM Version)
	trmv
	trmv (Buffer Version)
	trmv (USM Version)
	trsv
	trsv (Buffer Version)
	trsv (USM Version)

	BLAS Level 3 Routines
	gemm
	gemm (Buffer Version)
	gemm (USM Version)
	hemm
	hemm (Buffer Version)
	hemm (USM Version)
	herk
	herk (Buffer Version)
	herk (USM Version)
	her2k
	her2k (Buffer Version)
	her2k (USM Version)
	symm
	symm (Buffer Version)
	symm (USM Version)
	syrk
	syrk (Buffer Version)
	syrk (USM Version)
	syr2k
	syr2k (Buffer Version)
	syr2k (USM Version)
	trmm
	trmm (Buffer Version)
	trmm (USM Version)
	trsm
	trsm (Buffer Version)
	trsm (USM Version)

	BLAS-like Extensions
	axpy_batch
	axpy_batch (Buffer Version)
	axpy_batch (USM Version)
	axpby
	axpby (Buffer Version)
	axpby (USM Version)
	copy_batch
	copy_batch (Buffer Version)
	copy_batch (USM Version)
	dgmm_batch
	dgmm_batch (Buffer Version)
	dgmm_batch (USM Version)
	gemm_batch
	gemm_batch (Buffer Version)
	gemm_batch (USM Version)
	gemv_batch
	gemv_batch (Buffer Version)
	gemv_batch (USM Version)
	syrk_batch
	syrk_batch (Buffer Version)
	syrk_batch (USM Version)
	trsm_batch
	trsm_batch (Buffer Version)
	trsm_batch (USM Version)
	gemmt
	gemmt (Buffer Version)
	gemmt (USM Version)
	gemm_bias
	gemm_bias (Buffer Version)
	gemm_bias (USM Version)

	LAPACK Routines
	LAPACK Linear Equation Routines
	geqrf
	geqrf (Buffer Version)
	geqrf (USM Version)
	geqrf_scratchpad_size
	gerqf
	gerqf (Buffer Version)
	gerqf (USM Version)
	gerqf_scratchpad_size
	gerqf_scratchpad_size
	getrf
	getrf (BUFFER Version)
	getrf (USM Version)
	getrf_scratchpad_size
	getrf_scratchpad_size
	getri
	getri (BUFFER Version)
	getri (USM Version)
	getri_scratchpad_size
	getri_scratchpad_size
	getrs
	getrs (Buffer Version)
	getrs (USM Version)
	getrs_scratchpad_size
	getrs_scratchpad_size
	hetrf
	hetrf (Buffer Version)
	hetrf (USM Version)
	hetrf_scratchpad_size
	hetrf_scratchpad_size
	orgqr
	orgqr (Buffer Version)
	orgqr (USM Version)
	orgqr_scratchpad_size
	orgqr_scratchpad_size
	ormqr
	ormqr (Buffer Version)
	ormqr (USM Version)
	ormqr_scratchpad_size
	ormqr_scratchpad_size
	ormrq
	ormrq (Buffer Version)
	ormrq (USM Version)
	ormrq_scratchpad_size
	ormrq_scratchpad_size
	potrf
	potrf (Buffer Version)
	potrf (USM Version)
	potrf_scratchpad_size
	potrf_scratchpad_size
	potri
	potri (Buffer Version)
	potri (USM Version)
	potri_scratchpad_size
	potri_scratchpad_size
	potrs
	potrs (Buffer Version)
	potrs (USM Version)
	potrs_scratchpad_size
	potrs_scratchpad_size
	sytrf
	sytrf (Buffer Version)
	sytrf (USM Version)
	sytrf_scratchpad_size
	sytrf_scratchpad_size
	trtrs
	trtrs (Buffer Version)
	trtrs (USM Version)
	trtrs_scratchpad_size
	trtrs_scratchpad_size
	ungqr
	ungqr (Buffer Version)
	ungqr (USM Version)
	ungqr_scratchpad_size
	ungqr_scratchpad_size
	unmqr
	unmqr (Buffer Version)
	unmqr (USM Version)
	unmqr_scratchpad_size
	unmqr_scratchpad_size
	unmrq
	unmrq (Buffer Version)
	unmrq (USM Version)
	unmrq_scratchpad_size
	unmrq_scratchpad_size

	LAPACK Singular Value and Eigenvalue Problem Routines
	gebrd
	gebrd (Buffer Version)
	gebrd (USM Version)
	gebrd_scratchpad_size
	gesvd
	gesvd (Buffer Version)
	gesvd (USM Version)
	gesvd_scratchpad_size
	gesvd_scratchpad_size
	heevd
	heevd (Buffer Version)
	heevd (USM Version)
	heevd_scratchpad_size
	heevd_scratchpad_size
	hegvd
	hegvd (Buffer Version)
	hegvd (USM Version)
	hegvd_scratchpad_size
	hegvd_scratchpad_size
	hetrd
	hetrd (Buffer Version)
	hetrd (USM Version)
	hetrd_scratchpad_size
	hetrd_scratchpad_size
	orgbr
	orgbr (Buffer Version)
	orgbr (USM Version)
	orgbr_scratchpad_size
	orgbr_scratchpad_size
	orgtr
	orgtr (Buffer Version)
	orgtr (USM Version)
	orgtr_scratchpad_size
	orgtr_scratchpad_size
	ormtr
	ormtr (Buffer Version)
	ormtr (USM Version)
	ormtr_scratchpad_size
	ormtr_scratchpad_size
	syevd
	syevd (Buffer Version)
	syevd (USM Version)
	syevd_scratchpad_size
	syevd_scratchpad_size
	sygvd
	sygvd (Buffer Version)
	sygvd (USM Version)
	sygvd_scratchpad_size
	sygvd_scratchpad_size
	sytrd
	sytrd (Buffer Version)
	sytrd (USM Version)
	sytrd_scratchpad_size
	sytrd_scratchpad_size
	ungbr
	ungbr (Buffer Version)
	ungbr (USM Version)
	ungbr_scratchpad_size
	ungbr_scratchpad_size
	ungtr
	ungtr (Buffer Version)
	ungtr (USM Version)
	ungtr_scratchpad_size
	ungtr_scratchpad_size
	unmtr
	unmtr (Buffer Version)
	unmtr (USM Version)
	unmtr_scratchpad_size
	unmtr_scratchpad_size

	LAPACK-like Extensions Routines
	geqrf_batch
	geqrf_batch (Buffer Version)
	geqrf_batch (USM Version)
	geqrf_batch_scratchpad_size
	getrf_batch
	getrf_batch (Buffer Version)
	getrf_batch (USM Version)
	getrf_batch_scratchpad_size
	getri_batch
	getri_batch (Buffer Version)
	getri_batch (USM Version)
	getri_batch_scratchpad_size
	getrs_batch
	getrs_batch (Buffer Version)
	getrs_batch (USM Version)
	getrs_batch_scratchpad_size
	orgqr_batch
	orgqr_batch (Buffer Version)
	orgqr_batch (USM Version)
	orgqr_batch_scratchpad_size
	potrf_batch
	potrf_batch (Buffer Version)
	potrf_batch (USM Version)
	potrf_batch_scratchpad_size
	potrs_batch
	potrs_batch (Buffer Version)
	potrs_batch (USM Version)
	potrs_batch_scratchpad_size
	ungqr_batch
	ungqr_batch (Buffer Version)
	ungqr_batch (USM Version)
	ungqr_batch_scratchpad_size

	Sparse Linear Algebra
	Sparse BLAS
	init_matrix_handle
	release_matrix_handle
	set_csr_data
	set_csr_data (Buffer version)
	set_csr_data (USM version)

	gemm
	gemm (Buffer version)
	gemm (USM version)

	gemv
	gemv (Buffer version)
	gemv (USM version)

	gemvdot
	gemvdot (Buffer version)
	gemvdot (USM version)

	optimize_gemv
	optimize_gemv (Buffer version)
	optimize_gemv (USM version)

	symv
	symv (Buffer version)
	symv (USM version)

	trmv
	trmv (Buffer version)
	trmv (USM version)

	optimize_trmv
	optimize_trmv (Buffer version)
	optimize_trmv (USM version)

	trsv
	trsv (Buffer version)
	trsv (USM version)

	optimize_trsv
	optimize_trsv (Buffer version)
	optimize_trmv (USM version)

	Supported Types
	General descriptions

	Sparse storage formats

	Discrete Fourier Transforms
	Discrete Fourier Transform Functions
	Configuration Parameters and Enums
	precision
	domain
	config_param
	config_value
	Forward and Backward Scale
	Number of Transforms
	Storage Formats
	COMPLEX_STORAGE
	REAL_STORAGE
	CONJUGATE_EVEN_STORAGE
	INPUT_STRIDES and OUTPUT_STRIDES
	FORWARD_DISTANCE and BACKWARD_DISTANCE

	descriptor
	descriptor class
	Descriptor class constructors
	set_value
	get_value
	commit

	compute_forward
	compute_forward (Buffer version)
	compute_forward (USM version)

	compute_backward
	compute_backward (Buffer version)
	compute_backward (USM version)

	Random Number Generators
	Random Number Generators (RNG) Overview
	oneMKL RNG Usage Model
	Buffer-based example
	USM-based example

	Generate Routine
	generate
	generate (Buffer version)
	generate (USM version)

	Engines (Basic Random Number Generators)
	default_engine
	type alias default_engine

	mrg32k3a
	class mrg32k3a

	philox4x32x10
	class philox4x32x10

	mcg31m1
	class mcg31m1

	mcg59
	class mcg59

	r250
	class r250

	wichmann_hill
	class wichmann_hill

	mt19937
	class mt19937

	sfmt19937
	class sfmt19937

	mt2203
	class mt2203

	ars5
	class ars5

	sobol
	class sobol

	niederreiter
	class niederreiter

	nondeterministic
	class nondeterministic

	Service Routines
	leapfrog
	leapfrog

	skip_ahead
	skip_ahead
	skip_ahead (Interface with a partitioned number of skipped elements)

	Distributions
	Distributions Template Parameter Method
	uniform (continuous)
	class uniform

	gaussian
	class gaussian

	exponential
	class exponential

	laplace
	class laplace

	weibull
	class weibull

	cauchy
	class cauchy

	rayleigh
	class rayleigh

	lognormal
	class lognormal

	gumbel
	class gumbel

	gamma
	class gamma

	beta
	class beta

	chi_square
	class chi_square

	gaussian_mv
	class gaussian_mv

	uniform (discrete)
	class uniform

	uniform_bits
	class uniform_bits

	bits
	class bits

	bernoulli
	class bernoulli

	geometric
	class geometric

	binomial
	class binomial

	hypergeometric
	class hypergeometric

	poisson
	class poisson

	poisson_v
	class poisson_v

	negative_binomial
	class negative_binomial

	multinomial
	class multinomial

	Bibliography

	Summary Statistics
	Summary Statistics Overview
	oneMKL Summary Statistics Usage Model
	Buffer-based example
	USM-based example

	dataset
	structure dataset (Buffer version)
	structure dataset (USM version)

	Summary Statistics Routines
	raw_sum
	raw_sum (Buffer version)
	raw_sum (USM version)

	central_sum
	central_sum (Buffer version)
	central_sum (USM version)

	central_sum with provided mean
	central_sum with provided mean (buffer version)
	central_sum with provided mean (USM version)

	mean
	mean (buffer version)
	mean (USM version)

	raw_moment
	oneapi::mkl::stats::raw_moment (buffer version)
	raw_moment (USM version)

	central_moment
	central_moment (buffer version)
	central_moment (USM version)

	central_moment with provided mean
	central_moment with provided mean (buffer version)
	central_moment with provided mean (USM version)

	variation
	variation (buffer version)
	variation (USM version)

	variation with provided mean
	oneapi::mkl::stats::variation (buffer version)
	variation with provided mean (USM version)

	skewness
	skewness (buffer version)
	skewness (USM version)

	skewness with provided mean
	skewness with provided mean (buffer version)
	skewness with provided mean (USM version)

	kurtosis
	kurtosis (buffer version)
	kurtosis (USM version)

	kurtosis with provided mean
	kurtosis with provided mean (buffer version)
	kurtosis with provided mean (USM version)

	min
	min (buffer version)
	min (USM version)

	max
	max (buffer version)
	max (USM version)

	min_max
	min_max (buffer version)
	min_max (USM version)

	Service Routines
	make_dataset
	make_dataset (buffer version)
	make_dataset (USM version)

	Vector Math
	Special Value Notations
	VM Mathematical Functions
	abs
	acos
	acosh
	acospi
	add
	arg
	asin
	asinh
	asinpi
	atan
	atan2
	atan2pi
	atanh
	atanpi
	cbrt
	cdfnorm
	cdfnorminv
	ceil
	cis
	conj
	copysign
	cos
	cosd
	cosh
	cospi
	div
	erf
	erfc
	erfcinv
	erfinv
	exp
	exp10
	exp2
	expint1
	expm1
	fdim
	floor
	fmax
	fmin
	fmod
	frac
	hypot
	inv
	invcbrt
	invsqrt
	lgamma
	linearfrac
	ln
	log10
	log1p
	log2
	logb
	maxmag
	minmag
	modf
	mul
	mulbyconj
	nearbyint
	nextafter
	pow
	pow2o3
	pow3o2
	powr
	powx
	remainder
	rint
	round
	sin
	sincos
	sind
	sinh
	sinpi
	sqr
	sqrt
	sub
	tan
	tand
	tanh
	tanpi
	tgamma
	trunc

	VM Service Functions
	set_mode
	get_mode
	set_status
	get_status
	clear_status
	create_error_handler

	Exceptions
	Bibliography

	oneMKL Appendix
	Future considerations
	Acknowledgment

	Ray Tracing
	Overview
	Component Libraries
	Embree
	Introduction
	Device Object
	Scene Object
	Geometry Object
	Ray Queries
	Point Queries
	Collision Detection
	Miscellaneous

	Embree API
	rtcNewDevice
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcRetainDevice
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcReleaseDevice
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcGetDeviceProperty
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	rtcGetDeviceError
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetDeviceErrorFunction
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetDeviceMemoryMonitorFunction
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcNewScene
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcGetSceneDevice
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcRetainScene
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcReleaseScene
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcAttachGeometry
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcAttachGeometryByID
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcDetachGeometry
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcGetGeometry
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcGetGeometryThreadSafe
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcCommitScene
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcJoinCommitScene
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetSceneProgressMonitorFunction
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetSceneBuildQuality
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetSceneFlags
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcGetSceneFlags
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcGetSceneBounds
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcGetSceneLinearBounds
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcNewGeometry
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	RTC_GEOMETRY_TYPE_TRIANGLE
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	RTC_GEOMETRY_TYPE_QUAD
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	RTC_GEOMETRY_TYPE_GRID
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	RTC_GEOMETRY_TYPE_SUBDIVISION
	NAME
	SYNOPSIS
	DESCRIPTION
	Parameterization
	Face-Varying Data
	EXIT STATUS
	SEE ALSO
	RTC_GEOMETRY_TYPE_CURVE
	NAME
	SYNOPSIS
	DESCRIPTION
	Linear Basis
	Bézier Basis
	B-spline Basis
	Hermite Basis
	Catmull-Rom Basis
	Flat Curves
	Normal Oriented Curves
	Round Curves
	EXIT STATUS
	SEE ALSO
	RTC_GEOMETRY_TYPE_POINT
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	RTC_GEOMETRY_TYPE_USER
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	RTC_GEOMETRY_TYPE_INSTANCE
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	RTCCurveFlags
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcRetainGeometry
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcReleaseGeometry
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcCommitGeometry
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcEnableGeometry
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcDisableGeometry
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryTimeStepCount
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryTimeRange
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryVertexAttributeCount
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryMask
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryBuildQuality
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryBuffer
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetSharedGeometryBuffer
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetNewGeometryBuffer
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	RTCFormat
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	RTCBufferType
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcGetGeometryBufferData
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcUpdateGeometryBuffer
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryIntersectFilterFunction
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryOccludedFilterFunction
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcFilterIntersection
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcFilterOcclusion
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryUserData
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcGetGeometryUserData
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryUserPrimitiveCount
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryBoundsFunction
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryIntersectFunction
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryOccludedFunction
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryPointQueryFunction
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO
	rtcSetGeometryInstancedScene
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryTransform
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryTransformQuaternion
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcGetGeometryTransform
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryTessellationRate
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryTopologyCount
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometrySubdivisionMode
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryVertexAttributeTopology
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcSetGeometryDisplacementFunction
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcGetGeometryFirstHalfEdge
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcGetGeometryFace
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcGetGeometryNextHalfEdge
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcGetGeometryPreviousHalfEdge
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcGetGeometryOppositeHalfEdge
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcInterpolate
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcInterpolateN
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcNewBuffer
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcNewSharedBuffer
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcRetainBuffer
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcReleaseBuffer
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcGetBufferData
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	RTCRay
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	RTCHit
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	RTCRayHit
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	RTCRayN
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	RTCHitN
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	RTCRayHitN
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcInitIntersectContext
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcIntersect1
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcOccluded1
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcIntersect4/8/16
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcOccluded4/8/16
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcIntersect1M
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcOccluded1M
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcIntersect1Mp
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcOccluded1Mp
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcIntersectNM
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcOccludedNM
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcIntersectNp
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcOccludedNp
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcInitPointQueryContext
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcPointQuery
	NAME
	SYNOPSIS
	DESCRIPTION
	SUPPORTED PRIMITIVES
	EXIT STATUS
	SEE ALSO
	rtcCollide
	NAME
	SYNOPSIS
	DESCRIPTION
	SUPPORTED PRIMITIVES
	EXIT STATUS
	SEE ALSO
	rtcNewBVH
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcRetainBVH
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcReleaseBVH
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcBuildBVH
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	RTCQuaternionDecomposition
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO
	rtcInitQuaternionDecomposition
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	SEE ALSO

	Open VKL
	Introduction
	Open VKL API
	Device initialization and shutdown
	Environment variables
	Error handling and log messages
	Basic data types
	Object model
	Managed data
	Observers
	Volume types
	Structured Volumes
	Structured Regular Volumes
	Reconstruction filters
	Structured Spherical Volumes
	Adaptive Mesh Refinement (AMR) Volumes
	Unstructured Volumes
	VDB Volumes
	Reconstruction filters
	Major differences to OpenVDB
	Loading OpenVDB .vdb files
	Particle Volumes
	Temporal Variation
	Sampler Objects
	Sampling
	Sampling Multiple Attributes
	Gradients
	Iterators

	Performance Recommendations
	MXCSR control and status register
	Iterator Allocation
	Multi-attribute Volume Data Layout

	Open Image Denoise
	Introduction
	Open Image Denoise API
	Examples
	Basic denoising (C99 API)
	Basic denoising (C++11 API)
	Denoising with prefiltering (C++11 API)
	Device
	Error Handling
	Buffer
	Data Format
	Filter
	RT
	Albedo
	Normal
	Weights
	RTLightmap

	Training
	Prerequisites
	Devices
	Datasets
	Preprocessing (preprocess.py)
	Training (train.py)
	Inference (infer.py)
	Exporting Results (export.py)
	Image Conversion and Comparison

	OSPRay
	Introduction
	OSPRay API
	Initialization and Shutdown
	Command Line Arguments
	Manual Device Instantiation
	Environment Variables
	Error Handling and Status Messages
	Loading OSPRay Extensions at Runtime
	Shutting Down OSPRay
	Objects
	Parameters
	Data
	Volumes
	Structured Regular Volume
	Structured Spherical Volume
	Adaptive Mesh Refinement (AMR) Volume
	Unstructured Volume
	VDB Volume
	Particle Volume
	Transfer Function
	VolumetricModels
	Geometries
	Mesh
	Subdivision
	Spheres
	Curves
	Boxes
	Planes
	Isosurfaces
	GeometricModels
	Lights
	Directional Light / Distant Light
	Point Light / Sphere Light
	Spotlight / Photometric Light
	Quad Light
	Cylinder Light
	HDRI Light
	Ambient Light
	Sun-Sky Light
	Emissive Objects
	Scene Hierarchy
	Groups
	Instances
	World
	Renderers
	SciVis Renderer
	Ambient Occlusion Renderer
	Path Tracer
	Materials
	OBJ Material
	Principled
	CarPaint
	Metal
	Alloy
	Glass
	ThinGlass
	MetallicPaint
	Luminous
	Texture
	Texture2D
	Volume Texture
	Texture Transformations
	Cameras
	Perspective Camera
	Orthographic Camera
	Panoramic Camera
	Picking
	Framebuffer
	Image Operation
	Tone Mapper
	Denoiser
	Rendering
	Asynchronous Rendering
	Asynchronously Rendering and ospCommit()
	Synchronous Rendering

	Distributed Rendering with MPI
	MPI Offload Rendering
	MPI Distributed Rendering
	Image Parallel Rendering in the MPI Distributed Device
	Data Parallel Rendering in the MPI Distributed Device
	Picking on Distributed Data in the MPI Distributed Device
	Interaction with User Modules

	MultiDevice Rendering

	Appendices
	OSPRay Studio
	OSPRay Plug-in for USD Hydra
	ISPC Implicit SPMD Program Compiler
	Future Considerations
	Acknowledgment

	Legal Notices and Disclaimers
	Bibliography
	Index

